John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1 | //===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT ------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // Implementation of the MC-JIT runtime dynamic linker. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #define DEBUG_TYPE "dyld" |
| 15 | #include "llvm/ADT/OwningPtr.h" |
| 16 | #include "llvm/ADT/StringRef.h" |
| 17 | #include "llvm/ADT/STLExtras.h" |
| 18 | #include "RuntimeDyldImpl.h" |
| 19 | using namespace llvm; |
| 20 | using namespace llvm::object; |
| 21 | |
| 22 | namespace llvm { |
| 23 | |
| 24 | bool RuntimeDyldMachO:: |
| 25 | resolveRelocation(uint8_t *Address, uint8_t *Value, bool isPCRel, |
| 26 | unsigned Type, unsigned Size) { |
| 27 | // This just dispatches to the proper target specific routine. |
| 28 | switch (CPUType) { |
| 29 | default: assert(0 && "Unsupported CPU type!"); |
| 30 | case mach::CTM_x86_64: |
| 31 | return resolveX86_64Relocation((uintptr_t)Address, (uintptr_t)Value, |
| 32 | isPCRel, Type, Size); |
| 33 | case mach::CTM_ARM: |
| 34 | return resolveARMRelocation((uintptr_t)Address, (uintptr_t)Value, |
| 35 | isPCRel, Type, Size); |
| 36 | } |
| 37 | llvm_unreachable(""); |
| 38 | } |
| 39 | |
| 40 | bool RuntimeDyldMachO:: |
| 41 | resolveX86_64Relocation(uintptr_t Address, uintptr_t Value, |
| 42 | bool isPCRel, unsigned Type, |
| 43 | unsigned Size) { |
| 44 | // If the relocation is PC-relative, the value to be encoded is the |
| 45 | // pointer difference. |
| 46 | if (isPCRel) |
| 47 | // FIXME: It seems this value needs to be adjusted by 4 for an effective PC |
| 48 | // address. Is that expected? Only for branches, perhaps? |
| 49 | Value -= Address + 4; |
| 50 | |
| 51 | switch(Type) { |
| 52 | default: |
| 53 | llvm_unreachable("Invalid relocation type!"); |
| 54 | case macho::RIT_X86_64_Unsigned: |
| 55 | case macho::RIT_X86_64_Branch: { |
| 56 | // Mask in the target value a byte at a time (we don't have an alignment |
| 57 | // guarantee for the target address, so this is safest). |
| 58 | uint8_t *p = (uint8_t*)Address; |
| 59 | for (unsigned i = 0; i < Size; ++i) { |
| 60 | *p++ = (uint8_t)Value; |
| 61 | Value >>= 8; |
| 62 | } |
| 63 | return false; |
| 64 | } |
| 65 | case macho::RIT_X86_64_Signed: |
| 66 | case macho::RIT_X86_64_GOTLoad: |
| 67 | case macho::RIT_X86_64_GOT: |
| 68 | case macho::RIT_X86_64_Subtractor: |
| 69 | case macho::RIT_X86_64_Signed1: |
| 70 | case macho::RIT_X86_64_Signed2: |
| 71 | case macho::RIT_X86_64_Signed4: |
| 72 | case macho::RIT_X86_64_TLV: |
| 73 | return Error("Relocation type not implemented yet!"); |
| 74 | } |
| 75 | return false; |
| 76 | } |
| 77 | |
| 78 | bool RuntimeDyldMachO::resolveARMRelocation(uintptr_t Address, uintptr_t Value, |
| 79 | bool isPCRel, unsigned Type, |
| 80 | unsigned Size) { |
| 81 | // If the relocation is PC-relative, the value to be encoded is the |
| 82 | // pointer difference. |
| 83 | if (isPCRel) { |
| 84 | Value -= Address; |
| 85 | // ARM PCRel relocations have an effective-PC offset of two instructions |
| 86 | // (four bytes in Thumb mode, 8 bytes in ARM mode). |
| 87 | // FIXME: For now, assume ARM mode. |
| 88 | Value -= 8; |
| 89 | } |
| 90 | |
| 91 | switch(Type) { |
| 92 | default: |
| 93 | llvm_unreachable("Invalid relocation type!"); |
| 94 | case macho::RIT_Vanilla: { |
| 95 | llvm_unreachable("Invalid relocation type!"); |
| 96 | // Mask in the target value a byte at a time (we don't have an alignment |
| 97 | // guarantee for the target address, so this is safest). |
| 98 | uint8_t *p = (uint8_t*)Address; |
| 99 | for (unsigned i = 0; i < Size; ++i) { |
| 100 | *p++ = (uint8_t)Value; |
| 101 | Value >>= 8; |
| 102 | } |
| 103 | break; |
| 104 | } |
| 105 | case macho::RIT_ARM_Branch24Bit: { |
| 106 | // Mask the value into the target address. We know instructions are |
| 107 | // 32-bit aligned, so we can do it all at once. |
| 108 | uint32_t *p = (uint32_t*)Address; |
| 109 | // The low two bits of the value are not encoded. |
| 110 | Value >>= 2; |
| 111 | // Mask the value to 24 bits. |
| 112 | Value &= 0xffffff; |
| 113 | // FIXME: If the destination is a Thumb function (and the instruction |
| 114 | // is a non-predicated BL instruction), we need to change it to a BLX |
| 115 | // instruction instead. |
| 116 | |
| 117 | // Insert the value into the instruction. |
| 118 | *p = (*p & ~0xffffff) | Value; |
| 119 | break; |
| 120 | } |
| 121 | case macho::RIT_ARM_ThumbBranch22Bit: |
| 122 | case macho::RIT_ARM_ThumbBranch32Bit: |
| 123 | case macho::RIT_ARM_Half: |
| 124 | case macho::RIT_ARM_HalfDifference: |
| 125 | case macho::RIT_Pair: |
| 126 | case macho::RIT_Difference: |
| 127 | case macho::RIT_ARM_LocalDifference: |
| 128 | case macho::RIT_ARM_PreboundLazyPointer: |
| 129 | return Error("Relocation type not implemented yet!"); |
| 130 | } |
| 131 | return false; |
| 132 | } |
| 133 | |
| 134 | bool RuntimeDyldMachO:: |
| 135 | loadSegment32(const MachOObject *Obj, |
| 136 | const MachOObject::LoadCommandInfo *SegmentLCI, |
| 137 | const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) { |
| 138 | InMemoryStruct<macho::SegmentLoadCommand> SegmentLC; |
| 139 | Obj->ReadSegmentLoadCommand(*SegmentLCI, SegmentLC); |
| 140 | if (!SegmentLC) |
| 141 | return Error("unable to load segment load command"); |
| 142 | |
| 143 | for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) { |
| 144 | InMemoryStruct<macho::Section> Sect; |
| 145 | Obj->ReadSection(*SegmentLCI, SectNum, Sect); |
| 146 | if (!Sect) |
| 147 | return Error("unable to load section: '" + Twine(SectNum) + "'"); |
| 148 | |
| 149 | // FIXME: For the time being, we're only loading text segments. |
| 150 | if (Sect->Flags != 0x80000400) |
| 151 | continue; |
| 152 | |
| 153 | // Address and names of symbols in the section. |
| 154 | typedef std::pair<uint64_t, StringRef> SymbolEntry; |
| 155 | SmallVector<SymbolEntry, 64> Symbols; |
| 156 | // Index of all the names, in this section or not. Used when we're |
| 157 | // dealing with relocation entries. |
| 158 | SmallVector<StringRef, 64> SymbolNames; |
| 159 | for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) { |
| 160 | InMemoryStruct<macho::SymbolTableEntry> STE; |
| 161 | Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE); |
| 162 | if (!STE) |
| 163 | return Error("unable to read symbol: '" + Twine(i) + "'"); |
| 164 | if (STE->SectionIndex > SegmentLC->NumSections) |
| 165 | return Error("invalid section index for symbol: '" + Twine(i) + "'"); |
| 166 | // Get the symbol name. |
| 167 | StringRef Name = Obj->getStringAtIndex(STE->StringIndex); |
| 168 | SymbolNames.push_back(Name); |
| 169 | |
| 170 | // Just skip symbols not defined in this section. |
| 171 | if ((unsigned)STE->SectionIndex - 1 != SectNum) |
| 172 | continue; |
| 173 | |
| 174 | // FIXME: Check the symbol type and flags. |
| 175 | if (STE->Type != 0xF) // external, defined in this section. |
| 176 | continue; |
| 177 | // Flags == 0x8 marks a thumb function for ARM, which is fine as it |
| 178 | // doesn't require any special handling here. |
| 179 | if (STE->Flags != 0x0 && STE->Flags != 0x8) |
| 180 | continue; |
| 181 | |
| 182 | // Remember the symbol. |
| 183 | Symbols.push_back(SymbolEntry(STE->Value, Name)); |
| 184 | |
| 185 | DEBUG(dbgs() << "Function sym: '" << Name << "' @ " << |
| 186 | (Sect->Address + STE->Value) << "\n"); |
| 187 | } |
| 188 | // Sort the symbols by address, just in case they didn't come in that way. |
| 189 | array_pod_sort(Symbols.begin(), Symbols.end()); |
| 190 | |
| 191 | // If there weren't any functions (odd, but just in case...) |
| 192 | if (!Symbols.size()) |
| 193 | continue; |
| 194 | |
| 195 | // Extract the function data. |
| 196 | uint8_t *Base = (uint8_t*)Obj->getData(SegmentLC->FileOffset, |
| 197 | SegmentLC->FileSize).data(); |
| 198 | for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) { |
| 199 | uint64_t StartOffset = Sect->Address + Symbols[i].first; |
| 200 | uint64_t EndOffset = Symbols[i + 1].first - 1; |
| 201 | DEBUG(dbgs() << "Extracting function: " << Symbols[i].second |
| 202 | << " from [" << StartOffset << ", " << EndOffset << "]\n"); |
| 203 | extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset); |
| 204 | } |
| 205 | // The last symbol we do after since the end address is calculated |
| 206 | // differently because there is no next symbol to reference. |
| 207 | uint64_t StartOffset = Symbols[Symbols.size() - 1].first; |
| 208 | uint64_t EndOffset = Sect->Size - 1; |
| 209 | DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second |
| 210 | << " from [" << StartOffset << ", " << EndOffset << "]\n"); |
| 211 | extractFunction(Symbols[Symbols.size()-1].second, |
| 212 | Base + StartOffset, Base + EndOffset); |
| 213 | |
| 214 | // Now extract the relocation information for each function and process it. |
| 215 | for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) { |
| 216 | InMemoryStruct<macho::RelocationEntry> RE; |
| 217 | Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE); |
| 218 | if (RE->Word0 & macho::RF_Scattered) |
| 219 | return Error("NOT YET IMPLEMENTED: scattered relocations."); |
| 220 | // Word0 of the relocation is the offset into the section where the |
| 221 | // relocation should be applied. We need to translate that into an |
| 222 | // offset into a function since that's our atom. |
| 223 | uint32_t Offset = RE->Word0; |
| 224 | // Look for the function containing the address. This is used for JIT |
| 225 | // code, so the number of functions in section is almost always going |
| 226 | // to be very small (usually just one), so until we have use cases |
| 227 | // where that's not true, just use a trivial linear search. |
| 228 | unsigned SymbolNum; |
| 229 | unsigned NumSymbols = Symbols.size(); |
| 230 | assert(NumSymbols > 0 && Symbols[0].first <= Offset && |
| 231 | "No symbol containing relocation!"); |
| 232 | for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum) |
| 233 | if (Symbols[SymbolNum + 1].first > Offset) |
| 234 | break; |
| 235 | // Adjust the offset to be relative to the symbol. |
| 236 | Offset -= Symbols[SymbolNum].first; |
| 237 | // Get the name of the symbol containing the relocation. |
| 238 | StringRef TargetName = SymbolNames[SymbolNum]; |
| 239 | |
| 240 | bool isExtern = (RE->Word1 >> 27) & 1; |
| 241 | // Figure out the source symbol of the relocation. If isExtern is true, |
| 242 | // this relocation references the symbol table, otherwise it references |
| 243 | // a section in the same object, numbered from 1 through NumSections |
| 244 | // (SectionBases is [0, NumSections-1]). |
| 245 | // FIXME: Some targets (ARM) use internal relocations even for |
| 246 | // externally visible symbols, if the definition is in the same |
| 247 | // file as the reference. We need to convert those back to by-name |
| 248 | // references. We can resolve the address based on the section |
| 249 | // offset and see if we have a symbol at that address. If we do, |
| 250 | // use that; otherwise, puke. |
| 251 | if (!isExtern) |
| 252 | return Error("Internal relocations not supported."); |
| 253 | uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value |
| 254 | StringRef SourceName = SymbolNames[SourceNum]; |
| 255 | |
| 256 | // FIXME: Get the relocation addend from the target address. |
| 257 | |
| 258 | // Now store the relocation information. Associate it with the source |
| 259 | // symbol. |
| 260 | Relocations[SourceName].push_back(RelocationEntry(TargetName, |
| 261 | Offset, |
| 262 | RE->Word1, |
| 263 | 0 /*Addend*/)); |
| 264 | DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset |
| 265 | << " from '" << SourceName << "(Word1: " |
| 266 | << format("0x%x", RE->Word1) << ")\n"); |
| 267 | } |
| 268 | } |
| 269 | return false; |
| 270 | } |
| 271 | |
| 272 | |
| 273 | bool RuntimeDyldMachO:: |
| 274 | loadSegment64(const MachOObject *Obj, |
| 275 | const MachOObject::LoadCommandInfo *SegmentLCI, |
| 276 | const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) { |
| 277 | InMemoryStruct<macho::Segment64LoadCommand> Segment64LC; |
| 278 | Obj->ReadSegment64LoadCommand(*SegmentLCI, Segment64LC); |
| 279 | if (!Segment64LC) |
| 280 | return Error("unable to load segment load command"); |
| 281 | |
| 282 | for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) { |
| 283 | InMemoryStruct<macho::Section64> Sect; |
| 284 | Obj->ReadSection64(*SegmentLCI, SectNum, Sect); |
| 285 | if (!Sect) |
| 286 | return Error("unable to load section: '" + Twine(SectNum) + "'"); |
| 287 | |
| 288 | // FIXME: For the time being, we're only loading text segments. |
| 289 | if (Sect->Flags != 0x80000400) |
| 290 | continue; |
| 291 | |
| 292 | // Address and names of symbols in the section. |
| 293 | typedef std::pair<uint64_t, StringRef> SymbolEntry; |
| 294 | SmallVector<SymbolEntry, 64> Symbols; |
| 295 | // Index of all the names, in this section or not. Used when we're |
| 296 | // dealing with relocation entries. |
| 297 | SmallVector<StringRef, 64> SymbolNames; |
| 298 | for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) { |
| 299 | InMemoryStruct<macho::Symbol64TableEntry> STE; |
| 300 | Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE); |
| 301 | if (!STE) |
| 302 | return Error("unable to read symbol: '" + Twine(i) + "'"); |
| 303 | if (STE->SectionIndex > Segment64LC->NumSections) |
| 304 | return Error("invalid section index for symbol: '" + Twine(i) + "'"); |
| 305 | // Get the symbol name. |
| 306 | StringRef Name = Obj->getStringAtIndex(STE->StringIndex); |
| 307 | SymbolNames.push_back(Name); |
| 308 | |
| 309 | // Just skip symbols not defined in this section. |
| 310 | if ((unsigned)STE->SectionIndex - 1 != SectNum) |
| 311 | continue; |
| 312 | |
| 313 | // FIXME: Check the symbol type and flags. |
| 314 | if (STE->Type != 0xF) // external, defined in this section. |
| 315 | continue; |
| 316 | if (STE->Flags != 0x0) |
| 317 | continue; |
| 318 | |
| 319 | // Remember the symbol. |
| 320 | Symbols.push_back(SymbolEntry(STE->Value, Name)); |
| 321 | |
| 322 | DEBUG(dbgs() << "Function sym: '" << Name << "' @ " << |
| 323 | (Sect->Address + STE->Value) << "\n"); |
| 324 | } |
| 325 | // Sort the symbols by address, just in case they didn't come in that way. |
| 326 | array_pod_sort(Symbols.begin(), Symbols.end()); |
| 327 | |
| 328 | // If there weren't any functions (odd, but just in case...) |
| 329 | if (!Symbols.size()) |
| 330 | continue; |
| 331 | |
| 332 | // Extract the function data. |
| 333 | uint8_t *Base = (uint8_t*)Obj->getData(Segment64LC->FileOffset, |
| 334 | Segment64LC->FileSize).data(); |
| 335 | for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) { |
| 336 | uint64_t StartOffset = Sect->Address + Symbols[i].first; |
| 337 | uint64_t EndOffset = Symbols[i + 1].first - 1; |
| 338 | DEBUG(dbgs() << "Extracting function: " << Symbols[i].second |
| 339 | << " from [" << StartOffset << ", " << EndOffset << "]\n"); |
| 340 | extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset); |
| 341 | } |
| 342 | // The last symbol we do after since the end address is calculated |
| 343 | // differently because there is no next symbol to reference. |
| 344 | uint64_t StartOffset = Symbols[Symbols.size() - 1].first; |
| 345 | uint64_t EndOffset = Sect->Size - 1; |
| 346 | DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second |
| 347 | << " from [" << StartOffset << ", " << EndOffset << "]\n"); |
| 348 | extractFunction(Symbols[Symbols.size()-1].second, |
| 349 | Base + StartOffset, Base + EndOffset); |
| 350 | |
| 351 | // Now extract the relocation information for each function and process it. |
| 352 | for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) { |
| 353 | InMemoryStruct<macho::RelocationEntry> RE; |
| 354 | Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE); |
| 355 | if (RE->Word0 & macho::RF_Scattered) |
| 356 | return Error("NOT YET IMPLEMENTED: scattered relocations."); |
| 357 | // Word0 of the relocation is the offset into the section where the |
| 358 | // relocation should be applied. We need to translate that into an |
| 359 | // offset into a function since that's our atom. |
| 360 | uint32_t Offset = RE->Word0; |
| 361 | // Look for the function containing the address. This is used for JIT |
| 362 | // code, so the number of functions in section is almost always going |
| 363 | // to be very small (usually just one), so until we have use cases |
| 364 | // where that's not true, just use a trivial linear search. |
| 365 | unsigned SymbolNum; |
| 366 | unsigned NumSymbols = Symbols.size(); |
| 367 | assert(NumSymbols > 0 && Symbols[0].first <= Offset && |
| 368 | "No symbol containing relocation!"); |
| 369 | for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum) |
| 370 | if (Symbols[SymbolNum + 1].first > Offset) |
| 371 | break; |
| 372 | // Adjust the offset to be relative to the symbol. |
| 373 | Offset -= Symbols[SymbolNum].first; |
| 374 | // Get the name of the symbol containing the relocation. |
| 375 | StringRef TargetName = SymbolNames[SymbolNum]; |
| 376 | |
| 377 | bool isExtern = (RE->Word1 >> 27) & 1; |
| 378 | // Figure out the source symbol of the relocation. If isExtern is true, |
| 379 | // this relocation references the symbol table, otherwise it references |
| 380 | // a section in the same object, numbered from 1 through NumSections |
| 381 | // (SectionBases is [0, NumSections-1]). |
| 382 | if (!isExtern) |
| 383 | return Error("Internal relocations not supported."); |
| 384 | uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value |
| 385 | StringRef SourceName = SymbolNames[SourceNum]; |
| 386 | |
| 387 | // FIXME: Get the relocation addend from the target address. |
| 388 | |
| 389 | // Now store the relocation information. Associate it with the source |
| 390 | // symbol. |
| 391 | Relocations[SourceName].push_back(RelocationEntry(TargetName, |
| 392 | Offset, |
| 393 | RE->Word1, |
| 394 | 0 /*Addend*/)); |
| 395 | DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset |
| 396 | << " from '" << SourceName << "(Word1: " |
| 397 | << format("0x%x", RE->Word1) << ")\n"); |
| 398 | } |
| 399 | } |
| 400 | return false; |
| 401 | } |
| 402 | |
| 403 | bool RuntimeDyldMachO::loadObject(MemoryBuffer *InputBuffer) { |
| 404 | // If the linker is in an error state, don't do anything. |
| 405 | if (hasError()) |
| 406 | return true; |
| 407 | // Load the Mach-O wrapper object. |
| 408 | std::string ErrorStr; |
| 409 | OwningPtr<MachOObject> Obj( |
| 410 | MachOObject::LoadFromBuffer(InputBuffer, &ErrorStr)); |
| 411 | if (!Obj) |
| 412 | return Error("unable to load object: '" + ErrorStr + "'"); |
| 413 | |
| 414 | // Get the CPU type information from the header. |
| 415 | const macho::Header &Header = Obj->getHeader(); |
| 416 | |
| 417 | // FIXME: Error checking that the loaded object is compatible with |
| 418 | // the system we're running on. |
| 419 | CPUType = Header.CPUType; |
| 420 | CPUSubtype = Header.CPUSubtype; |
| 421 | |
| 422 | // Validate that the load commands match what we expect. |
| 423 | const MachOObject::LoadCommandInfo *SegmentLCI = 0, *SymtabLCI = 0, |
| 424 | *DysymtabLCI = 0; |
| 425 | for (unsigned i = 0; i != Header.NumLoadCommands; ++i) { |
| 426 | const MachOObject::LoadCommandInfo &LCI = Obj->getLoadCommandInfo(i); |
| 427 | switch (LCI.Command.Type) { |
| 428 | case macho::LCT_Segment: |
| 429 | case macho::LCT_Segment64: |
| 430 | if (SegmentLCI) |
| 431 | return Error("unexpected input object (multiple segments)"); |
| 432 | SegmentLCI = &LCI; |
| 433 | break; |
| 434 | case macho::LCT_Symtab: |
| 435 | if (SymtabLCI) |
| 436 | return Error("unexpected input object (multiple symbol tables)"); |
| 437 | SymtabLCI = &LCI; |
| 438 | break; |
| 439 | case macho::LCT_Dysymtab: |
| 440 | if (DysymtabLCI) |
| 441 | return Error("unexpected input object (multiple symbol tables)"); |
| 442 | DysymtabLCI = &LCI; |
| 443 | break; |
| 444 | default: |
| 445 | return Error("unexpected input object (unexpected load command"); |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | if (!SymtabLCI) |
| 450 | return Error("no symbol table found in object"); |
| 451 | if (!SegmentLCI) |
| 452 | return Error("no symbol table found in object"); |
| 453 | |
| 454 | // Read and register the symbol table data. |
| 455 | InMemoryStruct<macho::SymtabLoadCommand> SymtabLC; |
| 456 | Obj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC); |
| 457 | if (!SymtabLC) |
| 458 | return Error("unable to load symbol table load command"); |
| 459 | Obj->RegisterStringTable(*SymtabLC); |
| 460 | |
| 461 | // Read the dynamic link-edit information, if present (not present in static |
| 462 | // objects). |
| 463 | if (DysymtabLCI) { |
| 464 | InMemoryStruct<macho::DysymtabLoadCommand> DysymtabLC; |
| 465 | Obj->ReadDysymtabLoadCommand(*DysymtabLCI, DysymtabLC); |
| 466 | if (!DysymtabLC) |
| 467 | return Error("unable to load dynamic link-exit load command"); |
| 468 | |
| 469 | // FIXME: We don't support anything interesting yet. |
| 470 | // if (DysymtabLC->LocalSymbolsIndex != 0) |
| 471 | // return Error("NOT YET IMPLEMENTED: local symbol entries"); |
| 472 | // if (DysymtabLC->ExternalSymbolsIndex != 0) |
| 473 | // return Error("NOT YET IMPLEMENTED: non-external symbol entries"); |
| 474 | // if (DysymtabLC->UndefinedSymbolsIndex != SymtabLC->NumSymbolTableEntries) |
| 475 | // return Error("NOT YET IMPLEMENTED: undefined symbol entries"); |
| 476 | } |
| 477 | |
| 478 | // Load the segment load command. |
| 479 | if (SegmentLCI->Command.Type == macho::LCT_Segment) { |
| 480 | if (loadSegment32(Obj.get(), SegmentLCI, SymtabLC)) |
| 481 | return true; |
| 482 | } else { |
| 483 | if (loadSegment64(Obj.get(), SegmentLCI, SymtabLC)) |
| 484 | return true; |
| 485 | } |
| 486 | |
| 487 | return false; |
| 488 | } |
| 489 | |
| 490 | // Assign an address to a symbol name and resolve all the relocations |
| 491 | // associated with it. |
| 492 | void RuntimeDyldMachO::reassignSymbolAddress(StringRef Name, uint8_t *Addr) { |
| 493 | // Assign the address in our symbol table. |
| 494 | SymbolTable[Name] = Addr; |
| 495 | |
| 496 | RelocationList &Relocs = Relocations[Name]; |
| 497 | for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { |
| 498 | RelocationEntry &RE = Relocs[i]; |
| 499 | uint8_t *Target = SymbolTable[RE.Target] + RE.Offset; |
| 500 | bool isPCRel = (RE.Data >> 24) & 1; |
| 501 | unsigned Type = (RE.Data >> 28) & 0xf; |
| 502 | unsigned Size = 1 << ((RE.Data >> 25) & 3); |
| 503 | |
| 504 | DEBUG(dbgs() << "Resolving relocation at '" << RE.Target |
| 505 | << "' + " << RE.Offset << " (" << format("%p", Target) << ")" |
| 506 | << " from '" << Name << " (" << format("%p", Addr) << ")" |
| 507 | << "(" << (isPCRel ? "pcrel" : "absolute") |
| 508 | << ", type: " << Type << ", Size: " << Size << ").\n"); |
| 509 | |
| 510 | resolveRelocation(Target, Addr, isPCRel, Type, Size); |
| 511 | RE.isResolved = true; |
| 512 | } |
| 513 | } |
| 514 | |
| 515 | bool RuntimeDyldMachO::isKnownFormat(const MemoryBuffer *InputBuffer) { |
| 516 | StringRef Magic = InputBuffer->getBuffer().slice(0, 4); |
| 517 | if (Magic == "\xFE\xED\xFA\xCE") return true; |
| 518 | if (Magic == "\xCE\xFA\xED\xFE") return true; |
| 519 | if (Magic == "\xFE\xED\xFA\xCF") return true; |
| 520 | if (Magic == "\xCF\xFA\xED\xFE") return true; |
| 521 | return false; |
| 522 | } |
| 523 | |
| 524 | } // end namespace llvm |