Add SwiftShader dump from Feb 6 2013
diff --git a/src/LLVM/docs/LinkTimeOptimization.html b/src/LLVM/docs/LinkTimeOptimization.html
new file mode 100644
index 0000000..5cd9214
--- /dev/null
+++ b/src/LLVM/docs/LinkTimeOptimization.html
@@ -0,0 +1,400 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 

+                      "http://www.w3.org/TR/html4/strict.dtd">

+<html>

+<head>

+ <title>LLVM Link Time Optimization: Design and Implementation</title>

+  <link rel="stylesheet" href="llvm.css" type="text/css">

+</head>

+

+<h1>

+  LLVM Link Time Optimization: Design and Implementation

+</h1>

+

+<ul>

+  <li><a href="#desc">Description</a></li>

+  <li><a href="#design">Design Philosophy</a>

+  <ul>

+    <li><a href="#example1">Example of link time optimization</a></li>

+    <li><a href="#alternative_approaches">Alternative Approaches</a></li>

+  </ul></li>

+  <li><a href="#multiphase">Multi-phase communication between LLVM and linker</a>

+  <ul>

+    <li><a href="#phase1">Phase 1 : Read LLVM Bitcode Files</a></li>

+    <li><a href="#phase2">Phase 2 : Symbol Resolution</a></li>

+    <li><a href="#phase3">Phase 3 : Optimize Bitcode Files</a></li>

+    <li><a href="#phase4">Phase 4 : Symbol Resolution after optimization</a></li>

+  </ul></li>

+  <li><a href="#lto">libLTO</a>

+  <ul>

+    <li><a href="#lto_module_t">lto_module_t</a></li>

+    <li><a href="#lto_code_gen_t">lto_code_gen_t</a></li>

+  </ul>

+</ul>

+

+<div class="doc_author">

+<p>Written by Devang Patel and Nick Kledzik</p>

+</div>

+

+<!-- *********************************************************************** -->

+<h2>

+<a name="desc">Description</a>

+</h2>

+<!-- *********************************************************************** -->

+

+<div>

+<p>

+LLVM features powerful intermodular optimizations which can be used at link 

+time.  Link Time Optimization (LTO) is another name for intermodular optimization 

+when performed during the link stage. This document describes the interface 

+and design between the LTO optimizer and the linker.</p>

+</div>

+

+<!-- *********************************************************************** -->

+<h2>

+<a name="design">Design Philosophy</a>

+</h2>

+<!-- *********************************************************************** -->

+

+<div>

+<p>

+The LLVM Link Time Optimizer provides complete transparency, while doing 

+intermodular optimization, in the compiler tool chain. Its main goal is to let 

+the developer take advantage of intermodular optimizations without making any 

+significant changes to the developer's makefiles or build system. This is 

+achieved through tight integration with the linker. In this model, the linker 

+treates LLVM bitcode files like native object files and allows mixing and 

+matching among them. The linker uses <a href="#lto">libLTO</a>, a shared

+object, to handle LLVM bitcode files. This tight integration between 

+the linker and LLVM optimizer helps to do optimizations that are not possible 

+in other models. The linker input allows the optimizer to avoid relying on 

+conservative escape analysis.

+</p>

+

+<!-- ======================================================================= -->

+<h3>

+  <a name="example1">Example of link time optimization</a>

+</h3>

+

+<div>

+  <p>The following example illustrates the advantages of LTO's integrated

+  approach and clean interface. This example requires a system linker which

+  supports LTO through the interface described in this document.  Here,

+  clang transparently invokes system linker. </p>

+  <ul>

+    <li> Input source file <tt>a.c</tt> is compiled into LLVM bitcode form.

+    <li> Input source file <tt>main.c</tt> is compiled into native object code.

+  </ul>

+<pre class="doc_code">

+--- a.h ---

+extern int foo1(void);

+extern void foo2(void);

+extern void foo4(void);

+

+--- a.c ---

+#include "a.h"

+

+static signed int i = 0;

+

+void foo2(void) {

+  i = -1;

+}

+

+static int foo3() {

+  foo4();

+  return 10;

+}

+

+int foo1(void) {

+  int data = 0;

+

+  if (i &lt; 0) 

+    data = foo3();

+

+  data = data + 42;

+  return data;

+}

+

+--- main.c ---

+#include &lt;stdio.h&gt;

+#include "a.h"

+

+void foo4(void) {

+  printf("Hi\n");

+}

+

+int main() {

+  return foo1();

+}

+

+--- command lines ---

+$ clang -emit-llvm -c a.c -o a.o   # &lt;-- a.o is LLVM bitcode file

+$ clang -c main.c -o main.o        # &lt;-- main.o is native object file

+$ clang a.o main.o -o main         # &lt;-- standard link command without any modifications

+</pre>

+

+<ul>

+  <li>In this example, the linker recognizes that <tt>foo2()</tt> is an

+      externally visible symbol defined in LLVM bitcode file. The linker

+      completes its usual symbol resolution pass and finds that <tt>foo2()</tt>

+      is not used anywhere. This information is used by the LLVM optimizer and

+      it removes <tt>foo2()</tt>.</li>

+  <li>As soon as <tt>foo2()</tt> is removed, the optimizer recognizes that condition 

+      <tt>i &lt; 0</tt> is always false, which means <tt>foo3()</tt> is never 

+      used. Hence, the optimizer also removes <tt>foo3()</tt>.</li>

+  <li>And this in turn, enables linker to remove <tt>foo4()</tt>.</li>

+</ul>

+

+<p>This example illustrates the advantage of tight integration with the

+   linker. Here, the optimizer can not remove <tt>foo3()</tt> without the

+   linker's input.</p>

+

+</div>

+

+<!-- ======================================================================= -->

+<h3>

+  <a name="alternative_approaches">Alternative Approaches</a>

+</h3>

+

+<div>

+  <dl>

+    <dt><b>Compiler driver invokes link time optimizer separately.</b></dt>

+    <dd>In this model the link time optimizer is not able to take advantage of 

+    information collected during the linker's normal symbol resolution phase. 

+    In the above example, the optimizer can not remove <tt>foo2()</tt> without 

+    the linker's input because it is externally visible. This in turn prohibits

+    the optimizer from removing <tt>foo3()</tt>.</dd>

+    <dt><b>Use separate tool to collect symbol information from all object

+    files.</b></dt>

+    <dd>In this model, a new, separate, tool or library replicates the linker's

+    capability to collect information for link time optimization. Not only is

+    this code duplication difficult to justify, but it also has several other 

+    disadvantages.  For example, the linking semantics and the features 

+    provided by the linker on various platform are not unique. This means, 

+    this new tool needs to support all such features and platforms in one 

+    super tool or a separate tool per platform is required. This increases 

+    maintenance cost for link time optimizer significantly, which is not 

+    necessary. This approach also requires staying synchronized with linker 

+    developements on various platforms, which is not the main focus of the link 

+    time optimizer. Finally, this approach increases end user's build time due 

+    to the duplication of work done by this separate tool and the linker itself.

+    </dd>

+  </dl>

+</div>

+

+</div>

+

+<!-- *********************************************************************** -->

+<h2>

+  <a name="multiphase">Multi-phase communication between libLTO and linker</a>

+</h2>

+

+<div>

+  <p>The linker collects information about symbol defininitions and uses in 

+  various link objects which is more accurate than any information collected 

+  by other tools during typical build cycles.  The linker collects this 

+  information by looking at the definitions and uses of symbols in native .o 

+  files and using symbol visibility information. The linker also uses 

+  user-supplied information, such as a list of exported symbols. LLVM 

+  optimizer collects control flow information, data flow information and knows 

+  much more about program structure from the optimizer's point of view. 

+  Our goal is to take advantage of tight integration between the linker and 

+  the optimizer by sharing this information during various linking phases.

+</p>

+

+<!-- ======================================================================= -->

+<h3>

+  <a name="phase1">Phase 1 : Read LLVM Bitcode Files</a>

+</h3>

+

+<div>

+  <p>The linker first reads all object files in natural order and collects 

+  symbol information. This includes native object files as well as LLVM bitcode 

+  files.  To minimize the cost to the linker in the case that all .o files

+  are native object files, the linker only calls <tt>lto_module_create()</tt> 

+  when a supplied object file is found to not be a native object file.  If

+  <tt>lto_module_create()</tt> returns that the file is an LLVM bitcode file, 

+  the linker

+  then iterates over the module using <tt>lto_module_get_symbol_name()</tt> and

+  <tt>lto_module_get_symbol_attribute()</tt> to get all symbols defined and 

+  referenced.

+  This information is added to the linker's global symbol table.

+</p>

+  <p>The lto* functions are all implemented in a shared object libLTO.  This

+  allows the LLVM LTO code to be updated independently of the linker tool.

+  On platforms that support it, the shared object is lazily loaded. 

+</p>

+</div>

+

+<!-- ======================================================================= -->

+<h3>

+  <a name="phase2">Phase 2 : Symbol Resolution</a>

+</h3>

+

+<div>

+  <p>In this stage, the linker resolves symbols using global symbol table. 

+  It may report undefined symbol errors, read archive members, replace 

+  weak symbols, etc.  The linker is able to do this seamlessly even though it 

+  does not know the exact content of input LLVM bitcode files.  If dead code 

+  stripping is enabled then the linker collects the list of live symbols.

+  </p>

+</div>

+

+<!-- ======================================================================= -->

+<h3>

+  <a name="phase3">Phase 3 : Optimize Bitcode Files</a>

+</h3>

+<div>

+  <p>After symbol resolution, the linker tells the LTO shared object which

+  symbols are needed by native object files.  In the example above, the linker 

+  reports that only <tt>foo1()</tt> is used by native object files using 

+  <tt>lto_codegen_add_must_preserve_symbol()</tt>.  Next the linker invokes

+  the LLVM optimizer and code generators using <tt>lto_codegen_compile()</tt>

+  which returns a native object file creating by merging the LLVM bitcode files 

+  and applying various optimization passes.  

+</p>

+</div>

+

+<!-- ======================================================================= -->

+<h3>

+  <a name="phase4">Phase 4 : Symbol Resolution after optimization</a>

+</h3>

+

+<div>

+  <p>In this phase, the linker reads optimized a native object file and 

+  updates the internal global symbol table to reflect any changes. The linker 

+  also collects information about any changes in use of external symbols by 

+  LLVM bitcode files. In the example above, the linker notes that 

+  <tt>foo4()</tt> is not used any more. If dead code stripping is enabled then 

+  the linker refreshes the live symbol information appropriately and performs 

+  dead code stripping.</p>

+  <p>After this phase, the linker continues linking as if it never saw LLVM 

+  bitcode files.</p>

+</div>

+

+</div>

+

+<!-- *********************************************************************** -->

+<h2>

+<a name="lto">libLTO</a>

+</h2>

+

+<div>

+  <p><tt>libLTO</tt> is a shared object that is part of the LLVM tools, and 

+  is intended for use by a linker. <tt>libLTO</tt> provides an abstract C 

+  interface to use the LLVM interprocedural optimizer without exposing details 

+  of LLVM's internals. The intention is to keep the interface as stable as 

+  possible even when the LLVM optimizer continues to evolve. It should even

+  be possible for a completely different compilation technology to provide

+  a different libLTO that works with their object files and the standard

+  linker tool.</p>

+

+<!-- ======================================================================= -->

+<h3>

+  <a name="lto_module_t">lto_module_t</a>

+</h3>

+

+<div>

+

+<p>A non-native object file is handled via an <tt>lto_module_t</tt>.  

+The following functions allow the linker to check if a file (on disk

+or in a memory buffer) is a file which libLTO can process:</p>

+

+<pre class="doc_code">

+lto_module_is_object_file(const char*)

+lto_module_is_object_file_for_target(const char*, const char*)

+lto_module_is_object_file_in_memory(const void*, size_t)

+lto_module_is_object_file_in_memory_for_target(const void*, size_t, const char*)

+</pre>

+

+<p>If the object file can be processed by libLTO, the linker creates a

+<tt>lto_module_t</tt> by using one of</p>

+

+<pre class="doc_code">

+lto_module_create(const char*)

+lto_module_create_from_memory(const void*, size_t)

+</pre>

+

+<p>and when done, the handle is released via</p>

+

+<pre class="doc_code">

+lto_module_dispose(lto_module_t)

+</pre>

+

+<p>The linker can introspect the non-native object file by getting the number of

+symbols and getting the name and attributes of each symbol via:</p>

+

+<pre class="doc_code">

+lto_module_get_num_symbols(lto_module_t)

+lto_module_get_symbol_name(lto_module_t, unsigned int)

+lto_module_get_symbol_attribute(lto_module_t, unsigned int)

+</pre>

+

+<p>The attributes of a symbol include the alignment, visibility, and kind.</p>

+</div>

+

+<!-- ======================================================================= -->

+<h3>

+  <a name="lto_code_gen_t">lto_code_gen_t</a>

+</h3>

+

+<div>

+

+<p>Once the linker has loaded each non-native object files into an

+<tt>lto_module_t</tt>, it can request libLTO to process them all and

+generate a native object file.  This is done in a couple of steps.

+First, a code generator is created with:</p>

+

+<pre class="doc_code">lto_codegen_create()</pre>

+

+<p>Then, each non-native object file is added to the code generator with:</p>

+

+<pre class="doc_code">

+lto_codegen_add_module(lto_code_gen_t, lto_module_t)

+</pre>

+

+<p>The linker then has the option of setting some codegen options.  Whether or

+not to generate DWARF debug info is set with:</p>

+  

+<pre class="doc_code">lto_codegen_set_debug_model(lto_code_gen_t)</pre>

+

+<p>Which kind of position independence is set with:</p>

+

+<pre class="doc_code">lto_codegen_set_pic_model(lto_code_gen_t) </pre>

+  

+<p>And each symbol that is referenced by a native object file or otherwise must

+not be optimized away is set with:</p>

+

+<pre class="doc_code">

+lto_codegen_add_must_preserve_symbol(lto_code_gen_t, const char*)

+</pre>

+

+<p>After all these settings are done, the linker requests that a native object

+file be created from the modules with the settings using:</p>

+

+<pre class="doc_code">lto_codegen_compile(lto_code_gen_t, size*)</pre>

+

+<p>which returns a pointer to a buffer containing the generated native

+object file.  The linker then parses that and links it with the rest 

+of the native object files.</p>

+

+</div>

+

+</div>

+

+<!-- *********************************************************************** -->

+

+<hr>

+<address>

+  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img

+  src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>

+  <a href="http://validator.w3.org/check/referer"><img

+  src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>

+

+  Devang Patel and Nick Kledzik<br>

+  <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>

+  Last modified: $Date: 2011-09-18 08:51:05 -0400 (Sun, 18 Sep 2011) $

+</address>

+

+</body>

+</html>

+