John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1 | //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This implements the ScheduleDAG class, which is a base class used by |
| 11 | // scheduling implementation classes. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #define DEBUG_TYPE "pre-RA-sched" |
| 16 | #include "llvm/CodeGen/ScheduleDAG.h" |
| 17 | #include "llvm/CodeGen/ScheduleHazardRecognizer.h" |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 18 | #include "llvm/CodeGen/SelectionDAGNodes.h" |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 19 | #include "llvm/Target/TargetMachine.h" |
| 20 | #include "llvm/Target/TargetInstrInfo.h" |
| 21 | #include "llvm/Target/TargetRegisterInfo.h" |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 22 | #include "llvm/Support/CommandLine.h" |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 23 | #include "llvm/Support/Debug.h" |
| 24 | #include "llvm/Support/raw_ostream.h" |
| 25 | #include <climits> |
| 26 | using namespace llvm; |
| 27 | |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 28 | #ifndef NDEBUG |
| 29 | static cl::opt<bool> StressSchedOpt( |
| 30 | "stress-sched", cl::Hidden, cl::init(false), |
| 31 | cl::desc("Stress test instruction scheduling")); |
| 32 | #endif |
| 33 | |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 34 | ScheduleDAG::ScheduleDAG(MachineFunction &mf) |
| 35 | : TM(mf.getTarget()), |
| 36 | TII(TM.getInstrInfo()), |
| 37 | TRI(TM.getRegisterInfo()), |
| 38 | MF(mf), MRI(mf.getRegInfo()), |
| 39 | EntrySU(), ExitSU() { |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 40 | #ifndef NDEBUG |
| 41 | StressSched = StressSchedOpt; |
| 42 | #endif |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 43 | } |
| 44 | |
| 45 | ScheduleDAG::~ScheduleDAG() {} |
| 46 | |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 47 | /// getInstrDesc helper to handle SDNodes. |
| 48 | const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const { |
| 49 | if (!Node || !Node->isMachineOpcode()) return NULL; |
| 50 | return &TII->get(Node->getMachineOpcode()); |
| 51 | } |
| 52 | |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 53 | /// dump - dump the schedule. |
| 54 | void ScheduleDAG::dumpSchedule() const { |
| 55 | for (unsigned i = 0, e = Sequence.size(); i != e; i++) { |
| 56 | if (SUnit *SU = Sequence[i]) |
| 57 | SU->dump(this); |
| 58 | else |
| 59 | dbgs() << "**** NOOP ****\n"; |
| 60 | } |
| 61 | } |
| 62 | |
| 63 | |
| 64 | /// Run - perform scheduling. |
| 65 | /// |
| 66 | void ScheduleDAG::Run(MachineBasicBlock *bb, |
| 67 | MachineBasicBlock::iterator insertPos) { |
| 68 | BB = bb; |
| 69 | InsertPos = insertPos; |
| 70 | |
| 71 | SUnits.clear(); |
| 72 | Sequence.clear(); |
| 73 | EntrySU = SUnit(); |
| 74 | ExitSU = SUnit(); |
| 75 | |
| 76 | Schedule(); |
| 77 | |
| 78 | DEBUG({ |
| 79 | dbgs() << "*** Final schedule ***\n"; |
| 80 | dumpSchedule(); |
| 81 | dbgs() << '\n'; |
| 82 | }); |
| 83 | } |
| 84 | |
| 85 | /// addPred - This adds the specified edge as a pred of the current node if |
| 86 | /// not already. It also adds the current node as a successor of the |
| 87 | /// specified node. |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 88 | bool SUnit::addPred(const SDep &D) { |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 89 | // If this node already has this depenence, don't add a redundant one. |
| 90 | for (SmallVector<SDep, 4>::const_iterator I = Preds.begin(), E = Preds.end(); |
| 91 | I != E; ++I) |
| 92 | if (*I == D) |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 93 | return false; |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 94 | // Now add a corresponding succ to N. |
| 95 | SDep P = D; |
| 96 | P.setSUnit(this); |
| 97 | SUnit *N = D.getSUnit(); |
| 98 | // Update the bookkeeping. |
| 99 | if (D.getKind() == SDep::Data) { |
| 100 | assert(NumPreds < UINT_MAX && "NumPreds will overflow!"); |
| 101 | assert(N->NumSuccs < UINT_MAX && "NumSuccs will overflow!"); |
| 102 | ++NumPreds; |
| 103 | ++N->NumSuccs; |
| 104 | } |
| 105 | if (!N->isScheduled) { |
| 106 | assert(NumPredsLeft < UINT_MAX && "NumPredsLeft will overflow!"); |
| 107 | ++NumPredsLeft; |
| 108 | } |
| 109 | if (!isScheduled) { |
| 110 | assert(N->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!"); |
| 111 | ++N->NumSuccsLeft; |
| 112 | } |
| 113 | Preds.push_back(D); |
| 114 | N->Succs.push_back(P); |
| 115 | if (P.getLatency() != 0) { |
| 116 | this->setDepthDirty(); |
| 117 | N->setHeightDirty(); |
| 118 | } |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 119 | return true; |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 120 | } |
| 121 | |
| 122 | /// removePred - This removes the specified edge as a pred of the current |
| 123 | /// node if it exists. It also removes the current node as a successor of |
| 124 | /// the specified node. |
| 125 | void SUnit::removePred(const SDep &D) { |
| 126 | // Find the matching predecessor. |
| 127 | for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end(); |
| 128 | I != E; ++I) |
| 129 | if (*I == D) { |
| 130 | bool FoundSucc = false; |
| 131 | // Find the corresponding successor in N. |
| 132 | SDep P = D; |
| 133 | P.setSUnit(this); |
| 134 | SUnit *N = D.getSUnit(); |
| 135 | for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(), |
| 136 | EE = N->Succs.end(); II != EE; ++II) |
| 137 | if (*II == P) { |
| 138 | FoundSucc = true; |
| 139 | N->Succs.erase(II); |
| 140 | break; |
| 141 | } |
| 142 | assert(FoundSucc && "Mismatching preds / succs lists!"); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 143 | (void)FoundSucc; |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 144 | Preds.erase(I); |
| 145 | // Update the bookkeeping. |
| 146 | if (P.getKind() == SDep::Data) { |
| 147 | assert(NumPreds > 0 && "NumPreds will underflow!"); |
| 148 | assert(N->NumSuccs > 0 && "NumSuccs will underflow!"); |
| 149 | --NumPreds; |
| 150 | --N->NumSuccs; |
| 151 | } |
| 152 | if (!N->isScheduled) { |
| 153 | assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!"); |
| 154 | --NumPredsLeft; |
| 155 | } |
| 156 | if (!isScheduled) { |
| 157 | assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!"); |
| 158 | --N->NumSuccsLeft; |
| 159 | } |
| 160 | if (P.getLatency() != 0) { |
| 161 | this->setDepthDirty(); |
| 162 | N->setHeightDirty(); |
| 163 | } |
| 164 | return; |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | void SUnit::setDepthDirty() { |
| 169 | if (!isDepthCurrent) return; |
| 170 | SmallVector<SUnit*, 8> WorkList; |
| 171 | WorkList.push_back(this); |
| 172 | do { |
| 173 | SUnit *SU = WorkList.pop_back_val(); |
| 174 | SU->isDepthCurrent = false; |
| 175 | for (SUnit::const_succ_iterator I = SU->Succs.begin(), |
| 176 | E = SU->Succs.end(); I != E; ++I) { |
| 177 | SUnit *SuccSU = I->getSUnit(); |
| 178 | if (SuccSU->isDepthCurrent) |
| 179 | WorkList.push_back(SuccSU); |
| 180 | } |
| 181 | } while (!WorkList.empty()); |
| 182 | } |
| 183 | |
| 184 | void SUnit::setHeightDirty() { |
| 185 | if (!isHeightCurrent) return; |
| 186 | SmallVector<SUnit*, 8> WorkList; |
| 187 | WorkList.push_back(this); |
| 188 | do { |
| 189 | SUnit *SU = WorkList.pop_back_val(); |
| 190 | SU->isHeightCurrent = false; |
| 191 | for (SUnit::const_pred_iterator I = SU->Preds.begin(), |
| 192 | E = SU->Preds.end(); I != E; ++I) { |
| 193 | SUnit *PredSU = I->getSUnit(); |
| 194 | if (PredSU->isHeightCurrent) |
| 195 | WorkList.push_back(PredSU); |
| 196 | } |
| 197 | } while (!WorkList.empty()); |
| 198 | } |
| 199 | |
| 200 | /// setDepthToAtLeast - Update this node's successors to reflect the |
| 201 | /// fact that this node's depth just increased. |
| 202 | /// |
| 203 | void SUnit::setDepthToAtLeast(unsigned NewDepth) { |
| 204 | if (NewDepth <= getDepth()) |
| 205 | return; |
| 206 | setDepthDirty(); |
| 207 | Depth = NewDepth; |
| 208 | isDepthCurrent = true; |
| 209 | } |
| 210 | |
| 211 | /// setHeightToAtLeast - Update this node's predecessors to reflect the |
| 212 | /// fact that this node's height just increased. |
| 213 | /// |
| 214 | void SUnit::setHeightToAtLeast(unsigned NewHeight) { |
| 215 | if (NewHeight <= getHeight()) |
| 216 | return; |
| 217 | setHeightDirty(); |
| 218 | Height = NewHeight; |
| 219 | isHeightCurrent = true; |
| 220 | } |
| 221 | |
| 222 | /// ComputeDepth - Calculate the maximal path from the node to the exit. |
| 223 | /// |
| 224 | void SUnit::ComputeDepth() { |
| 225 | SmallVector<SUnit*, 8> WorkList; |
| 226 | WorkList.push_back(this); |
| 227 | do { |
| 228 | SUnit *Cur = WorkList.back(); |
| 229 | |
| 230 | bool Done = true; |
| 231 | unsigned MaxPredDepth = 0; |
| 232 | for (SUnit::const_pred_iterator I = Cur->Preds.begin(), |
| 233 | E = Cur->Preds.end(); I != E; ++I) { |
| 234 | SUnit *PredSU = I->getSUnit(); |
| 235 | if (PredSU->isDepthCurrent) |
| 236 | MaxPredDepth = std::max(MaxPredDepth, |
| 237 | PredSU->Depth + I->getLatency()); |
| 238 | else { |
| 239 | Done = false; |
| 240 | WorkList.push_back(PredSU); |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | if (Done) { |
| 245 | WorkList.pop_back(); |
| 246 | if (MaxPredDepth != Cur->Depth) { |
| 247 | Cur->setDepthDirty(); |
| 248 | Cur->Depth = MaxPredDepth; |
| 249 | } |
| 250 | Cur->isDepthCurrent = true; |
| 251 | } |
| 252 | } while (!WorkList.empty()); |
| 253 | } |
| 254 | |
| 255 | /// ComputeHeight - Calculate the maximal path from the node to the entry. |
| 256 | /// |
| 257 | void SUnit::ComputeHeight() { |
| 258 | SmallVector<SUnit*, 8> WorkList; |
| 259 | WorkList.push_back(this); |
| 260 | do { |
| 261 | SUnit *Cur = WorkList.back(); |
| 262 | |
| 263 | bool Done = true; |
| 264 | unsigned MaxSuccHeight = 0; |
| 265 | for (SUnit::const_succ_iterator I = Cur->Succs.begin(), |
| 266 | E = Cur->Succs.end(); I != E; ++I) { |
| 267 | SUnit *SuccSU = I->getSUnit(); |
| 268 | if (SuccSU->isHeightCurrent) |
| 269 | MaxSuccHeight = std::max(MaxSuccHeight, |
| 270 | SuccSU->Height + I->getLatency()); |
| 271 | else { |
| 272 | Done = false; |
| 273 | WorkList.push_back(SuccSU); |
| 274 | } |
| 275 | } |
| 276 | |
| 277 | if (Done) { |
| 278 | WorkList.pop_back(); |
| 279 | if (MaxSuccHeight != Cur->Height) { |
| 280 | Cur->setHeightDirty(); |
| 281 | Cur->Height = MaxSuccHeight; |
| 282 | } |
| 283 | Cur->isHeightCurrent = true; |
| 284 | } |
| 285 | } while (!WorkList.empty()); |
| 286 | } |
| 287 | |
| 288 | /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or |
| 289 | /// a group of nodes flagged together. |
| 290 | void SUnit::dump(const ScheduleDAG *G) const { |
| 291 | dbgs() << "SU(" << NodeNum << "): "; |
| 292 | G->dumpNode(this); |
| 293 | } |
| 294 | |
| 295 | void SUnit::dumpAll(const ScheduleDAG *G) const { |
| 296 | dump(G); |
| 297 | |
| 298 | dbgs() << " # preds left : " << NumPredsLeft << "\n"; |
| 299 | dbgs() << " # succs left : " << NumSuccsLeft << "\n"; |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 300 | dbgs() << " # rdefs left : " << NumRegDefsLeft << "\n"; |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 301 | dbgs() << " Latency : " << Latency << "\n"; |
| 302 | dbgs() << " Depth : " << Depth << "\n"; |
| 303 | dbgs() << " Height : " << Height << "\n"; |
| 304 | |
| 305 | if (Preds.size() != 0) { |
| 306 | dbgs() << " Predecessors:\n"; |
| 307 | for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end(); |
| 308 | I != E; ++I) { |
| 309 | dbgs() << " "; |
| 310 | switch (I->getKind()) { |
| 311 | case SDep::Data: dbgs() << "val "; break; |
| 312 | case SDep::Anti: dbgs() << "anti"; break; |
| 313 | case SDep::Output: dbgs() << "out "; break; |
| 314 | case SDep::Order: dbgs() << "ch "; break; |
| 315 | } |
| 316 | dbgs() << "#"; |
| 317 | dbgs() << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")"; |
| 318 | if (I->isArtificial()) |
| 319 | dbgs() << " *"; |
| 320 | dbgs() << ": Latency=" << I->getLatency(); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 321 | if (I->isAssignedRegDep()) |
| 322 | dbgs() << " Reg=" << G->TRI->getName(I->getReg()); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 323 | dbgs() << "\n"; |
| 324 | } |
| 325 | } |
| 326 | if (Succs.size() != 0) { |
| 327 | dbgs() << " Successors:\n"; |
| 328 | for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end(); |
| 329 | I != E; ++I) { |
| 330 | dbgs() << " "; |
| 331 | switch (I->getKind()) { |
| 332 | case SDep::Data: dbgs() << "val "; break; |
| 333 | case SDep::Anti: dbgs() << "anti"; break; |
| 334 | case SDep::Output: dbgs() << "out "; break; |
| 335 | case SDep::Order: dbgs() << "ch "; break; |
| 336 | } |
| 337 | dbgs() << "#"; |
| 338 | dbgs() << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")"; |
| 339 | if (I->isArtificial()) |
| 340 | dbgs() << " *"; |
| 341 | dbgs() << ": Latency=" << I->getLatency(); |
| 342 | dbgs() << "\n"; |
| 343 | } |
| 344 | } |
| 345 | dbgs() << "\n"; |
| 346 | } |
| 347 | |
| 348 | #ifndef NDEBUG |
| 349 | /// VerifySchedule - Verify that all SUnits were scheduled and that |
| 350 | /// their state is consistent. |
| 351 | /// |
| 352 | void ScheduleDAG::VerifySchedule(bool isBottomUp) { |
| 353 | bool AnyNotSched = false; |
| 354 | unsigned DeadNodes = 0; |
| 355 | unsigned Noops = 0; |
| 356 | for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { |
| 357 | if (!SUnits[i].isScheduled) { |
| 358 | if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) { |
| 359 | ++DeadNodes; |
| 360 | continue; |
| 361 | } |
| 362 | if (!AnyNotSched) |
| 363 | dbgs() << "*** Scheduling failed! ***\n"; |
| 364 | SUnits[i].dump(this); |
| 365 | dbgs() << "has not been scheduled!\n"; |
| 366 | AnyNotSched = true; |
| 367 | } |
| 368 | if (SUnits[i].isScheduled && |
| 369 | (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getDepth()) > |
| 370 | unsigned(INT_MAX)) { |
| 371 | if (!AnyNotSched) |
| 372 | dbgs() << "*** Scheduling failed! ***\n"; |
| 373 | SUnits[i].dump(this); |
| 374 | dbgs() << "has an unexpected " |
| 375 | << (isBottomUp ? "Height" : "Depth") << " value!\n"; |
| 376 | AnyNotSched = true; |
| 377 | } |
| 378 | if (isBottomUp) { |
| 379 | if (SUnits[i].NumSuccsLeft != 0) { |
| 380 | if (!AnyNotSched) |
| 381 | dbgs() << "*** Scheduling failed! ***\n"; |
| 382 | SUnits[i].dump(this); |
| 383 | dbgs() << "has successors left!\n"; |
| 384 | AnyNotSched = true; |
| 385 | } |
| 386 | } else { |
| 387 | if (SUnits[i].NumPredsLeft != 0) { |
| 388 | if (!AnyNotSched) |
| 389 | dbgs() << "*** Scheduling failed! ***\n"; |
| 390 | SUnits[i].dump(this); |
| 391 | dbgs() << "has predecessors left!\n"; |
| 392 | AnyNotSched = true; |
| 393 | } |
| 394 | } |
| 395 | } |
| 396 | for (unsigned i = 0, e = Sequence.size(); i != e; ++i) |
| 397 | if (!Sequence[i]) |
| 398 | ++Noops; |
| 399 | assert(!AnyNotSched); |
| 400 | assert(Sequence.size() + DeadNodes - Noops == SUnits.size() && |
| 401 | "The number of nodes scheduled doesn't match the expected number!"); |
| 402 | } |
| 403 | #endif |
| 404 | |
| 405 | /// InitDAGTopologicalSorting - create the initial topological |
| 406 | /// ordering from the DAG to be scheduled. |
| 407 | /// |
| 408 | /// The idea of the algorithm is taken from |
| 409 | /// "Online algorithms for managing the topological order of |
| 410 | /// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly |
| 411 | /// This is the MNR algorithm, which was first introduced by |
| 412 | /// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in |
| 413 | /// "Maintaining a topological order under edge insertions". |
| 414 | /// |
| 415 | /// Short description of the algorithm: |
| 416 | /// |
| 417 | /// Topological ordering, ord, of a DAG maps each node to a topological |
| 418 | /// index so that for all edges X->Y it is the case that ord(X) < ord(Y). |
| 419 | /// |
| 420 | /// This means that if there is a path from the node X to the node Z, |
| 421 | /// then ord(X) < ord(Z). |
| 422 | /// |
| 423 | /// This property can be used to check for reachability of nodes: |
| 424 | /// if Z is reachable from X, then an insertion of the edge Z->X would |
| 425 | /// create a cycle. |
| 426 | /// |
| 427 | /// The algorithm first computes a topological ordering for the DAG by |
| 428 | /// initializing the Index2Node and Node2Index arrays and then tries to keep |
| 429 | /// the ordering up-to-date after edge insertions by reordering the DAG. |
| 430 | /// |
| 431 | /// On insertion of the edge X->Y, the algorithm first marks by calling DFS |
| 432 | /// the nodes reachable from Y, and then shifts them using Shift to lie |
| 433 | /// immediately after X in Index2Node. |
| 434 | void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() { |
| 435 | unsigned DAGSize = SUnits.size(); |
| 436 | std::vector<SUnit*> WorkList; |
| 437 | WorkList.reserve(DAGSize); |
| 438 | |
| 439 | Index2Node.resize(DAGSize); |
| 440 | Node2Index.resize(DAGSize); |
| 441 | |
| 442 | // Initialize the data structures. |
| 443 | for (unsigned i = 0, e = DAGSize; i != e; ++i) { |
| 444 | SUnit *SU = &SUnits[i]; |
| 445 | int NodeNum = SU->NodeNum; |
| 446 | unsigned Degree = SU->Succs.size(); |
| 447 | // Temporarily use the Node2Index array as scratch space for degree counts. |
| 448 | Node2Index[NodeNum] = Degree; |
| 449 | |
| 450 | // Is it a node without dependencies? |
| 451 | if (Degree == 0) { |
| 452 | assert(SU->Succs.empty() && "SUnit should have no successors"); |
| 453 | // Collect leaf nodes. |
| 454 | WorkList.push_back(SU); |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | int Id = DAGSize; |
| 459 | while (!WorkList.empty()) { |
| 460 | SUnit *SU = WorkList.back(); |
| 461 | WorkList.pop_back(); |
| 462 | Allocate(SU->NodeNum, --Id); |
| 463 | for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| 464 | I != E; ++I) { |
| 465 | SUnit *SU = I->getSUnit(); |
| 466 | if (!--Node2Index[SU->NodeNum]) |
| 467 | // If all dependencies of the node are processed already, |
| 468 | // then the node can be computed now. |
| 469 | WorkList.push_back(SU); |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | Visited.resize(DAGSize); |
| 474 | |
| 475 | #ifndef NDEBUG |
| 476 | // Check correctness of the ordering |
| 477 | for (unsigned i = 0, e = DAGSize; i != e; ++i) { |
| 478 | SUnit *SU = &SUnits[i]; |
| 479 | for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| 480 | I != E; ++I) { |
| 481 | assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] && |
| 482 | "Wrong topological sorting"); |
| 483 | } |
| 484 | } |
| 485 | #endif |
| 486 | } |
| 487 | |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 488 | /// AddPred - Updates the topological ordering to accommodate an edge |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 489 | /// to be added from SUnit X to SUnit Y. |
| 490 | void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) { |
| 491 | int UpperBound, LowerBound; |
| 492 | LowerBound = Node2Index[Y->NodeNum]; |
| 493 | UpperBound = Node2Index[X->NodeNum]; |
| 494 | bool HasLoop = false; |
| 495 | // Is Ord(X) < Ord(Y) ? |
| 496 | if (LowerBound < UpperBound) { |
| 497 | // Update the topological order. |
| 498 | Visited.reset(); |
| 499 | DFS(Y, UpperBound, HasLoop); |
| 500 | assert(!HasLoop && "Inserted edge creates a loop!"); |
| 501 | // Recompute topological indexes. |
| 502 | Shift(Visited, LowerBound, UpperBound); |
| 503 | } |
| 504 | } |
| 505 | |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 506 | /// RemovePred - Updates the topological ordering to accommodate an |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 507 | /// an edge to be removed from the specified node N from the predecessors |
| 508 | /// of the current node M. |
| 509 | void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) { |
| 510 | // InitDAGTopologicalSorting(); |
| 511 | } |
| 512 | |
| 513 | /// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark |
| 514 | /// all nodes affected by the edge insertion. These nodes will later get new |
| 515 | /// topological indexes by means of the Shift method. |
| 516 | void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound, |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 517 | bool &HasLoop) { |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 518 | std::vector<const SUnit*> WorkList; |
| 519 | WorkList.reserve(SUnits.size()); |
| 520 | |
| 521 | WorkList.push_back(SU); |
| 522 | do { |
| 523 | SU = WorkList.back(); |
| 524 | WorkList.pop_back(); |
| 525 | Visited.set(SU->NodeNum); |
| 526 | for (int I = SU->Succs.size()-1; I >= 0; --I) { |
| 527 | int s = SU->Succs[I].getSUnit()->NodeNum; |
| 528 | if (Node2Index[s] == UpperBound) { |
| 529 | HasLoop = true; |
| 530 | return; |
| 531 | } |
| 532 | // Visit successors if not already and in affected region. |
| 533 | if (!Visited.test(s) && Node2Index[s] < UpperBound) { |
| 534 | WorkList.push_back(SU->Succs[I].getSUnit()); |
| 535 | } |
| 536 | } |
| 537 | } while (!WorkList.empty()); |
| 538 | } |
| 539 | |
| 540 | /// Shift - Renumber the nodes so that the topological ordering is |
| 541 | /// preserved. |
| 542 | void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound, |
| 543 | int UpperBound) { |
| 544 | std::vector<int> L; |
| 545 | int shift = 0; |
| 546 | int i; |
| 547 | |
| 548 | for (i = LowerBound; i <= UpperBound; ++i) { |
| 549 | // w is node at topological index i. |
| 550 | int w = Index2Node[i]; |
| 551 | if (Visited.test(w)) { |
| 552 | // Unmark. |
| 553 | Visited.reset(w); |
| 554 | L.push_back(w); |
| 555 | shift = shift + 1; |
| 556 | } else { |
| 557 | Allocate(w, i - shift); |
| 558 | } |
| 559 | } |
| 560 | |
| 561 | for (unsigned j = 0; j < L.size(); ++j) { |
| 562 | Allocate(L[j], i - shift); |
| 563 | i = i + 1; |
| 564 | } |
| 565 | } |
| 566 | |
| 567 | |
| 568 | /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will |
| 569 | /// create a cycle. |
| 570 | bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) { |
| 571 | if (IsReachable(TargetSU, SU)) |
| 572 | return true; |
| 573 | for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| 574 | I != E; ++I) |
| 575 | if (I->isAssignedRegDep() && |
| 576 | IsReachable(TargetSU, I->getSUnit())) |
| 577 | return true; |
| 578 | return false; |
| 579 | } |
| 580 | |
| 581 | /// IsReachable - Checks if SU is reachable from TargetSU. |
| 582 | bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU, |
| 583 | const SUnit *TargetSU) { |
| 584 | // If insertion of the edge SU->TargetSU would create a cycle |
| 585 | // then there is a path from TargetSU to SU. |
| 586 | int UpperBound, LowerBound; |
| 587 | LowerBound = Node2Index[TargetSU->NodeNum]; |
| 588 | UpperBound = Node2Index[SU->NodeNum]; |
| 589 | bool HasLoop = false; |
| 590 | // Is Ord(TargetSU) < Ord(SU) ? |
| 591 | if (LowerBound < UpperBound) { |
| 592 | Visited.reset(); |
| 593 | // There may be a path from TargetSU to SU. Check for it. |
| 594 | DFS(TargetSU, UpperBound, HasLoop); |
| 595 | } |
| 596 | return HasLoop; |
| 597 | } |
| 598 | |
| 599 | /// Allocate - assign the topological index to the node n. |
| 600 | void ScheduleDAGTopologicalSort::Allocate(int n, int index) { |
| 601 | Node2Index[n] = index; |
| 602 | Index2Node[index] = n; |
| 603 | } |
| 604 | |
| 605 | ScheduleDAGTopologicalSort:: |
| 606 | ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits) : SUnits(sunits) {} |
| 607 | |
| 608 | ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {} |