| //===-- Execution.cpp - Implement code to simulate the program ------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the actual instruction interpreter. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Interpreter.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/IntrinsicLowering.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cmath> |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "interpreter" |
| |
| STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed"); |
| |
| static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden, |
| cl::desc("make the interpreter print every volatile load and store")); |
| |
| //===----------------------------------------------------------------------===// |
| // Various Helper Functions |
| //===----------------------------------------------------------------------===// |
| |
| static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { |
| SF.Values[V] = Val; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Binary Instruction Implementations |
| //===----------------------------------------------------------------------===// |
| |
| #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \ |
| case Type::TY##TyID: \ |
| Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \ |
| break |
| |
| static void executeFAddInst(GenericValue &Dest, GenericValue Src1, |
| GenericValue Src2, Type *Ty) { |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_BINARY_OPERATOR(+, Float); |
| IMPLEMENT_BINARY_OPERATOR(+, Double); |
| default: |
| dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n"; |
| llvm_unreachable(nullptr); |
| } |
| } |
| |
| static void executeFSubInst(GenericValue &Dest, GenericValue Src1, |
| GenericValue Src2, Type *Ty) { |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_BINARY_OPERATOR(-, Float); |
| IMPLEMENT_BINARY_OPERATOR(-, Double); |
| default: |
| dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n"; |
| llvm_unreachable(nullptr); |
| } |
| } |
| |
| static void executeFMulInst(GenericValue &Dest, GenericValue Src1, |
| GenericValue Src2, Type *Ty) { |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_BINARY_OPERATOR(*, Float); |
| IMPLEMENT_BINARY_OPERATOR(*, Double); |
| default: |
| dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n"; |
| llvm_unreachable(nullptr); |
| } |
| } |
| |
| static void executeFDivInst(GenericValue &Dest, GenericValue Src1, |
| GenericValue Src2, Type *Ty) { |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_BINARY_OPERATOR(/, Float); |
| IMPLEMENT_BINARY_OPERATOR(/, Double); |
| default: |
| dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n"; |
| llvm_unreachable(nullptr); |
| } |
| } |
| |
| static void executeFRemInst(GenericValue &Dest, GenericValue Src1, |
| GenericValue Src2, Type *Ty) { |
| switch (Ty->getTypeID()) { |
| case Type::FloatTyID: |
| Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal); |
| break; |
| case Type::DoubleTyID: |
| Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal); |
| break; |
| default: |
| dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n"; |
| llvm_unreachable(nullptr); |
| } |
| } |
| |
| #define IMPLEMENT_INTEGER_ICMP(OP, TY) \ |
| case Type::IntegerTyID: \ |
| Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \ |
| break; |
| |
| #define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \ |
| case Type::VectorTyID: { \ |
| assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \ |
| Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \ |
| for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \ |
| Dest.AggregateVal[_i].IntVal = APInt(1, \ |
| Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));\ |
| } break; |
| |
| // Handle pointers specially because they must be compared with only as much |
| // width as the host has. We _do not_ want to be comparing 64 bit values when |
| // running on a 32-bit target, otherwise the upper 32 bits might mess up |
| // comparisons if they contain garbage. |
| #define IMPLEMENT_POINTER_ICMP(OP) \ |
| case Type::PointerTyID: \ |
| Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \ |
| (void*)(intptr_t)Src2.PointerVal); \ |
| break; |
| |
| static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2, |
| Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_INTEGER_ICMP(eq,Ty); |
| IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty); |
| IMPLEMENT_POINTER_ICMP(==); |
| default: |
| dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n"; |
| llvm_unreachable(nullptr); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2, |
| Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_INTEGER_ICMP(ne,Ty); |
| IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty); |
| IMPLEMENT_POINTER_ICMP(!=); |
| default: |
| dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n"; |
| llvm_unreachable(nullptr); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2, |
| Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_INTEGER_ICMP(ult,Ty); |
| IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty); |
| IMPLEMENT_POINTER_ICMP(<); |
| default: |
| dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n"; |
| llvm_unreachable(nullptr); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2, |
| Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_INTEGER_ICMP(slt,Ty); |
| IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty); |
| IMPLEMENT_POINTER_ICMP(<); |
| default: |
| dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n"; |
| llvm_unreachable(nullptr); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2, |
| Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_INTEGER_ICMP(ugt,Ty); |
| IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty); |
| IMPLEMENT_POINTER_ICMP(>); |
| default: |
| dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n"; |
| llvm_unreachable(nullptr); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2, |
| Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_INTEGER_ICMP(sgt,Ty); |
| IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty); |
| IMPLEMENT_POINTER_ICMP(>); |
| default: |
| dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n"; |
| llvm_unreachable(nullptr); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2, |
| Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_INTEGER_ICMP(ule,Ty); |
| IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty); |
| IMPLEMENT_POINTER_ICMP(<=); |
| default: |
| dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n"; |
| llvm_unreachable(nullptr); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2, |
| Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_INTEGER_ICMP(sle,Ty); |
| IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty); |
| IMPLEMENT_POINTER_ICMP(<=); |
| default: |
| dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n"; |
| llvm_unreachable(nullptr); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2, |
| Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_INTEGER_ICMP(uge,Ty); |
| IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty); |
| IMPLEMENT_POINTER_ICMP(>=); |
| default: |
| dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n"; |
| llvm_unreachable(nullptr); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2, |
| Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_INTEGER_ICMP(sge,Ty); |
| IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty); |
| IMPLEMENT_POINTER_ICMP(>=); |
| default: |
| dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n"; |
| llvm_unreachable(nullptr); |
| } |
| return Dest; |
| } |
| |
| void Interpreter::visitICmpInst(ICmpInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| Type *Ty = I.getOperand(0)->getType(); |
| GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| GenericValue R; // Result |
| |
| switch (I.getPredicate()) { |
| case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break; |
| case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break; |
| case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break; |
| case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break; |
| case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break; |
| case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break; |
| case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break; |
| case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break; |
| case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break; |
| case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break; |
| default: |
| dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I; |
| llvm_unreachable(nullptr); |
| } |
| |
| SetValue(&I, R, SF); |
| } |
| |
| #define IMPLEMENT_FCMP(OP, TY) \ |
| case Type::TY##TyID: \ |
| Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \ |
| break |
| |
| #define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \ |
| assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \ |
| Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \ |
| for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \ |
| Dest.AggregateVal[_i].IntVal = APInt(1, \ |
| Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\ |
| break; |
| |
| #define IMPLEMENT_VECTOR_FCMP(OP) \ |
| case Type::VectorTyID: \ |
| if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { \ |
| IMPLEMENT_VECTOR_FCMP_T(OP, Float); \ |
| } else { \ |
| IMPLEMENT_VECTOR_FCMP_T(OP, Double); \ |
| } |
| |
| static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2, |
| Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_FCMP(==, Float); |
| IMPLEMENT_FCMP(==, Double); |
| IMPLEMENT_VECTOR_FCMP(==); |
| default: |
| dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n"; |
| llvm_unreachable(nullptr); |
| } |
| return Dest; |
| } |
| |
| #define IMPLEMENT_SCALAR_NANS(TY, X,Y) \ |
| if (TY->isFloatTy()) { \ |
| if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \ |
| Dest.IntVal = APInt(1,false); \ |
| return Dest; \ |
| } \ |
| } else { \ |
| if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \ |
| Dest.IntVal = APInt(1,false); \ |
| return Dest; \ |
| } \ |
| } |
| |
| #define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \ |
| assert(X.AggregateVal.size() == Y.AggregateVal.size()); \ |
| Dest.AggregateVal.resize( X.AggregateVal.size() ); \ |
| for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \ |
| if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \ |
| Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \ |
| Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \ |
| else { \ |
| Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \ |
| } \ |
| } |
| |
| #define MASK_VECTOR_NANS(TY, X,Y, FLAG) \ |
| if (TY->isVectorTy()) { \ |
| if (cast<VectorType>(TY)->getElementType()->isFloatTy()) { \ |
| MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \ |
| } else { \ |
| MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \ |
| } \ |
| } \ |
| |
| |
| |
| static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2, |
| Type *Ty) |
| { |
| GenericValue Dest; |
| // if input is scalar value and Src1 or Src2 is NaN return false |
| IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2) |
| // if vector input detect NaNs and fill mask |
| MASK_VECTOR_NANS(Ty, Src1, Src2, false) |
| GenericValue DestMask = Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_FCMP(!=, Float); |
| IMPLEMENT_FCMP(!=, Double); |
| IMPLEMENT_VECTOR_FCMP(!=); |
| default: |
| dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n"; |
| llvm_unreachable(nullptr); |
| } |
| // in vector case mask out NaN elements |
| if (Ty->isVectorTy()) |
| for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++) |
| if (DestMask.AggregateVal[_i].IntVal == false) |
| Dest.AggregateVal[_i].IntVal = APInt(1,false); |
| |
| return Dest; |
| } |
| |
| static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2, |
| Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_FCMP(<=, Float); |
| IMPLEMENT_FCMP(<=, Double); |
| IMPLEMENT_VECTOR_FCMP(<=); |
| default: |
| dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n"; |
| llvm_unreachable(nullptr); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2, |
| Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_FCMP(>=, Float); |
| IMPLEMENT_FCMP(>=, Double); |
| IMPLEMENT_VECTOR_FCMP(>=); |
| default: |
| dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n"; |
| llvm_unreachable(nullptr); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2, |
| Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_FCMP(<, Float); |
| IMPLEMENT_FCMP(<, Double); |
| IMPLEMENT_VECTOR_FCMP(<); |
| default: |
| dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n"; |
| llvm_unreachable(nullptr); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2, |
| Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_FCMP(>, Float); |
| IMPLEMENT_FCMP(>, Double); |
| IMPLEMENT_VECTOR_FCMP(>); |
| default: |
| dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n"; |
| llvm_unreachable(nullptr); |
| } |
| return Dest; |
| } |
| |
| #define IMPLEMENT_UNORDERED(TY, X,Y) \ |
| if (TY->isFloatTy()) { \ |
| if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \ |
| Dest.IntVal = APInt(1,true); \ |
| return Dest; \ |
| } \ |
| } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \ |
| Dest.IntVal = APInt(1,true); \ |
| return Dest; \ |
| } |
| |
| #define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC) \ |
| if (TY->isVectorTy()) { \ |
| GenericValue DestMask = Dest; \ |
| Dest = FUNC(Src1, Src2, Ty); \ |
| for (size_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \ |
| if (DestMask.AggregateVal[_i].IntVal == true) \ |
| Dest.AggregateVal[_i].IntVal = APInt(1, true); \ |
| return Dest; \ |
| } |
| |
| static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2, |
| Type *Ty) { |
| GenericValue Dest; |
| IMPLEMENT_UNORDERED(Ty, Src1, Src2) |
| MASK_VECTOR_NANS(Ty, Src1, Src2, true) |
| IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ) |
| return executeFCMP_OEQ(Src1, Src2, Ty); |
| |
| } |
| |
| static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2, |
| Type *Ty) { |
| GenericValue Dest; |
| IMPLEMENT_UNORDERED(Ty, Src1, Src2) |
| MASK_VECTOR_NANS(Ty, Src1, Src2, true) |
| IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE) |
| return executeFCMP_ONE(Src1, Src2, Ty); |
| } |
| |
| static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2, |
| Type *Ty) { |
| GenericValue Dest; |
| IMPLEMENT_UNORDERED(Ty, Src1, Src2) |
| MASK_VECTOR_NANS(Ty, Src1, Src2, true) |
| IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE) |
| return executeFCMP_OLE(Src1, Src2, Ty); |
| } |
| |
| static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2, |
| Type *Ty) { |
| GenericValue Dest; |
| IMPLEMENT_UNORDERED(Ty, Src1, Src2) |
| MASK_VECTOR_NANS(Ty, Src1, Src2, true) |
| IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE) |
| return executeFCMP_OGE(Src1, Src2, Ty); |
| } |
| |
| static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2, |
| Type *Ty) { |
| GenericValue Dest; |
| IMPLEMENT_UNORDERED(Ty, Src1, Src2) |
| MASK_VECTOR_NANS(Ty, Src1, Src2, true) |
| IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT) |
| return executeFCMP_OLT(Src1, Src2, Ty); |
| } |
| |
| static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2, |
| Type *Ty) { |
| GenericValue Dest; |
| IMPLEMENT_UNORDERED(Ty, Src1, Src2) |
| MASK_VECTOR_NANS(Ty, Src1, Src2, true) |
| IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT) |
| return executeFCMP_OGT(Src1, Src2, Ty); |
| } |
| |
| static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2, |
| Type *Ty) { |
| GenericValue Dest; |
| if(Ty->isVectorTy()) { |
| assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); |
| Dest.AggregateVal.resize( Src1.AggregateVal.size() ); |
| if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { |
| for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) |
| Dest.AggregateVal[_i].IntVal = APInt(1, |
| ( (Src1.AggregateVal[_i].FloatVal == |
| Src1.AggregateVal[_i].FloatVal) && |
| (Src2.AggregateVal[_i].FloatVal == |
| Src2.AggregateVal[_i].FloatVal))); |
| } else { |
| for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) |
| Dest.AggregateVal[_i].IntVal = APInt(1, |
| ( (Src1.AggregateVal[_i].DoubleVal == |
| Src1.AggregateVal[_i].DoubleVal) && |
| (Src2.AggregateVal[_i].DoubleVal == |
| Src2.AggregateVal[_i].DoubleVal))); |
| } |
| } else if (Ty->isFloatTy()) |
| Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal && |
| Src2.FloatVal == Src2.FloatVal)); |
| else { |
| Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal && |
| Src2.DoubleVal == Src2.DoubleVal)); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2, |
| Type *Ty) { |
| GenericValue Dest; |
| if(Ty->isVectorTy()) { |
| assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); |
| Dest.AggregateVal.resize( Src1.AggregateVal.size() ); |
| if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { |
| for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) |
| Dest.AggregateVal[_i].IntVal = APInt(1, |
| ( (Src1.AggregateVal[_i].FloatVal != |
| Src1.AggregateVal[_i].FloatVal) || |
| (Src2.AggregateVal[_i].FloatVal != |
| Src2.AggregateVal[_i].FloatVal))); |
| } else { |
| for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) |
| Dest.AggregateVal[_i].IntVal = APInt(1, |
| ( (Src1.AggregateVal[_i].DoubleVal != |
| Src1.AggregateVal[_i].DoubleVal) || |
| (Src2.AggregateVal[_i].DoubleVal != |
| Src2.AggregateVal[_i].DoubleVal))); |
| } |
| } else if (Ty->isFloatTy()) |
| Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal || |
| Src2.FloatVal != Src2.FloatVal)); |
| else { |
| Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal || |
| Src2.DoubleVal != Src2.DoubleVal)); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2, |
| Type *Ty, const bool val) { |
| GenericValue Dest; |
| if(Ty->isVectorTy()) { |
| assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); |
| Dest.AggregateVal.resize( Src1.AggregateVal.size() ); |
| for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++) |
| Dest.AggregateVal[_i].IntVal = APInt(1,val); |
| } else { |
| Dest.IntVal = APInt(1, val); |
| } |
| |
| return Dest; |
| } |
| |
| void Interpreter::visitFCmpInst(FCmpInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| Type *Ty = I.getOperand(0)->getType(); |
| GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| GenericValue R; // Result |
| |
| switch (I.getPredicate()) { |
| default: |
| dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I; |
| llvm_unreachable(nullptr); |
| break; |
| case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false); |
| break; |
| case FCmpInst::FCMP_TRUE: R = executeFCMP_BOOL(Src1, Src2, Ty, true); |
| break; |
| case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break; |
| } |
| |
| SetValue(&I, R, SF); |
| } |
| |
| static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, |
| GenericValue Src2, Type *Ty) { |
| GenericValue Result; |
| switch (predicate) { |
| case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty); |
| case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty); |
| case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty); |
| case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty); |
| case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty); |
| case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty); |
| case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty); |
| case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty); |
| case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty); |
| case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty); |
| case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty); |
| case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty); |
| case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty); |
| case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty); |
| case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty); |
| case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty); |
| case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty); |
| case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty); |
| case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty); |
| case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty); |
| case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty); |
| case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty); |
| case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty); |
| case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty); |
| case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false); |
| case FCmpInst::FCMP_TRUE: return executeFCMP_BOOL(Src1, Src2, Ty, true); |
| default: |
| dbgs() << "Unhandled Cmp predicate\n"; |
| llvm_unreachable(nullptr); |
| } |
| } |
| |
| void Interpreter::visitBinaryOperator(BinaryOperator &I) { |
| ExecutionContext &SF = ECStack.back(); |
| Type *Ty = I.getOperand(0)->getType(); |
| GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| GenericValue R; // Result |
| |
| // First process vector operation |
| if (Ty->isVectorTy()) { |
| assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); |
| R.AggregateVal.resize(Src1.AggregateVal.size()); |
| |
| // Macros to execute binary operation 'OP' over integer vectors |
| #define INTEGER_VECTOR_OPERATION(OP) \ |
| for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \ |
| R.AggregateVal[i].IntVal = \ |
| Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal; |
| |
| // Additional macros to execute binary operations udiv/sdiv/urem/srem since |
| // they have different notation. |
| #define INTEGER_VECTOR_FUNCTION(OP) \ |
| for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \ |
| R.AggregateVal[i].IntVal = \ |
| Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal); |
| |
| // Macros to execute binary operation 'OP' over floating point type TY |
| // (float or double) vectors |
| #define FLOAT_VECTOR_FUNCTION(OP, TY) \ |
| for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \ |
| R.AggregateVal[i].TY = \ |
| Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY; |
| |
| // Macros to choose appropriate TY: float or double and run operation |
| // execution |
| #define FLOAT_VECTOR_OP(OP) { \ |
| if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) \ |
| FLOAT_VECTOR_FUNCTION(OP, FloatVal) \ |
| else { \ |
| if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) \ |
| FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \ |
| else { \ |
| dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \ |
| llvm_unreachable(0); \ |
| } \ |
| } \ |
| } |
| |
| switch(I.getOpcode()){ |
| default: |
| dbgs() << "Don't know how to handle this binary operator!\n-->" << I; |
| llvm_unreachable(nullptr); |
| break; |
| case Instruction::Add: INTEGER_VECTOR_OPERATION(+) break; |
| case Instruction::Sub: INTEGER_VECTOR_OPERATION(-) break; |
| case Instruction::Mul: INTEGER_VECTOR_OPERATION(*) break; |
| case Instruction::UDiv: INTEGER_VECTOR_FUNCTION(udiv) break; |
| case Instruction::SDiv: INTEGER_VECTOR_FUNCTION(sdiv) break; |
| case Instruction::URem: INTEGER_VECTOR_FUNCTION(urem) break; |
| case Instruction::SRem: INTEGER_VECTOR_FUNCTION(srem) break; |
| case Instruction::And: INTEGER_VECTOR_OPERATION(&) break; |
| case Instruction::Or: INTEGER_VECTOR_OPERATION(|) break; |
| case Instruction::Xor: INTEGER_VECTOR_OPERATION(^) break; |
| case Instruction::FAdd: FLOAT_VECTOR_OP(+) break; |
| case Instruction::FSub: FLOAT_VECTOR_OP(-) break; |
| case Instruction::FMul: FLOAT_VECTOR_OP(*) break; |
| case Instruction::FDiv: FLOAT_VECTOR_OP(/) break; |
| case Instruction::FRem: |
| if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) |
| for (unsigned i = 0; i < R.AggregateVal.size(); ++i) |
| R.AggregateVal[i].FloatVal = |
| fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal); |
| else { |
| if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) |
| for (unsigned i = 0; i < R.AggregateVal.size(); ++i) |
| R.AggregateVal[i].DoubleVal = |
| fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal); |
| else { |
| dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n"; |
| llvm_unreachable(nullptr); |
| } |
| } |
| break; |
| } |
| } else { |
| switch (I.getOpcode()) { |
| default: |
| dbgs() << "Don't know how to handle this binary operator!\n-->" << I; |
| llvm_unreachable(nullptr); |
| break; |
| case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break; |
| case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break; |
| case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break; |
| case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break; |
| case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break; |
| case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break; |
| case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break; |
| case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break; |
| case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break; |
| case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break; |
| case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break; |
| case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break; |
| case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break; |
| case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break; |
| case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break; |
| } |
| } |
| SetValue(&I, R, SF); |
| } |
| |
| static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, |
| GenericValue Src3, Type *Ty) { |
| GenericValue Dest; |
| if(Ty->isVectorTy()) { |
| assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); |
| assert(Src2.AggregateVal.size() == Src3.AggregateVal.size()); |
| Dest.AggregateVal.resize( Src1.AggregateVal.size() ); |
| for (size_t i = 0; i < Src1.AggregateVal.size(); ++i) |
| Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ? |
| Src3.AggregateVal[i] : Src2.AggregateVal[i]; |
| } else { |
| Dest = (Src1.IntVal == 0) ? Src3 : Src2; |
| } |
| return Dest; |
| } |
| |
| void Interpreter::visitSelectInst(SelectInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| Type * Ty = I.getOperand(0)->getType(); |
| GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| GenericValue Src3 = getOperandValue(I.getOperand(2), SF); |
| GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty); |
| SetValue(&I, R, SF); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Terminator Instruction Implementations |
| //===----------------------------------------------------------------------===// |
| |
| void Interpreter::exitCalled(GenericValue GV) { |
| // runAtExitHandlers() assumes there are no stack frames, but |
| // if exit() was called, then it had a stack frame. Blow away |
| // the stack before interpreting atexit handlers. |
| ECStack.clear(); |
| runAtExitHandlers(); |
| exit(GV.IntVal.zextOrTrunc(32).getZExtValue()); |
| } |
| |
| /// Pop the last stack frame off of ECStack and then copy the result |
| /// back into the result variable if we are not returning void. The |
| /// result variable may be the ExitValue, or the Value of the calling |
| /// CallInst if there was a previous stack frame. This method may |
| /// invalidate any ECStack iterators you have. This method also takes |
| /// care of switching to the normal destination BB, if we are returning |
| /// from an invoke. |
| /// |
| void Interpreter::popStackAndReturnValueToCaller(Type *RetTy, |
| GenericValue Result) { |
| // Pop the current stack frame. |
| ECStack.pop_back(); |
| |
| if (ECStack.empty()) { // Finished main. Put result into exit code... |
| if (RetTy && !RetTy->isVoidTy()) { // Nonvoid return type? |
| ExitValue = Result; // Capture the exit value of the program |
| } else { |
| memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped)); |
| } |
| } else { |
| // If we have a previous stack frame, and we have a previous call, |
| // fill in the return value... |
| ExecutionContext &CallingSF = ECStack.back(); |
| if (Instruction *I = CallingSF.Caller.getInstruction()) { |
| // Save result... |
| if (!CallingSF.Caller.getType()->isVoidTy()) |
| SetValue(I, Result, CallingSF); |
| if (InvokeInst *II = dyn_cast<InvokeInst> (I)) |
| SwitchToNewBasicBlock (II->getNormalDest (), CallingSF); |
| CallingSF.Caller = CallSite(); // We returned from the call... |
| } |
| } |
| } |
| |
| void Interpreter::visitReturnInst(ReturnInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| Type *RetTy = Type::getVoidTy(I.getContext()); |
| GenericValue Result; |
| |
| // Save away the return value... (if we are not 'ret void') |
| if (I.getNumOperands()) { |
| RetTy = I.getReturnValue()->getType(); |
| Result = getOperandValue(I.getReturnValue(), SF); |
| } |
| |
| popStackAndReturnValueToCaller(RetTy, Result); |
| } |
| |
| void Interpreter::visitUnreachableInst(UnreachableInst &I) { |
| report_fatal_error("Program executed an 'unreachable' instruction!"); |
| } |
| |
| void Interpreter::visitBranchInst(BranchInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| BasicBlock *Dest; |
| |
| Dest = I.getSuccessor(0); // Uncond branches have a fixed dest... |
| if (!I.isUnconditional()) { |
| Value *Cond = I.getCondition(); |
| if (getOperandValue(Cond, SF).IntVal == 0) // If false cond... |
| Dest = I.getSuccessor(1); |
| } |
| SwitchToNewBasicBlock(Dest, SF); |
| } |
| |
| void Interpreter::visitSwitchInst(SwitchInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| Value* Cond = I.getCondition(); |
| Type *ElTy = Cond->getType(); |
| GenericValue CondVal = getOperandValue(Cond, SF); |
| |
| // Check to see if any of the cases match... |
| BasicBlock *Dest = nullptr; |
| for (auto Case : I.cases()) { |
| GenericValue CaseVal = getOperandValue(Case.getCaseValue(), SF); |
| if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) { |
| Dest = cast<BasicBlock>(Case.getCaseSuccessor()); |
| break; |
| } |
| } |
| if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default |
| SwitchToNewBasicBlock(Dest, SF); |
| } |
| |
| void Interpreter::visitIndirectBrInst(IndirectBrInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| void *Dest = GVTOP(getOperandValue(I.getAddress(), SF)); |
| SwitchToNewBasicBlock((BasicBlock*)Dest, SF); |
| } |
| |
| |
| // SwitchToNewBasicBlock - This method is used to jump to a new basic block. |
| // This function handles the actual updating of block and instruction iterators |
| // as well as execution of all of the PHI nodes in the destination block. |
| // |
| // This method does this because all of the PHI nodes must be executed |
| // atomically, reading their inputs before any of the results are updated. Not |
| // doing this can cause problems if the PHI nodes depend on other PHI nodes for |
| // their inputs. If the input PHI node is updated before it is read, incorrect |
| // results can happen. Thus we use a two phase approach. |
| // |
| void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){ |
| BasicBlock *PrevBB = SF.CurBB; // Remember where we came from... |
| SF.CurBB = Dest; // Update CurBB to branch destination |
| SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr... |
| |
| if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do |
| |
| // Loop over all of the PHI nodes in the current block, reading their inputs. |
| std::vector<GenericValue> ResultValues; |
| |
| for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) { |
| // Search for the value corresponding to this previous bb... |
| int i = PN->getBasicBlockIndex(PrevBB); |
| assert(i != -1 && "PHINode doesn't contain entry for predecessor??"); |
| Value *IncomingValue = PN->getIncomingValue(i); |
| |
| // Save the incoming value for this PHI node... |
| ResultValues.push_back(getOperandValue(IncomingValue, SF)); |
| } |
| |
| // Now loop over all of the PHI nodes setting their values... |
| SF.CurInst = SF.CurBB->begin(); |
| for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) { |
| PHINode *PN = cast<PHINode>(SF.CurInst); |
| SetValue(PN, ResultValues[i], SF); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Memory Instruction Implementations |
| //===----------------------------------------------------------------------===// |
| |
| void Interpreter::visitAllocaInst(AllocaInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| |
| Type *Ty = I.getType()->getElementType(); // Type to be allocated |
| |
| // Get the number of elements being allocated by the array... |
| unsigned NumElements = |
| getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue(); |
| |
| unsigned TypeSize = (size_t)getDataLayout().getTypeAllocSize(Ty); |
| |
| // Avoid malloc-ing zero bytes, use max()... |
| unsigned MemToAlloc = std::max(1U, NumElements * TypeSize); |
| |
| // Allocate enough memory to hold the type... |
| void *Memory = safe_malloc(MemToAlloc); |
| |
| LLVM_DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize |
| << " bytes) x " << NumElements << " (Total: " << MemToAlloc |
| << ") at " << uintptr_t(Memory) << '\n'); |
| |
| GenericValue Result = PTOGV(Memory); |
| assert(Result.PointerVal && "Null pointer returned by malloc!"); |
| SetValue(&I, Result, SF); |
| |
| if (I.getOpcode() == Instruction::Alloca) |
| ECStack.back().Allocas.add(Memory); |
| } |
| |
| // getElementOffset - The workhorse for getelementptr. |
| // |
| GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I, |
| gep_type_iterator E, |
| ExecutionContext &SF) { |
| assert(Ptr->getType()->isPointerTy() && |
| "Cannot getElementOffset of a nonpointer type!"); |
| |
| uint64_t Total = 0; |
| |
| for (; I != E; ++I) { |
| if (StructType *STy = I.getStructTypeOrNull()) { |
| const StructLayout *SLO = getDataLayout().getStructLayout(STy); |
| |
| const ConstantInt *CPU = cast<ConstantInt>(I.getOperand()); |
| unsigned Index = unsigned(CPU->getZExtValue()); |
| |
| Total += SLO->getElementOffset(Index); |
| } else { |
| // Get the index number for the array... which must be long type... |
| GenericValue IdxGV = getOperandValue(I.getOperand(), SF); |
| |
| int64_t Idx; |
| unsigned BitWidth = |
| cast<IntegerType>(I.getOperand()->getType())->getBitWidth(); |
| if (BitWidth == 32) |
| Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue(); |
| else { |
| assert(BitWidth == 64 && "Invalid index type for getelementptr"); |
| Idx = (int64_t)IdxGV.IntVal.getZExtValue(); |
| } |
| Total += getDataLayout().getTypeAllocSize(I.getIndexedType()) * Idx; |
| } |
| } |
| |
| GenericValue Result; |
| Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total; |
| LLVM_DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n"); |
| return Result; |
| } |
| |
| void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executeGEPOperation(I.getPointerOperand(), |
| gep_type_begin(I), gep_type_end(I), SF), SF); |
| } |
| |
| void Interpreter::visitLoadInst(LoadInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); |
| GenericValue *Ptr = (GenericValue*)GVTOP(SRC); |
| GenericValue Result; |
| LoadValueFromMemory(Result, Ptr, I.getType()); |
| SetValue(&I, Result, SF); |
| if (I.isVolatile() && PrintVolatile) |
| dbgs() << "Volatile load " << I; |
| } |
| |
| void Interpreter::visitStoreInst(StoreInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| GenericValue Val = getOperandValue(I.getOperand(0), SF); |
| GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); |
| StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC), |
| I.getOperand(0)->getType()); |
| if (I.isVolatile() && PrintVolatile) |
| dbgs() << "Volatile store: " << I; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Miscellaneous Instruction Implementations |
| //===----------------------------------------------------------------------===// |
| |
| void Interpreter::visitCallSite(CallSite CS) { |
| ExecutionContext &SF = ECStack.back(); |
| |
| // Check to see if this is an intrinsic function call... |
| Function *F = CS.getCalledFunction(); |
| if (F && F->isDeclaration()) |
| switch (F->getIntrinsicID()) { |
| case Intrinsic::not_intrinsic: |
| break; |
| case Intrinsic::vastart: { // va_start |
| GenericValue ArgIndex; |
| ArgIndex.UIntPairVal.first = ECStack.size() - 1; |
| ArgIndex.UIntPairVal.second = 0; |
| SetValue(CS.getInstruction(), ArgIndex, SF); |
| return; |
| } |
| case Intrinsic::vaend: // va_end is a noop for the interpreter |
| return; |
| case Intrinsic::vacopy: // va_copy: dest = src |
| SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF); |
| return; |
| default: |
| // If it is an unknown intrinsic function, use the intrinsic lowering |
| // class to transform it into hopefully tasty LLVM code. |
| // |
| BasicBlock::iterator me(CS.getInstruction()); |
| BasicBlock *Parent = CS.getInstruction()->getParent(); |
| bool atBegin(Parent->begin() == me); |
| if (!atBegin) |
| --me; |
| IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction())); |
| |
| // Restore the CurInst pointer to the first instruction newly inserted, if |
| // any. |
| if (atBegin) { |
| SF.CurInst = Parent->begin(); |
| } else { |
| SF.CurInst = me; |
| ++SF.CurInst; |
| } |
| return; |
| } |
| |
| |
| SF.Caller = CS; |
| std::vector<GenericValue> ArgVals; |
| const unsigned NumArgs = SF.Caller.arg_size(); |
| ArgVals.reserve(NumArgs); |
| uint16_t pNum = 1; |
| for (CallSite::arg_iterator i = SF.Caller.arg_begin(), |
| e = SF.Caller.arg_end(); i != e; ++i, ++pNum) { |
| Value *V = *i; |
| ArgVals.push_back(getOperandValue(V, SF)); |
| } |
| |
| // To handle indirect calls, we must get the pointer value from the argument |
| // and treat it as a function pointer. |
| GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF); |
| callFunction((Function*)GVTOP(SRC), ArgVals); |
| } |
| |
| // auxiliary function for shift operations |
| static unsigned getShiftAmount(uint64_t orgShiftAmount, |
| llvm::APInt valueToShift) { |
| unsigned valueWidth = valueToShift.getBitWidth(); |
| if (orgShiftAmount < (uint64_t)valueWidth) |
| return orgShiftAmount; |
| // according to the llvm documentation, if orgShiftAmount > valueWidth, |
| // the result is undfeined. but we do shift by this rule: |
| return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount; |
| } |
| |
| |
| void Interpreter::visitShl(BinaryOperator &I) { |
| ExecutionContext &SF = ECStack.back(); |
| GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| GenericValue Dest; |
| Type *Ty = I.getType(); |
| |
| if (Ty->isVectorTy()) { |
| uint32_t src1Size = uint32_t(Src1.AggregateVal.size()); |
| assert(src1Size == Src2.AggregateVal.size()); |
| for (unsigned i = 0; i < src1Size; i++) { |
| GenericValue Result; |
| uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); |
| llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; |
| Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift)); |
| Dest.AggregateVal.push_back(Result); |
| } |
| } else { |
| // scalar |
| uint64_t shiftAmount = Src2.IntVal.getZExtValue(); |
| llvm::APInt valueToShift = Src1.IntVal; |
| Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift)); |
| } |
| |
| SetValue(&I, Dest, SF); |
| } |
| |
| void Interpreter::visitLShr(BinaryOperator &I) { |
| ExecutionContext &SF = ECStack.back(); |
| GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| GenericValue Dest; |
| Type *Ty = I.getType(); |
| |
| if (Ty->isVectorTy()) { |
| uint32_t src1Size = uint32_t(Src1.AggregateVal.size()); |
| assert(src1Size == Src2.AggregateVal.size()); |
| for (unsigned i = 0; i < src1Size; i++) { |
| GenericValue Result; |
| uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); |
| llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; |
| Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift)); |
| Dest.AggregateVal.push_back(Result); |
| } |
| } else { |
| // scalar |
| uint64_t shiftAmount = Src2.IntVal.getZExtValue(); |
| llvm::APInt valueToShift = Src1.IntVal; |
| Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift)); |
| } |
| |
| SetValue(&I, Dest, SF); |
| } |
| |
| void Interpreter::visitAShr(BinaryOperator &I) { |
| ExecutionContext &SF = ECStack.back(); |
| GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| GenericValue Dest; |
| Type *Ty = I.getType(); |
| |
| if (Ty->isVectorTy()) { |
| size_t src1Size = Src1.AggregateVal.size(); |
| assert(src1Size == Src2.AggregateVal.size()); |
| for (unsigned i = 0; i < src1Size; i++) { |
| GenericValue Result; |
| uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); |
| llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; |
| Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift)); |
| Dest.AggregateVal.push_back(Result); |
| } |
| } else { |
| // scalar |
| uint64_t shiftAmount = Src2.IntVal.getZExtValue(); |
| llvm::APInt valueToShift = Src1.IntVal; |
| Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift)); |
| } |
| |
| SetValue(&I, Dest, SF); |
| } |
| |
| GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy, |
| ExecutionContext &SF) { |
| GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| Type *SrcTy = SrcVal->getType(); |
| if (SrcTy->isVectorTy()) { |
| Type *DstVecTy = DstTy->getScalarType(); |
| unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); |
| unsigned NumElts = Src.AggregateVal.size(); |
| // the sizes of src and dst vectors must be equal |
| Dest.AggregateVal.resize(NumElts); |
| for (unsigned i = 0; i < NumElts; i++) |
| Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth); |
| } else { |
| IntegerType *DITy = cast<IntegerType>(DstTy); |
| unsigned DBitWidth = DITy->getBitWidth(); |
| Dest.IntVal = Src.IntVal.trunc(DBitWidth); |
| } |
| return Dest; |
| } |
| |
| GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy, |
| ExecutionContext &SF) { |
| Type *SrcTy = SrcVal->getType(); |
| GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| if (SrcTy->isVectorTy()) { |
| Type *DstVecTy = DstTy->getScalarType(); |
| unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); |
| unsigned size = Src.AggregateVal.size(); |
| // the sizes of src and dst vectors must be equal. |
| Dest.AggregateVal.resize(size); |
| for (unsigned i = 0; i < size; i++) |
| Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth); |
| } else { |
| auto *DITy = cast<IntegerType>(DstTy); |
| unsigned DBitWidth = DITy->getBitWidth(); |
| Dest.IntVal = Src.IntVal.sext(DBitWidth); |
| } |
| return Dest; |
| } |
| |
| GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy, |
| ExecutionContext &SF) { |
| Type *SrcTy = SrcVal->getType(); |
| GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| if (SrcTy->isVectorTy()) { |
| Type *DstVecTy = DstTy->getScalarType(); |
| unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); |
| |
| unsigned size = Src.AggregateVal.size(); |
| // the sizes of src and dst vectors must be equal. |
| Dest.AggregateVal.resize(size); |
| for (unsigned i = 0; i < size; i++) |
| Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth); |
| } else { |
| auto *DITy = cast<IntegerType>(DstTy); |
| unsigned DBitWidth = DITy->getBitWidth(); |
| Dest.IntVal = Src.IntVal.zext(DBitWidth); |
| } |
| return Dest; |
| } |
| |
| GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy, |
| ExecutionContext &SF) { |
| GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| |
| if (SrcVal->getType()->getTypeID() == Type::VectorTyID) { |
| assert(SrcVal->getType()->getScalarType()->isDoubleTy() && |
| DstTy->getScalarType()->isFloatTy() && |
| "Invalid FPTrunc instruction"); |
| |
| unsigned size = Src.AggregateVal.size(); |
| // the sizes of src and dst vectors must be equal. |
| Dest.AggregateVal.resize(size); |
| for (unsigned i = 0; i < size; i++) |
| Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal; |
| } else { |
| assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() && |
| "Invalid FPTrunc instruction"); |
| Dest.FloatVal = (float)Src.DoubleVal; |
| } |
| |
| return Dest; |
| } |
| |
| GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy, |
| ExecutionContext &SF) { |
| GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| |
| if (SrcVal->getType()->getTypeID() == Type::VectorTyID) { |
| assert(SrcVal->getType()->getScalarType()->isFloatTy() && |
| DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction"); |
| |
| unsigned size = Src.AggregateVal.size(); |
| // the sizes of src and dst vectors must be equal. |
| Dest.AggregateVal.resize(size); |
| for (unsigned i = 0; i < size; i++) |
| Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal; |
| } else { |
| assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() && |
| "Invalid FPExt instruction"); |
| Dest.DoubleVal = (double)Src.FloatVal; |
| } |
| |
| return Dest; |
| } |
| |
| GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy, |
| ExecutionContext &SF) { |
| Type *SrcTy = SrcVal->getType(); |
| GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| |
| if (SrcTy->getTypeID() == Type::VectorTyID) { |
| Type *DstVecTy = DstTy->getScalarType(); |
| Type *SrcVecTy = SrcTy->getScalarType(); |
| uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); |
| unsigned size = Src.AggregateVal.size(); |
| // the sizes of src and dst vectors must be equal. |
| Dest.AggregateVal.resize(size); |
| |
| if (SrcVecTy->getTypeID() == Type::FloatTyID) { |
| assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction"); |
| for (unsigned i = 0; i < size; i++) |
| Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt( |
| Src.AggregateVal[i].FloatVal, DBitWidth); |
| } else { |
| for (unsigned i = 0; i < size; i++) |
| Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt( |
| Src.AggregateVal[i].DoubleVal, DBitWidth); |
| } |
| } else { |
| // scalar |
| uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); |
| assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction"); |
| |
| if (SrcTy->getTypeID() == Type::FloatTyID) |
| Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); |
| else { |
| Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); |
| } |
| } |
| |
| return Dest; |
| } |
| |
| GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy, |
| ExecutionContext &SF) { |
| Type *SrcTy = SrcVal->getType(); |
| GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| |
| if (SrcTy->getTypeID() == Type::VectorTyID) { |
| Type *DstVecTy = DstTy->getScalarType(); |
| Type *SrcVecTy = SrcTy->getScalarType(); |
| uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); |
| unsigned size = Src.AggregateVal.size(); |
| // the sizes of src and dst vectors must be equal |
| Dest.AggregateVal.resize(size); |
| |
| if (SrcVecTy->getTypeID() == Type::FloatTyID) { |
| assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction"); |
| for (unsigned i = 0; i < size; i++) |
| Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt( |
| Src.AggregateVal[i].FloatVal, DBitWidth); |
| } else { |
| for (unsigned i = 0; i < size; i++) |
| Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt( |
| Src.AggregateVal[i].DoubleVal, DBitWidth); |
| } |
| } else { |
| // scalar |
| unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); |
| assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction"); |
| |
| if (SrcTy->getTypeID() == Type::FloatTyID) |
| Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); |
| else { |
| Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); |
| } |
| } |
| return Dest; |
| } |
| |
| GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy, |
| ExecutionContext &SF) { |
| GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| |
| if (SrcVal->getType()->getTypeID() == Type::VectorTyID) { |
| Type *DstVecTy = DstTy->getScalarType(); |
| unsigned size = Src.AggregateVal.size(); |
| // the sizes of src and dst vectors must be equal |
| Dest.AggregateVal.resize(size); |
| |
| if (DstVecTy->getTypeID() == Type::FloatTyID) { |
| assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction"); |
| for (unsigned i = 0; i < size; i++) |
| Dest.AggregateVal[i].FloatVal = |
| APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal); |
| } else { |
| for (unsigned i = 0; i < size; i++) |
| Dest.AggregateVal[i].DoubleVal = |
| APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal); |
| } |
| } else { |
| // scalar |
| assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction"); |
| if (DstTy->getTypeID() == Type::FloatTyID) |
| Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal); |
| else { |
| Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal); |
| } |
| } |
| return Dest; |
| } |
| |
| GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy, |
| ExecutionContext &SF) { |
| GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| |
| if (SrcVal->getType()->getTypeID() == Type::VectorTyID) { |
| Type *DstVecTy = DstTy->getScalarType(); |
| unsigned size = Src.AggregateVal.size(); |
| // the sizes of src and dst vectors must be equal |
| Dest.AggregateVal.resize(size); |
| |
| if (DstVecTy->getTypeID() == Type::FloatTyID) { |
| assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction"); |
| for (unsigned i = 0; i < size; i++) |
| Dest.AggregateVal[i].FloatVal = |
| APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal); |
| } else { |
| for (unsigned i = 0; i < size; i++) |
| Dest.AggregateVal[i].DoubleVal = |
| APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal); |
| } |
| } else { |
| // scalar |
| assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction"); |
| |
| if (DstTy->getTypeID() == Type::FloatTyID) |
| Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal); |
| else { |
| Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal); |
| } |
| } |
| |
| return Dest; |
| } |
| |
| GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy, |
| ExecutionContext &SF) { |
| uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); |
| GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction"); |
| |
| Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal); |
| return Dest; |
| } |
| |
| GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy, |
| ExecutionContext &SF) { |
| GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction"); |
| |
| uint32_t PtrSize = getDataLayout().getPointerSizeInBits(); |
| if (PtrSize != Src.IntVal.getBitWidth()) |
| Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize); |
| |
| Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue())); |
| return Dest; |
| } |
| |
| GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy, |
| ExecutionContext &SF) { |
| |
| // This instruction supports bitwise conversion of vectors to integers and |
| // to vectors of other types (as long as they have the same size) |
| Type *SrcTy = SrcVal->getType(); |
| GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| |
| if ((SrcTy->getTypeID() == Type::VectorTyID) || |
| (DstTy->getTypeID() == Type::VectorTyID)) { |
| // vector src bitcast to vector dst or vector src bitcast to scalar dst or |
| // scalar src bitcast to vector dst |
| bool isLittleEndian = getDataLayout().isLittleEndian(); |
| GenericValue TempDst, TempSrc, SrcVec; |
| Type *SrcElemTy; |
| Type *DstElemTy; |
| unsigned SrcBitSize; |
| unsigned DstBitSize; |
| unsigned SrcNum; |
| unsigned DstNum; |
| |
| if (SrcTy->getTypeID() == Type::VectorTyID) { |
| SrcElemTy = SrcTy->getScalarType(); |
| SrcBitSize = SrcTy->getScalarSizeInBits(); |
| SrcNum = Src.AggregateVal.size(); |
| SrcVec = Src; |
| } else { |
| // if src is scalar value, make it vector <1 x type> |
| SrcElemTy = SrcTy; |
| SrcBitSize = SrcTy->getPrimitiveSizeInBits(); |
| SrcNum = 1; |
| SrcVec.AggregateVal.push_back(Src); |
| } |
| |
| if (DstTy->getTypeID() == Type::VectorTyID) { |
| DstElemTy = DstTy->getScalarType(); |
| DstBitSize = DstTy->getScalarSizeInBits(); |
| DstNum = (SrcNum * SrcBitSize) / DstBitSize; |
| } else { |
| DstElemTy = DstTy; |
| DstBitSize = DstTy->getPrimitiveSizeInBits(); |
| DstNum = 1; |
| } |
| |
| if (SrcNum * SrcBitSize != DstNum * DstBitSize) |
| llvm_unreachable("Invalid BitCast"); |
| |
| // If src is floating point, cast to integer first. |
| TempSrc.AggregateVal.resize(SrcNum); |
| if (SrcElemTy->isFloatTy()) { |
| for (unsigned i = 0; i < SrcNum; i++) |
| TempSrc.AggregateVal[i].IntVal = |
| APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal); |
| |
| } else if (SrcElemTy->isDoubleTy()) { |
| for (unsigned i = 0; i < SrcNum; i++) |
| TempSrc.AggregateVal[i].IntVal = |
| APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal); |
| } else if (SrcElemTy->isIntegerTy()) { |
| for (unsigned i = 0; i < SrcNum; i++) |
| TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal; |
| } else { |
| // Pointers are not allowed as the element type of vector. |
| llvm_unreachable("Invalid Bitcast"); |
| } |
| |
| // now TempSrc is integer type vector |
| if (DstNum < SrcNum) { |
| // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64> |
| unsigned Ratio = SrcNum / DstNum; |
| unsigned SrcElt = 0; |
| for (unsigned i = 0; i < DstNum; i++) { |
| GenericValue Elt; |
| Elt.IntVal = 0; |
| Elt.IntVal = Elt.IntVal.zext(DstBitSize); |
| unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1); |
| for (unsigned j = 0; j < Ratio; j++) { |
| APInt Tmp; |
| Tmp = Tmp.zext(SrcBitSize); |
| Tmp = TempSrc.AggregateVal[SrcElt++].IntVal; |
| Tmp = Tmp.zext(DstBitSize); |
| Tmp <<= ShiftAmt; |
| ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; |
| Elt.IntVal |= Tmp; |
| } |
| TempDst.AggregateVal.push_back(Elt); |
| } |
| } else { |
| // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32> |
| unsigned Ratio = DstNum / SrcNum; |
| for (unsigned i = 0; i < SrcNum; i++) { |
| unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1); |
| for (unsigned j = 0; j < Ratio; j++) { |
| GenericValue Elt; |
| Elt.IntVal = Elt.IntVal.zext(SrcBitSize); |
| Elt.IntVal = TempSrc.AggregateVal[i].IntVal; |
| Elt.IntVal.lshrInPlace(ShiftAmt); |
| // it could be DstBitSize == SrcBitSize, so check it |
| if (DstBitSize < SrcBitSize) |
| Elt.IntVal = Elt.IntVal.trunc(DstBitSize); |
| ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; |
| TempDst.AggregateVal.push_back(Elt); |
| } |
| } |
| } |
| |
| // convert result from integer to specified type |
| if (DstTy->getTypeID() == Type::VectorTyID) { |
| if (DstElemTy->isDoubleTy()) { |
| Dest.AggregateVal.resize(DstNum); |
| for (unsigned i = 0; i < DstNum; i++) |
| Dest.AggregateVal[i].DoubleVal = |
| TempDst.AggregateVal[i].IntVal.bitsToDouble(); |
| } else if (DstElemTy->isFloatTy()) { |
| Dest.AggregateVal.resize(DstNum); |
| for (unsigned i = 0; i < DstNum; i++) |
| Dest.AggregateVal[i].FloatVal = |
| TempDst.AggregateVal[i].IntVal.bitsToFloat(); |
| } else { |
| Dest = TempDst; |
| } |
| } else { |
| if (DstElemTy->isDoubleTy()) |
| Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble(); |
| else if (DstElemTy->isFloatTy()) { |
| Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat(); |
| } else { |
| Dest.IntVal = TempDst.AggregateVal[0].IntVal; |
| } |
| } |
| } else { // if ((SrcTy->getTypeID() == Type::VectorTyID) || |
| // (DstTy->getTypeID() == Type::VectorTyID)) |
| |
| // scalar src bitcast to scalar dst |
| if (DstTy->isPointerTy()) { |
| assert(SrcTy->isPointerTy() && "Invalid BitCast"); |
| Dest.PointerVal = Src.PointerVal; |
| } else if (DstTy->isIntegerTy()) { |
| if (SrcTy->isFloatTy()) |
| Dest.IntVal = APInt::floatToBits(Src.FloatVal); |
| else if (SrcTy->isDoubleTy()) { |
| Dest.IntVal = APInt::doubleToBits(Src.DoubleVal); |
| } else if (SrcTy->isIntegerTy()) { |
| Dest.IntVal = Src.IntVal; |
| } else { |
| llvm_unreachable("Invalid BitCast"); |
| } |
| } else if (DstTy->isFloatTy()) { |
| if (SrcTy->isIntegerTy()) |
| Dest.FloatVal = Src.IntVal.bitsToFloat(); |
| else { |
| Dest.FloatVal = Src.FloatVal; |
| } |
| } else if (DstTy->isDoubleTy()) { |
| if (SrcTy->isIntegerTy()) |
| Dest.DoubleVal = Src.IntVal.bitsToDouble(); |
| else { |
| Dest.DoubleVal = Src.DoubleVal; |
| } |
| } else { |
| llvm_unreachable("Invalid Bitcast"); |
| } |
| } |
| |
| return Dest; |
| } |
| |
| void Interpreter::visitTruncInst(TruncInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF); |
| } |
| |
| void Interpreter::visitSExtInst(SExtInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF); |
| } |
| |
| void Interpreter::visitZExtInst(ZExtInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF); |
| } |
| |
| void Interpreter::visitFPTruncInst(FPTruncInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF); |
| } |
| |
| void Interpreter::visitFPExtInst(FPExtInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF); |
| } |
| |
| void Interpreter::visitUIToFPInst(UIToFPInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF); |
| } |
| |
| void Interpreter::visitSIToFPInst(SIToFPInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF); |
| } |
| |
| void Interpreter::visitFPToUIInst(FPToUIInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF); |
| } |
| |
| void Interpreter::visitFPToSIInst(FPToSIInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF); |
| } |
| |
| void Interpreter::visitPtrToIntInst(PtrToIntInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF); |
| } |
| |
| void Interpreter::visitIntToPtrInst(IntToPtrInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF); |
| } |
| |
| void Interpreter::visitBitCastInst(BitCastInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF); |
| } |
| |
| #define IMPLEMENT_VAARG(TY) \ |
| case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break |
| |
| void Interpreter::visitVAArgInst(VAArgInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| |
| // Get the incoming valist parameter. LLI treats the valist as a |
| // (ec-stack-depth var-arg-index) pair. |
| GenericValue VAList = getOperandValue(I.getOperand(0), SF); |
| GenericValue Dest; |
| GenericValue Src = ECStack[VAList.UIntPairVal.first] |
| .VarArgs[VAList.UIntPairVal.second]; |
| Type *Ty = I.getType(); |
| switch (Ty->getTypeID()) { |
| case Type::IntegerTyID: |
| Dest.IntVal = Src.IntVal; |
| break; |
| IMPLEMENT_VAARG(Pointer); |
| IMPLEMENT_VAARG(Float); |
| IMPLEMENT_VAARG(Double); |
| default: |
| dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n"; |
| llvm_unreachable(nullptr); |
| } |
| |
| // Set the Value of this Instruction. |
| SetValue(&I, Dest, SF); |
| |
| // Move the pointer to the next vararg. |
| ++VAList.UIntPairVal.second; |
| } |
| |
| void Interpreter::visitExtractElementInst(ExtractElementInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| GenericValue Dest; |
| |
| Type *Ty = I.getType(); |
| const unsigned indx = unsigned(Src2.IntVal.getZExtValue()); |
| |
| if(Src1.AggregateVal.size() > indx) { |
| switch (Ty->getTypeID()) { |
| default: |
| dbgs() << "Unhandled destination type for extractelement instruction: " |
| << *Ty << "\n"; |
| llvm_unreachable(nullptr); |
| break; |
| case Type::IntegerTyID: |
| Dest.IntVal = Src1.AggregateVal[indx].IntVal; |
| break; |
| case Type::FloatTyID: |
| Dest.FloatVal = Src1.AggregateVal[indx].FloatVal; |
| break; |
| case Type::DoubleTyID: |
| Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal; |
| break; |
| } |
| } else { |
| dbgs() << "Invalid index in extractelement instruction\n"; |
| } |
| |
| SetValue(&I, Dest, SF); |
| } |
| |
| void Interpreter::visitInsertElementInst(InsertElementInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| Type *Ty = I.getType(); |
| |
| if(!(Ty->isVectorTy()) ) |
| llvm_unreachable("Unhandled dest type for insertelement instruction"); |
| |
| GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| GenericValue Src3 = getOperandValue(I.getOperand(2), SF); |
| GenericValue Dest; |
| |
| Type *TyContained = Ty->getContainedType(0); |
| |
| const unsigned indx = unsigned(Src3.IntVal.getZExtValue()); |
| Dest.AggregateVal = Src1.AggregateVal; |
| |
| if(Src1.AggregateVal.size() <= indx) |
| llvm_unreachable("Invalid index in insertelement instruction"); |
| switch (TyContained->getTypeID()) { |
| default: |
| llvm_unreachable("Unhandled dest type for insertelement instruction"); |
| case Type::IntegerTyID: |
| Dest.AggregateVal[indx].IntVal = Src2.IntVal; |
| break; |
| case Type::FloatTyID: |
| Dest.AggregateVal[indx].FloatVal = Src2.FloatVal; |
| break; |
| case Type::DoubleTyID: |
| Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal; |
| break; |
| } |
| SetValue(&I, Dest, SF); |
| } |
| |
| void Interpreter::visitShuffleVectorInst(ShuffleVectorInst &I){ |
| ExecutionContext &SF = ECStack.back(); |
| |
| Type *Ty = I.getType(); |
| if(!(Ty->isVectorTy())) |
| llvm_unreachable("Unhandled dest type for shufflevector instruction"); |
| |
| GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| GenericValue Src3 = getOperandValue(I.getOperand(2), SF); |
| GenericValue Dest; |
| |
| // There is no need to check types of src1 and src2, because the compiled |
| // bytecode can't contain different types for src1 and src2 for a |
| // shufflevector instruction. |
| |
| Type *TyContained = Ty->getContainedType(0); |
| unsigned src1Size = (unsigned)Src1.AggregateVal.size(); |
| unsigned src2Size = (unsigned)Src2.AggregateVal.size(); |
| unsigned src3Size = (unsigned)Src3.AggregateVal.size(); |
| |
| Dest.AggregateVal.resize(src3Size); |
| |
| switch (TyContained->getTypeID()) { |
| default: |
| llvm_unreachable("Unhandled dest type for insertelement instruction"); |
| break; |
| case Type::IntegerTyID: |
| for( unsigned i=0; i<src3Size; i++) { |
| unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue(); |
| if(j < src1Size) |
| Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal; |
| else if(j < src1Size + src2Size) |
| Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal; |
| else |
| // The selector may not be greater than sum of lengths of first and |
| // second operands and llasm should not allow situation like |
| // %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef, |
| // <2 x i32> < i32 0, i32 5 >, |
| // where i32 5 is invalid, but let it be additional check here: |
| llvm_unreachable("Invalid mask in shufflevector instruction"); |
| } |
| break; |
| case Type::FloatTyID: |
| for( unsigned i=0; i<src3Size; i++) { |
| unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue(); |
| if(j < src1Size) |
| Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal; |
| else if(j < src1Size + src2Size) |
| Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal; |
| else |
| llvm_unreachable("Invalid mask in shufflevector instruction"); |
| } |
| break; |
| case Type::DoubleTyID: |
| for( unsigned i=0; i<src3Size; i++) { |
| unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue(); |
| if(j < src1Size) |
| Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal; |
| else if(j < src1Size + src2Size) |
| Dest.AggregateVal[i].DoubleVal = |
| Src2.AggregateVal[j-src1Size].DoubleVal; |
| else |
| llvm_unreachable("Invalid mask in shufflevector instruction"); |
| } |
| break; |
| } |
| SetValue(&I, Dest, SF); |
| } |
| |
| void Interpreter::visitExtractValueInst(ExtractValueInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| Value *Agg = I.getAggregateOperand(); |
| GenericValue Dest; |
| GenericValue Src = getOperandValue(Agg, SF); |
| |
| ExtractValueInst::idx_iterator IdxBegin = I.idx_begin(); |
| unsigned Num = I.getNumIndices(); |
| GenericValue *pSrc = &Src; |
| |
| for (unsigned i = 0 ; i < Num; ++i) { |
| pSrc = &pSrc->AggregateVal[*IdxBegin]; |
| ++IdxBegin; |
| } |
| |
| Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices()); |
| switch (IndexedType->getTypeID()) { |
| default: |
| llvm_unreachable("Unhandled dest type for extractelement instruction"); |
| break; |
| case Type::IntegerTyID: |
| Dest.IntVal = pSrc->IntVal; |
| break; |
| case Type::FloatTyID: |
| Dest.FloatVal = pSrc->FloatVal; |
| break; |
| case Type::DoubleTyID: |
| Dest.DoubleVal = pSrc->DoubleVal; |
| break; |
| case Type::ArrayTyID: |
| case Type::StructTyID: |
| case Type::VectorTyID: |
| Dest.AggregateVal = pSrc->AggregateVal; |
| break; |
| case Type::PointerTyID: |
| Dest.PointerVal = pSrc->PointerVal; |
| break; |
| } |
| |
| SetValue(&I, Dest, SF); |
| } |
| |
| void Interpreter::visitInsertValueInst(InsertValueInst &I) { |
| |
| ExecutionContext &SF = ECStack.back(); |
| Value *Agg = I.getAggregateOperand(); |
| |
| GenericValue Src1 = getOperandValue(Agg, SF); |
| GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| GenericValue Dest = Src1; // Dest is a slightly changed Src1 |
| |
| ExtractValueInst::idx_iterator IdxBegin = I.idx_begin(); |
| unsigned Num = I.getNumIndices(); |
| |
| GenericValue *pDest = &Dest; |
| for (unsigned i = 0 ; i < Num; ++i) { |
| pDest = &pDest->AggregateVal[*IdxBegin]; |
| ++IdxBegin; |
| } |
| // pDest points to the target value in the Dest now |
| |
| Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices()); |
| |
| switch (IndexedType->getTypeID()) { |
| default: |
| llvm_unreachable("Unhandled dest type for insertelement instruction"); |
| break; |
| case Type::IntegerTyID: |
| pDest->IntVal = Src2.IntVal; |
| break; |
| case Type::FloatTyID: |
| pDest->FloatVal = Src2.FloatVal; |
| break; |
| case Type::DoubleTyID: |
| pDest->DoubleVal = Src2.DoubleVal; |
| break; |
| case Type::ArrayTyID: |
| case Type::StructTyID: |
| case Type::VectorTyID: |
| pDest->AggregateVal = Src2.AggregateVal; |
| break; |
| case Type::PointerTyID: |
| pDest->PointerVal = Src2.PointerVal; |
| break; |
| } |
| |
| SetValue(&I, Dest, SF); |
| } |
| |
| GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, |
| ExecutionContext &SF) { |
| switch (CE->getOpcode()) { |
| case Instruction::Trunc: |
| return executeTruncInst(CE->getOperand(0), CE->getType(), SF); |
| case Instruction::ZExt: |
| return executeZExtInst(CE->getOperand(0), CE->getType(), SF); |
| case Instruction::SExt: |
| return executeSExtInst(CE->getOperand(0), CE->getType(), SF); |
| case Instruction::FPTrunc: |
| return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF); |
| case Instruction::FPExt: |
| return executeFPExtInst(CE->getOperand(0), CE->getType(), SF); |
| case Instruction::UIToFP: |
| return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF); |
| case Instruction::SIToFP: |
| return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF); |
| case Instruction::FPToUI: |
| return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF); |
| case Instruction::FPToSI: |
| return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF); |
| case Instruction::PtrToInt: |
| return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF); |
| case Instruction::IntToPtr: |
| return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF); |
| case Instruction::BitCast: |
| return executeBitCastInst(CE->getOperand(0), CE->getType(), SF); |
| case Instruction::GetElementPtr: |
| return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE), |
| gep_type_end(CE), SF); |
| case Instruction::FCmp: |
| case Instruction::ICmp: |
| return executeCmpInst(CE->getPredicate(), |
| getOperandValue(CE->getOperand(0), SF), |
| getOperandValue(CE->getOperand(1), SF), |
| CE->getOperand(0)->getType()); |
| case Instruction::Select: |
| return executeSelectInst(getOperandValue(CE->getOperand(0), SF), |
| getOperandValue(CE->getOperand(1), SF), |
| getOperandValue(CE->getOperand(2), SF), |
| CE->getOperand(0)->getType()); |
| default : |
| break; |
| } |
| |
| // The cases below here require a GenericValue parameter for the result |
| // so we initialize one, compute it and then return it. |
| GenericValue Op0 = getOperandValue(CE->getOperand(0), SF); |
| GenericValue Op1 = getOperandValue(CE->getOperand(1), SF); |
| GenericValue Dest; |
| Type * Ty = CE->getOperand(0)->getType(); |
| switch (CE->getOpcode()) { |
| case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break; |
| case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break; |
| case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break; |
| case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break; |
| case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break; |
| case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break; |
| case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break; |
| case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break; |
| case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break; |
| case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break; |
| case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break; |
| case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break; |
| case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break; |
| case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break; |
| case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break; |
| case Instruction::Shl: |
| Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue()); |
| break; |
| case Instruction::LShr: |
| Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue()); |
| break; |
| case Instruction::AShr: |
| Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue()); |
| break; |
| default: |
| dbgs() << "Unhandled ConstantExpr: " << *CE << "\n"; |
| llvm_unreachable("Unhandled ConstantExpr"); |
| } |
| return Dest; |
| } |
| |
| GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) { |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { |
| return getConstantExprValue(CE, SF); |
| } else if (Constant *CPV = dyn_cast<Constant>(V)) { |
| return getConstantValue(CPV); |
| } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| return PTOGV(getPointerToGlobal(GV)); |
| } else { |
| return SF.Values[V]; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Dispatch and Execution Code |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // callFunction - Execute the specified function... |
| // |
| void Interpreter::callFunction(Function *F, ArrayRef<GenericValue> ArgVals) { |
| assert((ECStack.empty() || !ECStack.back().Caller.getInstruction() || |
| ECStack.back().Caller.arg_size() == ArgVals.size()) && |
| "Incorrect number of arguments passed into function call!"); |
| // Make a new stack frame... and fill it in. |
| ECStack.emplace_back(); |
| ExecutionContext &StackFrame = ECStack.back(); |
| StackFrame.CurFunction = F; |
| |
| // Special handling for external functions. |
| if (F->isDeclaration()) { |
| GenericValue Result = callExternalFunction (F, ArgVals); |
| // Simulate a 'ret' instruction of the appropriate type. |
| popStackAndReturnValueToCaller (F->getReturnType (), Result); |
| return; |
| } |
| |
| // Get pointers to first LLVM BB & Instruction in function. |
| StackFrame.CurBB = &F->front(); |
| StackFrame.CurInst = StackFrame.CurBB->begin(); |
| |
| // Run through the function arguments and initialize their values... |
| assert((ArgVals.size() == F->arg_size() || |
| (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&& |
| "Invalid number of values passed to function invocation!"); |
| |
| // Handle non-varargs arguments... |
| unsigned i = 0; |
| for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); |
| AI != E; ++AI, ++i) |
| SetValue(&*AI, ArgVals[i], StackFrame); |
| |
| // Handle varargs arguments... |
| StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end()); |
| } |
| |
| |
| void Interpreter::run() { |
| while (!ECStack.empty()) { |
| // Interpret a single instruction & increment the "PC". |
| ExecutionContext &SF = ECStack.back(); // Current stack frame |
| Instruction &I = *SF.CurInst++; // Increment before execute |
| |
| // Track the number of dynamic instructions executed. |
| ++NumDynamicInsts; |
| |
| LLVM_DEBUG(dbgs() << "About to interpret: " << I); |
| visit(I); // Dispatch to one of the visit* methods... |
| } |
| } |