| //===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // It contains the tablegen backend that emits the decoder functions for |
| // targets with fixed length instruction set. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "decoder-emitter" |
| |
| #include "FixedLenDecoderEmitter.h" |
| #include "CodeGenTarget.h" |
| #include "llvm/TableGen/Record.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| #include <vector> |
| #include <map> |
| #include <string> |
| |
| using namespace llvm; |
| |
| // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system |
| // for a bit value. |
| // |
| // BIT_UNFILTERED is used as the init value for a filter position. It is used |
| // only for filter processings. |
| typedef enum { |
| BIT_TRUE, // '1' |
| BIT_FALSE, // '0' |
| BIT_UNSET, // '?' |
| BIT_UNFILTERED // unfiltered |
| } bit_value_t; |
| |
| static bool ValueSet(bit_value_t V) { |
| return (V == BIT_TRUE || V == BIT_FALSE); |
| } |
| static bool ValueNotSet(bit_value_t V) { |
| return (V == BIT_UNSET); |
| } |
| static int Value(bit_value_t V) { |
| return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1); |
| } |
| static bit_value_t bitFromBits(BitsInit &bits, unsigned index) { |
| if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index))) |
| return bit->getValue() ? BIT_TRUE : BIT_FALSE; |
| |
| // The bit is uninitialized. |
| return BIT_UNSET; |
| } |
| // Prints the bit value for each position. |
| static void dumpBits(raw_ostream &o, BitsInit &bits) { |
| unsigned index; |
| |
| for (index = bits.getNumBits(); index > 0; index--) { |
| switch (bitFromBits(bits, index - 1)) { |
| case BIT_TRUE: |
| o << "1"; |
| break; |
| case BIT_FALSE: |
| o << "0"; |
| break; |
| case BIT_UNSET: |
| o << "_"; |
| break; |
| default: |
| assert(0 && "unexpected return value from bitFromBits"); |
| } |
| } |
| } |
| |
| static BitsInit &getBitsField(const Record &def, const char *str) { |
| BitsInit *bits = def.getValueAsBitsInit(str); |
| return *bits; |
| } |
| |
| // Forward declaration. |
| class FilterChooser; |
| |
| // Representation of the instruction to work on. |
| typedef std::vector<bit_value_t> insn_t; |
| |
| /// Filter - Filter works with FilterChooser to produce the decoding tree for |
| /// the ISA. |
| /// |
| /// It is useful to think of a Filter as governing the switch stmts of the |
| /// decoding tree in a certain level. Each case stmt delegates to an inferior |
| /// FilterChooser to decide what further decoding logic to employ, or in another |
| /// words, what other remaining bits to look at. The FilterChooser eventually |
| /// chooses a best Filter to do its job. |
| /// |
| /// This recursive scheme ends when the number of Opcodes assigned to the |
| /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when |
| /// the Filter/FilterChooser combo does not know how to distinguish among the |
| /// Opcodes assigned. |
| /// |
| /// An example of a conflict is |
| /// |
| /// Conflict: |
| /// 111101000.00........00010000.... |
| /// 111101000.00........0001........ |
| /// 1111010...00........0001........ |
| /// 1111010...00.................... |
| /// 1111010......................... |
| /// 1111............................ |
| /// ................................ |
| /// VST4q8a 111101000_00________00010000____ |
| /// VST4q8b 111101000_00________00010000____ |
| /// |
| /// The Debug output shows the path that the decoding tree follows to reach the |
| /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced |
| /// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters. |
| /// |
| /// The encoding info in the .td files does not specify this meta information, |
| /// which could have been used by the decoder to resolve the conflict. The |
| /// decoder could try to decode the even/odd register numbering and assign to |
| /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a" |
| /// version and return the Opcode since the two have the same Asm format string. |
| class Filter { |
| protected: |
| FilterChooser *Owner; // points to the FilterChooser who owns this filter |
| unsigned StartBit; // the starting bit position |
| unsigned NumBits; // number of bits to filter |
| bool Mixed; // a mixed region contains both set and unset bits |
| |
| // Map of well-known segment value to the set of uid's with that value. |
| std::map<uint64_t, std::vector<unsigned> > FilteredInstructions; |
| |
| // Set of uid's with non-constant segment values. |
| std::vector<unsigned> VariableInstructions; |
| |
| // Map of well-known segment value to its delegate. |
| std::map<unsigned, FilterChooser*> FilterChooserMap; |
| |
| // Number of instructions which fall under FilteredInstructions category. |
| unsigned NumFiltered; |
| |
| // Keeps track of the last opcode in the filtered bucket. |
| unsigned LastOpcFiltered; |
| |
| // Number of instructions which fall under VariableInstructions category. |
| unsigned NumVariable; |
| |
| public: |
| unsigned getNumFiltered() { return NumFiltered; } |
| unsigned getNumVariable() { return NumVariable; } |
| unsigned getSingletonOpc() { |
| assert(NumFiltered == 1); |
| return LastOpcFiltered; |
| } |
| // Return the filter chooser for the group of instructions without constant |
| // segment values. |
| FilterChooser &getVariableFC() { |
| assert(NumFiltered == 1); |
| assert(FilterChooserMap.size() == 1); |
| return *(FilterChooserMap.find((unsigned)-1)->second); |
| } |
| |
| Filter(const Filter &f); |
| Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed); |
| |
| ~Filter(); |
| |
| // Divides the decoding task into sub tasks and delegates them to the |
| // inferior FilterChooser's. |
| // |
| // A special case arises when there's only one entry in the filtered |
| // instructions. In order to unambiguously decode the singleton, we need to |
| // match the remaining undecoded encoding bits against the singleton. |
| void recurse(); |
| |
| // Emit code to decode instructions given a segment or segments of bits. |
| void emit(raw_ostream &o, unsigned &Indentation); |
| |
| // Returns the number of fanout produced by the filter. More fanout implies |
| // the filter distinguishes more categories of instructions. |
| unsigned usefulness() const; |
| }; // End of class Filter |
| |
| // These are states of our finite state machines used in FilterChooser's |
| // filterProcessor() which produces the filter candidates to use. |
| typedef enum { |
| ATTR_NONE, |
| ATTR_FILTERED, |
| ATTR_ALL_SET, |
| ATTR_ALL_UNSET, |
| ATTR_MIXED |
| } bitAttr_t; |
| |
| /// FilterChooser - FilterChooser chooses the best filter among a set of Filters |
| /// in order to perform the decoding of instructions at the current level. |
| /// |
| /// Decoding proceeds from the top down. Based on the well-known encoding bits |
| /// of instructions available, FilterChooser builds up the possible Filters that |
| /// can further the task of decoding by distinguishing among the remaining |
| /// candidate instructions. |
| /// |
| /// Once a filter has been chosen, it is called upon to divide the decoding task |
| /// into sub-tasks and delegates them to its inferior FilterChoosers for further |
| /// processings. |
| /// |
| /// It is useful to think of a Filter as governing the switch stmts of the |
| /// decoding tree. And each case is delegated to an inferior FilterChooser to |
| /// decide what further remaining bits to look at. |
| class FilterChooser { |
| protected: |
| friend class Filter; |
| |
| // Vector of codegen instructions to choose our filter. |
| const std::vector<const CodeGenInstruction*> &AllInstructions; |
| |
| // Vector of uid's for this filter chooser to work on. |
| const std::vector<unsigned> Opcodes; |
| |
| // Lookup table for the operand decoding of instructions. |
| std::map<unsigned, std::vector<OperandInfo> > &Operands; |
| |
| // Vector of candidate filters. |
| std::vector<Filter> Filters; |
| |
| // Array of bit values passed down from our parent. |
| // Set to all BIT_UNFILTERED's for Parent == NULL. |
| std::vector<bit_value_t> FilterBitValues; |
| |
| // Links to the FilterChooser above us in the decoding tree. |
| FilterChooser *Parent; |
| |
| // Index of the best filter from Filters. |
| int BestIndex; |
| |
| // Width of instructions |
| unsigned BitWidth; |
| |
| // Parent emitter |
| const FixedLenDecoderEmitter *Emitter; |
| |
| public: |
| FilterChooser(const FilterChooser &FC) : |
| AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes), |
| Operands(FC.Operands), Filters(FC.Filters), |
| FilterBitValues(FC.FilterBitValues), Parent(FC.Parent), |
| BestIndex(FC.BestIndex), BitWidth(FC.BitWidth), |
| Emitter(FC.Emitter) { } |
| |
| FilterChooser(const std::vector<const CodeGenInstruction*> &Insts, |
| const std::vector<unsigned> &IDs, |
| std::map<unsigned, std::vector<OperandInfo> > &Ops, |
| unsigned BW, |
| const FixedLenDecoderEmitter *E) : |
| AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(), |
| Parent(NULL), BestIndex(-1), BitWidth(BW), Emitter(E) { |
| for (unsigned i = 0; i < BitWidth; ++i) |
| FilterBitValues.push_back(BIT_UNFILTERED); |
| |
| doFilter(); |
| } |
| |
| FilterChooser(const std::vector<const CodeGenInstruction*> &Insts, |
| const std::vector<unsigned> &IDs, |
| std::map<unsigned, std::vector<OperandInfo> > &Ops, |
| std::vector<bit_value_t> &ParentFilterBitValues, |
| FilterChooser &parent) : |
| AllInstructions(Insts), Opcodes(IDs), Operands(Ops), |
| Filters(), FilterBitValues(ParentFilterBitValues), |
| Parent(&parent), BestIndex(-1), BitWidth(parent.BitWidth), |
| Emitter(parent.Emitter) { |
| doFilter(); |
| } |
| |
| // The top level filter chooser has NULL as its parent. |
| bool isTopLevel() { return Parent == NULL; } |
| |
| // Emit the top level typedef and decodeInstruction() function. |
| void emitTop(raw_ostream &o, unsigned Indentation, std::string Namespace); |
| |
| protected: |
| // Populates the insn given the uid. |
| void insnWithID(insn_t &Insn, unsigned Opcode) const { |
| BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst"); |
| |
| for (unsigned i = 0; i < BitWidth; ++i) |
| Insn.push_back(bitFromBits(Bits, i)); |
| } |
| |
| // Returns the record name. |
| const std::string &nameWithID(unsigned Opcode) const { |
| return AllInstructions[Opcode]->TheDef->getName(); |
| } |
| |
| // Populates the field of the insn given the start position and the number of |
| // consecutive bits to scan for. |
| // |
| // Returns false if there exists any uninitialized bit value in the range. |
| // Returns true, otherwise. |
| bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit, |
| unsigned NumBits) const; |
| |
| /// dumpFilterArray - dumpFilterArray prints out debugging info for the given |
| /// filter array as a series of chars. |
| void dumpFilterArray(raw_ostream &o, std::vector<bit_value_t> & filter); |
| |
| /// dumpStack - dumpStack traverses the filter chooser chain and calls |
| /// dumpFilterArray on each filter chooser up to the top level one. |
| void dumpStack(raw_ostream &o, const char *prefix); |
| |
| Filter &bestFilter() { |
| assert(BestIndex != -1 && "BestIndex not set"); |
| return Filters[BestIndex]; |
| } |
| |
| // Called from Filter::recurse() when singleton exists. For debug purpose. |
| void SingletonExists(unsigned Opc); |
| |
| bool PositionFiltered(unsigned i) { |
| return ValueSet(FilterBitValues[i]); |
| } |
| |
| // Calculates the island(s) needed to decode the instruction. |
| // This returns a lit of undecoded bits of an instructions, for example, |
| // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be |
| // decoded bits in order to verify that the instruction matches the Opcode. |
| unsigned getIslands(std::vector<unsigned> &StartBits, |
| std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals, |
| insn_t &Insn); |
| |
| // Emits code to check the Predicates member of an instruction are true. |
| // Returns true if predicate matches were emitted, false otherwise. |
| bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,unsigned Opc); |
| |
| // Emits code to decode the singleton. Return true if we have matched all the |
| // well-known bits. |
| bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc); |
| |
| // Emits code to decode the singleton, and then to decode the rest. |
| void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,Filter &Best); |
| |
| void emitBinaryParser(raw_ostream &o , unsigned &Indentation, |
| OperandInfo &OpInfo); |
| |
| // Assign a single filter and run with it. |
| void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit, |
| bool mixed); |
| |
| // reportRegion is a helper function for filterProcessor to mark a region as |
| // eligible for use as a filter region. |
| void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex, |
| bool AllowMixed); |
| |
| // FilterProcessor scans the well-known encoding bits of the instructions and |
| // builds up a list of candidate filters. It chooses the best filter and |
| // recursively descends down the decoding tree. |
| bool filterProcessor(bool AllowMixed, bool Greedy = true); |
| |
| // Decides on the best configuration of filter(s) to use in order to decode |
| // the instructions. A conflict of instructions may occur, in which case we |
| // dump the conflict set to the standard error. |
| void doFilter(); |
| |
| // Emits code to decode our share of instructions. Returns true if the |
| // emitted code causes a return, which occurs if we know how to decode |
| // the instruction at this level or the instruction is not decodeable. |
| bool emit(raw_ostream &o, unsigned &Indentation); |
| }; |
| |
| /////////////////////////// |
| // // |
| // Filter Implmenetation // |
| // // |
| /////////////////////////// |
| |
| Filter::Filter(const Filter &f) : |
| Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed), |
| FilteredInstructions(f.FilteredInstructions), |
| VariableInstructions(f.VariableInstructions), |
| FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered), |
| LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) { |
| } |
| |
| Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, |
| bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits), |
| Mixed(mixed) { |
| assert(StartBit + NumBits - 1 < Owner->BitWidth); |
| |
| NumFiltered = 0; |
| LastOpcFiltered = 0; |
| NumVariable = 0; |
| |
| for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) { |
| insn_t Insn; |
| |
| // Populates the insn given the uid. |
| Owner->insnWithID(Insn, Owner->Opcodes[i]); |
| |
| uint64_t Field; |
| // Scans the segment for possibly well-specified encoding bits. |
| bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits); |
| |
| if (ok) { |
| // The encoding bits are well-known. Lets add the uid of the |
| // instruction into the bucket keyed off the constant field value. |
| LastOpcFiltered = Owner->Opcodes[i]; |
| FilteredInstructions[Field].push_back(LastOpcFiltered); |
| ++NumFiltered; |
| } else { |
| // Some of the encoding bit(s) are unspecfied. This contributes to |
| // one additional member of "Variable" instructions. |
| VariableInstructions.push_back(Owner->Opcodes[i]); |
| ++NumVariable; |
| } |
| } |
| |
| assert((FilteredInstructions.size() + VariableInstructions.size() > 0) |
| && "Filter returns no instruction categories"); |
| } |
| |
| Filter::~Filter() { |
| std::map<unsigned, FilterChooser*>::iterator filterIterator; |
| for (filterIterator = FilterChooserMap.begin(); |
| filterIterator != FilterChooserMap.end(); |
| filterIterator++) { |
| delete filterIterator->second; |
| } |
| } |
| |
| // Divides the decoding task into sub tasks and delegates them to the |
| // inferior FilterChooser's. |
| // |
| // A special case arises when there's only one entry in the filtered |
| // instructions. In order to unambiguously decode the singleton, we need to |
| // match the remaining undecoded encoding bits against the singleton. |
| void Filter::recurse() { |
| std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator; |
| |
| // Starts by inheriting our parent filter chooser's filter bit values. |
| std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues); |
| |
| unsigned bitIndex; |
| |
| if (VariableInstructions.size()) { |
| // Conservatively marks each segment position as BIT_UNSET. |
| for (bitIndex = 0; bitIndex < NumBits; bitIndex++) |
| BitValueArray[StartBit + bitIndex] = BIT_UNSET; |
| |
| // Delegates to an inferior filter chooser for further processing on this |
| // group of instructions whose segment values are variable. |
| FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>( |
| (unsigned)-1, |
| new FilterChooser(Owner->AllInstructions, |
| VariableInstructions, |
| Owner->Operands, |
| BitValueArray, |
| *Owner) |
| )); |
| } |
| |
| // No need to recurse for a singleton filtered instruction. |
| // See also Filter::emit(). |
| if (getNumFiltered() == 1) { |
| //Owner->SingletonExists(LastOpcFiltered); |
| assert(FilterChooserMap.size() == 1); |
| return; |
| } |
| |
| // Otherwise, create sub choosers. |
| for (mapIterator = FilteredInstructions.begin(); |
| mapIterator != FilteredInstructions.end(); |
| mapIterator++) { |
| |
| // Marks all the segment positions with either BIT_TRUE or BIT_FALSE. |
| for (bitIndex = 0; bitIndex < NumBits; bitIndex++) { |
| if (mapIterator->first & (1ULL << bitIndex)) |
| BitValueArray[StartBit + bitIndex] = BIT_TRUE; |
| else |
| BitValueArray[StartBit + bitIndex] = BIT_FALSE; |
| } |
| |
| // Delegates to an inferior filter chooser for further processing on this |
| // category of instructions. |
| FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>( |
| mapIterator->first, |
| new FilterChooser(Owner->AllInstructions, |
| mapIterator->second, |
| Owner->Operands, |
| BitValueArray, |
| *Owner) |
| )); |
| } |
| } |
| |
| // Emit code to decode instructions given a segment or segments of bits. |
| void Filter::emit(raw_ostream &o, unsigned &Indentation) { |
| o.indent(Indentation) << "// Check Inst{"; |
| |
| if (NumBits > 1) |
| o << (StartBit + NumBits - 1) << '-'; |
| |
| o << StartBit << "} ...\n"; |
| |
| o.indent(Indentation) << "switch (fieldFromInstruction" << Owner->BitWidth |
| << "(insn, " << StartBit << ", " |
| << NumBits << ")) {\n"; |
| |
| std::map<unsigned, FilterChooser*>::iterator filterIterator; |
| |
| bool DefaultCase = false; |
| for (filterIterator = FilterChooserMap.begin(); |
| filterIterator != FilterChooserMap.end(); |
| filterIterator++) { |
| |
| // Field value -1 implies a non-empty set of variable instructions. |
| // See also recurse(). |
| if (filterIterator->first == (unsigned)-1) { |
| DefaultCase = true; |
| |
| o.indent(Indentation) << "default:\n"; |
| o.indent(Indentation) << " break; // fallthrough\n"; |
| |
| // Closing curly brace for the switch statement. |
| // This is unconventional because we want the default processing to be |
| // performed for the fallthrough cases as well, i.e., when the "cases" |
| // did not prove a decoded instruction. |
| o.indent(Indentation) << "}\n"; |
| |
| } else |
| o.indent(Indentation) << "case " << filterIterator->first << ":\n"; |
| |
| // We arrive at a category of instructions with the same segment value. |
| // Now delegate to the sub filter chooser for further decodings. |
| // The case may fallthrough, which happens if the remaining well-known |
| // encoding bits do not match exactly. |
| if (!DefaultCase) { ++Indentation; ++Indentation; } |
| |
| bool finished = filterIterator->second->emit(o, Indentation); |
| // For top level default case, there's no need for a break statement. |
| if (Owner->isTopLevel() && DefaultCase) |
| break; |
| if (!finished) |
| o.indent(Indentation) << "break;\n"; |
| |
| if (!DefaultCase) { --Indentation; --Indentation; } |
| } |
| |
| // If there is no default case, we still need to supply a closing brace. |
| if (!DefaultCase) { |
| // Closing curly brace for the switch statement. |
| o.indent(Indentation) << "}\n"; |
| } |
| } |
| |
| // Returns the number of fanout produced by the filter. More fanout implies |
| // the filter distinguishes more categories of instructions. |
| unsigned Filter::usefulness() const { |
| if (VariableInstructions.size()) |
| return FilteredInstructions.size(); |
| else |
| return FilteredInstructions.size() + 1; |
| } |
| |
| ////////////////////////////////// |
| // // |
| // Filterchooser Implementation // |
| // // |
| ////////////////////////////////// |
| |
| // Emit the top level typedef and decodeInstruction() function. |
| void FilterChooser::emitTop(raw_ostream &o, unsigned Indentation, |
| std::string Namespace) { |
| o.indent(Indentation) << |
| "static MCDisassembler::DecodeStatus decode" << Namespace << "Instruction" << BitWidth |
| << "(MCInst &MI, uint" << BitWidth << "_t insn, uint64_t Address, " |
| << "const void *Decoder, const MCSubtargetInfo &STI) {\n"; |
| o.indent(Indentation) << " unsigned tmp = 0;\n (void)tmp;\n" << Emitter->Locals << "\n"; |
| o.indent(Indentation) << " uint64_t Bits = STI.getFeatureBits();\n"; |
| |
| ++Indentation; ++Indentation; |
| // Emits code to decode the instructions. |
| emit(o, Indentation); |
| |
| o << '\n'; |
| o.indent(Indentation) << "return " << Emitter->ReturnFail << ";\n"; |
| --Indentation; --Indentation; |
| |
| o.indent(Indentation) << "}\n"; |
| |
| o << '\n'; |
| } |
| |
| // Populates the field of the insn given the start position and the number of |
| // consecutive bits to scan for. |
| // |
| // Returns false if and on the first uninitialized bit value encountered. |
| // Returns true, otherwise. |
| bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn, |
| unsigned StartBit, unsigned NumBits) const { |
| Field = 0; |
| |
| for (unsigned i = 0; i < NumBits; ++i) { |
| if (Insn[StartBit + i] == BIT_UNSET) |
| return false; |
| |
| if (Insn[StartBit + i] == BIT_TRUE) |
| Field = Field | (1ULL << i); |
| } |
| |
| return true; |
| } |
| |
| /// dumpFilterArray - dumpFilterArray prints out debugging info for the given |
| /// filter array as a series of chars. |
| void FilterChooser::dumpFilterArray(raw_ostream &o, |
| std::vector<bit_value_t> &filter) { |
| unsigned bitIndex; |
| |
| for (bitIndex = BitWidth; bitIndex > 0; bitIndex--) { |
| switch (filter[bitIndex - 1]) { |
| case BIT_UNFILTERED: |
| o << "."; |
| break; |
| case BIT_UNSET: |
| o << "_"; |
| break; |
| case BIT_TRUE: |
| o << "1"; |
| break; |
| case BIT_FALSE: |
| o << "0"; |
| break; |
| } |
| } |
| } |
| |
| /// dumpStack - dumpStack traverses the filter chooser chain and calls |
| /// dumpFilterArray on each filter chooser up to the top level one. |
| void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) { |
| FilterChooser *current = this; |
| |
| while (current) { |
| o << prefix; |
| dumpFilterArray(o, current->FilterBitValues); |
| o << '\n'; |
| current = current->Parent; |
| } |
| } |
| |
| // Called from Filter::recurse() when singleton exists. For debug purpose. |
| void FilterChooser::SingletonExists(unsigned Opc) { |
| insn_t Insn0; |
| insnWithID(Insn0, Opc); |
| |
| errs() << "Singleton exists: " << nameWithID(Opc) |
| << " with its decoding dominating "; |
| for (unsigned i = 0; i < Opcodes.size(); ++i) { |
| if (Opcodes[i] == Opc) continue; |
| errs() << nameWithID(Opcodes[i]) << ' '; |
| } |
| errs() << '\n'; |
| |
| dumpStack(errs(), "\t\t"); |
| for (unsigned i = 0; i < Opcodes.size(); i++) { |
| const std::string &Name = nameWithID(Opcodes[i]); |
| |
| errs() << '\t' << Name << " "; |
| dumpBits(errs(), |
| getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst")); |
| errs() << '\n'; |
| } |
| } |
| |
| // Calculates the island(s) needed to decode the instruction. |
| // This returns a list of undecoded bits of an instructions, for example, |
| // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be |
| // decoded bits in order to verify that the instruction matches the Opcode. |
| unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits, |
| std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals, |
| insn_t &Insn) { |
| unsigned Num, BitNo; |
| Num = BitNo = 0; |
| |
| uint64_t FieldVal = 0; |
| |
| // 0: Init |
| // 1: Water (the bit value does not affect decoding) |
| // 2: Island (well-known bit value needed for decoding) |
| int State = 0; |
| int Val = -1; |
| |
| for (unsigned i = 0; i < BitWidth; ++i) { |
| Val = Value(Insn[i]); |
| bool Filtered = PositionFiltered(i); |
| switch (State) { |
| default: |
| assert(0 && "Unreachable code!"); |
| break; |
| case 0: |
| case 1: |
| if (Filtered || Val == -1) |
| State = 1; // Still in Water |
| else { |
| State = 2; // Into the Island |
| BitNo = 0; |
| StartBits.push_back(i); |
| FieldVal = Val; |
| } |
| break; |
| case 2: |
| if (Filtered || Val == -1) { |
| State = 1; // Into the Water |
| EndBits.push_back(i - 1); |
| FieldVals.push_back(FieldVal); |
| ++Num; |
| } else { |
| State = 2; // Still in Island |
| ++BitNo; |
| FieldVal = FieldVal | Val << BitNo; |
| } |
| break; |
| } |
| } |
| // If we are still in Island after the loop, do some housekeeping. |
| if (State == 2) { |
| EndBits.push_back(BitWidth - 1); |
| FieldVals.push_back(FieldVal); |
| ++Num; |
| } |
| |
| assert(StartBits.size() == Num && EndBits.size() == Num && |
| FieldVals.size() == Num); |
| return Num; |
| } |
| |
| void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation, |
| OperandInfo &OpInfo) { |
| std::string &Decoder = OpInfo.Decoder; |
| |
| if (OpInfo.numFields() == 1) { |
| OperandInfo::iterator OI = OpInfo.begin(); |
| o.indent(Indentation) << " tmp = fieldFromInstruction" << BitWidth |
| << "(insn, " << OI->Base << ", " << OI->Width |
| << ");\n"; |
| } else { |
| o.indent(Indentation) << " tmp = 0;\n"; |
| for (OperandInfo::iterator OI = OpInfo.begin(), OE = OpInfo.end(); |
| OI != OE; ++OI) { |
| o.indent(Indentation) << " tmp |= (fieldFromInstruction" << BitWidth |
| << "(insn, " << OI->Base << ", " << OI->Width |
| << ") << " << OI->Offset << ");\n"; |
| } |
| } |
| |
| if (Decoder != "") |
| o.indent(Indentation) << " " << Emitter->GuardPrefix << Decoder |
| << "(MI, tmp, Address, Decoder)" << Emitter->GuardPostfix << "\n"; |
| else |
| o.indent(Indentation) << " MI.addOperand(MCOperand::CreateImm(tmp));\n"; |
| |
| } |
| |
| static void emitSinglePredicateMatch(raw_ostream &o, StringRef str, |
| std::string PredicateNamespace) { |
| if (str[0] == '!') |
| o << "!(Bits & " << PredicateNamespace << "::" |
| << str.slice(1,str.size()) << ")"; |
| else |
| o << "(Bits & " << PredicateNamespace << "::" << str << ")"; |
| } |
| |
| bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation, |
| unsigned Opc) { |
| ListInit *Predicates = AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates"); |
| for (unsigned i = 0; i < Predicates->getSize(); ++i) { |
| Record *Pred = Predicates->getElementAsRecord(i); |
| if (!Pred->getValue("AssemblerMatcherPredicate")) |
| continue; |
| |
| std::string P = Pred->getValueAsString("AssemblerCondString"); |
| |
| if (!P.length()) |
| continue; |
| |
| if (i != 0) |
| o << " && "; |
| |
| StringRef SR(P); |
| std::pair<StringRef, StringRef> pairs = SR.split(','); |
| while (pairs.second.size()) { |
| emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace); |
| o << " && "; |
| pairs = pairs.second.split(','); |
| } |
| emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace); |
| } |
| return Predicates->getSize() > 0; |
| } |
| |
| // Emits code to decode the singleton. Return true if we have matched all the |
| // well-known bits. |
| bool FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation, |
| unsigned Opc) { |
| std::vector<unsigned> StartBits; |
| std::vector<unsigned> EndBits; |
| std::vector<uint64_t> FieldVals; |
| insn_t Insn; |
| insnWithID(Insn, Opc); |
| |
| // Look for islands of undecoded bits of the singleton. |
| getIslands(StartBits, EndBits, FieldVals, Insn); |
| |
| unsigned Size = StartBits.size(); |
| unsigned I, NumBits; |
| |
| // If we have matched all the well-known bits, just issue a return. |
| if (Size == 0) { |
| o.indent(Indentation) << "if ("; |
| if (!emitPredicateMatch(o, Indentation, Opc)) |
| o << "1"; |
| o << ") {\n"; |
| o.indent(Indentation) << " MI.setOpcode(" << Opc << ");\n"; |
| std::vector<OperandInfo>& InsnOperands = Operands[Opc]; |
| for (std::vector<OperandInfo>::iterator |
| I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) { |
| // If a custom instruction decoder was specified, use that. |
| if (I->numFields() == 0 && I->Decoder.size()) { |
| o.indent(Indentation) << " " << Emitter->GuardPrefix << I->Decoder |
| << "(MI, insn, Address, Decoder)" << Emitter->GuardPostfix << "\n"; |
| break; |
| } |
| |
| emitBinaryParser(o, Indentation, *I); |
| } |
| |
| o.indent(Indentation) << " return " << Emitter->ReturnOK << "; // " << nameWithID(Opc) |
| << '\n'; |
| o.indent(Indentation) << "}\n"; // Closing predicate block. |
| return true; |
| } |
| |
| // Otherwise, there are more decodings to be done! |
| |
| // Emit code to match the island(s) for the singleton. |
| o.indent(Indentation) << "// Check "; |
| |
| for (I = Size; I != 0; --I) { |
| o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} "; |
| if (I > 1) |
| o << " && "; |
| else |
| o << "for singleton decoding...\n"; |
| } |
| |
| o.indent(Indentation) << "if ("; |
| if (emitPredicateMatch(o, Indentation, Opc)) { |
| o << " &&\n"; |
| o.indent(Indentation+4); |
| } |
| |
| for (I = Size; I != 0; --I) { |
| NumBits = EndBits[I-1] - StartBits[I-1] + 1; |
| o << "fieldFromInstruction" << BitWidth << "(insn, " |
| << StartBits[I-1] << ", " << NumBits |
| << ") == " << FieldVals[I-1]; |
| if (I > 1) |
| o << " && "; |
| else |
| o << ") {\n"; |
| } |
| o.indent(Indentation) << " MI.setOpcode(" << Opc << ");\n"; |
| std::vector<OperandInfo>& InsnOperands = Operands[Opc]; |
| for (std::vector<OperandInfo>::iterator |
| I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) { |
| // If a custom instruction decoder was specified, use that. |
| if (I->numFields() == 0 && I->Decoder.size()) { |
| o.indent(Indentation) << " " << Emitter->GuardPrefix << I->Decoder |
| << "(MI, insn, Address, Decoder)" << Emitter->GuardPostfix << "\n"; |
| break; |
| } |
| |
| emitBinaryParser(o, Indentation, *I); |
| } |
| o.indent(Indentation) << " return " << Emitter->ReturnOK << "; // " << nameWithID(Opc) |
| << '\n'; |
| o.indent(Indentation) << "}\n"; |
| |
| return false; |
| } |
| |
| // Emits code to decode the singleton, and then to decode the rest. |
| void FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation, |
| Filter &Best) { |
| |
| unsigned Opc = Best.getSingletonOpc(); |
| |
| emitSingletonDecoder(o, Indentation, Opc); |
| |
| // Emit code for the rest. |
| o.indent(Indentation) << "else\n"; |
| |
| Indentation += 2; |
| Best.getVariableFC().emit(o, Indentation); |
| Indentation -= 2; |
| } |
| |
| // Assign a single filter and run with it. Top level API client can initialize |
| // with a single filter to start the filtering process. |
| void FilterChooser::runSingleFilter(FilterChooser &owner, unsigned startBit, |
| unsigned numBit, bool mixed) { |
| Filters.clear(); |
| Filter F(*this, startBit, numBit, true); |
| Filters.push_back(F); |
| BestIndex = 0; // Sole Filter instance to choose from. |
| bestFilter().recurse(); |
| } |
| |
| // reportRegion is a helper function for filterProcessor to mark a region as |
| // eligible for use as a filter region. |
| void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit, |
| unsigned BitIndex, bool AllowMixed) { |
| if (RA == ATTR_MIXED && AllowMixed) |
| Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true)); |
| else if (RA == ATTR_ALL_SET && !AllowMixed) |
| Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false)); |
| } |
| |
| // FilterProcessor scans the well-known encoding bits of the instructions and |
| // builds up a list of candidate filters. It chooses the best filter and |
| // recursively descends down the decoding tree. |
| bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) { |
| Filters.clear(); |
| BestIndex = -1; |
| unsigned numInstructions = Opcodes.size(); |
| |
| assert(numInstructions && "Filter created with no instructions"); |
| |
| // No further filtering is necessary. |
| if (numInstructions == 1) |
| return true; |
| |
| // Heuristics. See also doFilter()'s "Heuristics" comment when num of |
| // instructions is 3. |
| if (AllowMixed && !Greedy) { |
| assert(numInstructions == 3); |
| |
| for (unsigned i = 0; i < Opcodes.size(); ++i) { |
| std::vector<unsigned> StartBits; |
| std::vector<unsigned> EndBits; |
| std::vector<uint64_t> FieldVals; |
| insn_t Insn; |
| |
| insnWithID(Insn, Opcodes[i]); |
| |
| // Look for islands of undecoded bits of any instruction. |
| if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) { |
| // Found an instruction with island(s). Now just assign a filter. |
| runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1, |
| true); |
| return true; |
| } |
| } |
| } |
| |
| unsigned BitIndex, InsnIndex; |
| |
| // We maintain BIT_WIDTH copies of the bitAttrs automaton. |
| // The automaton consumes the corresponding bit from each |
| // instruction. |
| // |
| // Input symbols: 0, 1, and _ (unset). |
| // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED. |
| // Initial state: NONE. |
| // |
| // (NONE) ------- [01] -> (ALL_SET) |
| // (NONE) ------- _ ----> (ALL_UNSET) |
| // (ALL_SET) ---- [01] -> (ALL_SET) |
| // (ALL_SET) ---- _ ----> (MIXED) |
| // (ALL_UNSET) -- [01] -> (MIXED) |
| // (ALL_UNSET) -- _ ----> (ALL_UNSET) |
| // (MIXED) ------ . ----> (MIXED) |
| // (FILTERED)---- . ----> (FILTERED) |
| |
| std::vector<bitAttr_t> bitAttrs; |
| |
| // FILTERED bit positions provide no entropy and are not worthy of pursuing. |
| // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position. |
| for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) |
| if (FilterBitValues[BitIndex] == BIT_TRUE || |
| FilterBitValues[BitIndex] == BIT_FALSE) |
| bitAttrs.push_back(ATTR_FILTERED); |
| else |
| bitAttrs.push_back(ATTR_NONE); |
| |
| for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) { |
| insn_t insn; |
| |
| insnWithID(insn, Opcodes[InsnIndex]); |
| |
| for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) { |
| switch (bitAttrs[BitIndex]) { |
| case ATTR_NONE: |
| if (insn[BitIndex] == BIT_UNSET) |
| bitAttrs[BitIndex] = ATTR_ALL_UNSET; |
| else |
| bitAttrs[BitIndex] = ATTR_ALL_SET; |
| break; |
| case ATTR_ALL_SET: |
| if (insn[BitIndex] == BIT_UNSET) |
| bitAttrs[BitIndex] = ATTR_MIXED; |
| break; |
| case ATTR_ALL_UNSET: |
| if (insn[BitIndex] != BIT_UNSET) |
| bitAttrs[BitIndex] = ATTR_MIXED; |
| break; |
| case ATTR_MIXED: |
| case ATTR_FILTERED: |
| break; |
| } |
| } |
| } |
| |
| // The regionAttr automaton consumes the bitAttrs automatons' state, |
| // lowest-to-highest. |
| // |
| // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed) |
| // States: NONE, ALL_SET, MIXED |
| // Initial state: NONE |
| // |
| // (NONE) ----- F --> (NONE) |
| // (NONE) ----- S --> (ALL_SET) ; and set region start |
| // (NONE) ----- U --> (NONE) |
| // (NONE) ----- M --> (MIXED) ; and set region start |
| // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region |
| // (ALL_SET) -- S --> (ALL_SET) |
| // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region |
| // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region |
| // (MIXED) ---- F --> (NONE) ; and report a MIXED region |
| // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region |
| // (MIXED) ---- U --> (NONE) ; and report a MIXED region |
| // (MIXED) ---- M --> (MIXED) |
| |
| bitAttr_t RA = ATTR_NONE; |
| unsigned StartBit = 0; |
| |
| for (BitIndex = 0; BitIndex < BitWidth; BitIndex++) { |
| bitAttr_t bitAttr = bitAttrs[BitIndex]; |
| |
| assert(bitAttr != ATTR_NONE && "Bit without attributes"); |
| |
| switch (RA) { |
| case ATTR_NONE: |
| switch (bitAttr) { |
| case ATTR_FILTERED: |
| break; |
| case ATTR_ALL_SET: |
| StartBit = BitIndex; |
| RA = ATTR_ALL_SET; |
| break; |
| case ATTR_ALL_UNSET: |
| break; |
| case ATTR_MIXED: |
| StartBit = BitIndex; |
| RA = ATTR_MIXED; |
| break; |
| default: |
| assert(0 && "Unexpected bitAttr!"); |
| } |
| break; |
| case ATTR_ALL_SET: |
| switch (bitAttr) { |
| case ATTR_FILTERED: |
| reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| RA = ATTR_NONE; |
| break; |
| case ATTR_ALL_SET: |
| break; |
| case ATTR_ALL_UNSET: |
| reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| RA = ATTR_NONE; |
| break; |
| case ATTR_MIXED: |
| reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| StartBit = BitIndex; |
| RA = ATTR_MIXED; |
| break; |
| default: |
| assert(0 && "Unexpected bitAttr!"); |
| } |
| break; |
| case ATTR_MIXED: |
| switch (bitAttr) { |
| case ATTR_FILTERED: |
| reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| StartBit = BitIndex; |
| RA = ATTR_NONE; |
| break; |
| case ATTR_ALL_SET: |
| reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| StartBit = BitIndex; |
| RA = ATTR_ALL_SET; |
| break; |
| case ATTR_ALL_UNSET: |
| reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| RA = ATTR_NONE; |
| break; |
| case ATTR_MIXED: |
| break; |
| default: |
| assert(0 && "Unexpected bitAttr!"); |
| } |
| break; |
| case ATTR_ALL_UNSET: |
| assert(0 && "regionAttr state machine has no ATTR_UNSET state"); |
| case ATTR_FILTERED: |
| assert(0 && "regionAttr state machine has no ATTR_FILTERED state"); |
| } |
| } |
| |
| // At the end, if we're still in ALL_SET or MIXED states, report a region |
| switch (RA) { |
| case ATTR_NONE: |
| break; |
| case ATTR_FILTERED: |
| break; |
| case ATTR_ALL_SET: |
| reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| break; |
| case ATTR_ALL_UNSET: |
| break; |
| case ATTR_MIXED: |
| reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| break; |
| } |
| |
| // We have finished with the filter processings. Now it's time to choose |
| // the best performing filter. |
| BestIndex = 0; |
| bool AllUseless = true; |
| unsigned BestScore = 0; |
| |
| for (unsigned i = 0, e = Filters.size(); i != e; ++i) { |
| unsigned Usefulness = Filters[i].usefulness(); |
| |
| if (Usefulness) |
| AllUseless = false; |
| |
| if (Usefulness > BestScore) { |
| BestIndex = i; |
| BestScore = Usefulness; |
| } |
| } |
| |
| if (!AllUseless) |
| bestFilter().recurse(); |
| |
| return !AllUseless; |
| } // end of FilterChooser::filterProcessor(bool) |
| |
| // Decides on the best configuration of filter(s) to use in order to decode |
| // the instructions. A conflict of instructions may occur, in which case we |
| // dump the conflict set to the standard error. |
| void FilterChooser::doFilter() { |
| unsigned Num = Opcodes.size(); |
| assert(Num && "FilterChooser created with no instructions"); |
| |
| // Try regions of consecutive known bit values first. |
| if (filterProcessor(false)) |
| return; |
| |
| // Then regions of mixed bits (both known and unitialized bit values allowed). |
| if (filterProcessor(true)) |
| return; |
| |
| // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where |
| // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a |
| // well-known encoding pattern. In such case, we backtrack and scan for the |
| // the very first consecutive ATTR_ALL_SET region and assign a filter to it. |
| if (Num == 3 && filterProcessor(true, false)) |
| return; |
| |
| // If we come to here, the instruction decoding has failed. |
| // Set the BestIndex to -1 to indicate so. |
| BestIndex = -1; |
| } |
| |
| // Emits code to decode our share of instructions. Returns true if the |
| // emitted code causes a return, which occurs if we know how to decode |
| // the instruction at this level or the instruction is not decodeable. |
| bool FilterChooser::emit(raw_ostream &o, unsigned &Indentation) { |
| if (Opcodes.size() == 1) |
| // There is only one instruction in the set, which is great! |
| // Call emitSingletonDecoder() to see whether there are any remaining |
| // encodings bits. |
| return emitSingletonDecoder(o, Indentation, Opcodes[0]); |
| |
| // Choose the best filter to do the decodings! |
| if (BestIndex != -1) { |
| Filter &Best = bestFilter(); |
| if (Best.getNumFiltered() == 1) |
| emitSingletonDecoder(o, Indentation, Best); |
| else |
| bestFilter().emit(o, Indentation); |
| return false; |
| } |
| |
| // We don't know how to decode these instructions! Return 0 and dump the |
| // conflict set! |
| o.indent(Indentation) << "return 0;" << " // Conflict set: "; |
| for (int i = 0, N = Opcodes.size(); i < N; ++i) { |
| o << nameWithID(Opcodes[i]); |
| if (i < (N - 1)) |
| o << ", "; |
| else |
| o << '\n'; |
| } |
| |
| // Print out useful conflict information for postmortem analysis. |
| errs() << "Decoding Conflict:\n"; |
| |
| dumpStack(errs(), "\t\t"); |
| |
| for (unsigned i = 0; i < Opcodes.size(); i++) { |
| const std::string &Name = nameWithID(Opcodes[i]); |
| |
| errs() << '\t' << Name << " "; |
| dumpBits(errs(), |
| getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst")); |
| errs() << '\n'; |
| } |
| |
| return true; |
| } |
| |
| static bool populateInstruction(const CodeGenInstruction &CGI, |
| unsigned Opc, |
| std::map<unsigned, std::vector<OperandInfo> >& Operands){ |
| const Record &Def = *CGI.TheDef; |
| // If all the bit positions are not specified; do not decode this instruction. |
| // We are bound to fail! For proper disassembly, the well-known encoding bits |
| // of the instruction must be fully specified. |
| // |
| // This also removes pseudo instructions from considerations of disassembly, |
| // which is a better design and less fragile than the name matchings. |
| // Ignore "asm parser only" instructions. |
| if (Def.getValueAsBit("isAsmParserOnly") || |
| Def.getValueAsBit("isCodeGenOnly")) |
| return false; |
| |
| BitsInit &Bits = getBitsField(Def, "Inst"); |
| if (Bits.allInComplete()) return false; |
| |
| std::vector<OperandInfo> InsnOperands; |
| |
| // If the instruction has specified a custom decoding hook, use that instead |
| // of trying to auto-generate the decoder. |
| std::string InstDecoder = Def.getValueAsString("DecoderMethod"); |
| if (InstDecoder != "") { |
| InsnOperands.push_back(OperandInfo(InstDecoder)); |
| Operands[Opc] = InsnOperands; |
| return true; |
| } |
| |
| // Generate a description of the operand of the instruction that we know |
| // how to decode automatically. |
| // FIXME: We'll need to have a way to manually override this as needed. |
| |
| // Gather the outputs/inputs of the instruction, so we can find their |
| // positions in the encoding. This assumes for now that they appear in the |
| // MCInst in the order that they're listed. |
| std::vector<std::pair<Init*, std::string> > InOutOperands; |
| DagInit *Out = Def.getValueAsDag("OutOperandList"); |
| DagInit *In = Def.getValueAsDag("InOperandList"); |
| for (unsigned i = 0; i < Out->getNumArgs(); ++i) |
| InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i))); |
| for (unsigned i = 0; i < In->getNumArgs(); ++i) |
| InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i))); |
| |
| // Search for tied operands, so that we can correctly instantiate |
| // operands that are not explicitly represented in the encoding. |
| std::map<std::string, std::string> TiedNames; |
| for (unsigned i = 0; i < CGI.Operands.size(); ++i) { |
| int tiedTo = CGI.Operands[i].getTiedRegister(); |
| if (tiedTo != -1) { |
| TiedNames[InOutOperands[i].second] = InOutOperands[tiedTo].second; |
| TiedNames[InOutOperands[tiedTo].second] = InOutOperands[i].second; |
| } |
| } |
| |
| // For each operand, see if we can figure out where it is encoded. |
| for (std::vector<std::pair<Init*, std::string> >::iterator |
| NI = InOutOperands.begin(), NE = InOutOperands.end(); NI != NE; ++NI) { |
| std::string Decoder = ""; |
| |
| // At this point, we can locate the field, but we need to know how to |
| // interpret it. As a first step, require the target to provide callbacks |
| // for decoding register classes. |
| // FIXME: This need to be extended to handle instructions with custom |
| // decoder methods, and operands with (simple) MIOperandInfo's. |
| TypedInit *TI = dynamic_cast<TypedInit*>(NI->first); |
| RecordRecTy *Type = dynamic_cast<RecordRecTy*>(TI->getType()); |
| Record *TypeRecord = Type->getRecord(); |
| bool isReg = false; |
| if (TypeRecord->isSubClassOf("RegisterOperand")) |
| TypeRecord = TypeRecord->getValueAsDef("RegClass"); |
| if (TypeRecord->isSubClassOf("RegisterClass")) { |
| Decoder = "Decode" + TypeRecord->getName() + "RegisterClass"; |
| isReg = true; |
| } |
| |
| RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod"); |
| StringInit *String = DecoderString ? |
| dynamic_cast<StringInit*>(DecoderString->getValue()) : 0; |
| if (!isReg && String && String->getValue() != "") |
| Decoder = String->getValue(); |
| |
| OperandInfo OpInfo(Decoder); |
| unsigned Base = ~0U; |
| unsigned Width = 0; |
| unsigned Offset = 0; |
| |
| for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) { |
| VarInit *Var = 0; |
| VarBitInit *BI = dynamic_cast<VarBitInit*>(Bits.getBit(bi)); |
| if (BI) |
| Var = dynamic_cast<VarInit*>(BI->getVariable()); |
| else |
| Var = dynamic_cast<VarInit*>(Bits.getBit(bi)); |
| |
| if (!Var) { |
| if (Base != ~0U) { |
| OpInfo.addField(Base, Width, Offset); |
| Base = ~0U; |
| Width = 0; |
| Offset = 0; |
| } |
| continue; |
| } |
| |
| if (Var->getName() != NI->second && |
| Var->getName() != TiedNames[NI->second]) { |
| if (Base != ~0U) { |
| OpInfo.addField(Base, Width, Offset); |
| Base = ~0U; |
| Width = 0; |
| Offset = 0; |
| } |
| continue; |
| } |
| |
| if (Base == ~0U) { |
| Base = bi; |
| Width = 1; |
| Offset = BI ? BI->getBitNum() : 0; |
| } else if (BI && BI->getBitNum() != Offset + Width) { |
| OpInfo.addField(Base, Width, Offset); |
| Base = bi; |
| Width = 1; |
| Offset = BI->getBitNum(); |
| } else { |
| ++Width; |
| } |
| } |
| |
| if (Base != ~0U) |
| OpInfo.addField(Base, Width, Offset); |
| |
| if (OpInfo.numFields() > 0) |
| InsnOperands.push_back(OpInfo); |
| } |
| |
| Operands[Opc] = InsnOperands; |
| |
| |
| #if 0 |
| DEBUG({ |
| // Dumps the instruction encoding bits. |
| dumpBits(errs(), Bits); |
| |
| errs() << '\n'; |
| |
| // Dumps the list of operand info. |
| for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) { |
| const CGIOperandList::OperandInfo &Info = CGI.Operands[i]; |
| const std::string &OperandName = Info.Name; |
| const Record &OperandDef = *Info.Rec; |
| |
| errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n"; |
| } |
| }); |
| #endif |
| |
| return true; |
| } |
| |
| static void emitHelper(llvm::raw_ostream &o, unsigned BitWidth) { |
| unsigned Indentation = 0; |
| std::string WidthStr = "uint" + utostr(BitWidth) + "_t"; |
| |
| o << '\n'; |
| |
| o.indent(Indentation) << "static " << WidthStr << |
| " fieldFromInstruction" << BitWidth << |
| "(" << WidthStr <<" insn, unsigned startBit, unsigned numBits)\n"; |
| |
| o.indent(Indentation) << "{\n"; |
| |
| ++Indentation; ++Indentation; |
| o.indent(Indentation) << "assert(startBit + numBits <= " << BitWidth |
| << " && \"Instruction field out of bounds!\");\n"; |
| o << '\n'; |
| o.indent(Indentation) << WidthStr << " fieldMask;\n"; |
| o << '\n'; |
| o.indent(Indentation) << "if (numBits == " << BitWidth << ")\n"; |
| |
| ++Indentation; ++Indentation; |
| o.indent(Indentation) << "fieldMask = (" << WidthStr << ")-1;\n"; |
| --Indentation; --Indentation; |
| |
| o.indent(Indentation) << "else\n"; |
| |
| ++Indentation; ++Indentation; |
| o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n"; |
| --Indentation; --Indentation; |
| |
| o << '\n'; |
| o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n"; |
| --Indentation; --Indentation; |
| |
| o.indent(Indentation) << "}\n"; |
| |
| o << '\n'; |
| } |
| |
| // Emits disassembler code for instruction decoding. |
| void FixedLenDecoderEmitter::run(raw_ostream &o) |
| { |
| o << "#include \"llvm/MC/MCInst.h\"\n"; |
| o << "#include \"llvm/Support/DataTypes.h\"\n"; |
| o << "#include <assert.h>\n"; |
| o << '\n'; |
| o << "namespace llvm {\n\n"; |
| |
| // Parameterize the decoders based on namespace and instruction width. |
| NumberedInstructions = Target.getInstructionsByEnumValue(); |
| std::map<std::pair<std::string, unsigned>, |
| std::vector<unsigned> > OpcMap; |
| std::map<unsigned, std::vector<OperandInfo> > Operands; |
| |
| for (unsigned i = 0; i < NumberedInstructions.size(); ++i) { |
| const CodeGenInstruction *Inst = NumberedInstructions[i]; |
| Record *Def = Inst->TheDef; |
| unsigned Size = Def->getValueAsInt("Size"); |
| if (Def->getValueAsString("Namespace") == "TargetOpcode" || |
| Def->getValueAsBit("isPseudo") || |
| Def->getValueAsBit("isAsmParserOnly") || |
| Def->getValueAsBit("isCodeGenOnly")) |
| continue; |
| |
| std::string DecoderNamespace = Def->getValueAsString("DecoderNamespace"); |
| |
| if (Size) { |
| if (populateInstruction(*Inst, i, Operands)) { |
| OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i); |
| } |
| } |
| } |
| |
| std::set<unsigned> Sizes; |
| for (std::map<std::pair<std::string, unsigned>, |
| std::vector<unsigned> >::iterator |
| I = OpcMap.begin(), E = OpcMap.end(); I != E; ++I) { |
| // If we haven't visited this instruction width before, emit the |
| // helper method to extract fields. |
| if (!Sizes.count(I->first.second)) { |
| emitHelper(o, 8*I->first.second); |
| Sizes.insert(I->first.second); |
| } |
| |
| // Emit the decoder for this namespace+width combination. |
| FilterChooser FC(NumberedInstructions, I->second, Operands, |
| 8*I->first.second, this); |
| FC.emitTop(o, 0, I->first.first); |
| } |
| |
| o << "\n} // End llvm namespace \n"; |
| } |