blob: d031146523c0eddd04167bd7a7636008fa6fad1c [file] [log] [blame]
//===- subzero/src/IceTimerTree.cpp - Pass timer defs ---------------------===//
//
// The Subzero Code Generator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Defines the TimerTree class, which tracks flat and cumulative
/// execution time collection of call chains.
///
//===----------------------------------------------------------------------===//
#include "IceTimerTree.h"
#include "IceDefs.h"
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunused-parameter"
#endif // __clang__
#include "llvm/Support/Format.h"
#include "llvm/Support/Timer.h"
#ifdef __clang__
#pragma clang diagnostic pop
#endif // __clang__
namespace Ice {
TimerStack::TimerStack(const std::string &Name)
: Name(Name), FirstTimestamp(timestamp()), LastTimestamp(FirstTimestamp) {
if (!BuildDefs::timers())
return;
Nodes.resize(1); // Reserve Nodes[0] for the root node (sentinel).
IDs.resize(TT__num);
LeafTimes.resize(TT__num);
LeafCounts.resize(TT__num);
#define STR(s) #s
#define X(tag) \
IDs[TT_##tag] = STR(tag); \
IDsIndex[STR(tag)] = TT_##tag;
TIMERTREE_TABLE;
#undef X
#undef STR
}
// Returns the unique timer ID for the given Name, creating a new ID if needed.
TimerIdT TimerStack::getTimerID(const std::string &Name) {
if (!BuildDefs::timers())
return 0;
if (IDsIndex.find(Name) == IDsIndex.end()) {
IDsIndex[Name] = IDs.size();
IDs.push_back(Name);
LeafTimes.push_back(decltype(LeafTimes)::value_type());
LeafCounts.push_back(decltype(LeafCounts)::value_type());
}
return IDsIndex[Name];
}
// Creates a mapping from TimerIdT (leaf) values in the Src timer stack into
// TimerIdT values in this timer stack. Creates new entries in this timer stack
// as needed.
TimerStack::TranslationType
TimerStack::translateIDsFrom(const TimerStack &Src) {
size_t Size = Src.IDs.size();
TranslationType Mapping(Size);
for (TimerIdT i = 0; i < Size; ++i) {
Mapping[i] = getTimerID(Src.IDs[i]);
}
return Mapping;
}
// Merges two timer stacks, by combining and summing corresponding entries.
// This timer stack is updated from Src.
void TimerStack::mergeFrom(const TimerStack &Src) {
if (!BuildDefs::timers())
return;
TranslationType Mapping = translateIDsFrom(Src);
TTindex SrcIndex = 0;
for (const TimerTreeNode &SrcNode : Src.Nodes) {
// The first node is reserved as a sentinel, so avoid it.
if (SrcIndex > 0) {
// Find the full path to the Src node, translated to path components
// corresponding to this timer stack.
PathType MyPath = Src.getPath(SrcIndex, Mapping);
// Find a node in this timer stack corresponding to the given path,
// creating new interior nodes as necessary.
TTindex MyIndex = findPath(MyPath);
Nodes[MyIndex].Time += SrcNode.Time;
Nodes[MyIndex].UpdateCount += SrcNode.UpdateCount;
}
++SrcIndex;
}
for (TimerIdT i = 0; i < Src.LeafTimes.size(); ++i) {
LeafTimes[Mapping[i]] += Src.LeafTimes[i];
LeafCounts[Mapping[i]] += Src.LeafCounts[i];
}
StateChangeCount += Src.StateChangeCount;
}
// Constructs a path consisting of the sequence of leaf values leading to a
// given node, with the Mapping translation applied to the leaf values. The
// path ends up being in "reverse" order, i.e. from leaf to root.
TimerStack::PathType TimerStack::getPath(TTindex Index,
const TranslationType &Mapping) const {
PathType Path;
while (Index) {
Path.push_back(Mapping[Nodes[Index].Interior]);
assert(Nodes[Index].Parent < Index);
Index = Nodes[Index].Parent;
}
return Path;
}
// Given a parent node and a leaf ID, returns the index of the parent's child
// ID, creating a new node for the child as necessary.
TimerStack::TTindex TimerStack::getChildIndex(TimerStack::TTindex Parent,
TimerIdT ID) {
if (Nodes[Parent].Children.size() <= ID)
Nodes[Parent].Children.resize(ID + 1);
if (Nodes[Parent].Children[ID] == 0) {
TTindex Size = Nodes.size();
Nodes[Parent].Children[ID] = Size;
Nodes.resize(Size + 1);
Nodes[Size].Parent = Parent;
Nodes[Size].Interior = ID;
}
return Nodes[Parent].Children[ID];
}
// Finds a node in the timer stack corresponding to the given path, creating
// new interior nodes as necessary.
TimerStack::TTindex TimerStack::findPath(const PathType &Path) {
TTindex CurIndex = 0;
// The path is in reverse order (leaf to root), so it needs to be followed in
// reverse.
for (TTindex Index : reverse_range(Path)) {
CurIndex = getChildIndex(CurIndex, Index);
}
assert(CurIndex); // shouldn't be the sentinel node
return CurIndex;
}
// Pushes a new marker onto the timer stack.
void TimerStack::push(TimerIdT ID) {
if (!BuildDefs::timers())
return;
constexpr bool UpdateCounts = false;
update(UpdateCounts);
StackTop = getChildIndex(StackTop, ID);
assert(StackTop);
}
// Pops the top marker from the timer stack. Validates via assert() that the
// expected marker is popped.
void TimerStack::pop(TimerIdT ID) {
if (!BuildDefs::timers())
return;
constexpr bool UpdateCounts = true;
update(UpdateCounts);
assert(StackTop);
assert(Nodes[StackTop].Parent < StackTop);
// Verify that the expected ID is being popped.
assert(Nodes[StackTop].Interior == ID);
(void)ID;
// Verify that the parent's child points to the current stack top.
assert(Nodes[Nodes[StackTop].Parent].Children[ID] == StackTop);
StackTop = Nodes[StackTop].Parent;
}
// At a state change (e.g. push or pop), updates the flat and cumulative
// timings for everything on the timer stack.
void TimerStack::update(bool UpdateCounts) {
if (!BuildDefs::timers())
return;
++StateChangeCount;
// Whenever the stack is about to change, we grab the time delta since the
// last change and add it to all active cumulative elements and to the flat
// element for the top of the stack.
double Current = timestamp();
double Delta = Current - LastTimestamp;
if (StackTop) {
TimerIdT Leaf = Nodes[StackTop].Interior;
if (Leaf >= LeafTimes.size()) {
LeafTimes.resize(Leaf + 1);
LeafCounts.resize(Leaf + 1);
}
LeafTimes[Leaf] += Delta;
if (UpdateCounts)
++LeafCounts[Leaf];
}
TTindex Prefix = StackTop;
while (Prefix) {
Nodes[Prefix].Time += Delta;
// Only update a leaf node count, not the internal node counts.
if (UpdateCounts && Prefix == StackTop)
++Nodes[Prefix].UpdateCount;
TTindex Next = Nodes[Prefix].Parent;
assert(Next < Prefix);
Prefix = Next;
}
// Capture the next timestamp *after* the updates are finished. This
// minimizes how much the timer can perturb the reported timing. The numbers
// may not sum to 100%, and the missing amount is indicative of the overhead
// of timing.
LastTimestamp = timestamp();
}
void TimerStack::reset() {
if (!BuildDefs::timers())
return;
StateChangeCount = 0;
FirstTimestamp = LastTimestamp = timestamp();
LeafTimes.assign(LeafTimes.size(), 0);
LeafCounts.assign(LeafCounts.size(), 0);
for (TimerTreeNode &Node : Nodes) {
Node.Time = 0;
Node.UpdateCount = 0;
}
}
namespace {
using DumpMapType = std::multimap<double, std::string>;
// Dump the Map items in reverse order of their time contribution. If
// AddPercents is true (i.e. for printing "flat times"), it also prints a
// cumulative percentage column, and recalculates TotalTime as the sum of all
// the individual times so that cumulative percentage adds up to 100%.
void dumpHelper(Ostream &Str, const DumpMapType &Map, double TotalTime,
bool AddPercents) {
if (!BuildDefs::timers())
return;
if (AddPercents) {
// Recalculate TotalTime as the sum of the individual times. This is
// because the individual times generally add up to less than 100% because
// of timer overhead.
TotalTime = 0;
for (const auto &I : Map) {
TotalTime += I.first;
}
}
double Sum = 0;
for (const auto &I : reverse_range(Map)) {
Sum += I.first;
if (AddPercents) {
Str << llvm::format(" %10.6f %4.1f%% %5.1f%% ", I.first,
I.first * 100 / TotalTime, Sum * 100 / TotalTime)
<< I.second << "\n";
} else {
Str << llvm::format(" %10.6f %4.1f%% ", I.first,
I.first * 100 / TotalTime)
<< I.second << "\n";
}
}
}
} // end of anonymous namespace
void TimerStack::dump(Ostream &Str, bool DumpCumulative) {
if (!BuildDefs::timers())
return;
constexpr bool UpdateCounts = true;
update(UpdateCounts);
double TotalTime = LastTimestamp - FirstTimestamp;
assert(TotalTime);
char PrefixStr[30];
if (DumpCumulative) {
Str << Name
<< " - Cumulative times:\n"
" Seconds Pct EventCnt TimerPath\n";
DumpMapType CumulativeMap;
for (TTindex i = 1; i < Nodes.size(); ++i) {
TTindex Prefix = i;
std::string Suffix = "";
while (Prefix) {
if (Suffix.empty())
Suffix = IDs[Nodes[Prefix].Interior];
else
Suffix = IDs[Nodes[Prefix].Interior] + "." + Suffix;
assert(Nodes[Prefix].Parent < Prefix);
Prefix = Nodes[Prefix].Parent;
}
snprintf(PrefixStr, llvm::array_lengthof(PrefixStr), "%9zu ",
Nodes[i].UpdateCount);
CumulativeMap.insert(std::make_pair(Nodes[i].Time, PrefixStr + Suffix));
}
constexpr bool NoAddPercents = false;
dumpHelper(Str, CumulativeMap, TotalTime, NoAddPercents);
}
Str << Name
<< " - Flat times:\n"
" Seconds Pct CumPct EventCnt TimerName\n";
DumpMapType FlatMap;
for (TimerIdT i = 0; i < LeafTimes.size(); ++i) {
if (LeafCounts[i]) {
snprintf(PrefixStr, llvm::array_lengthof(PrefixStr), "%9zu ",
LeafCounts[i]);
FlatMap.insert(std::make_pair(LeafTimes[i], PrefixStr + IDs[i]));
}
}
constexpr bool AddPercents = true;
dumpHelper(Str, FlatMap, TotalTime, AddPercents);
Str << "Number of timer updates: " << StateChangeCount << "\n";
}
double TimerStack::timestamp() {
// TODO: Implement in terms of std::chrono for C++11.
return llvm::TimeRecord::getCurrentTime(false).getWallTime();
}
} // end of namespace Ice