blob: a2129cc0e2e902cdddc95ee206fe8006d2df7feb [file] [log] [blame]
//===-- AVRInstrInfo.td - AVR Instruction defs -------------*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the AVR instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
include "AVRInstrFormats.td"
//===----------------------------------------------------------------------===//
// AVR Type Profiles
//===----------------------------------------------------------------------===//
def SDT_AVRCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i16>, SDTCisVT<1, i16>]>;
def SDT_AVRCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i16>, SDTCisVT<1, i16>]>;
def SDT_AVRCall : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>;
def SDT_AVRWrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>;
def SDT_AVRBrcond : SDTypeProfile<0, 2,
[SDTCisVT<0, OtherVT>, SDTCisVT<1, i8>]>;
def SDT_AVRCmp : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
def SDT_AVRTst : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def SDT_AVRSelectCC : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>,
SDTCisSameAs<1, 2>, SDTCisVT<3, i8>]>;
//===----------------------------------------------------------------------===//
// AVR Specific Node Definitions
//===----------------------------------------------------------------------===//
def AVRretflag : SDNode<"AVRISD::RET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def AVRretiflag : SDNode<"AVRISD::RETI_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def AVRcallseq_start : SDNode<"ISD::CALLSEQ_START", SDT_AVRCallSeqStart,
[SDNPHasChain, SDNPOutGlue]>;
def AVRcallseq_end : SDNode<"ISD::CALLSEQ_END", SDT_AVRCallSeqEnd,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def AVRcall : SDNode<"AVRISD::CALL", SDT_AVRCall,
[SDNPHasChain, SDNPOutGlue, SDNPOptInGlue, SDNPVariadic]>;
def AVRWrapper : SDNode<"AVRISD::WRAPPER", SDT_AVRWrapper>;
def AVRbrcond : SDNode<"AVRISD::BRCOND", SDT_AVRBrcond,
[SDNPHasChain, SDNPInGlue]>;
def AVRcmp : SDNode<"AVRISD::CMP", SDT_AVRCmp, [SDNPOutGlue]>;
def AVRcmpc : SDNode<"AVRISD::CMPC", SDT_AVRCmp, [SDNPInGlue, SDNPOutGlue]>;
def AVRtst : SDNode<"AVRISD::TST", SDT_AVRTst, [SDNPOutGlue]>;
def AVRselectcc: SDNode<"AVRISD::SELECT_CC", SDT_AVRSelectCC, [SDNPInGlue]>;
// Shift nodes.
def AVRlsl : SDNode<"AVRISD::LSL", SDTIntUnaryOp>;
def AVRlsr : SDNode<"AVRISD::LSR", SDTIntUnaryOp>;
def AVRrol : SDNode<"AVRISD::ROL", SDTIntUnaryOp>;
def AVRror : SDNode<"AVRISD::ROR", SDTIntUnaryOp>;
def AVRasr : SDNode<"AVRISD::ASR", SDTIntUnaryOp>;
// Pseudo shift nodes for non-constant shift amounts.
def AVRlslLoop : SDNode<"AVRISD::LSLLOOP", SDTIntShiftOp>;
def AVRlsrLoop : SDNode<"AVRISD::LSRLOOP", SDTIntShiftOp>;
def AVRrolLoop : SDNode<"AVRISD::ROLLOOP", SDTIntShiftOp>;
def AVRrorLoop : SDNode<"AVRISD::RORLOOP", SDTIntShiftOp>;
def AVRasrLoop : SDNode<"AVRISD::ASRLOOP", SDTIntShiftOp>;
//===----------------------------------------------------------------------===//
// AVR Operands, Complex Patterns and Transformations Definitions.
//===----------------------------------------------------------------------===//
def imm8_neg_XFORM : SDNodeXForm<imm,
[{
return CurDAG->getTargetConstant(-N->getAPIntValue(), SDLoc(N), MVT::i8);
}]>;
def imm16_neg_XFORM : SDNodeXForm<imm,
[{
return CurDAG->getTargetConstant(-N->getAPIntValue(), SDLoc(N), MVT::i16);
}]>;
def imm0_63_neg : PatLeaf<(imm),
[{
int64_t val = -N->getSExtValue();
return val >= 0 && val < 64;
}], imm16_neg_XFORM>;
def uimm6 : PatLeaf<(imm), [{ return isUInt<6>(N->getZExtValue()); }]>;
def ioaddr_XFORM : SDNodeXForm<imm,
[{
return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()) - 0x20, SDLoc(N), MVT::i8);
}]>;
def iobitpos8_XFORM : SDNodeXForm<imm,
[{
return CurDAG->getTargetConstant(Log2_32(uint8_t(N->getZExtValue())),
SDLoc(N), MVT::i8);
}]>;
def iobitposn8_XFORM : SDNodeXForm<imm,
[{
return CurDAG->getTargetConstant(Log2_32(uint8_t(~N->getZExtValue())),
SDLoc(N), MVT::i8);
}]>;
def ioaddr8 : PatLeaf<(imm),
[{
uint64_t val = N->getZExtValue();
return val >= 0x20 && val < 0x60;
}], ioaddr_XFORM>;
def lowioaddr8 : PatLeaf<(imm),
[{
uint64_t val = N->getZExtValue();
return val >= 0x20 && val < 0x40;
}], ioaddr_XFORM>;
def ioaddr16 : PatLeaf<(imm),
[{
uint64_t val = N->getZExtValue();
return val >= 0x20 && val < 0x5f;
}], ioaddr_XFORM>;
def iobitpos8 : PatLeaf<(imm),
[{
return isPowerOf2_32(uint8_t(N->getZExtValue()));
}], iobitpos8_XFORM>;
def iobitposn8 : PatLeaf<(imm),
[{
return isPowerOf2_32(uint8_t(~N->getZExtValue()));
}], iobitposn8_XFORM>;
def MemriAsmOperand : AsmOperandClass {
let Name = "Memri";
let ParserMethod = "parseMemriOperand";
}
/// Address operand for `reg+imm` used by STD and LDD.
def memri : Operand<iPTR>
{
let MIOperandInfo = (ops PTRDISPREGS, i16imm);
let PrintMethod = "printMemri";
let EncoderMethod = "encodeMemri";
let ParserMatchClass = MemriAsmOperand;
}
// Address operand for `SP+imm` used by STD{W}SPQRr
def memspi : Operand<iPTR>
{
let MIOperandInfo = (ops GPRSP, i16imm);
}
def imm_com8 : Operand<i8>
{
let EncoderMethod = "encodeComplement";
let MIOperandInfo = (ops i8imm);
}
def relbrtarget_7 : Operand<OtherVT>
{
let PrintMethod = "printPCRelImm";
let EncoderMethod = "encodeRelCondBrTarget<AVR::fixup_7_pcrel>";
}
def brtarget_13 : Operand<OtherVT>
{
let PrintMethod = "printPCRelImm";
let EncoderMethod = "encodeRelCondBrTarget<AVR::fixup_13_pcrel>";
}
// The target of a 22 or 16-bit call/jmp instruction.
def call_target : Operand<iPTR>
{
let EncoderMethod = "encodeCallTarget";
}
// A 16-bit address (which can lead to an R_AVR_16 relocation).
def imm16 : Operand<i16>
{
let EncoderMethod = "encodeImm<AVR::fixup_16, 2>";
}
/// A 6-bit immediate used in the ADIW/SBIW instructions.
def imm_arith6 : Operand<i16>
{
let EncoderMethod = "encodeImm<AVR::fixup_6_adiw, 0>";
}
/// An 8-bit immediate inside an instruction with the same format
/// as the `LDI` instruction (the `FRdK` format).
def imm_ldi8 : Operand<i8>
{
let EncoderMethod = "encodeImm<AVR::fixup_ldi, 0>";
}
/// A 5-bit port number used in SBIC and friends (the `FIOBIT` format).
def imm_port5 : Operand<i8>
{
let EncoderMethod = "encodeImm<AVR::fixup_port5, 0>";
}
/// A 6-bit port number used in the `IN` instruction and friends (the
/// `FIORdA` format.
def imm_port6 : Operand<i8>
{
let EncoderMethod = "encodeImm<AVR::fixup_port6, 0>";
}
// Addressing mode pattern reg+imm6
def addr : ComplexPattern<iPTR, 2, "SelectAddr", [], [SDNPWantRoot]>;
// AsmOperand class for a pointer register.
// Used with the LD/ST family of instructions.
// See FSTLD in AVRInstrFormats.td
def PtrRegAsmOperand : AsmOperandClass
{
let Name = "Reg";
}
// A special operand type for the LD/ST instructions.
// It converts the pointer register number into a two-bit field used in the
// instruction.
def LDSTPtrReg : Operand<i16>
{
let MIOperandInfo = (ops PTRREGS);
let EncoderMethod = "encodeLDSTPtrReg";
let ParserMatchClass = PtrRegAsmOperand;
}
// A special operand type for the LDD/STD instructions.
// It behaves identically to the LD/ST version, except restricts
// the pointer registers to Y and Z.
def LDDSTDPtrReg : Operand<i16>
{
let MIOperandInfo = (ops PTRDISPREGS);
let EncoderMethod = "encodeLDSTPtrReg";
let ParserMatchClass = PtrRegAsmOperand;
}
//===----------------------------------------------------------------------===//
// AVR predicates for subtarget features
//===----------------------------------------------------------------------===//
def HasSRAM : Predicate<"Subtarget->hasSRAM()">,
AssemblerPredicate<"FeatureSRAM">;
def HasJMPCALL : Predicate<"Subtarget->hasJMPCALL()">,
AssemblerPredicate<"FeatureJMPCALL">;
def HasIJMPCALL : Predicate<"Subtarget->hasIJMPCALL()">,
AssemblerPredicate<"FeatureIJMPCALL">;
def HasEIJMPCALL : Predicate<"Subtarget->hasEIJMPCALL()">,
AssemblerPredicate<"FeatureEIJMPCALL">;
def HasADDSUBIW : Predicate<"Subtarget->hasADDSUBIW()">,
AssemblerPredicate<"FeatureADDSUBIW">;
def HasSmallStack : Predicate<"Subtarget->HasSmallStack()">,
AssemblerPredicate<"FeatureSmallStack">;
def HasMOVW : Predicate<"Subtarget->hasMOVW()">,
AssemblerPredicate<"FeatureMOVW">;
def HasLPM : Predicate<"Subtarget->hasLPM()">,
AssemblerPredicate<"FeatureLPM">;
def HasLPMX : Predicate<"Subtarget->hasLPMX()">,
AssemblerPredicate<"FeatureLPMX">;
def HasELPM : Predicate<"Subtarget->hasELPM()">,
AssemblerPredicate<"FeatureELPM">;
def HasELPMX : Predicate<"Subtarget->hasELPMX()">,
AssemblerPredicate<"FeatureELPMX">;
def HasSPM : Predicate<"Subtarget->hasSPM()">,
AssemblerPredicate<"FeatureSPM">;
def HasSPMX : Predicate<"Subtarget->hasSPMX()">,
AssemblerPredicate<"FeatureSPMX">;
def HasDES : Predicate<"Subtarget->hasDES()">,
AssemblerPredicate<"FeatureDES">;
def SupportsRMW : Predicate<"Subtarget->supportsRMW()">,
AssemblerPredicate<"FeatureRMW">;
def SupportsMultiplication : Predicate<"Subtarget->supportsMultiplication()">,
AssemblerPredicate<"FeatureMultiplication">;
def HasBREAK : Predicate<"Subtarget->hasBREAK()">,
AssemblerPredicate<"FeatureBREAK">;
def HasTinyEncoding : Predicate<"Subtarget->hasTinyEncoding()">,
AssemblerPredicate<"FeatureTinyEncoding">;
// AVR specific condition code. These correspond to AVR_*_COND in
// AVRInstrInfo.td. They must be kept in synch.
def AVR_COND_EQ : PatLeaf<(i8 0)>;
def AVR_COND_NE : PatLeaf<(i8 1)>;
def AVR_COND_GE : PatLeaf<(i8 2)>;
def AVR_COND_LT : PatLeaf<(i8 3)>;
def AVR_COND_SH : PatLeaf<(i8 4)>;
def AVR_COND_LO : PatLeaf<(i8 5)>;
def AVR_COND_MI : PatLeaf<(i8 6)>;
def AVR_COND_PL : PatLeaf<(i8 7)>;
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// AVR Instruction list
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// ADJCALLSTACKDOWN/UP implicitly use/def SP because they may be expanded into
// a stack adjustment and the codegen must know that they may modify the stack
// pointer before prolog-epilog rewriting occurs.
// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
// sub / add which can clobber SREG.
let Defs = [SP, SREG],
Uses = [SP] in
{
def ADJCALLSTACKDOWN : Pseudo<(outs),
(ins i16imm:$amt, i16imm:$amt2),
"#ADJCALLSTACKDOWN",
[(AVRcallseq_start timm:$amt, timm:$amt2)]>;
// R31R30 is used to update SP, since it is a scratch reg and this instruction
// is placed after the function call then R31R30 should be always free.
//let Defs = [R31R30],
//Uses = [R31R30] in
//:TODO: if we enable this, the pseudo is killed because it looks dead
def ADJCALLSTACKUP : Pseudo<(outs),
(ins i16imm:$amt1, i16imm:$amt2),
"#ADJCALLSTACKUP",
[(AVRcallseq_end timm:$amt1, timm:$amt2)]>;
}
//===----------------------------------------------------------------------===//
// Addition
//===----------------------------------------------------------------------===//
let isCommutable = 1,
Constraints = "$src = $rd",
Defs = [SREG] in
{
// ADD Rd, Rr
// Adds two 8-bit registers.
def ADDRdRr : FRdRr<0b0000,
0b11,
(outs GPR8:$rd),
(ins GPR8:$src, GPR8:$rr),
"add\t$rd, $rr",
[(set i8:$rd, (add i8:$src, i8:$rr)),
(implicit SREG)]>;
// ADDW Rd+1:Rd, Rr+1:Rr
// Pseudo instruction to add four 8-bit registers as two 16-bit values.
//
// Expands to:
// add Rd, Rr
// adc Rd+1, Rr+1
def ADDWRdRr : Pseudo<(outs DREGS:$rd),
(ins DREGS:$src, DREGS:$rr),
"addw\t$rd, $rr",
[(set i16:$rd, (add i16:$src, i16:$rr)),
(implicit SREG)]>;
// ADC Rd, Rr
// Adds two 8-bit registers with carry.
let Uses = [SREG] in
def ADCRdRr : FRdRr<0b0001,
0b11,
(outs GPR8:$rd),
(ins GPR8:$src, GPR8:$rr),
"adc\t$rd, $rr",
[(set i8:$rd, (adde i8:$src, i8:$rr)),
(implicit SREG)]>;
// ADCW Rd+1:Rd, Rr+1:Rr
// Pseudo instruction to add four 8-bit registers as two 16-bit values with
// carry.
//
// Expands to:
// adc Rd, Rr
// adc Rd+1, Rr+1
let Uses = [SREG] in
def ADCWRdRr : Pseudo<(outs DREGS:$rd),
(ins DREGS:$src, DREGS:$rr),
"adcw\t$rd, $rr",
[(set i16:$rd, (adde i16:$src, i16:$rr)),
(implicit SREG)]>;
// AIDW Rd, k
// Adds an immediate 6-bit value K to Rd, placing the result in Rd.
def ADIWRdK : FWRdK<0b0,
(outs IWREGS:$rd),
(ins IWREGS:$src, imm_arith6:$k),
"adiw\t$rd, $k",
[(set i16:$rd, (add i16:$src, uimm6:$k)),
(implicit SREG)]>,
Requires<[HasADDSUBIW]>;
}
//===----------------------------------------------------------------------===//
// Subtraction
//===----------------------------------------------------------------------===//
let Constraints = "$src = $rd",
Defs = [SREG] in
{
// SUB Rd, Rr
// Subtracts the 8-bit value of Rr from Rd and places the value in Rd.
def SUBRdRr : FRdRr<0b0001,
0b10,
(outs GPR8:$rd),
(ins GPR8:$src, GPR8:$rr),
"sub\t$rd, $rr",
[(set i8:$rd, (sub i8:$src, i8:$rr)),
(implicit SREG)]>;
// SUBW Rd+1:Rd, Rr+1:Rr
// Subtracts two 16-bit values and places the result into Rd.
//
// Expands to:
// sub Rd, Rr
// sbc Rd+1, Rr+1
def SUBWRdRr : Pseudo<(outs DREGS:$rd),
(ins DREGS:$src, DREGS:$rr),
"subw\t$rd, $rr",
[(set i16:$rd, (sub i16:$src, i16:$rr)),
(implicit SREG)]>;
def SUBIRdK : FRdK<0b0101,
(outs LD8:$rd),
(ins LD8:$src, imm_ldi8:$k),
"subi\t$rd, $k",
[(set i8:$rd, (sub i8:$src, imm:$k)),
(implicit SREG)]>;
// SUBIW Rd+1:Rd, K+1:K
//
// Expands to:
// subi Rd, K
// sbci Rd+1, K+1
def SUBIWRdK : Pseudo<(outs DLDREGS:$rd),
(ins DLDREGS:$src, i16imm:$rr),
"subiw\t$rd, $rr",
[(set i16:$rd, (sub i16:$src, imm:$rr)),
(implicit SREG)]>;
def SBIWRdK : FWRdK<0b1,
(outs IWREGS:$rd),
(ins IWREGS:$src, imm_arith6:$k),
"sbiw\t$rd, $k",
[(set i16:$rd, (sub i16:$src, uimm6:$k)),
(implicit SREG)]>,
Requires<[HasADDSUBIW]>;
// Subtract with carry operations which must read the carry flag in SREG.
let Uses = [SREG] in
{
def SBCRdRr : FRdRr<0b0000,
0b10,
(outs GPR8:$rd),
(ins GPR8:$src, GPR8:$rr),
"sbc\t$rd, $rr",
[(set i8:$rd, (sube i8:$src, i8:$rr)),
(implicit SREG)]>;
// SBCW Rd+1:Rd, Rr+1:Rr
//
// Expands to:
// sbc Rd, Rr
// sbc Rd+1, Rr+1
def SBCWRdRr : Pseudo<(outs DREGS:$rd),
(ins DREGS:$src, DREGS:$rr),
"sbcw\t$rd, $rr",
[(set i16:$rd, (sube i16:$src, i16:$rr)),
(implicit SREG)]>;
def SBCIRdK : FRdK<0b0100,
(outs LD8:$rd),
(ins LD8:$src, imm_ldi8:$k),
"sbci\t$rd, $k",
[(set i8:$rd, (sube i8:$src, imm:$k)),
(implicit SREG)]>;
// SBCIW Rd+1:Rd, K+1:K
// sbci Rd, K
// sbci Rd+1, K+1
def SBCIWRdK : Pseudo<(outs DLDREGS:$rd),
(ins DLDREGS:$src, i16imm:$rr),
"sbciw\t$rd, $rr",
[(set i16:$rd, (sube i16:$src, imm:$rr)),
(implicit SREG)]>;
}
}
//===----------------------------------------------------------------------===//
// Increment and Decrement
//===----------------------------------------------------------------------===//
let Constraints = "$src = $rd",
Defs = [SREG] in
{
def INCRd : FRd<0b1001,
0b0100011,
(outs GPR8:$rd),
(ins GPR8:$src),
"inc\t$rd",
[(set i8:$rd, (add i8:$src, 1)), (implicit SREG)]>;
def DECRd : FRd<0b1001,
0b0101010,
(outs GPR8:$rd),
(ins GPR8:$src),
"dec\t$rd",
[(set i8:$rd, (add i8:$src, -1)), (implicit SREG)]>;
}
//===----------------------------------------------------------------------===//
// Multiplication
//===----------------------------------------------------------------------===//
let isCommutable = 1,
Defs = [R1, R0, SREG] in
{
// MUL Rd, Rr
// Multiplies Rd by Rr and places the result into R1:R0.
let usesCustomInserter = 1 in {
def MULRdRr : FRdRr<0b1001, 0b11,
(outs),
(ins GPR8:$lhs, GPR8:$rhs),
"mul\t$lhs, $rhs",
[/*(set R1, R0, (smullohi i8:$lhs, i8:$rhs))*/]>,
Requires<[SupportsMultiplication]>;
def MULSRdRr : FMUL2RdRr<0,
(outs),
(ins GPR8:$lhs, GPR8:$rhs),
"muls\t$lhs, $rhs",
[]>,
Requires<[SupportsMultiplication]>;
}
def MULSURdRr : FMUL2RdRr<1,
(outs),
(ins GPR8:$lhs, GPR8:$rhs),
"mulsu\t$lhs, $rhs",
[]>,
Requires<[SupportsMultiplication]>;
def FMUL : FFMULRdRr<0b01,
(outs),
(ins GPR8:$lhs, GPR8:$rhs),
"fmul\t$lhs, $rhs",
[]>,
Requires<[SupportsMultiplication]>;
def FMULS : FFMULRdRr<0b10,
(outs),
(ins GPR8:$lhs, GPR8:$rhs),
"fmuls\t$lhs, $rhs",
[]>,
Requires<[SupportsMultiplication]>;
def FMULSU : FFMULRdRr<0b11,
(outs),
(ins GPR8:$lhs, GPR8:$rhs),
"fmulsu\t$lhs, $rhs",
[]>,
Requires<[SupportsMultiplication]>;
}
let Defs = [R15, R14, R13, R12, R11, R10, R9,
R8, R7, R6, R5, R4, R3, R2, R1, R0] in
def DESK : FDES<(outs),
(ins i8imm:$k),
"des\t$k",
[]>,
Requires<[HasDES]>;
//===----------------------------------------------------------------------===//
// Logic
//===----------------------------------------------------------------------===//
let Constraints = "$src = $rd",
Defs = [SREG] in
{
// Register-Register logic instructions (which have the
// property of commutativity).
let isCommutable = 1 in
{
def ANDRdRr : FRdRr<0b0010,
0b00,
(outs GPR8:$rd),
(ins GPR8:$src, GPR8:$rr),
"and\t$rd, $rr",
[(set i8:$rd, (and i8:$src, i8:$rr)),
(implicit SREG)]>;
// ANDW Rd+1:Rd, Rr+1:Rr
//
// Expands to:
// and Rd, Rr
// and Rd+1, Rr+1
def ANDWRdRr : Pseudo<(outs DREGS:$rd),
(ins DREGS:$src, DREGS:$rr),
"andw\t$rd, $rr",
[(set i16:$rd, (and i16:$src, i16:$rr)),
(implicit SREG)]>;
def ORRdRr : FRdRr<0b0010,
0b10,
(outs GPR8:$rd),
(ins GPR8:$src, GPR8:$rr),
"or\t$rd, $rr",
[(set i8:$rd, (or i8:$src, i8:$rr)),
(implicit SREG)]>;
// ORW Rd+1:Rd, Rr+1:Rr
//
// Expands to:
// or Rd, Rr
// or Rd+1, Rr+1
def ORWRdRr : Pseudo<(outs DREGS:$rd),
(ins DREGS:$src, DREGS:$rr),
"orw\t$rd, $rr",
[(set i16:$rd, (or i16:$src, i16:$rr)),
(implicit SREG)]>;
def EORRdRr : FRdRr<0b0010,
0b01,
(outs GPR8:$rd),
(ins GPR8:$src, GPR8:$rr),
"eor\t$rd, $rr",
[(set i8:$rd, (xor i8:$src, i8:$rr)),
(implicit SREG)]>;
// EORW Rd+1:Rd, Rr+1:Rr
//
// Expands to:
// eor Rd, Rr
// eor Rd+1, Rr+1
def EORWRdRr : Pseudo<(outs DREGS:$rd),
(ins DREGS:$src, DREGS:$rr),
"eorw\t$rd, $rr",
[(set i16:$rd, (xor i16:$src, i16:$rr)),
(implicit SREG)]>;
}
def ANDIRdK : FRdK<0b0111,
(outs LD8:$rd),
(ins LD8:$src, imm_ldi8:$k),
"andi\t$rd, $k",
[(set i8:$rd, (and i8:$src, imm:$k)),
(implicit SREG)]>;
// ANDI Rd+1:Rd, K+1:K
//
// Expands to:
// andi Rd, K
// andi Rd+1, K+1
def ANDIWRdK : Pseudo<(outs DLDREGS:$rd),
(ins DLDREGS:$src, i16imm:$k),
"andiw\t$rd, $k",
[(set i16:$rd, (and i16:$src, imm:$k)),
(implicit SREG)]>;
def ORIRdK : FRdK<0b0110,
(outs LD8:$rd),
(ins LD8:$src, imm_ldi8:$k),
"ori\t$rd, $k",
[(set i8:$rd, (or i8:$src, imm:$k)),
(implicit SREG)]>;
// ORIW Rd+1:Rd, K+1,K
//
// Expands to:
// ori Rd, K
// ori Rd+1, K+1
def ORIWRdK : Pseudo<(outs DLDREGS:$rd),
(ins DLDREGS:$src, i16imm:$rr),
"oriw\t$rd, $rr",
[(set i16:$rd, (or i16:$src, imm:$rr)),
(implicit SREG)]>;
}
//===----------------------------------------------------------------------===//
// One's/Two's Complement
//===----------------------------------------------------------------------===//
let Constraints = "$src = $rd",
Defs = [SREG] in
{
def COMRd : FRd<0b1001,
0b0100000,
(outs GPR8:$rd),
(ins GPR8:$src),
"com\t$rd",
[(set i8:$rd, (not i8:$src)), (implicit SREG)]>;
// COMW Rd+1:Rd
//
// Expands to:
// com Rd
// com Rd+1
def COMWRd : Pseudo<(outs DREGS:$rd),
(ins DREGS:$src),
"comw\t$rd",
[(set i16:$rd, (not i16:$src)), (implicit SREG)]>;
//:TODO: optimize NEG for wider types
def NEGRd : FRd<0b1001,
0b0100001,
(outs GPR8:$rd),
(ins GPR8:$src),
"neg\t$rd",
[(set i8:$rd, (ineg i8:$src)), (implicit SREG)]>;
}
// TST Rd
// Test for zero of minus.
// This operation is identical to a `Rd AND Rd`.
//def : InstAlias<"tst\t$rd", (ANDRdRr GPR8:$rd, GPR8:$rd), 1>;
let Defs = [SREG] in
def TSTRd : FTST<0b0010,
0b00,
(outs),
(ins GPR8:$rd),
"tst\t$rd",
[(AVRtst i8:$rd)]>;
//===----------------------------------------------------------------------===//
// Jump instructions
//===----------------------------------------------------------------------===//
let isBarrier = 1,
isBranch = 1,
isTerminator = 1 in
{
def RJMPk : FBRk<0,
(outs),
(ins brtarget_13:$target),
"rjmp\t$target",
[(br bb:$target)]>;
let isIndirectBranch = 1,
Uses = [R31R30] in
def IJMP : F16<0b1001010000001001,
(outs),
(ins),
"ijmp",
[]>,
Requires<[HasIJMPCALL]>;
let isIndirectBranch = 1,
Uses = [R31R30] in
def EIJMP : F16<0b1001010000011001,
(outs),
(ins),
"eijmp",
[]>,
Requires<[HasEIJMPCALL]>;
def JMPk : F32BRk<0b110,
(outs),
(ins call_target:$k),
"jmp\t$k",
[]>,
Requires<[HasJMPCALL]>;
}
//===----------------------------------------------------------------------===//
// Call instructions
//===----------------------------------------------------------------------===//
let isCall = 1 in
{
// SP is marked as a use to prevent stack-pointer assignments that appear
// immediately before calls from potentially appearing dead.
let Uses = [SP] in
def RCALLk : FBRk<1,
(outs),
(ins brtarget_13:$target),
"rcall\t$target",
[]>;
// SP is marked as a use to prevent stack-pointer assignments that appear
// immediately before calls from potentially appearing dead.
let Uses = [SP, R31R30] in
def ICALL : F16<0b1001010100001001,
(outs),
(ins variable_ops),
"icall",
[]>,
Requires<[HasIJMPCALL]>;
// SP is marked as a use to prevent stack-pointer assignments that appear
// immediately before calls from potentially appearing dead.
let Uses = [SP, R31R30] in
def EICALL : F16<0b1001010100011001,
(outs),
(ins variable_ops),
"eicall",
[]>,
Requires<[HasEIJMPCALL]>;
// SP is marked as a use to prevent stack-pointer assignments that appear
// immediately before calls from potentially appearing dead.
//
//:TODO: the imm field can be either 16 or 22 bits in devices with more
// than 64k of ROM, fix it once we support the largest devices.
let Uses = [SP] in
def CALLk : F32BRk<0b111,
(outs),
(ins call_target:$k),
"call\t$k",
[(AVRcall imm:$k)]>,
Requires<[HasJMPCALL]>;
}
//===----------------------------------------------------------------------===//
// Return instructions.
//===----------------------------------------------------------------------===//
let isTerminator = 1,
isReturn = 1,
isBarrier = 1 in
{
def RET : F16<0b1001010100001000,
(outs),
(ins),
"ret",
[(AVRretflag)]>;
def RETI : F16<0b1001010100011000,
(outs),
(ins),
"reti",
[(AVRretiflag)]>;
}
//===----------------------------------------------------------------------===//
// Compare operations.
//===----------------------------------------------------------------------===//
let Defs = [SREG] in
{
// CPSE Rd, Rr
// Compare Rd and Rr, skipping the next instruction if they are equal.
let isBarrier = 1,
isBranch = 1,
isTerminator = 1 in
def CPSE : FRdRr<0b0001,
0b00,
(outs),
(ins GPR8:$rd, GPR8:$rr),
"cpse\t$rd, $rr",
[]>;
def CPRdRr : FRdRr<0b0001,
0b01,
(outs),
(ins GPR8:$rd, GPR8:$rr),
"cp\t$rd, $rr",
[(AVRcmp i8:$rd, i8:$rr), (implicit SREG)]>;
// CPW Rd+1:Rd, Rr+1:Rr
//
// Expands to:
// cp Rd, Rr
// cpc Rd+1, Rr+1
def CPWRdRr : Pseudo<(outs),
(ins DREGS:$src, DREGS:$src2),
"cpw\t$src, $src2",
[(AVRcmp i16:$src, i16:$src2), (implicit SREG)]>;
let Uses = [SREG] in
def CPCRdRr : FRdRr<0b0000,
0b01,
(outs),
(ins GPR8:$rd, GPR8:$rr),
"cpc\t$rd, $rr",
[(AVRcmpc i8:$rd, i8:$rr), (implicit SREG)]>;
// CPCW Rd+1:Rd. Rr+1:Rr
//
// Expands to:
// cpc Rd, Rr
// cpc Rd+1, Rr+1
let Uses = [SREG] in
def CPCWRdRr : Pseudo<(outs),
(ins DREGS:$src, DREGS:$src2),
"cpcw\t$src, $src2",
[(AVRcmpc i16:$src, i16:$src2), (implicit SREG)]>;
// CPI Rd, K
// Compares a register with an 8 bit immediate.
def CPIRdK : FRdK<0b0011,
(outs),
(ins LD8:$rd, imm_ldi8:$k),
"cpi\t$rd, $k",
[(AVRcmp i8:$rd, imm:$k), (implicit SREG)]>;
}
//===----------------------------------------------------------------------===//
// Register conditional skipping/branching operations.
//===----------------------------------------------------------------------===//
let isBranch = 1,
isTerminator = 1 in
{
// Conditional skipping on GPR register bits, and
// conditional skipping on IO register bits.
let isBarrier = 1 in
{
def SBRCRrB : FRdB<0b10,
(outs),
(ins GPR8:$rr, i8imm:$b),
"sbrc\t$rr, $b",
[]>;
def SBRSRrB : FRdB<0b11,
(outs),
(ins GPR8:$rr, i8imm:$b),
"sbrs\t$rr, $b",
[]>;
def SBICAb : FIOBIT<0b01,
(outs),
(ins imm_port5:$a, i8imm:$b),
"sbic\t$a, $b",
[]>;
def SBISAb : FIOBIT<0b11,
(outs),
(ins imm_port5:$a, i8imm:$b),
"sbis\t$a, $b",
[]>;
}
// Relative branches on status flag bits.
let Uses = [SREG] in
{
// BRBS s, k
// Branch if `s` flag in status register is set.
def BRBSsk : FSK<0,
(outs),
(ins i8imm:$s, relbrtarget_7:$k),
"brbs\t$s, $k",
[]>;
// BRBC s, k
// Branch if `s` flag in status register is clear.
def BRBCsk : FSK<1,
(outs),
(ins i8imm:$s, relbrtarget_7:$k),
"brbc\t$s, $k",
[]>;
}
}
// BRCS k
// Branch if carry flag is set
def : InstAlias<"brcs\t$k", (BRBSsk 0, relbrtarget_7:$k)>;
// BRCC k
// Branch if carry flag is clear
def : InstAlias<"brcc\t$k", (BRBCsk 0, relbrtarget_7:$k)>;
// BRHS k
// Branch if half carry flag is set
def : InstAlias<"brhs\t$k", (BRBSsk 5, relbrtarget_7:$k)>;
// BRHC k
// Branch if half carry flag is clear
def : InstAlias<"brhc\t$k", (BRBCsk 5, relbrtarget_7:$k)>;
// BRTS k
// Branch if the T flag is set
def : InstAlias<"brts\t$k", (BRBSsk 6, relbrtarget_7:$k)>;
// BRTC k
// Branch if the T flag is clear
def : InstAlias<"brtc\t$k", (BRBCsk 6, relbrtarget_7:$k)>;
// BRVS k
// Branch if the overflow flag is set
def : InstAlias<"brvs\t$k", (BRBSsk 3, relbrtarget_7:$k)>;
// BRVC k
// Branch if the overflow flag is clear
def : InstAlias<"brvc\t$k", (BRBCsk 3, relbrtarget_7:$k)>;
// BRIE k
// Branch if the global interrupt flag is enabled
def : InstAlias<"brie\t$k", (BRBSsk 7, relbrtarget_7:$k)>;
// BRID k
// Branch if the global interrupt flag is disabled
def : InstAlias<"brid\t$k", (BRBCsk 7, relbrtarget_7:$k)>;
//===----------------------------------------------------------------------===//
// PC-relative conditional branches
//===----------------------------------------------------------------------===//
// Based on status register. We cannot simplify these into instruction aliases
// because we also need to be able to specify a pattern to match for ISel.
let isBranch = 1,
isTerminator = 1,
Uses = [SREG] in
{
def BREQk : FBRsk<0,
0b001,
(outs),
(ins relbrtarget_7:$target),
"breq\t$target",
[(AVRbrcond bb:$target, AVR_COND_EQ)]>;
def BRNEk : FBRsk<1,
0b001,
(outs),
(ins relbrtarget_7:$target),
"brne\t$target",
[(AVRbrcond bb:$target, AVR_COND_NE)]>;
def BRSHk : FBRsk<1,
0b000,
(outs),
(ins relbrtarget_7:$target),
"brsh\t$target",
[(AVRbrcond bb:$target, AVR_COND_SH)]>;
def BRLOk : FBRsk<0,
0b000,
(outs),
(ins relbrtarget_7:$target),
"brlo\t$target",
[(AVRbrcond bb:$target, AVR_COND_LO)]>;
def BRMIk : FBRsk<0,
0b010,
(outs),
(ins relbrtarget_7:$target),
"brmi\t$target",
[(AVRbrcond bb:$target, AVR_COND_MI)]>;
def BRPLk : FBRsk<1,
0b010,
(outs),
(ins relbrtarget_7:$target),
"brpl\t$target",
[(AVRbrcond bb:$target, AVR_COND_PL)]>;
def BRGEk : FBRsk<1,
0b100,
(outs),
(ins relbrtarget_7:$target),
"brge\t$target",
[(AVRbrcond bb:$target, AVR_COND_GE)]>;
def BRLTk : FBRsk<0,
0b100,
(outs),
(ins relbrtarget_7:$target),
"brlt\t$target",
[(AVRbrcond bb:$target, AVR_COND_LT)]>;
}
//===----------------------------------------------------------------------===//
// Data transfer instructions
//===----------------------------------------------------------------------===//
// 8 and 16-bit register move instructions.
let hasSideEffects = 0 in
{
def MOVRdRr : FRdRr<0b0010,
0b11,
(outs GPR8:$rd),
(ins GPR8:$rr),
"mov\t$rd, $rr",
[]>;
def MOVWRdRr : FMOVWRdRr<(outs DREGS:$dst),
(ins DREGS:$src),
"movw\t$dst, $src",
[]>,
Requires<[HasMOVW]>;
}
// Load immediate values into registers.
let isReMaterializable = 1 in
{
def LDIRdK : FRdK<0b1110,
(outs LD8:$rd),
(ins imm_ldi8:$k),
"ldi\t$rd, $k",
[(set i8:$rd, imm:$k)]>;
// LDIW Rd+1:Rd, K+1:K
//
// Expands to:
// ldi Rd, K
// ldi Rd+1, K+1
def LDIWRdK : Pseudo<(outs DLDREGS:$dst),
(ins i16imm:$src),
"ldiw\t$dst, $src",
[(set i16:$dst, imm:$src)]>;
}
// Load from data space into register.
let canFoldAsLoad = 1,
isReMaterializable = 1 in
{
def LDSRdK : F32DM<0b0,
(outs GPR8:$rd),
(ins imm16:$k),
"lds\t$rd, $k",
[(set i8:$rd, (load imm:$k))]>,
Requires<[HasSRAM]>;
// LDSW Rd+1:Rd, K+1:K
//
// Expands to:
// lds Rd, (K+1:K)
// lds Rd+1 (K+1:K) + 1
def LDSWRdK : Pseudo<(outs DREGS:$dst),
(ins i16imm:$src),
"ldsw\t$dst, $src",
[(set i16:$dst, (load imm:$src))]>,
Requires<[HasSRAM]>;
}
// Indirect loads.
let canFoldAsLoad = 1,
isReMaterializable = 1 in
{
def LDRdPtr : FSTLD<0,
0b00,
(outs GPR8:$reg),
(ins LDSTPtrReg:$ptrreg),
"ld\t$reg, $ptrreg",
[(set GPR8:$reg, (load i16:$ptrreg))]>,
Requires<[HasSRAM]>;
// LDW Rd+1:Rd, P
//
// Expands to:
// ld Rd, P+
// ld Rd+1, P
let Constraints = "@earlyclobber $reg" in
def LDWRdPtr : Pseudo<(outs DREGS:$reg),
(ins PTRREGS:$ptrreg),
"ldw\t$reg, $ptrreg",
[(set i16:$reg, (load i16:$ptrreg))]>,
Requires<[HasSRAM]>;
}
// Indirect loads (with postincrement or predecrement).
let mayLoad = 1,
hasSideEffects = 0,
Constraints = "$ptrreg = $base_wb,@earlyclobber $reg" in
{
def LDRdPtrPi : FSTLD<0,
0b01,
(outs GPR8:$reg, PTRREGS:$base_wb),
(ins LDSTPtrReg:$ptrreg),
"ld\t$reg, $ptrreg+",
[]>,
Requires<[HasSRAM]>;
// LDW Rd+1:Rd, P+
// Expands to:
// ld Rd, P+
// ld Rd+1, P+
def LDWRdPtrPi : Pseudo<(outs DREGS:$reg, PTRREGS:$base_wb),
(ins PTRREGS:$ptrreg),
"ldw\t$reg, $ptrreg+",
[]>,
Requires<[HasSRAM]>;
def LDRdPtrPd : FSTLD<0,
0b10,
(outs GPR8:$reg, PTRREGS:$base_wb),
(ins LDSTPtrReg:$ptrreg),
"ld\t$reg, -$ptrreg",
[]>,
Requires<[HasSRAM]>;
// LDW Rd+1:Rd, -P
//
// Expands to:
// ld Rd+1, -P
// ld Rd, -P
def LDWRdPtrPd : Pseudo<(outs DREGS:$reg, PTRREGS:$base_wb),
(ins PTRREGS:$ptrreg),
"ldw\t$reg, -$ptrreg",
[]>,
Requires<[HasSRAM]>;
}
// Load indirect with displacement operations.
let canFoldAsLoad = 1,
isReMaterializable = 1 in
{
let Constraints = "@earlyclobber $reg" in
def LDDRdPtrQ : FSTDLDD<0,
(outs GPR8:$reg),
(ins memri:$memri),
"ldd\t$reg, $memri",
[(set i8:$reg, (load addr:$memri))]>,
Requires<[HasSRAM]>;
// LDDW Rd+1:Rd, P+q
//
// Expands to:
// ldd Rd, P+q
// ldd Rd+1, P+q+1
let Constraints = "@earlyclobber $dst" in
def LDDWRdPtrQ : Pseudo<(outs DREGS:$dst),
(ins memri:$memri),
"lddw\t$dst, $memri",
[(set i16:$dst, (load addr:$memri))]>,
Requires<[HasSRAM]>;
// An identical pseudo instruction to LDDWRdPtrQ, expect restricted to the Y
// register and without the @earlyclobber flag.
//
// Used to work around a bug caused by the register allocator not
// being able to handle the expansion of a COPY into an machine instruction
// that has an earlyclobber flag. This is because the register allocator will
// try expand a copy from a register slot into an earlyclobber instruction.
// Instructions that are earlyclobber need to be in a dedicated earlyclobber slot.
//
// This pseudo instruction can be used pre-AVR pseudo expansion in order to
// get a frame index load without directly using earlyclobber instructions.
//
// The pseudo expansion pass trivially expands this into LDDWRdPtrQ.
//
// This instruction may be removed once PR13375 is fixed.
let mayLoad = 1,
hasSideEffects = 0 in
def LDDWRdYQ : Pseudo<(outs DREGS:$dst),
(ins memri:$memri),
"lddw\t$dst, $memri",
[]>,
Requires<[HasSRAM]>;
}
class AtomicLoad<PatFrag Op, RegisterClass DRC,
RegisterClass PTRRC> :
Pseudo<(outs DRC:$rd), (ins PTRRC:$rr), "atomic_op",
[(set DRC:$rd, (Op i16:$rr))]>;
class AtomicStore<PatFrag Op, RegisterClass DRC,
RegisterClass PTRRC> :
Pseudo<(outs), (ins PTRRC:$rd, DRC:$rr), "atomic_op",
[(Op i16:$rd, DRC:$rr)]>;
class AtomicLoadOp<PatFrag Op, RegisterClass DRC,
RegisterClass PTRRC> :
Pseudo<(outs DRC:$rd), (ins PTRRC:$rr, DRC:$operand),
"atomic_op",
[(set DRC:$rd, (Op i16:$rr, DRC:$operand))]>;
// FIXME: I think 16-bit atomic binary ops need to mark
// r0 as clobbered.
// Atomic instructions
// ===================
//
// These are all expanded by AVRExpandPseudoInsts
//
// 8-bit operations can use any pointer register because
// they are expanded directly into an LD/ST instruction.
//
// 16-bit operations use 16-bit load/store postincrement instructions,
// which require PTRDISPREGS.
def AtomicLoad8 : AtomicLoad<atomic_load_8, GPR8, PTRREGS>;
def AtomicLoad16 : AtomicLoad<atomic_load_16, DREGS, PTRDISPREGS>;
def AtomicStore8 : AtomicStore<atomic_store_8, GPR8, PTRREGS>;
def AtomicStore16 : AtomicStore<atomic_store_16, DREGS, PTRDISPREGS>;
class AtomicLoadOp8<PatFrag Op> : AtomicLoadOp<Op, GPR8, PTRREGS>;
class AtomicLoadOp16<PatFrag Op> : AtomicLoadOp<Op, DREGS, PTRDISPREGS>;
def AtomicLoadAdd8 : AtomicLoadOp8<atomic_load_add_8>;
def AtomicLoadAdd16 : AtomicLoadOp16<atomic_load_add_16>;
def AtomicLoadSub8 : AtomicLoadOp8<atomic_load_sub_8>;
def AtomicLoadSub16 : AtomicLoadOp16<atomic_load_sub_16>;
def AtomicLoadAnd8 : AtomicLoadOp8<atomic_load_and_8>;
def AtomicLoadAnd16 : AtomicLoadOp16<atomic_load_and_16>;
def AtomicLoadOr8 : AtomicLoadOp8<atomic_load_or_8>;
def AtomicLoadOr16 : AtomicLoadOp16<atomic_load_or_16>;
def AtomicLoadXor8 : AtomicLoadOp8<atomic_load_xor_8>;
def AtomicLoadXor16 : AtomicLoadOp16<atomic_load_xor_16>;
def AtomicFence : Pseudo<(outs), (ins), "atomic_fence",
[(atomic_fence imm, imm)]>;
// Indirect store from register to data space.
def STSKRr : F32DM<0b1,
(outs),
(ins imm16:$k, GPR8:$rd),
"sts\t$k, $rd",
[(store i8:$rd, imm:$k)]>,
Requires<[HasSRAM]>;
// STSW K+1:K, Rr+1:Rr
//
// Expands to:
// sts Rr+1, (K+1:K) + 1
// sts Rr, (K+1:K)
def STSWKRr : Pseudo<(outs),
(ins i16imm:$dst, DREGS:$src),
"stsw\t$dst, $src",
[(store i16:$src, imm:$dst)]>,
Requires<[HasSRAM]>;
// Indirect stores.
// ST P, Rr
// Stores the value of Rr into the location addressed by pointer P.
def STPtrRr : FSTLD<1,
0b00,
(outs),
(ins LDSTPtrReg:$ptrreg, GPR8:$reg),
"st\t$ptrreg, $reg",
[(store GPR8:$reg, i16:$ptrreg)]>,
Requires<[HasSRAM]>;
// STW P, Rr+1:Rr
// Stores the value of Rr into the location addressed by pointer P.
//
// Expands to:
// st P, Rr
// std P+1, Rr+1
def STWPtrRr : Pseudo<(outs),
(ins PTRDISPREGS:$ptrreg, DREGS:$reg),
"stw\t$ptrreg, $reg",
[(store i16:$reg, i16:$ptrreg)]>,
Requires<[HasSRAM]>;
// Indirect stores (with postincrement or predecrement).
let Constraints = "$ptrreg = $base_wb,@earlyclobber $base_wb" in
{
// ST P+, Rr
// Stores the value of Rr into the location addressed by pointer P.
// Post increments P.
def STPtrPiRr : FSTLD<1,
0b01,
(outs LDSTPtrReg:$base_wb),
(ins LDSTPtrReg:$ptrreg, GPR8:$reg, i8imm:$offs),
"st\t$ptrreg+, $reg",
[(set i16:$base_wb,
(post_store GPR8:$reg, i16:$ptrreg, imm:$offs))]>,
Requires<[HasSRAM]>;
// STW P+, Rr+1:Rr
// Stores the value of Rr into the location addressed by pointer P.
// Post increments P.
//
// Expands to:
// st P+, Rr
// st P+, Rr+1
def STWPtrPiRr : Pseudo<(outs PTRREGS:$base_wb),
(ins PTRREGS:$ptrreg, DREGS:$trh, i8imm:$offs),
"stw\t$ptrreg+, $trh",
[(set PTRREGS:$base_wb,
(post_store DREGS:$trh, PTRREGS:$ptrreg, imm:$offs))]>,
Requires<[HasSRAM]>;
// ST -P, Rr
// Stores the value of Rr into the location addressed by pointer P.
// Pre decrements P.
def STPtrPdRr : FSTLD<1,
0b10,
(outs LDSTPtrReg:$base_wb),
(ins LDSTPtrReg:$ptrreg, GPR8:$reg, i8imm:$offs),
"st\t-$ptrreg, $reg",
[(set i16:$base_wb,
(pre_store GPR8:$reg, i16:$ptrreg, imm:$offs))]>,
Requires<[HasSRAM]>;
// STW -P, Rr+1:Rr
// Stores the value of Rr into the location addressed by pointer P.
// Pre decrements P.
//
// Expands to:
// st -P, Rr+1
// st -P, Rr
def STWPtrPdRr : Pseudo<(outs PTRREGS:$base_wb),
(ins PTRREGS:$ptrreg, DREGS:$reg, i8imm:$offs),
"stw\t-$ptrreg, $reg",
[(set PTRREGS:$base_wb,
(pre_store i16:$reg, i16:$ptrreg, imm:$offs))]>,
Requires<[HasSRAM]>;
}
// Store indirect with displacement operations.
// STD P+q, Rr
// Stores the value of Rr into the location addressed by pointer P with a
// displacement of q. Does not modify P.
def STDPtrQRr : FSTDLDD<1,
(outs),
(ins memri:$memri, GPR8:$reg),
"std\t$memri, $reg",
[(store i8:$reg, addr:$memri)]>,
Requires<[HasSRAM]>;
// STDW P+q, Rr+1:Rr
// Stores the value of Rr into the location addressed by pointer P with a
// displacement of q. Does not modify P.
//
// Expands to:
// std P+q, Rr
// std P+q+1, Rr+1
def STDWPtrQRr : Pseudo<(outs),
(ins memri:$memri, DREGS:$src),
"stdw\t$memri, $src",
[(store i16:$src, addr:$memri)]>,
Requires<[HasSRAM]>;
// Load program memory operations.
let canFoldAsLoad = 1,
isReMaterializable = 1,
mayLoad = 1,
hasSideEffects = 0 in
{
let Defs = [R0],
Uses = [R31R30] in
def LPM : F16<0b1001010111001000,
(outs),
(ins),
"lpm",
[]>,
Requires<[HasLPM]>;
def LPMRdZ : FLPMX<0,
0,
(outs GPR8:$dst),
(ins ZREG:$z),
"lpm\t$dst, $z",
[]>,
Requires<[HasLPMX]>;
// Load program memory, while postincrementing the Z register.
let Defs = [R31R30] in
{
def LPMRdZPi : FLPMX<0,
1,
(outs GPR8:$dst),
(ins ZREG:$z),
"lpm\t$dst, $z+",
[]>,
Requires<[HasLPMX]>;
def LPMWRdZ : Pseudo<(outs DREGS:$dst),
(ins ZREG:$z),
"lpmw\t$dst, $z",
[]>,
Requires<[HasLPMX]>;
def LPMWRdZPi : Pseudo<(outs DREGS:$dst),
(ins ZREG:$z),
"lpmw\t$dst, $z+",
[]>,
Requires<[HasLPMX]>;
}
}
// Extended load program memory operations.
let mayLoad = 1,
hasSideEffects = 0 in
{
let Defs = [R0],
Uses = [R31R30] in
def ELPM : F16<0b1001010111011000,
(outs),
(ins),
"elpm",
[]>,
Requires<[HasELPM]>;
def ELPMRdZ : FLPMX<1,
0,
(outs GPR8:$dst),
(ins ZREG:$z),
"elpm\t$dst, $z",
[]>,
Requires<[HasELPMX]>;
let Defs = [R31R30] in
def ELPMRdZPi : FLPMX<1,
1,
(outs GPR8:$dst),
(ins ZREG: $z),
"elpm\t$dst, $z+",
[]>,
Requires<[HasELPMX]>;
}
// Store program memory operations.
let Uses = [R1, R0] in
{
let Uses = [R31R30, R1, R0] in
def SPM : F16<0b1001010111101000,
(outs),
(ins),
"spm",
[]>,
Requires<[HasSPM]>;
let Defs = [R31R30] in
def SPMZPi : F16<0b1001010111111000,
(outs),
(ins ZREG:$z),
"spm $z+",
[]>,
Requires<[HasSPMX]>;
}
// Read data from IO location operations.
let canFoldAsLoad = 1,
isReMaterializable = 1 in
{
def INRdA : FIORdA<(outs GPR8:$dst),
(ins imm_port6:$src),
"in\t$dst, $src",
[(set i8:$dst, (load ioaddr8:$src))]>;
def INWRdA : Pseudo<(outs DREGS:$dst),
(ins imm_port6:$src),
"inw\t$dst, $src",
[(set i16:$dst, (load ioaddr16:$src))]>;
}
// Write data to IO location operations.
def OUTARr : FIOARr<(outs),
(ins imm_port6:$dst, GPR8:$src),
"out\t$dst, $src",
[(store i8:$src, ioaddr8:$dst)]>;
def OUTWARr : Pseudo<(outs),
(ins imm_port6:$dst, DREGS:$src),
"outw\t$dst, $src",
[(store i16:$src, ioaddr16:$dst)]>;
// Stack push/pop operations.
let Defs = [SP],
Uses = [SP],
hasSideEffects = 0 in
{
// Stack push operations.
let mayStore = 1 in
{
def PUSHRr : FRd<0b1001,
0b0011111,
(outs),
(ins GPR8:$reg),
"push\t$reg",
[]>,
Requires<[HasSRAM]>;
def PUSHWRr : Pseudo<(outs),
(ins DREGS:$reg),
"pushw\t$reg",
[]>,
Requires<[HasSRAM]>;
}
// Stack pop operations.
let mayLoad = 1 in
{
def POPRd : FRd<0b1001,
0b0001111,
(outs GPR8:$reg),
(ins),
"pop\t$reg",
[]>,
Requires<[HasSRAM]>;
def POPWRd : Pseudo<(outs DREGS:$reg),
(ins),
"popw\t$reg",
[]>,
Requires<[HasSRAM]>;
}
}
// Read-Write-Modify (RMW) instructions.
def XCHZRd : FZRd<0b100,
(outs GPR8:$rd),
(ins ZREG:$z),
"xch\t$z, $rd",
[]>,
Requires<[SupportsRMW]>;
def LASZRd : FZRd<0b101,
(outs GPR8:$rd),
(ins ZREG:$z),
"las\t$z, $rd",
[]>,
Requires<[SupportsRMW]>;
def LACZRd : FZRd<0b110,
(outs GPR8:$rd),
(ins ZREG:$z),
"lac\t$z, $rd",
[]>,
Requires<[SupportsRMW]>;
def LATZRd : FZRd<0b111,
(outs GPR8:$rd),
(ins ZREG:$z),
"lat\t$z, $rd",
[]>,
Requires<[SupportsRMW]>;
//===----------------------------------------------------------------------===//
// Bit and bit-test instructions
//===----------------------------------------------------------------------===//
// Bit shift/rotate operations.
let Constraints = "$src = $rd",
Defs = [SREG] in
{
def LSLRd : FRdRr<0b0000,
0b11,
(outs GPR8:$rd),
(ins GPR8:$src),
"lsl\t$rd",
[(set i8:$rd, (AVRlsl i8:$src)), (implicit SREG)]>;
def LSLWRd : Pseudo<(outs DREGS:$rd),
(ins DREGS:$src),
"lslw\t$rd",
[(set i16:$rd, (AVRlsl i16:$src)), (implicit SREG)]>;
def LSRRd : FRd<0b1001,
0b0100110,
(outs GPR8:$rd),
(ins GPR8:$src),
"lsr\t$rd",
[(set i8:$rd, (AVRlsr i8:$src)), (implicit SREG)]>;
def LSRWRd : Pseudo<(outs DREGS:$rd),
(ins DREGS:$src),
"lsrw\t$rd",
[(set i16:$rd, (AVRlsr i16:$src)), (implicit SREG)]>;
def ASRRd : FRd<0b1001,
0b0100101,
(outs GPR8:$rd),
(ins GPR8:$src),
"asr\t$rd",
[(set i8:$rd, (AVRasr i8:$src)), (implicit SREG)]>;
def ASRWRd : Pseudo<(outs DREGS:$rd),
(ins DREGS:$src),
"asrw\t$rd",
[(set i16:$rd, (AVRasr i16:$src)), (implicit SREG)]>;
// Bit rotate operations.
let Uses = [SREG] in
{
def ROLRd : FRdRr<0b0001,
0b11,
(outs GPR8:$rd),
(ins GPR8:$src),
"rol\t$rd",
[(set i8:$rd, (AVRrol i8:$src)), (implicit SREG)]>;
def ROLWRd : Pseudo<(outs DREGS:$rd),
(ins DREGS:$src),
"rolw\t$rd",
[(set i16:$rd, (AVRrol i16:$src)), (implicit SREG)]>;
def RORRd : FRd<0b1001,
0b0100111,
(outs GPR8:$rd),
(ins GPR8:$src),
"ror\t$rd",
[(set i8:$rd, (AVRror i8:$src)), (implicit SREG)]>;
def RORWRd : Pseudo<(outs DREGS:$rd),
(ins DREGS:$src),
"rorw\t$rd",
[(set i16:$rd, (AVRror i16:$src)), (implicit SREG)]>;
}
}
// SWAP Rd
// Swaps the high and low nibbles in a register.
let Constraints = "$src = $rd" in
def SWAPRd : FRd<0b1001,
0b0100010,
(outs GPR8:$rd),
(ins GPR8:$src),
"swap\t$rd",
[(set i8:$rd, (bswap i8:$src))]>;
// IO register bit set/clear operations.
//:TODO: add patterns when popcount(imm)==2 to be expanded with 2 sbi/cbi
// instead of in+ori+out which requires one more instr.
def SBIAb : FIOBIT<0b10,
(outs),
(ins imm_port5:$addr, i8imm:$bit),
"sbi\t$addr, $bit",
[(store (or (i8 (load lowioaddr8:$addr)), iobitpos8:$bit),
lowioaddr8:$addr)]>;
def CBIAb : FIOBIT<0b00,
(outs),
(ins imm_port5:$addr, i8imm:$bit),
"cbi\t$addr, $bit",
[(store (and (i8 (load lowioaddr8:$addr)), iobitposn8:$bit),
lowioaddr8:$addr)]>;
// Status register bit load/store operations.
let Defs = [SREG] in
def BST : FRdB<0b01,
(outs),
(ins GPR8:$rd, i8imm:$b),
"bst\t$rd, $b",
[]>;
let Uses = [SREG] in
def BLD : FRdB<0b00,
(outs),
(ins GPR8:$rd, i8imm:$b),
"bld\t$rd, $b",
[]>;
// Set/clear bit in register operations.
let Constraints = "$src = $rd",
Defs = [SREG] in
{
// SBR Rd, K
// Alias for ORI Rd, K
def SBRRdK : FRdK<0b0110,
(outs LD8:$rd),
(ins LD8:$src, imm_ldi8:$k),
"sbr\t$rd, $k",
[(set i8:$rd, (or i8:$src, imm:$k)),
(implicit SREG)]>;
// CBR Rd, K
// Alias for `ANDI Rd, COM(K)` where COM(K) is the complement of K.
// FIXME: This uses the 'complement' encoder. We need it to also use the
// imm_ldi8 encoder. This will cause no fixups to be created on this instruction.
def CBRRdK : FRdK<0b0111,
(outs LD8:$rd),
(ins LD8:$src, imm_com8:$k),
"cbr\t$rd, $k",
[]>;
}
// CLR Rd
// Alias for EOR Rd, Rd
// -------------
// Clears all bits in a register.
def CLR : InstAlias<"clr\t$rd", (EORRdRr GPR8:$rd, GPR8:$rd)>;
// SER Rd
// Alias for LDI Rd, 0xff
// ---------
// Sets all bits in a register.
def : InstAlias<"ser\t$rd", (LDIRdK LD8:$rd, 0xff), 0>;
let Defs = [SREG] in
def BSETs : FS<0,
(outs),
(ins i8imm:$s),
"bset\t$s",
[]>;
let Defs = [SREG] in
def BCLRs : FS<1,
(outs),
(ins i8imm:$s),
"bclr\t$s",
[]>;
// Set/clear aliases for the carry (C) status flag (bit 0).
def : InstAlias<"sec", (BSETs 0)>;
def : InstAlias<"clc", (BCLRs 0)>;
// Set/clear aliases for the zero (Z) status flag (bit 1).
def : InstAlias<"sez", (BSETs 1)>;
def : InstAlias<"clz", (BCLRs 1)>;
// Set/clear aliases for the negative (N) status flag (bit 2).
def : InstAlias<"sen", (BSETs 2)>;
def : InstAlias<"cln", (BCLRs 2)>;
// Set/clear aliases for the overflow (V) status flag (bit 3).
def : InstAlias<"sev", (BSETs 3)>;
def : InstAlias<"clv", (BCLRs 3)>;
// Set/clear aliases for the signed (S) status flag (bit 4).
def : InstAlias<"ses", (BSETs 4)>;
def : InstAlias<"cls", (BCLRs 4)>;
// Set/clear aliases for the half-carry (H) status flag (bit 5).
def : InstAlias<"seh", (BSETs 5)>;
def : InstAlias<"clh", (BCLRs 5)>;
// Set/clear aliases for the T status flag (bit 6).
def : InstAlias<"set", (BSETs 6)>;
def : InstAlias<"clt", (BCLRs 6)>;
// Set/clear aliases for the interrupt (I) status flag (bit 7).
def : InstAlias<"sei", (BSETs 7)>;
def : InstAlias<"cli", (BCLRs 7)>;
//===----------------------------------------------------------------------===//
// Special/Control instructions
//===----------------------------------------------------------------------===//
// BREAK
// Breakpoint instruction
// ---------
// <|1001|0101|1001|1000>
def BREAK : F16<0b1001010110011000,
(outs),
(ins),
"break",
[]>,
Requires<[HasBREAK]>;
// NOP
// No-operation instruction
// ---------
// <|0000|0000|0000|0000>
def NOP : F16<0b0000000000000000,
(outs),
(ins),
"nop",
[]>;
// SLEEP
// Sleep instruction
// ---------
// <|1001|0101|1000|1000>
def SLEEP : F16<0b1001010110001000,
(outs),
(ins),
"sleep",
[]>;
// WDR
// Watchdog reset
// ---------
// <|1001|0101|1010|1000>
def WDR : F16<0b1001010110101000,
(outs),
(ins),
"wdr",
[]>;
//===----------------------------------------------------------------------===//
// Pseudo instructions for later expansion
//===----------------------------------------------------------------------===//
//:TODO: Optimize this for wider types AND optimize the following code
// compile int foo(char a, char b, char c, char d) {return d+b;}
// looks like a missed sext_inreg opportunity.
def SEXT : ExtensionPseudo<
(outs DREGS:$dst),
(ins GPR8:$src),
"sext\t$dst, $src",
[(set i16:$dst, (sext i8:$src)), (implicit SREG)]
>;
def ZEXT : ExtensionPseudo<
(outs DREGS:$dst),
(ins GPR8:$src),
"zext\t$dst, $src",
[(set i16:$dst, (zext i8:$src)), (implicit SREG)]
>;
// This pseudo gets expanded into a movw+adiw thus it clobbers SREG.
let Defs = [SREG],
hasSideEffects = 0 in
def FRMIDX : Pseudo<(outs DLDREGS:$dst),
(ins DLDREGS:$src, i16imm:$src2),
"frmidx\t$dst, $src, $src2",
[]>;
// This pseudo is either converted to a regular store or a push which clobbers
// SP.
def STDSPQRr : StorePseudo<
(outs),
(ins memspi:$dst, GPR8:$src),
"stdstk\t$dst, $src",
[(store i8:$src, addr:$dst)]
>;
// This pseudo is either converted to a regular store or a push which clobbers
// SP.
def STDWSPQRr : StorePseudo<
(outs),
(ins memspi:$dst, DREGS:$src),
"stdwstk\t$dst, $src",
[(store i16:$src, addr:$dst)]
>;
// SP read/write pseudos.
let hasSideEffects = 0 in
{
let Uses = [SP] in
def SPREAD : Pseudo<
(outs DREGS:$dst),
(ins GPRSP:$src),
"spread\t$dst, $src",
[]
>;
let Defs = [SP] in
def SPWRITE : Pseudo<
(outs GPRSP:$dst),
(ins DREGS:$src),
"spwrite\t$dst, $src",
[]>;
}
def Select8 : SelectPseudo<
(outs GPR8:$dst),
(ins GPR8:$src, GPR8:$src2, i8imm:$cc),
"# Select8 PSEUDO",
[(set i8:$dst, (AVRselectcc i8:$src, i8:$src2, imm:$cc))]
>;
def Select16 : SelectPseudo<
(outs DREGS:$dst),
(ins DREGS:$src, DREGS:$src2, i8imm:$cc),
"# Select16 PSEUDO",
[(set i16:$dst, (AVRselectcc i16:$src, i16:$src2, imm:$cc))]
>;
def Lsl8 : ShiftPseudo<
(outs GPR8:$dst),
(ins GPR8:$src, GPR8:$cnt),
"# Lsl8 PSEUDO",
[(set i8:$dst, (AVRlslLoop i8:$src, i8:$cnt))]
>;
def Lsl16 : ShiftPseudo<
(outs DREGS:$dst),
(ins DREGS:$src, GPR8:$cnt),
"# Lsl16 PSEUDO",
[(set i16:$dst, (AVRlslLoop i16:$src, i8:$cnt))]
>;
def Lsr8 : ShiftPseudo<
(outs GPR8:$dst),
(ins GPR8:$src, GPR8:$cnt),
"# Lsr8 PSEUDO",
[(set i8:$dst, (AVRlsrLoop i8:$src, i8:$cnt))]
>;
def Lsr16 : ShiftPseudo<
(outs DREGS:$dst),
(ins DREGS:$src, GPR8:$cnt),
"# Lsr16 PSEUDO",
[(set i16:$dst, (AVRlsrLoop i16:$src, i8:$cnt))]
>;
def Rol8 : ShiftPseudo<
(outs GPR8:$dst),
(ins GPR8:$src, GPR8:$cnt),
"# Rol8 PSEUDO",
[(set i8:$dst, (AVRrolLoop i8:$src, i8:$cnt))]
>;
def Rol16 : ShiftPseudo<
(outs DREGS:$dst),
(ins DREGS:$src, GPR8:$cnt),
"# Rol16 PSEUDO",
[(set i16:$dst, (AVRrolLoop i16:$src, i8:$cnt))]
>;
def Ror8 : ShiftPseudo<
(outs GPR8:$dst),
(ins GPR8:$src, GPR8:$cnt),
"# Ror8 PSEUDO",
[(set i8:$dst, (AVRrorLoop i8:$src, i8:$cnt))]
>;
def Ror16 : ShiftPseudo<
(outs DREGS:$dst),
(ins DREGS:$src, GPR8:$cnt),
"# Ror16 PSEUDO",
[(set i16:$dst, (AVRrorLoop i16:$src, i8:$cnt))]
>;
def Asr8 : ShiftPseudo<
(outs GPR8:$dst),
(ins GPR8:$src, GPR8:$cnt),
"# Asr8 PSEUDO",
[(set i8:$dst, (AVRasrLoop i8:$src, i8:$cnt))]
>;
def Asr16 : ShiftPseudo<
(outs DREGS:$dst),
(ins DREGS:$src, GPR8:$cnt),
"# Asr16 PSEUDO",
[(set i16:$dst, (AVRasrLoop i16:$src, i8:$cnt))]
>;
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//
//:TODO: look in x86InstrCompiler.td for odd encoding trick related to
// add x, 128 -> sub x, -128. Clang is emitting an eor for this (ldi+eor)
// the add instruction always writes the carry flag
def : Pat<(addc i8:$src, i8:$src2),
(ADDRdRr i8:$src, i8:$src2)>;
def : Pat<(addc DREGS:$src, DREGS:$src2),
(ADDWRdRr DREGS:$src, DREGS:$src2)>;
// all sub instruction variants always writes the carry flag
def : Pat<(subc i8:$src, i8:$src2),
(SUBRdRr i8:$src, i8:$src2)>;
def : Pat<(subc i16:$src, i16:$src2),
(SUBWRdRr i16:$src, i16:$src2)>;
def : Pat<(subc i8:$src, imm:$src2),
(SUBIRdK i8:$src, imm:$src2)>;
def : Pat<(subc i16:$src, imm:$src2),
(SUBIWRdK i16:$src, imm:$src2)>;
// These patterns convert add (x, -imm) to sub (x, imm) since we dont have
// any add with imm instructions. Also take care of the adiw/sbiw instructions.
def : Pat<(add i16:$src1, imm0_63_neg:$src2),
(SBIWRdK i16:$src1, (imm0_63_neg:$src2))>;
def : Pat<(add i16:$src1, imm:$src2),
(SUBIWRdK i16:$src1, (imm16_neg_XFORM imm:$src2))>;
def : Pat<(addc i16:$src1, imm:$src2),
(SUBIWRdK i16:$src1, (imm16_neg_XFORM imm:$src2))>;
def : Pat<(adde i16:$src1, imm:$src2),
(SBCIWRdK i16:$src1, (imm16_neg_XFORM imm:$src2))>;
def : Pat<(add i8:$src1, imm:$src2),
(SUBIRdK i8:$src1, (imm8_neg_XFORM imm:$src2))>;
def : Pat<(addc i8:$src1, imm:$src2),
(SUBIRdK i8:$src1, (imm8_neg_XFORM imm:$src2))>;
def : Pat<(adde i8:$src1, imm:$src2),
(SBCIRdK i8:$src1, (imm8_neg_XFORM imm:$src2))>;
// Calls.
def : Pat<(AVRcall (i16 tglobaladdr:$dst)),
(CALLk tglobaladdr:$dst)>;
def : Pat<(AVRcall (i16 texternalsym:$dst)),
(CALLk texternalsym:$dst)>;
// `anyext`
def : Pat<(i16 (anyext i8:$src)),
(INSERT_SUBREG (i16 (IMPLICIT_DEF)), i8:$src, sub_lo)>;
// `trunc`
def : Pat<(i8 (trunc i16:$src)),
(EXTRACT_SUBREG i16:$src, sub_lo)>;
// sext_inreg
def : Pat<(sext_inreg i16:$src, i8),
(SEXT (i8 (EXTRACT_SUBREG i16:$src, sub_lo)))>;
// GlobalAddress
def : Pat<(i16 (AVRWrapper tglobaladdr:$dst)),
(LDIWRdK tglobaladdr:$dst)>;
def : Pat<(add i16:$src, (AVRWrapper tglobaladdr:$src2)),
(SUBIWRdK i16:$src, tglobaladdr:$src2)>;
def : Pat<(i8 (load (AVRWrapper tglobaladdr:$dst))),
(LDSRdK tglobaladdr:$dst)>;
def : Pat<(i16 (load (AVRWrapper tglobaladdr:$dst))),
(LDSWRdK tglobaladdr:$dst)>;
def : Pat<(store i8:$src, (i16 (AVRWrapper tglobaladdr:$dst))),
(STSKRr tglobaladdr:$dst, i8:$src)>;
def : Pat<(store i16:$src, (i16 (AVRWrapper tglobaladdr:$dst))),
(STSWKRr tglobaladdr:$dst, i16:$src)>;
// BlockAddress
def : Pat<(i16 (AVRWrapper tblockaddress:$dst)),
(LDIWRdK tblockaddress:$dst)>;
// hi-reg truncation : trunc(int16 >> 8)
//:FIXME: i think it's better to emit an extract subreg node in the DAG than
// all this mess once we get optimal shift code
// lol... I think so, too. [@agnat]
def : Pat<(i8 (trunc (AVRlsr (AVRlsr (AVRlsr (AVRlsr (AVRlsr (AVRlsr (AVRlsr
(AVRlsr DREGS:$src)))))))))),
(EXTRACT_SUBREG DREGS:$src, sub_hi)>;
// :FIXME: DAGCombiner produces an shl node after legalization from these seq:
// BR_JT -> (mul x, 2) -> (shl x, 1)
def : Pat<(shl i16:$src1, (i8 1)),
(LSLWRd i16:$src1)>;