| //===- subzero/src/IceCfg.h - Control flow graph ----------------*- C++ -*-===// | 
 | // | 
 | //                        The Subzero Code Generator | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | /// | 
 | /// \file | 
 | /// \brief Declares the Cfg class, which represents the control flow graph and | 
 | /// the overall per-function compilation context. | 
 | /// | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #ifndef SUBZERO_SRC_ICECFG_H | 
 | #define SUBZERO_SRC_ICECFG_H | 
 |  | 
 | #include "IceAssembler.h" | 
 | #include "IceClFlags.h" | 
 | #include "IceDefs.h" | 
 | #include "IceGlobalContext.h" | 
 | #include "IceLoopAnalyzer.h" | 
 | #include "IceStringPool.h" | 
 | #include "IceTypes.h" | 
 |  | 
 | namespace Ice { | 
 |  | 
 | class Cfg { | 
 |   Cfg() = delete; | 
 |   Cfg(const Cfg &) = delete; | 
 |   Cfg &operator=(const Cfg &) = delete; | 
 |  | 
 |   std::unique_ptr<ArenaAllocator> Allocator; | 
 |  | 
 | public: | 
 |   ~Cfg(); | 
 |  | 
 |   static std::unique_ptr<Cfg> create(GlobalContext *Ctx, | 
 |                                      uint32_t SequenceNumber) { | 
 |     return std::unique_ptr<Cfg>(new Cfg(Ctx, SequenceNumber)); | 
 |   } | 
 |  | 
 |   GlobalContext *getContext() const { return Ctx; } | 
 |   uint32_t getSequenceNumber() const { return SequenceNumber; } | 
 |   OptLevel getOptLevel() const { return OptimizationLevel; } | 
 |  | 
 |   static constexpr VerboseMask defaultVerboseMask() { | 
 |     return (IceV_NO_PER_PASS_DUMP_BEYOND << 1) - 1; | 
 |   } | 
 |   /// Returns true if any of the specified options in the verbose mask are set. | 
 |   /// If the argument is omitted, it checks if any verbose options at all are | 
 |   /// set. | 
 |   bool isVerbose(VerboseMask Mask = defaultVerboseMask()) const { | 
 |     return VMask & Mask; | 
 |   } | 
 |   void setVerbose(VerboseMask Mask) { VMask = Mask; } | 
 |  | 
 |   /// \name Manage the name and return type of the function being translated. | 
 |   /// @{ | 
 |   void setFunctionName(GlobalString Name) { FunctionName = Name; } | 
 |   GlobalString getFunctionName() const { return FunctionName; } | 
 |   std::string getFunctionNameAndSize() const; | 
 |   void setReturnType(Type Ty) { ReturnType = Ty; } | 
 |   Type getReturnType() const { return ReturnType; } | 
 |   /// @} | 
 |  | 
 |   /// \name Manage the "internal" attribute of the function. | 
 |   /// @{ | 
 |   void setInternal(bool Internal) { IsInternalLinkage = Internal; } | 
 |   bool getInternal() const { return IsInternalLinkage; } | 
 |   /// @} | 
 |  | 
 |   /// \name Manage errors. | 
 |   /// @{ | 
 |  | 
 |   /// Translation error flagging. If support for some construct is known to be | 
 |   /// missing, instead of an assertion failure, setError() should be called and | 
 |   /// the error should be propagated back up. This way, we can gracefully fail | 
 |   /// to translate and let a fallback translator handle the function. | 
 |   void setError(const std::string &Message); | 
 |   bool hasError() const { return HasError; } | 
 |   std::string getError() const { return ErrorMessage; } | 
 |   /// @} | 
 |  | 
 |   /// \name Manage nodes (a.k.a. basic blocks, CfgNodes). | 
 |   /// @{ | 
 |   void setEntryNode(CfgNode *EntryNode) { Entry = EntryNode; } | 
 |   CfgNode *getEntryNode() const { return Entry; } | 
 |   /// Create a node and append it to the end of the linearized list. The loop | 
 |   /// nest depth of the new node may not be valid if it is created after | 
 |   /// computeLoopNestDepth. | 
 |   CfgNode *makeNode(); | 
 |   SizeT getNumNodes() const { return Nodes.size(); } | 
 |   const NodeList &getNodes() const { return Nodes; } | 
 |   /// Swap nodes of Cfg with given list of nodes.  The number of nodes must | 
 |   /// remain unchanged. | 
 |   void swapNodes(NodeList &NewNodes); | 
 |   /// @} | 
 |  | 
 |   /// String pool for CfgNode::Name values. | 
 |   StringPool *getNodeStrings() const { return NodeStrings.get(); } | 
 |   /// String pool for Variable::Name values. | 
 |   StringPool *getVarStrings() const { return VarStrings.get(); } | 
 |  | 
 |   /// \name Manage instruction numbering. | 
 |   /// @{ | 
 |   InstNumberT newInstNumber() { return NextInstNumber++; } | 
 |   InstNumberT getNextInstNumber() const { return NextInstNumber; } | 
 |   /// @} | 
 |  | 
 |   /// \name Manage Variables. | 
 |   /// @{ | 
 |  | 
 |   /// Create a new Variable with a particular type and an optional name. The | 
 |   /// Node argument is the node where the variable is defined. | 
 |   // TODO(jpp): untemplate this with separate methods: makeVariable and | 
 |   // makeStackVariable. | 
 |   template <typename T = Variable> T *makeVariable(Type Ty) { | 
 |     SizeT Index = Variables.size(); | 
 |     auto *Var = T::create(this, Ty, Index); | 
 |     Variables.push_back(Var); | 
 |     return Var; | 
 |   } | 
 |   SizeT getNumVariables() const { return Variables.size(); } | 
 |   const VarList &getVariables() const { return Variables; } | 
 |   /// @} | 
 |  | 
 |   /// \name Manage arguments to the function. | 
 |   /// @{ | 
 |   void addArg(Variable *Arg); | 
 |   const VarList &getArgs() const { return Args; } | 
 |   VarList &getArgs() { return Args; } | 
 |   void addImplicitArg(Variable *Arg); | 
 |   const VarList &getImplicitArgs() const { return ImplicitArgs; } | 
 |   /// @} | 
 |  | 
 |   /// \name Manage the jump tables. | 
 |   /// @{ | 
 |   void addJumpTable(InstJumpTable *JumpTable) { | 
 |     JumpTables.emplace_back(JumpTable); | 
 |   } | 
 |   /// @} | 
 |  | 
 |   /// \name Manage the Globals used by this function. | 
 |   /// @{ | 
 |   std::unique_ptr<VariableDeclarationList> getGlobalInits() { | 
 |     return std::move(GlobalInits); | 
 |   } | 
 |   void addGlobal(VariableDeclaration *Global) { | 
 |     if (GlobalInits == nullptr) { | 
 |       GlobalInits.reset(new VariableDeclarationList); | 
 |     } | 
 |     GlobalInits->push_back(Global); | 
 |   } | 
 |   VariableDeclarationList *getGlobalPool() { | 
 |     if (GlobalInits == nullptr) { | 
 |       GlobalInits.reset(new VariableDeclarationList); | 
 |     } | 
 |     return GlobalInits.get(); | 
 |   } | 
 |   /// @} | 
 |  | 
 |   /// \name Miscellaneous accessors. | 
 |   /// @{ | 
 |   TargetLowering *getTarget() const { return Target.get(); } | 
 |   VariablesMetadata *getVMetadata() const { return VMetadata.get(); } | 
 |   Liveness *getLiveness() const { return Live.get(); } | 
 |   template <typename T = Assembler> T *getAssembler() const { | 
 |     return llvm::dyn_cast<T>(TargetAssembler.get()); | 
 |   } | 
 |   std::unique_ptr<Assembler> releaseAssembler() { | 
 |     return std::move(TargetAssembler); | 
 |   } | 
 |   bool hasComputedFrame() const; | 
 |   bool getFocusedTiming() const { return FocusedTiming; } | 
 |   void setFocusedTiming() { FocusedTiming = true; } | 
 |   uint32_t getConstantBlindingCookie() const { return ConstantBlindingCookie; } | 
 |   /// @} | 
 |  | 
 |   /// Returns true if Var is a global variable that is used by the profiling | 
 |   /// code. | 
 |   static bool isProfileGlobal(const VariableDeclaration &Var); | 
 |  | 
 |   /// Passes over the CFG. | 
 |   void translate(); | 
 |   /// After the CFG is fully constructed, iterate over the nodes and compute the | 
 |   /// predecessor and successor edges, in the form of CfgNode::InEdges[] and | 
 |   /// CfgNode::OutEdges[]. | 
 |   void computeInOutEdges(); | 
 |   /// Renumber the non-deleted instructions in the Cfg.  This needs to be done | 
 |   /// in preparation for live range analysis.  The instruction numbers in a | 
 |   /// block must be monotonically increasing.  The range of instruction numbers | 
 |   /// in a block, from lowest to highest, must not overlap with the range of any | 
 |   /// other block. | 
 |   /// | 
 |   /// Also, if the configuration specifies to do so, remove/unlink all deleted | 
 |   /// instructions from the Cfg, to speed up later passes over the instructions. | 
 |   void renumberInstructions(); | 
 |   void placePhiLoads(); | 
 |   void placePhiStores(); | 
 |   void deletePhis(); | 
 |   void advancedPhiLowering(); | 
 |   void reorderNodes(); | 
 |   void shuffleNodes(); | 
 |   void localCSE(bool AssumeSSA); | 
 |   void floatConstantCSE(); | 
 |   void shortCircuitJumps(); | 
 |   void loopInvariantCodeMotion(); | 
 |  | 
 |   /// Scan allocas to determine whether we need to use a frame pointer. | 
 |   /// If SortAndCombine == true, merge all the fixed-size allocas in the | 
 |   /// entry block and emit stack or frame pointer-relative addressing. | 
 |   void processAllocas(bool SortAndCombine); | 
 |   void doAddressOpt(); | 
 |   /// Find clusters of insertelement/extractelement instructions that can be | 
 |   /// replaced by a shufflevector instruction. | 
 |   void materializeVectorShuffles(); | 
 |   void doArgLowering(); | 
 |   void doNopInsertion(); | 
 |   void genCode(); | 
 |   void genFrame(); | 
 |   void generateLoopInfo(); | 
 |   void livenessLightweight(); | 
 |   void liveness(LivenessMode Mode); | 
 |   bool validateLiveness() const; | 
 |   void contractEmptyNodes(); | 
 |   void doBranchOpt(); | 
 |   void markNodesForSandboxing(); | 
 |  | 
 |   /// \name  Manage the CurrentNode field. | 
 |   /// CurrentNode is used for validating the Variable::DefNode field during | 
 |   /// dumping/emitting. | 
 |   /// @{ | 
 |   void setCurrentNode(const CfgNode *Node) { CurrentNode = Node; } | 
 |   void resetCurrentNode() { setCurrentNode(nullptr); } | 
 |   const CfgNode *getCurrentNode() const { return CurrentNode; } | 
 |   /// @} | 
 |  | 
 |   /// Get the total amount of memory held by the per-Cfg allocator. | 
 |   size_t getTotalMemoryMB() const; | 
 |  | 
 |   /// Get the current memory usage due to liveness data structures. | 
 |   size_t getLivenessMemoryMB() const; | 
 |  | 
 |   void emit(); | 
 |   void emitIAS(); | 
 |   static void emitTextHeader(GlobalString Name, GlobalContext *Ctx, | 
 |                              const Assembler *Asm); | 
 |   void dump(const char *Message = ""); | 
 |  | 
 |   /// Allocate data of type T using the per-Cfg allocator. | 
 |   template <typename T> T *allocate() { return Allocator->Allocate<T>(); } | 
 |  | 
 |   /// Allocate an array of data of type T using the per-Cfg allocator. | 
 |   template <typename T> T *allocateArrayOf(size_t NumElems) { | 
 |     return Allocator->Allocate<T>(NumElems); | 
 |   } | 
 |  | 
 |   /// Deallocate data that was allocated via allocate<T>(). | 
 |   template <typename T> void deallocate(T *Object) { | 
 |     Allocator->Deallocate(Object); | 
 |   } | 
 |  | 
 |   /// Deallocate data that was allocated via allocateArrayOf<T>(). | 
 |   template <typename T> void deallocateArrayOf(T *Array) { | 
 |     Allocator->Deallocate(Array); | 
 |   } | 
 |  | 
 |   /// Update Phi labels with InEdges. | 
 |   /// | 
 |   /// The WASM translator cannot always determine the right incoming edge for a | 
 |   /// value due to the CFG being built incrementally. The fixPhiNodes pass fills | 
 |   /// in the correct information once everything is known. | 
 |   void fixPhiNodes(); | 
 |  | 
 | private: | 
 |   friend class CfgAllocatorTraits; // for Allocator access. | 
 |  | 
 |   Cfg(GlobalContext *Ctx, uint32_t SequenceNumber); | 
 |  | 
 |   /// Adds a call to the ProfileSummary runtime function as the first | 
 |   /// instruction in this CFG's entry block. | 
 |   void addCallToProfileSummary(); | 
 |  | 
 |   /// Iterates over the basic blocks in this CFG, adding profiling code to each | 
 |   /// one of them. It returns a list with all the globals that the profiling | 
 |   /// code needs to be defined. | 
 |   void profileBlocks(); | 
 |  | 
 |   void createNodeNameDeclaration(const std::string &NodeAsmName); | 
 |   void | 
 |   createBlockProfilingInfoDeclaration(const std::string &NodeAsmName, | 
 |                                       VariableDeclaration *NodeNameDeclaration); | 
 |  | 
 |   /// Iterate through the registered jump tables and emit them. | 
 |   void emitJumpTables(); | 
 |  | 
 |   enum AllocaBaseVariableType { | 
 |     BVT_StackPointer, | 
 |     BVT_FramePointer, | 
 |     BVT_UserPointer | 
 |   }; | 
 |   void sortAndCombineAllocas(CfgVector<InstAlloca *> &Allocas, | 
 |                              uint32_t CombinedAlignment, InstList &Insts, | 
 |                              AllocaBaseVariableType BaseVariableType); | 
 |   void findRematerializable(); | 
 |   CfgVector<Inst *> | 
 |   findLoopInvariantInstructions(const CfgUnorderedSet<SizeT> &Body); | 
 |  | 
 |   static ArenaAllocator *createAllocator(); | 
 |  | 
 |   GlobalContext *Ctx; | 
 |   uint32_t SequenceNumber; /// output order for emission | 
 |   OptLevel OptimizationLevel = Opt_m1; | 
 |   uint32_t ConstantBlindingCookie = 0; /// cookie for constant blinding | 
 |   VerboseMask VMask; | 
 |   GlobalString FunctionName; | 
 |   Type ReturnType = IceType_void; | 
 |   bool IsInternalLinkage = false; | 
 |   bool HasError = false; | 
 |   bool FocusedTiming = false; | 
 |   std::string ErrorMessage = ""; | 
 |   CfgNode *Entry = nullptr; /// entry basic block | 
 |   NodeList Nodes;           /// linearized node list; Entry should be first | 
 |   InstNumberT NextInstNumber; | 
 |   VarList Variables; | 
 |   VarList Args;         /// subset of Variables, in argument order | 
 |   VarList ImplicitArgs; /// subset of Variables | 
 |   // Separate string pools for CfgNode and Variable names, due to a combination | 
 |   // of the uniqueness requirement, and assumptions in lit tests. | 
 |   std::unique_ptr<StringPool> NodeStrings; | 
 |   std::unique_ptr<StringPool> VarStrings; | 
 |   std::unique_ptr<Liveness> Live; | 
 |   std::unique_ptr<TargetLowering> Target; | 
 |   std::unique_ptr<VariablesMetadata> VMetadata; | 
 |   std::unique_ptr<Assembler> TargetAssembler; | 
 |   /// Globals required by this CFG. Mostly used for the profiler's globals. | 
 |   std::unique_ptr<VariableDeclarationList> GlobalInits; | 
 |   CfgVector<InstJumpTable *> JumpTables; | 
 |   /// CurrentNode is maintained during dumping/emitting just for validating | 
 |   /// Variable::DefNode. Normally, a traversal over CfgNodes maintains this, but | 
 |   /// before global operations like register allocation, resetCurrentNode() | 
 |   /// should be called to avoid spurious validation failures. | 
 |   const CfgNode *CurrentNode = nullptr; | 
 |   CfgVector<Loop> LoopInfo; | 
 |  | 
 | public: | 
 |   static void TlsInit() { CfgAllocatorTraits::init(); } | 
 | }; | 
 |  | 
 | template <> Variable *Cfg::makeVariable<Variable>(Type Ty); | 
 |  | 
 | struct NodeStringPoolTraits { | 
 |   using OwnerType = Cfg; | 
 |   static StringPool *getStrings(const OwnerType *PoolOwner) { | 
 |     return PoolOwner->getNodeStrings(); | 
 |   } | 
 | }; | 
 | using NodeString = StringID<NodeStringPoolTraits>; | 
 |  | 
 | struct VariableStringPoolTraits { | 
 |   using OwnerType = Cfg; | 
 |   static StringPool *getStrings(const OwnerType *PoolOwner) { | 
 |     return PoolOwner->getVarStrings(); | 
 |   } | 
 | }; | 
 | using VariableString = StringID<VariableStringPoolTraits>; | 
 |  | 
 | } // end of namespace Ice | 
 |  | 
 | #endif // SUBZERO_SRC_ICECFG_H |