John Bauman | 66b8ab2 | 2014-05-06 15:57:45 -0400 | [diff] [blame] | 1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
|
| 2 | "http://www.w3.org/TR/html4/strict.dtd">
|
| 3 | <html>
|
| 4 | <head>
|
| 5 | <title>LLVM Link Time Optimization: Design and Implementation</title>
|
| 6 | <link rel="stylesheet" href="llvm.css" type="text/css">
|
| 7 | </head>
|
| 8 |
|
| 9 | <h1>
|
| 10 | LLVM Link Time Optimization: Design and Implementation
|
| 11 | </h1>
|
| 12 |
|
| 13 | <ul>
|
| 14 | <li><a href="#desc">Description</a></li>
|
| 15 | <li><a href="#design">Design Philosophy</a>
|
| 16 | <ul>
|
| 17 | <li><a href="#example1">Example of link time optimization</a></li>
|
| 18 | <li><a href="#alternative_approaches">Alternative Approaches</a></li>
|
| 19 | </ul></li>
|
| 20 | <li><a href="#multiphase">Multi-phase communication between LLVM and linker</a>
|
| 21 | <ul>
|
| 22 | <li><a href="#phase1">Phase 1 : Read LLVM Bitcode Files</a></li>
|
| 23 | <li><a href="#phase2">Phase 2 : Symbol Resolution</a></li>
|
| 24 | <li><a href="#phase3">Phase 3 : Optimize Bitcode Files</a></li>
|
| 25 | <li><a href="#phase4">Phase 4 : Symbol Resolution after optimization</a></li>
|
| 26 | </ul></li>
|
| 27 | <li><a href="#lto">libLTO</a>
|
| 28 | <ul>
|
| 29 | <li><a href="#lto_module_t">lto_module_t</a></li>
|
| 30 | <li><a href="#lto_code_gen_t">lto_code_gen_t</a></li>
|
| 31 | </ul>
|
| 32 | </ul>
|
| 33 |
|
| 34 | <div class="doc_author">
|
| 35 | <p>Written by Devang Patel and Nick Kledzik</p>
|
| 36 | </div>
|
| 37 |
|
| 38 | <!-- *********************************************************************** -->
|
| 39 | <h2>
|
| 40 | <a name="desc">Description</a>
|
| 41 | </h2>
|
| 42 | <!-- *********************************************************************** -->
|
| 43 |
|
| 44 | <div>
|
| 45 | <p>
|
| 46 | LLVM features powerful intermodular optimizations which can be used at link
|
| 47 | time. Link Time Optimization (LTO) is another name for intermodular optimization
|
| 48 | when performed during the link stage. This document describes the interface
|
| 49 | and design between the LTO optimizer and the linker.</p>
|
| 50 | </div>
|
| 51 |
|
| 52 | <!-- *********************************************************************** -->
|
| 53 | <h2>
|
| 54 | <a name="design">Design Philosophy</a>
|
| 55 | </h2>
|
| 56 | <!-- *********************************************************************** -->
|
| 57 |
|
| 58 | <div>
|
| 59 | <p>
|
| 60 | The LLVM Link Time Optimizer provides complete transparency, while doing
|
| 61 | intermodular optimization, in the compiler tool chain. Its main goal is to let
|
| 62 | the developer take advantage of intermodular optimizations without making any
|
| 63 | significant changes to the developer's makefiles or build system. This is
|
| 64 | achieved through tight integration with the linker. In this model, the linker
|
| 65 | treates LLVM bitcode files like native object files and allows mixing and
|
| 66 | matching among them. The linker uses <a href="#lto">libLTO</a>, a shared
|
| 67 | object, to handle LLVM bitcode files. This tight integration between
|
| 68 | the linker and LLVM optimizer helps to do optimizations that are not possible
|
| 69 | in other models. The linker input allows the optimizer to avoid relying on
|
| 70 | conservative escape analysis.
|
| 71 | </p>
|
| 72 |
|
| 73 | <!-- ======================================================================= -->
|
| 74 | <h3>
|
| 75 | <a name="example1">Example of link time optimization</a>
|
| 76 | </h3>
|
| 77 |
|
| 78 | <div>
|
| 79 | <p>The following example illustrates the advantages of LTO's integrated
|
| 80 | approach and clean interface. This example requires a system linker which
|
| 81 | supports LTO through the interface described in this document. Here,
|
| 82 | clang transparently invokes system linker. </p>
|
| 83 | <ul>
|
| 84 | <li> Input source file <tt>a.c</tt> is compiled into LLVM bitcode form.
|
| 85 | <li> Input source file <tt>main.c</tt> is compiled into native object code.
|
| 86 | </ul>
|
| 87 | <pre class="doc_code">
|
| 88 | --- a.h ---
|
| 89 | extern int foo1(void);
|
| 90 | extern void foo2(void);
|
| 91 | extern void foo4(void);
|
| 92 |
|
| 93 | --- a.c ---
|
| 94 | #include "a.h"
|
| 95 |
|
| 96 | static signed int i = 0;
|
| 97 |
|
| 98 | void foo2(void) {
|
| 99 | i = -1;
|
| 100 | }
|
| 101 |
|
| 102 | static int foo3() {
|
| 103 | foo4();
|
| 104 | return 10;
|
| 105 | }
|
| 106 |
|
| 107 | int foo1(void) {
|
| 108 | int data = 0;
|
| 109 |
|
| 110 | if (i < 0)
|
| 111 | data = foo3();
|
| 112 |
|
| 113 | data = data + 42;
|
| 114 | return data;
|
| 115 | }
|
| 116 |
|
| 117 | --- main.c ---
|
| 118 | #include <stdio.h>
|
| 119 | #include "a.h"
|
| 120 |
|
| 121 | void foo4(void) {
|
| 122 | printf("Hi\n");
|
| 123 | }
|
| 124 |
|
| 125 | int main() {
|
| 126 | return foo1();
|
| 127 | }
|
| 128 |
|
| 129 | --- command lines ---
|
| 130 | $ clang -emit-llvm -c a.c -o a.o # <-- a.o is LLVM bitcode file
|
| 131 | $ clang -c main.c -o main.o # <-- main.o is native object file
|
| 132 | $ clang a.o main.o -o main # <-- standard link command without any modifications
|
| 133 | </pre>
|
| 134 |
|
| 135 | <ul>
|
| 136 | <li>In this example, the linker recognizes that <tt>foo2()</tt> is an
|
| 137 | externally visible symbol defined in LLVM bitcode file. The linker
|
| 138 | completes its usual symbol resolution pass and finds that <tt>foo2()</tt>
|
| 139 | is not used anywhere. This information is used by the LLVM optimizer and
|
| 140 | it removes <tt>foo2()</tt>.</li>
|
| 141 | <li>As soon as <tt>foo2()</tt> is removed, the optimizer recognizes that condition
|
| 142 | <tt>i < 0</tt> is always false, which means <tt>foo3()</tt> is never
|
| 143 | used. Hence, the optimizer also removes <tt>foo3()</tt>.</li>
|
| 144 | <li>And this in turn, enables linker to remove <tt>foo4()</tt>.</li>
|
| 145 | </ul>
|
| 146 |
|
| 147 | <p>This example illustrates the advantage of tight integration with the
|
| 148 | linker. Here, the optimizer can not remove <tt>foo3()</tt> without the
|
| 149 | linker's input.</p>
|
| 150 |
|
| 151 | </div>
|
| 152 |
|
| 153 | <!-- ======================================================================= -->
|
| 154 | <h3>
|
| 155 | <a name="alternative_approaches">Alternative Approaches</a>
|
| 156 | </h3>
|
| 157 |
|
| 158 | <div>
|
| 159 | <dl>
|
| 160 | <dt><b>Compiler driver invokes link time optimizer separately.</b></dt>
|
| 161 | <dd>In this model the link time optimizer is not able to take advantage of
|
| 162 | information collected during the linker's normal symbol resolution phase.
|
| 163 | In the above example, the optimizer can not remove <tt>foo2()</tt> without
|
| 164 | the linker's input because it is externally visible. This in turn prohibits
|
| 165 | the optimizer from removing <tt>foo3()</tt>.</dd>
|
| 166 | <dt><b>Use separate tool to collect symbol information from all object
|
| 167 | files.</b></dt>
|
| 168 | <dd>In this model, a new, separate, tool or library replicates the linker's
|
| 169 | capability to collect information for link time optimization. Not only is
|
| 170 | this code duplication difficult to justify, but it also has several other
|
| 171 | disadvantages. For example, the linking semantics and the features
|
| 172 | provided by the linker on various platform are not unique. This means,
|
| 173 | this new tool needs to support all such features and platforms in one
|
| 174 | super tool or a separate tool per platform is required. This increases
|
| 175 | maintenance cost for link time optimizer significantly, which is not
|
| 176 | necessary. This approach also requires staying synchronized with linker
|
| 177 | developements on various platforms, which is not the main focus of the link
|
| 178 | time optimizer. Finally, this approach increases end user's build time due
|
| 179 | to the duplication of work done by this separate tool and the linker itself.
|
| 180 | </dd>
|
| 181 | </dl>
|
| 182 | </div>
|
| 183 |
|
| 184 | </div>
|
| 185 |
|
| 186 | <!-- *********************************************************************** -->
|
| 187 | <h2>
|
| 188 | <a name="multiphase">Multi-phase communication between libLTO and linker</a>
|
| 189 | </h2>
|
| 190 |
|
| 191 | <div>
|
| 192 | <p>The linker collects information about symbol defininitions and uses in
|
| 193 | various link objects which is more accurate than any information collected
|
| 194 | by other tools during typical build cycles. The linker collects this
|
| 195 | information by looking at the definitions and uses of symbols in native .o
|
| 196 | files and using symbol visibility information. The linker also uses
|
| 197 | user-supplied information, such as a list of exported symbols. LLVM
|
| 198 | optimizer collects control flow information, data flow information and knows
|
| 199 | much more about program structure from the optimizer's point of view.
|
| 200 | Our goal is to take advantage of tight integration between the linker and
|
| 201 | the optimizer by sharing this information during various linking phases.
|
| 202 | </p>
|
| 203 |
|
| 204 | <!-- ======================================================================= -->
|
| 205 | <h3>
|
| 206 | <a name="phase1">Phase 1 : Read LLVM Bitcode Files</a>
|
| 207 | </h3>
|
| 208 |
|
| 209 | <div>
|
| 210 | <p>The linker first reads all object files in natural order and collects
|
| 211 | symbol information. This includes native object files as well as LLVM bitcode
|
| 212 | files. To minimize the cost to the linker in the case that all .o files
|
| 213 | are native object files, the linker only calls <tt>lto_module_create()</tt>
|
| 214 | when a supplied object file is found to not be a native object file. If
|
| 215 | <tt>lto_module_create()</tt> returns that the file is an LLVM bitcode file,
|
| 216 | the linker
|
| 217 | then iterates over the module using <tt>lto_module_get_symbol_name()</tt> and
|
| 218 | <tt>lto_module_get_symbol_attribute()</tt> to get all symbols defined and
|
| 219 | referenced.
|
| 220 | This information is added to the linker's global symbol table.
|
| 221 | </p>
|
| 222 | <p>The lto* functions are all implemented in a shared object libLTO. This
|
| 223 | allows the LLVM LTO code to be updated independently of the linker tool.
|
| 224 | On platforms that support it, the shared object is lazily loaded.
|
| 225 | </p>
|
| 226 | </div>
|
| 227 |
|
| 228 | <!-- ======================================================================= -->
|
| 229 | <h3>
|
| 230 | <a name="phase2">Phase 2 : Symbol Resolution</a>
|
| 231 | </h3>
|
| 232 |
|
| 233 | <div>
|
| 234 | <p>In this stage, the linker resolves symbols using global symbol table.
|
| 235 | It may report undefined symbol errors, read archive members, replace
|
| 236 | weak symbols, etc. The linker is able to do this seamlessly even though it
|
| 237 | does not know the exact content of input LLVM bitcode files. If dead code
|
| 238 | stripping is enabled then the linker collects the list of live symbols.
|
| 239 | </p>
|
| 240 | </div>
|
| 241 |
|
| 242 | <!-- ======================================================================= -->
|
| 243 | <h3>
|
| 244 | <a name="phase3">Phase 3 : Optimize Bitcode Files</a>
|
| 245 | </h3>
|
| 246 | <div>
|
| 247 | <p>After symbol resolution, the linker tells the LTO shared object which
|
| 248 | symbols are needed by native object files. In the example above, the linker
|
| 249 | reports that only <tt>foo1()</tt> is used by native object files using
|
| 250 | <tt>lto_codegen_add_must_preserve_symbol()</tt>. Next the linker invokes
|
| 251 | the LLVM optimizer and code generators using <tt>lto_codegen_compile()</tt>
|
| 252 | which returns a native object file creating by merging the LLVM bitcode files
|
| 253 | and applying various optimization passes.
|
| 254 | </p>
|
| 255 | </div>
|
| 256 |
|
| 257 | <!-- ======================================================================= -->
|
| 258 | <h3>
|
| 259 | <a name="phase4">Phase 4 : Symbol Resolution after optimization</a>
|
| 260 | </h3>
|
| 261 |
|
| 262 | <div>
|
| 263 | <p>In this phase, the linker reads optimized a native object file and
|
| 264 | updates the internal global symbol table to reflect any changes. The linker
|
| 265 | also collects information about any changes in use of external symbols by
|
| 266 | LLVM bitcode files. In the example above, the linker notes that
|
| 267 | <tt>foo4()</tt> is not used any more. If dead code stripping is enabled then
|
| 268 | the linker refreshes the live symbol information appropriately and performs
|
| 269 | dead code stripping.</p>
|
| 270 | <p>After this phase, the linker continues linking as if it never saw LLVM
|
| 271 | bitcode files.</p>
|
| 272 | </div>
|
| 273 |
|
| 274 | </div>
|
| 275 |
|
| 276 | <!-- *********************************************************************** -->
|
| 277 | <h2>
|
| 278 | <a name="lto">libLTO</a>
|
| 279 | </h2>
|
| 280 |
|
| 281 | <div>
|
| 282 | <p><tt>libLTO</tt> is a shared object that is part of the LLVM tools, and
|
| 283 | is intended for use by a linker. <tt>libLTO</tt> provides an abstract C
|
| 284 | interface to use the LLVM interprocedural optimizer without exposing details
|
| 285 | of LLVM's internals. The intention is to keep the interface as stable as
|
| 286 | possible even when the LLVM optimizer continues to evolve. It should even
|
| 287 | be possible for a completely different compilation technology to provide
|
| 288 | a different libLTO that works with their object files and the standard
|
| 289 | linker tool.</p>
|
| 290 |
|
| 291 | <!-- ======================================================================= -->
|
| 292 | <h3>
|
| 293 | <a name="lto_module_t">lto_module_t</a>
|
| 294 | </h3>
|
| 295 |
|
| 296 | <div>
|
| 297 |
|
| 298 | <p>A non-native object file is handled via an <tt>lto_module_t</tt>.
|
| 299 | The following functions allow the linker to check if a file (on disk
|
| 300 | or in a memory buffer) is a file which libLTO can process:</p>
|
| 301 |
|
| 302 | <pre class="doc_code">
|
| 303 | lto_module_is_object_file(const char*)
|
| 304 | lto_module_is_object_file_for_target(const char*, const char*)
|
| 305 | lto_module_is_object_file_in_memory(const void*, size_t)
|
| 306 | lto_module_is_object_file_in_memory_for_target(const void*, size_t, const char*)
|
| 307 | </pre>
|
| 308 |
|
| 309 | <p>If the object file can be processed by libLTO, the linker creates a
|
| 310 | <tt>lto_module_t</tt> by using one of</p>
|
| 311 |
|
| 312 | <pre class="doc_code">
|
| 313 | lto_module_create(const char*)
|
| 314 | lto_module_create_from_memory(const void*, size_t)
|
| 315 | </pre>
|
| 316 |
|
| 317 | <p>and when done, the handle is released via</p>
|
| 318 |
|
| 319 | <pre class="doc_code">
|
| 320 | lto_module_dispose(lto_module_t)
|
| 321 | </pre>
|
| 322 |
|
| 323 | <p>The linker can introspect the non-native object file by getting the number of
|
| 324 | symbols and getting the name and attributes of each symbol via:</p>
|
| 325 |
|
| 326 | <pre class="doc_code">
|
| 327 | lto_module_get_num_symbols(lto_module_t)
|
| 328 | lto_module_get_symbol_name(lto_module_t, unsigned int)
|
| 329 | lto_module_get_symbol_attribute(lto_module_t, unsigned int)
|
| 330 | </pre>
|
| 331 |
|
| 332 | <p>The attributes of a symbol include the alignment, visibility, and kind.</p>
|
| 333 | </div>
|
| 334 |
|
| 335 | <!-- ======================================================================= -->
|
| 336 | <h3>
|
| 337 | <a name="lto_code_gen_t">lto_code_gen_t</a>
|
| 338 | </h3>
|
| 339 |
|
| 340 | <div>
|
| 341 |
|
| 342 | <p>Once the linker has loaded each non-native object files into an
|
| 343 | <tt>lto_module_t</tt>, it can request libLTO to process them all and
|
| 344 | generate a native object file. This is done in a couple of steps.
|
| 345 | First, a code generator is created with:</p>
|
| 346 |
|
| 347 | <pre class="doc_code">lto_codegen_create()</pre>
|
| 348 |
|
| 349 | <p>Then, each non-native object file is added to the code generator with:</p>
|
| 350 |
|
| 351 | <pre class="doc_code">
|
| 352 | lto_codegen_add_module(lto_code_gen_t, lto_module_t)
|
| 353 | </pre>
|
| 354 |
|
| 355 | <p>The linker then has the option of setting some codegen options. Whether or
|
| 356 | not to generate DWARF debug info is set with:</p>
|
| 357 |
|
| 358 | <pre class="doc_code">lto_codegen_set_debug_model(lto_code_gen_t)</pre>
|
| 359 |
|
| 360 | <p>Which kind of position independence is set with:</p>
|
| 361 |
|
| 362 | <pre class="doc_code">lto_codegen_set_pic_model(lto_code_gen_t) </pre>
|
| 363 |
|
| 364 | <p>And each symbol that is referenced by a native object file or otherwise must
|
| 365 | not be optimized away is set with:</p>
|
| 366 |
|
| 367 | <pre class="doc_code">
|
| 368 | lto_codegen_add_must_preserve_symbol(lto_code_gen_t, const char*)
|
| 369 | </pre>
|
| 370 |
|
| 371 | <p>After all these settings are done, the linker requests that a native object
|
| 372 | file be created from the modules with the settings using:</p>
|
| 373 |
|
| 374 | <pre class="doc_code">lto_codegen_compile(lto_code_gen_t, size*)</pre>
|
| 375 |
|
| 376 | <p>which returns a pointer to a buffer containing the generated native
|
| 377 | object file. The linker then parses that and links it with the rest
|
| 378 | of the native object files.</p>
|
| 379 |
|
| 380 | </div>
|
| 381 |
|
| 382 | </div>
|
| 383 |
|
| 384 | <!-- *********************************************************************** -->
|
| 385 |
|
| 386 | <hr>
|
| 387 | <address>
|
| 388 | <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
|
| 389 | src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
|
| 390 | <a href="http://validator.w3.org/check/referer"><img
|
| 391 | src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
|
| 392 |
|
| 393 | Devang Patel and Nick Kledzik<br>
|
| 394 | <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
|
| 395 | Last modified: $Date: 2011-09-18 08:51:05 -0400 (Sun, 18 Sep 2011) $
|
| 396 | </address>
|
| 397 |
|
| 398 | </body>
|
| 399 | </html>
|
| 400 |
|