blob: 4887cfd964b900afdd099cc2663e5c7bfd58d825 [file] [log] [blame]
//===- subzero/src/IceInst.cpp - High-level instruction implementation ----===//
//
// The Subzero Code Generator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Implements the Inst class, primarily the various subclass
/// constructors and dump routines.
///
//===----------------------------------------------------------------------===//
#include "IceInst.h"
#include "IceCfg.h"
#include "IceCfgNode.h"
#include "IceInstVarIter.h"
#include "IceLiveness.h"
#include "IceOperand.h"
#include "IceTargetLowering.h"
#include "llvm/Support/Format.h"
namespace Ice {
namespace {
// Using non-anonymous struct so that array_lengthof works.
const struct InstArithmeticAttributes_ {
const char *DisplayString;
bool IsCommutative;
} InstArithmeticAttributes[] = {
#define X(tag, str, commutative) {str, commutative},
ICEINSTARITHMETIC_TABLE
#undef X
};
// Using non-anonymous struct so that array_lengthof works.
const struct InstCastAttributes_ {
const char *DisplayString;
} InstCastAttributes[] = {
#define X(tag, str) {str},
ICEINSTCAST_TABLE
#undef X
};
// Using non-anonymous struct so that array_lengthof works.
const struct InstFcmpAttributes_ {
const char *DisplayString;
} InstFcmpAttributes[] = {
#define X(tag, str) {str},
ICEINSTFCMP_TABLE
#undef X
};
// Using non-anonymous struct so that array_lengthof works.
const struct InstIcmpAttributes_ {
const char *DisplayString;
InstIcmp::ICond Reverse;
} InstIcmpAttributes[] = {
#define X(tag, reverse, str) {str, InstIcmp::ICond::reverse},
ICEINSTICMP_TABLE
#undef X
};
} // end of anonymous namespace
Inst::Inst(Cfg *Func, InstKind Kind, SizeT MaxSrcs, Variable *Dest)
: Kind(Kind), Number(Func->newInstNumber()), Dest(Dest), MaxSrcs(MaxSrcs),
LiveRangesEnded(0) {
Srcs.reserve(MaxSrcs);
}
const char *Inst::getInstName() const {
if (!BuildDefs::dump())
return "???";
switch (Kind) {
#define X(InstrKind, name) \
case InstrKind: \
return name
X(Unreachable, "unreachable");
X(Alloca, "alloca");
X(Arithmetic, "arithmetic");
X(Br, "br");
X(Call, "call");
X(Cast, "cast");
X(ExtractElement, "extractelement");
X(Fcmp, "fcmp");
X(Icmp, "icmp");
X(Intrinsic, "intrinsic");
X(InsertElement, "insertelement");
X(Load, "load");
X(Phi, "phi");
X(Ret, "ret");
X(Select, "select");
X(Store, "store");
X(Switch, "switch");
X(Assign, "assign");
X(Breakpoint, "break");
X(FakeDef, "fakedef");
X(FakeUse, "fakeuse");
X(FakeKill, "fakekill");
X(JumpTable, "jumptable");
X(ShuffleVector, "shufflevector");
#undef X
default:
assert(Kind >= Target);
return "target";
}
}
// Assign the instruction a new number.
void Inst::renumber(Cfg *Func) {
Number = isDeleted() ? NumberDeleted : Func->newInstNumber();
}
// Delete the instruction if its tentative Dead flag is still set after
// liveness analysis.
void Inst::deleteIfDead() {
if (Dead)
setDeleted();
}
// If Src is a Variable, it returns true if this instruction ends Src's live
// range. Otherwise, returns false.
bool Inst::isLastUse(const Operand *TestSrc) const {
if (LiveRangesEnded == 0)
return false; // early-exit optimization
if (auto *TestVar = llvm::dyn_cast<const Variable>(TestSrc)) {
LREndedBits Mask = LiveRangesEnded;
FOREACH_VAR_IN_INST(Var, *this) {
if (Var == TestVar) {
// We've found where the variable is used in the instruction.
return Mask & 1;
}
Mask >>= 1;
if (Mask == 0)
return false; // another early-exit optimization
}
}
return false;
}
// Given an instruction like:
// a = b + c + [x,y] + e
// which was created from OrigInst:
// a = b + c + d + e
// with SpliceAssn spliced in:
// d = [x,y]
//
// Reconstruct the LiveRangesEnded bitmask in this instruction by combining the
// LiveRangesEnded values of OrigInst and SpliceAssn. If operands d and [x,y]
// contain a different number of variables, then the bitmask position for e may
// be different in OrigInst and the current instruction, requiring extra shifts
// and masks in the computation. In the example above, OrigInst has variable e
// in bit position 3, whereas the current instruction has e in bit position 4
// because [x,y] consumes 2 bitmask slots while d only consumed 1.
//
// Additionally, set HasSideEffects if either OrigInst or SpliceAssn have
// HasSideEffects set.
void Inst::spliceLivenessInfo(Inst *OrigInst, Inst *SpliceAssn) {
HasSideEffects |= OrigInst->HasSideEffects;
HasSideEffects |= SpliceAssn->HasSideEffects;
// Find the bitmask index of SpliceAssn's dest within OrigInst.
Variable *SpliceDest = SpliceAssn->getDest();
SizeT Index = 0;
for (SizeT I = 0; I < OrigInst->getSrcSize(); ++I) {
Operand *Src = OrigInst->getSrc(I);
if (Src == SpliceDest) {
LREndedBits LeftMask = OrigInst->LiveRangesEnded & ((1 << Index) - 1);
LREndedBits RightMask = OrigInst->LiveRangesEnded >> (Index + 1);
LiveRangesEnded = LeftMask | (SpliceAssn->LiveRangesEnded << Index) |
(RightMask << (Index + getSrc(I)->getNumVars()));
return;
}
Index += getSrc(I)->getNumVars();
}
llvm::report_fatal_error("Failed to find splice operand");
}
bool Inst::isMemoryWrite() const {
llvm::report_fatal_error("Attempt to call base Inst::isMemoryWrite() method");
}
void Inst::livenessLightweight(Cfg *Func, LivenessBV &Live) {
assert(!isDeleted());
resetLastUses();
VariablesMetadata *VMetadata = Func->getVMetadata();
FOREACH_VAR_IN_INST(Var, *this) {
if (VMetadata->isMultiBlock(Var))
continue;
SizeT Index = Var->getIndex();
if (Live[Index])
continue;
Live[Index] = true;
setLastUse(IndexOfVarInInst(Var));
}
}
bool Inst::liveness(InstNumberT InstNumber, LivenessBV &Live,
Liveness *Liveness, LiveBeginEndMap *LiveBegin,
LiveBeginEndMap *LiveEnd) {
assert(!isDeleted());
Dead = false;
if (Dest && !Dest->isRematerializable()) {
SizeT VarNum = Liveness->getLiveIndex(Dest->getIndex());
if (Live[VarNum]) {
if (!isDestRedefined()) {
Live[VarNum] = false;
if (LiveBegin && Liveness->getRangeMask(Dest->getIndex())) {
LiveBegin->push_back(std::make_pair(VarNum, InstNumber));
}
}
} else {
if (!hasSideEffects())
Dead = true;
}
}
if (Dead)
return false;
// Phi arguments only get added to Live in the predecessor node, but we still
// need to update LiveRangesEnded.
bool IsPhi = llvm::isa<InstPhi>(this);
resetLastUses();
FOREACH_VAR_IN_INST(Var, *this) {
if (Var->isRematerializable())
continue;
SizeT VarNum = Liveness->getLiveIndex(Var->getIndex());
if (!Live[VarNum]) {
setLastUse(IndexOfVarInInst(Var));
if (!IsPhi) {
Live[VarNum] = true;
// For a variable in SSA form, its live range can end at most once in a
// basic block. However, after lowering to two-address instructions, we
// end up with sequences like "t=b;t+=c;a=t" where t's live range
// begins and ends twice. ICE only allows a variable to have a single
// liveness interval in a basic block (except for blocks where a
// variable is live-in and live-out but there is a gap in the middle).
// Therefore, this lowered sequence needs to represent a single
// conservative live range for t. Since the instructions are being
// traversed backwards, we make sure LiveEnd is only set once by
// setting it only when LiveEnd[VarNum]==0 (sentinel value). Note that
// it's OK to set LiveBegin multiple times because of the backwards
// traversal.
if (LiveEnd && Liveness->getRangeMask(Var->getIndex())) {
// Ideally, we would verify that VarNum wasn't already added in this
// block, but this can't be done very efficiently with LiveEnd as a
// vector. Instead, livenessPostprocess() verifies this after the
// vector has been sorted.
LiveEnd->push_back(std::make_pair(VarNum, InstNumber));
}
}
}
}
return true;
}
InstAlloca::InstAlloca(Cfg *Func, Variable *Dest, Operand *ByteCount,
uint32_t AlignInBytes)
: InstHighLevel(Func, Inst::Alloca, 1, Dest), AlignInBytes(AlignInBytes) {
// Verify AlignInBytes is 0 or a power of 2.
assert(AlignInBytes == 0 || llvm::isPowerOf2_32(AlignInBytes));
addSource(ByteCount);
}
InstArithmetic::InstArithmetic(Cfg *Func, OpKind Op, Variable *Dest,
Operand *Source1, Operand *Source2)
: InstHighLevel(Func, Inst::Arithmetic, 2, Dest), Op(Op) {
addSource(Source1);
addSource(Source2);
}
const char *InstArithmetic::getInstName() const {
if (!BuildDefs::dump())
return "???";
return InstArithmeticAttributes[getOp()].DisplayString;
}
const char *InstArithmetic::getOpName(OpKind Op) {
return Op < InstArithmetic::_num ? InstArithmeticAttributes[Op].DisplayString
: "???";
}
bool InstArithmetic::isCommutative() const {
return InstArithmeticAttributes[getOp()].IsCommutative;
}
InstAssign::InstAssign(Cfg *Func, Variable *Dest, Operand *Source)
: InstHighLevel(Func, Inst::Assign, 1, Dest) {
addSource(Source);
}
bool InstAssign::isVarAssign() const { return llvm::isa<Variable>(getSrc(0)); }
// If TargetTrue==TargetFalse, we turn it into an unconditional branch. This
// ensures that, along with the 'switch' instruction semantics, there is at
// most one edge from one node to another.
InstBr::InstBr(Cfg *Func, Operand *Source, CfgNode *TargetTrue_,
CfgNode *TargetFalse_)
: InstHighLevel(Func, Inst::Br, 1, nullptr), TargetFalse(TargetFalse_),
TargetTrue(TargetTrue_) {
if (auto *Constant = llvm::dyn_cast<ConstantInteger32>(Source)) {
int32_t C32 = Constant->getValue();
if (C32 != 0) {
TargetFalse = TargetTrue;
}
TargetTrue = nullptr; // turn into unconditional version
} else if (TargetTrue == TargetFalse) {
TargetTrue = nullptr; // turn into unconditional version
} else {
addSource(Source);
}
}
InstBr::InstBr(Cfg *Func, CfgNode *Target)
: InstHighLevel(Func, Inst::Br, 0, nullptr), TargetFalse(Target),
TargetTrue(nullptr) {}
NodeList InstBr::getTerminatorEdges() const {
NodeList OutEdges;
OutEdges.reserve(TargetTrue ? 2 : 1);
OutEdges.push_back(TargetFalse);
if (TargetTrue)
OutEdges.push_back(TargetTrue);
return OutEdges;
}
bool InstBr::repointEdges(CfgNode *OldNode, CfgNode *NewNode) {
bool Found = false;
if (TargetFalse == OldNode) {
TargetFalse = NewNode;
Found = true;
}
if (TargetTrue == OldNode) {
TargetTrue = NewNode;
Found = true;
}
return Found;
}
InstCast::InstCast(Cfg *Func, OpKind CastKind, Variable *Dest, Operand *Source)
: InstHighLevel(Func, Inst::Cast, 1, Dest), CastKind(CastKind) {
addSource(Source);
}
InstExtractElement::InstExtractElement(Cfg *Func, Variable *Dest,
Operand *Source1, Operand *Source2)
: InstHighLevel(Func, Inst::ExtractElement, 2, Dest) {
addSource(Source1);
addSource(Source2);
}
InstFcmp::InstFcmp(Cfg *Func, FCond Condition, Variable *Dest, Operand *Source1,
Operand *Source2)
: InstHighLevel(Func, Inst::Fcmp, 2, Dest), Condition(Condition) {
addSource(Source1);
addSource(Source2);
}
InstIcmp::InstIcmp(Cfg *Func, ICond Condition, Variable *Dest, Operand *Source1,
Operand *Source2)
: InstHighLevel(Func, Inst::Icmp, 2, Dest), Condition(Condition) {
addSource(Source1);
addSource(Source2);
}
InstInsertElement::InstInsertElement(Cfg *Func, Variable *Dest,
Operand *Source1, Operand *Source2,
Operand *Source3)
: InstHighLevel(Func, Inst::InsertElement, 3, Dest) {
addSource(Source1);
addSource(Source2);
addSource(Source3);
}
InstLoad::InstLoad(Cfg *Func, Variable *Dest, Operand *SourceAddr)
: InstHighLevel(Func, Inst::Load, 1, Dest) {
addSource(SourceAddr);
}
InstPhi::InstPhi(Cfg *Func, SizeT MaxSrcs, Variable *Dest)
: InstHighLevel(Func, Phi, MaxSrcs, Dest) {
Labels.reserve(MaxSrcs);
}
// TODO: A Switch instruction (and maybe others) can add duplicate edges. We
// may want to de-dup Phis and validate consistency (i.e., the source operands
// are the same for duplicate edges), though it seems the current lowering code
// is OK with this situation.
void InstPhi::addArgument(Operand *Source, CfgNode *Label) {
assert(Label);
Labels.push_back(Label);
addSource(Source);
}
// Find the source operand corresponding to the incoming edge for the given
// node.
Operand *InstPhi::getOperandForTarget(CfgNode *Target) const {
for (SizeT I = 0; I < getSrcSize(); ++I) {
if (Labels[I] == Target)
return getSrc(I);
}
llvm_unreachable("Phi target not found");
return nullptr;
}
// Replace the source operand corresponding to the incoming edge for the given
// node by a zero of the appropriate type.
void InstPhi::clearOperandForTarget(CfgNode *Target) {
for (SizeT I = 0; I < getSrcSize(); ++I) {
if (getLabel(I) == Target) {
Type Ty = Dest->getType();
Srcs[I] = Target->getCfg()->getContext()->getConstantZero(Ty);
return;
}
}
llvm_unreachable("Phi target not found");
}
// Updates liveness for a particular operand based on the given predecessor
// edge. Doesn't mark the operand as live if the Phi instruction is dead or
// deleted.
void InstPhi::livenessPhiOperand(LivenessBV &Live, CfgNode *Target,
Liveness *Liveness) {
if (isDeleted() || Dead)
return;
for (SizeT I = 0; I < getSrcSize(); ++I) {
if (Labels[I] == Target) {
if (auto *Var = llvm::dyn_cast<Variable>(getSrc(I))) {
if (!Var->isRematerializable()) {
SizeT SrcIndex = Liveness->getLiveIndex(Var->getIndex());
if (!Live[SrcIndex]) {
setLastUse(I);
Live[SrcIndex] = true;
}
}
}
return;
}
}
llvm_unreachable("Phi operand not found for specified target node");
}
// Change "a=phi(...)" to "a_phi=phi(...)" and return a new instruction
// "a=a_phi".
Inst *InstPhi::lower(Cfg *Func) {
Variable *Dest = getDest();
assert(Dest);
Variable *NewSrc = Func->makeVariable(Dest->getType());
if (BuildDefs::dump())
NewSrc->setName(Func, Dest->getName() + "_phi");
if (auto *NewSrc64On32 = llvm::dyn_cast<Variable64On32>(NewSrc))
NewSrc64On32->initHiLo(Func);
this->Dest = NewSrc;
return InstAssign::create(Func, Dest, NewSrc);
}
InstRet::InstRet(Cfg *Func, Operand *RetValue)
: InstHighLevel(Func, Ret, RetValue ? 1 : 0, nullptr) {
if (RetValue)
addSource(RetValue);
}
InstSelect::InstSelect(Cfg *Func, Variable *Dest, Operand *Condition,
Operand *SourceTrue, Operand *SourceFalse)
: InstHighLevel(Func, Inst::Select, 3, Dest) {
assert(typeElementType(Condition->getType()) == IceType_i1);
addSource(Condition);
addSource(SourceTrue);
addSource(SourceFalse);
}
InstStore::InstStore(Cfg *Func, Operand *Data, Operand *Addr)
: InstHighLevel(Func, Inst::Store, 3, nullptr) {
addSource(Data);
addSource(Addr);
// The 3rd operand is a dummy placeholder for the RMW beacon.
addSource(Data);
}
Variable *InstStore::getRmwBeacon() const {
return llvm::dyn_cast<Variable>(getSrc(2));
}
void InstStore::setRmwBeacon(Variable *Beacon) {
Dest = llvm::dyn_cast<Variable>(getData());
Srcs[2] = Beacon;
}
InstSwitch::InstSwitch(Cfg *Func, SizeT NumCases, Operand *Source,
CfgNode *LabelDefault)
: InstHighLevel(Func, Inst::Switch, 1, nullptr), LabelDefault(LabelDefault),
NumCases(NumCases) {
addSource(Source);
Values = Func->allocateArrayOf<uint64_t>(NumCases);
Labels = Func->allocateArrayOf<CfgNode *>(NumCases);
// Initialize in case buggy code doesn't set all entries
for (SizeT I = 0; I < NumCases; ++I) {
Values[I] = 0;
Labels[I] = nullptr;
}
}
void InstSwitch::addBranch(SizeT CaseIndex, uint64_t Value, CfgNode *Label) {
assert(CaseIndex < NumCases);
Values[CaseIndex] = Value;
Labels[CaseIndex] = Label;
}
NodeList InstSwitch::getTerminatorEdges() const {
NodeList OutEdges;
OutEdges.reserve(NumCases + 1);
assert(LabelDefault);
OutEdges.push_back(LabelDefault);
for (SizeT I = 0; I < NumCases; ++I) {
assert(Labels[I]);
OutEdges.push_back(Labels[I]);
}
std::sort(OutEdges.begin(), OutEdges.end(),
[](const CfgNode *x, const CfgNode *y) {
return x->getIndex() < y->getIndex();
});
auto Last = std::unique(OutEdges.begin(), OutEdges.end());
OutEdges.erase(Last, OutEdges.end());
return OutEdges;
}
bool InstSwitch::repointEdges(CfgNode *OldNode, CfgNode *NewNode) {
bool Found = false;
if (LabelDefault == OldNode) {
LabelDefault = NewNode;
Found = true;
}
for (SizeT I = 0; I < NumCases; ++I) {
if (Labels[I] == OldNode) {
Labels[I] = NewNode;
Found = true;
}
}
return Found;
}
InstUnreachable::InstUnreachable(Cfg *Func)
: InstHighLevel(Func, Inst::Unreachable, 0, nullptr) {}
InstFakeDef::InstFakeDef(Cfg *Func, Variable *Dest, Variable *Src)
: InstHighLevel(Func, Inst::FakeDef, Src ? 1 : 0, Dest) {
assert(Dest);
if (Src)
addSource(Src);
}
InstFakeUse::InstFakeUse(Cfg *Func, Variable *Src, uint32_t Weight)
: InstHighLevel(Func, Inst::FakeUse, Weight, nullptr) {
assert(Src);
for (uint32_t i = 0; i < Weight; ++i)
addSource(Src);
}
InstFakeKill::InstFakeKill(Cfg *Func, const Inst *Linked)
: InstHighLevel(Func, Inst::FakeKill, 0, nullptr), Linked(Linked) {}
InstShuffleVector::InstShuffleVector(Cfg *Func, Variable *Dest, Operand *Src0,
Operand *Src1)
: InstHighLevel(Func, Inst::ShuffleVector, 2, Dest),
NumIndexes(typeNumElements(Dest->getType())) {
addSource(Src0);
addSource(Src1);
Indexes = Func->allocateArrayOf<ConstantInteger32 *>(NumIndexes);
}
namespace {
GlobalString makeName(Cfg *Func, const SizeT Id) {
const auto FuncName = Func->getFunctionName();
auto *Ctx = Func->getContext();
if (FuncName.hasStdString())
return GlobalString::createWithString(
Ctx, ".L" + FuncName.toString() + "$jumptable$__" + std::to_string(Id));
return GlobalString::createWithString(
Ctx, "$J" + std::to_string(FuncName.getID()) + "_" + std::to_string(Id));
}
} // end of anonymous namespace
InstJumpTable::InstJumpTable(Cfg *Func, SizeT NumTargets, CfgNode *Default)
: InstHighLevel(Func, Inst::JumpTable, 1, nullptr),
Id(Func->getTarget()->makeNextJumpTableNumber()), NumTargets(NumTargets),
Name(makeName(Func, Id)), FuncName(Func->getFunctionName()) {
Targets = Func->allocateArrayOf<CfgNode *>(NumTargets);
for (SizeT I = 0; I < NumTargets; ++I) {
Targets[I] = Default;
}
}
bool InstJumpTable::repointEdges(CfgNode *OldNode, CfgNode *NewNode) {
bool Found = false;
for (SizeT I = 0; I < NumTargets; ++I) {
if (Targets[I] == OldNode) {
Targets[I] = NewNode;
Found = true;
}
}
return Found;
}
JumpTableData InstJumpTable::toJumpTableData(Assembler *Asm) const {
JumpTableData::TargetList TargetList(NumTargets);
for (SizeT i = 0; i < NumTargets; ++i) {
const SizeT Index = Targets[i]->getIndex();
TargetList[i] = Asm->getCfgNodeLabel(Index)->getPosition();
}
return JumpTableData(Name, FuncName, Id, TargetList);
}
Type InstCall::getReturnType() const {
if (Dest == nullptr)
return IceType_void;
return Dest->getType();
}
// ======================== Dump routines ======================== //
void Inst::dumpDecorated(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
if (!Func->isVerbose(IceV_Deleted) && (isDeleted() || isRedundantAssign()))
return;
if (Func->isVerbose(IceV_InstNumbers)) {
InstNumberT Number = getNumber();
if (Number == NumberDeleted)
Str << "[XXX]";
else
Str << llvm::format("[%3d]", Number);
}
Str << " ";
if (isDeleted())
Str << " //";
dump(Func);
dumpExtras(Func);
Str << "\n";
}
void Inst::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
dumpDest(Func);
Str << " =~ " << getInstName() << " ";
dumpSources(Func);
}
void Inst::dumpExtras(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
bool First = true;
// Print "LIVEEND={a,b,c}" for all source operands whose live ranges are
// known to end at this instruction.
if (Func->isVerbose(IceV_Liveness)) {
FOREACH_VAR_IN_INST(Var, *this) {
if (isLastUse(Var)) {
if (First)
Str << " // LIVEEND={";
else
Str << ",";
Var->dump(Func);
First = false;
}
}
if (!First)
Str << "}";
}
}
void Inst::dumpSources(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
for (SizeT I = 0; I < getSrcSize(); ++I) {
if (I > 0)
Str << ", ";
getSrc(I)->dump(Func);
}
}
void Inst::emitSources(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
for (SizeT I = 0; I < getSrcSize(); ++I) {
if (I > 0)
Str << ", ";
getSrc(I)->emit(Func);
}
}
void Inst::dumpDest(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
if (getDest())
getDest()->dump(Func);
}
void InstAlloca::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
dumpDest(Func);
Str << " = alloca i8, i32 ";
getSizeInBytes()->dump(Func);
if (getAlignInBytes())
Str << ", align " << getAlignInBytes();
}
void InstArithmetic::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
dumpDest(Func);
Str << " = " << getInstName() << " " << getDest()->getType() << " ";
dumpSources(Func);
}
void InstAssign::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
dumpDest(Func);
Str << " = " << getDest()->getType() << " ";
dumpSources(Func);
}
void InstBr::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
dumpDest(Func);
Str << "br ";
if (!isUnconditional()) {
Str << "i1 ";
getCondition()->dump(Func);
Str << ", label %" << getTargetTrue()->getName() << ", ";
}
Str << "label %" << getTargetFalse()->getName();
}
void InstCall::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
if (getDest()) {
dumpDest(Func);
Str << " = ";
}
Str << "call ";
if (getDest())
Str << getDest()->getType();
else
Str << "void";
Str << " ";
getCallTarget()->dump(Func);
Str << "(";
for (SizeT I = 0; I < getNumArgs(); ++I) {
if (I > 0)
Str << ", ";
Str << getArg(I)->getType() << " ";
getArg(I)->dump(Func);
}
Str << ")";
}
const char *InstCast::getCastName(InstCast::OpKind Kind) {
if (Kind < InstCast::OpKind::_num)
return InstCastAttributes[Kind].DisplayString;
llvm_unreachable("Invalid InstCast::OpKind");
return "???";
}
void InstCast::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
dumpDest(Func);
Str << " = " << getCastName(getCastKind()) << " " << getSrc(0)->getType()
<< " ";
dumpSources(Func);
Str << " to " << getDest()->getType();
}
void InstIcmp::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
dumpDest(Func);
Str << " = icmp " << InstIcmpAttributes[getCondition()].DisplayString << " "
<< getSrc(0)->getType() << " ";
dumpSources(Func);
}
void InstExtractElement::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
dumpDest(Func);
Str << " = extractelement ";
Str << getSrc(0)->getType() << " ";
getSrc(0)->dump(Func);
Str << ", ";
Str << getSrc(1)->getType() << " ";
getSrc(1)->dump(Func);
}
void InstInsertElement::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
dumpDest(Func);
Str << " = insertelement ";
Str << getSrc(0)->getType() << " ";
getSrc(0)->dump(Func);
Str << ", ";
Str << getSrc(1)->getType() << " ";
getSrc(1)->dump(Func);
Str << ", ";
Str << getSrc(2)->getType() << " ";
getSrc(2)->dump(Func);
}
void InstFcmp::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
dumpDest(Func);
Str << " = fcmp " << InstFcmpAttributes[getCondition()].DisplayString << " "
<< getSrc(0)->getType() << " ";
dumpSources(Func);
}
void InstLoad::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
dumpDest(Func);
Type Ty = getDest()->getType();
Str << " = load " << Ty << ", " << Ty << "* ";
dumpSources(Func);
Str << ", align " << typeAlignInBytes(Ty);
}
void InstStore::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
Type Ty = getData()->getType();
dumpDest(Func);
if (Dest)
Str << " = ";
Str << "store " << Ty << " ";
getData()->dump(Func);
Str << ", " << Ty << "* ";
getStoreAddress()->dump(Func);
Str << ", align " << typeAlignInBytes(Ty);
if (getRmwBeacon()) {
Str << ", beacon ";
getRmwBeacon()->dump(Func);
}
}
void InstSwitch::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
Type Ty = getComparison()->getType();
Str << "switch " << Ty << " ";
getSrc(0)->dump(Func);
Str << ", label %" << getLabelDefault()->getName() << " [\n";
for (SizeT I = 0; I < getNumCases(); ++I) {
Str << " " << Ty << " " << static_cast<int64_t>(getValue(I))
<< ", label %" << getLabel(I)->getName() << "\n";
}
Str << " ]";
}
void InstPhi::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
dumpDest(Func);
Str << " = phi " << getDest()->getType() << " ";
for (SizeT I = 0; I < getSrcSize(); ++I) {
if (I > 0)
Str << ", ";
Str << "[ ";
getSrc(I)->dump(Func);
Str << ", %" << Labels[I]->getName() << " ]";
}
}
void InstRet::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
Type Ty = hasRetValue() ? getRetValue()->getType() : IceType_void;
Str << "ret " << Ty;
if (hasRetValue()) {
Str << " ";
dumpSources(Func);
}
}
void InstSelect::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
dumpDest(Func);
Operand *Condition = getCondition();
Operand *TrueOp = getTrueOperand();
Operand *FalseOp = getFalseOperand();
Str << " = select " << Condition->getType() << " ";
Condition->dump(Func);
Str << ", " << TrueOp->getType() << " ";
TrueOp->dump(Func);
Str << ", " << FalseOp->getType() << " ";
FalseOp->dump(Func);
}
void InstUnreachable::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
Str << "unreachable";
}
void InstFakeDef::emit(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
// Go ahead and "emit" these for now, since they are relatively rare.
Ostream &Str = Func->getContext()->getStrEmit();
Str << "\t# ";
getDest()->emit(Func);
Str << " = def.pseudo";
if (getSrcSize() > 0)
Str << " ";
emitSources(Func);
Str << "\n";
}
void InstFakeDef::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
dumpDest(Func);
Str << " = def.pseudo ";
dumpSources(Func);
}
void InstFakeUse::emit(const Cfg *Func) const { (void)Func; }
void InstFakeUse::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
Str << "use.pseudo ";
dumpSources(Func);
}
void InstFakeKill::emit(const Cfg *Func) const { (void)Func; }
void InstFakeKill::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
if (Linked->isDeleted())
Str << "// ";
Str << "kill.pseudo scratch_regs";
}
void InstShuffleVector::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
Str << "shufflevector ";
dumpDest(Func);
Str << " = ";
dumpSources(Func);
for (SizeT I = 0; I < NumIndexes; ++I) {
Str << ", ";
Indexes[I]->dump(Func);
}
Str << "\n";
}
void InstJumpTable::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
Str << "jump table [";
for (SizeT I = 0; I < NumTargets; ++I)
Str << "\n " << Targets[I]->getName();
Str << "\n ]";
}
void InstTarget::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
Str << "[TARGET] ";
Inst::dump(Func);
}
InstBreakpoint::InstBreakpoint(Cfg *Func)
: InstHighLevel(Func, Inst::Breakpoint, 0, nullptr) {}
void InstIcmp::reverseConditionAndOperands() {
Condition = InstIcmpAttributes[Condition].Reverse;
std::swap(Srcs[0], Srcs[1]);
}
bool checkForRedundantAssign(const Variable *Dest, const Operand *Source) {
const auto *SrcVar = llvm::dyn_cast<const Variable>(Source);
if (SrcVar == nullptr)
return false;
if (Dest->hasReg() && Dest->getRegNum() == SrcVar->getRegNum()) {
// TODO: On x86-64, instructions like "mov eax, eax" are used to clear the
// upper 32 bits of rax. We need to recognize and preserve these.
return true;
}
if (!Dest->hasReg() && !SrcVar->hasReg()) {
if (!Dest->hasStackOffset() || !SrcVar->hasStackOffset()) {
// If called before stack slots have been assigned (i.e. as part of the
// dump() routine), conservatively return false.
return false;
}
if (Dest->getStackOffset() != SrcVar->getStackOffset()) {
return false;
}
return true;
}
// For a "v=t" assignment where t has a register, v has a stack slot, and v
// has a LinkedTo stack root, and v and t share the same LinkedTo root, return
// true. This is because this assignment is effectively reassigning the same
// value to the original LinkedTo stack root.
if (SrcVar->hasReg() && Dest->hasStackOffset() &&
Dest->getLinkedToStackRoot() != nullptr &&
Dest->getLinkedToRoot() == SrcVar->getLinkedToRoot()) {
return true;
}
return false;
}
} // end of namespace Ice