Jan Voung | 8acded0 | 2014-09-22 18:02:25 -0700 | [diff] [blame] | 1 | // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | // |
| 5 | // Modified by the Subzero authors. |
| 6 | // |
| 7 | //===- subzero/src/assembler.h - Integrated assembler -----------*- C++ -*-===// |
| 8 | // |
| 9 | // The Subzero Code Generator |
| 10 | // |
| 11 | // This file is distributed under the University of Illinois Open Source |
| 12 | // License. See LICENSE.TXT for details. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | // |
| 16 | // This file declares the Assembler base class. Instructions are assembled |
| 17 | // by architecture-specific assemblers that derive from this base class. |
| 18 | // This base class manages buffers and fixups for emitting code, etc. |
| 19 | // |
| 20 | //===----------------------------------------------------------------------===// |
| 21 | |
| 22 | #ifndef SUBZERO_SRC_ASSEMBLER_H |
| 23 | #define SUBZERO_SRC_ASSEMBLER_H |
| 24 | |
| 25 | #include "IceDefs.h" |
| 26 | |
| 27 | #include "IceFixups.h" |
| 28 | #include "llvm/Support/Allocator.h" |
| 29 | |
| 30 | namespace Ice { |
| 31 | |
| 32 | // Forward declarations. |
| 33 | class Assembler; |
| 34 | class AssemblerFixup; |
| 35 | class AssemblerBuffer; |
| 36 | class ConstantRelocatable; |
| 37 | class MemoryRegion; |
| 38 | |
| 39 | // Assembler fixups are positions in generated code that hold relocation |
| 40 | // information that needs to be processed before finalizing the code |
| 41 | // into executable memory. |
| 42 | class AssemblerFixup { |
| 43 | public: |
| 44 | virtual void Process(const MemoryRegion ®ion, intptr_t position) = 0; |
| 45 | |
| 46 | // It would be ideal if the destructor method could be made private, |
| 47 | // but the g++ compiler complains when this is subclassed. |
| 48 | virtual ~AssemblerFixup() { llvm_unreachable("~AssemblerFixup used"); } |
| 49 | |
| 50 | intptr_t position() const { return position_; } |
| 51 | |
| 52 | FixupKind kind() const { return kind_; } |
| 53 | |
| 54 | const ConstantRelocatable *value() const { return value_; } |
| 55 | |
| 56 | protected: |
| 57 | AssemblerFixup(FixupKind Kind, const ConstantRelocatable *Value) |
| 58 | : position_(0), kind_(Kind), value_(Value) {} |
| 59 | |
| 60 | private: |
| 61 | intptr_t position_; |
| 62 | FixupKind kind_; |
| 63 | const ConstantRelocatable *value_; |
| 64 | |
| 65 | void set_position(intptr_t position) { position_ = position; } |
| 66 | |
| 67 | AssemblerFixup(const AssemblerFixup &) LLVM_DELETED_FUNCTION; |
| 68 | AssemblerFixup &operator=(const AssemblerFixup &) LLVM_DELETED_FUNCTION; |
| 69 | friend class AssemblerBuffer; |
| 70 | }; |
| 71 | |
| 72 | // Assembler buffers are used to emit binary code. They grow on demand. |
| 73 | class AssemblerBuffer { |
| 74 | public: |
| 75 | AssemblerBuffer(Assembler &); |
| 76 | ~AssemblerBuffer(); |
| 77 | |
| 78 | // Basic support for emitting, loading, and storing. |
| 79 | template <typename T> void Emit(T value) { |
| 80 | assert(HasEnsuredCapacity()); |
| 81 | *reinterpret_cast<T *>(cursor_) = value; |
| 82 | cursor_ += sizeof(T); |
| 83 | } |
| 84 | |
| 85 | template <typename T> T Load(intptr_t position) const { |
| 86 | assert(position >= 0 && |
| 87 | position <= (Size() - static_cast<intptr_t>(sizeof(T)))); |
| 88 | return *reinterpret_cast<T *>(contents_ + position); |
| 89 | } |
| 90 | |
| 91 | template <typename T> void Store(intptr_t position, T value) { |
| 92 | assert(position >= 0 && |
| 93 | position <= (Size() - static_cast<intptr_t>(sizeof(T)))); |
| 94 | *reinterpret_cast<T *>(contents_ + position) = value; |
| 95 | } |
| 96 | |
| 97 | // Emit a fixup at the current location. |
| 98 | void EmitFixup(AssemblerFixup *fixup) { |
| 99 | fixup->set_position(Size()); |
| 100 | fixups_.push_back(fixup); |
| 101 | } |
| 102 | |
| 103 | // Get the size of the emitted code. |
| 104 | intptr_t Size() const { return cursor_ - contents_; } |
| 105 | uintptr_t contents() const { return contents_; } |
| 106 | |
| 107 | // Copy the assembled instructions into the specified memory block |
| 108 | // and apply all fixups. |
| 109 | // TODO(jvoung): This will be different. We'll be writing the text |
| 110 | // and reloc section to a file? |
| 111 | void FinalizeInstructions(const MemoryRegion ®ion); |
| 112 | |
| 113 | // To emit an instruction to the assembler buffer, the EnsureCapacity helper |
| 114 | // must be used to guarantee that the underlying data area is big enough to |
| 115 | // hold the emitted instruction. Usage: |
| 116 | // |
| 117 | // AssemblerBuffer buffer; |
| 118 | // AssemblerBuffer::EnsureCapacity ensured(&buffer); |
| 119 | // ... emit bytes for single instruction ... |
| 120 | |
| 121 | #if defined(DEBUG) |
| 122 | class EnsureCapacity { |
| 123 | public: |
| 124 | explicit EnsureCapacity(AssemblerBuffer *buffer); |
| 125 | ~EnsureCapacity(); |
| 126 | |
| 127 | private: |
| 128 | AssemblerBuffer *buffer_; |
| 129 | intptr_t gap_; |
| 130 | |
| 131 | intptr_t ComputeGap() { return buffer_->Capacity() - buffer_->Size(); } |
| 132 | }; |
| 133 | |
| 134 | bool has_ensured_capacity_; |
| 135 | bool HasEnsuredCapacity() const { return has_ensured_capacity_; } |
| 136 | #else |
| 137 | class EnsureCapacity { |
| 138 | public: |
| 139 | explicit EnsureCapacity(AssemblerBuffer *buffer) { |
| 140 | if (buffer->cursor() >= buffer->limit()) |
| 141 | buffer->ExtendCapacity(); |
| 142 | } |
| 143 | }; |
| 144 | |
| 145 | // When building the C++ tests, assertion code is enabled. To allow |
| 146 | // asserting that the user of the assembler buffer has ensured the |
| 147 | // capacity needed for emitting, we add a dummy method in non-debug mode. |
| 148 | bool HasEnsuredCapacity() const { return true; } |
| 149 | #endif |
| 150 | |
| 151 | // Returns the position in the instruction stream. |
| 152 | intptr_t GetPosition() const { return cursor_ - contents_; } |
| 153 | |
| 154 | // For bringup only. |
| 155 | AssemblerFixup *GetLatestFixup() const; |
| 156 | |
| 157 | private: |
| 158 | // The limit is set to kMinimumGap bytes before the end of the data area. |
| 159 | // This leaves enough space for the longest possible instruction and allows |
| 160 | // for a single, fast space check per instruction. |
| 161 | static const intptr_t kMinimumGap = 32; |
| 162 | |
| 163 | uintptr_t contents_; |
| 164 | uintptr_t cursor_; |
| 165 | uintptr_t limit_; |
| 166 | Assembler &assembler_; |
| 167 | std::vector<AssemblerFixup *> fixups_; |
| 168 | #if defined(DEBUG) |
| 169 | bool fixups_processed_; |
| 170 | #endif |
| 171 | |
| 172 | uintptr_t cursor() const { return cursor_; } |
| 173 | uintptr_t limit() const { return limit_; } |
| 174 | intptr_t Capacity() const { |
| 175 | assert(limit_ >= contents_); |
| 176 | return (limit_ - contents_) + kMinimumGap; |
| 177 | } |
| 178 | |
| 179 | // Process the fixup chain. |
| 180 | void ProcessFixups(const MemoryRegion ®ion); |
| 181 | |
| 182 | // Compute the limit based on the data area and the capacity. See |
| 183 | // description of kMinimumGap for the reasoning behind the value. |
| 184 | static uintptr_t ComputeLimit(uintptr_t data, intptr_t capacity) { |
| 185 | return data + capacity - kMinimumGap; |
| 186 | } |
| 187 | |
| 188 | void ExtendCapacity(); |
| 189 | |
| 190 | friend class AssemblerFixup; |
| 191 | }; |
| 192 | |
| 193 | class Assembler { |
| 194 | public: |
| 195 | Assembler() {} |
| 196 | ~Assembler() {} |
| 197 | |
| 198 | // Allocate a chunk of bytes using the per-Assembler allocator. |
| 199 | uintptr_t AllocateBytes(size_t bytes) { |
| 200 | // For now, alignment is not related to NaCl bundle alignment, since |
| 201 | // the buffer's GetPosition is relative to the base. So NaCl bundle |
| 202 | // alignment checks can be relative to that base. Later, the buffer |
| 203 | // will be copied out to a ".text" section (or an in memory-buffer |
| 204 | // that can be mprotect'ed with executable permission), and that |
| 205 | // second buffer should be aligned for NaCl. |
| 206 | const size_t Alignment = 16; |
| 207 | return reinterpret_cast<uintptr_t>(Allocator.Allocate(bytes, Alignment)); |
| 208 | } |
| 209 | |
| 210 | // Allocate data of type T using the per-Assembler allocator. |
| 211 | template <typename T> T *Allocate() { return Allocator.Allocate<T>(); } |
| 212 | |
| 213 | private: |
| 214 | llvm::BumpPtrAllocator Allocator; |
| 215 | |
| 216 | Assembler(const Assembler &) LLVM_DELETED_FUNCTION; |
| 217 | Assembler &operator=(const Assembler &) LLVM_DELETED_FUNCTION; |
| 218 | }; |
| 219 | |
| 220 | } // end of namespace Ice |
| 221 | |
| 222 | #endif // SUBZERO_SRC_ASSEMBLER_H_ |