John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1 | //===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | |
| 10 | #define DEBUG_TYPE "virtregrewriter" |
| 11 | #include "VirtRegRewriter.h" |
| 12 | #include "VirtRegMap.h" |
| 13 | #include "llvm/Function.h" |
| 14 | #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| 15 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 16 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 17 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 18 | #include "llvm/Support/CommandLine.h" |
| 19 | #include "llvm/Support/Debug.h" |
| 20 | #include "llvm/Support/ErrorHandling.h" |
| 21 | #include "llvm/Support/raw_ostream.h" |
| 22 | #include "llvm/Target/TargetInstrInfo.h" |
| 23 | #include "llvm/Target/TargetLowering.h" |
| 24 | #include "llvm/ADT/DepthFirstIterator.h" |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 25 | #include "llvm/ADT/SmallSet.h" |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 26 | #include "llvm/ADT/Statistic.h" |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 27 | using namespace llvm; |
| 28 | |
| 29 | STATISTIC(NumDSE , "Number of dead stores elided"); |
| 30 | STATISTIC(NumDSS , "Number of dead spill slots removed"); |
| 31 | STATISTIC(NumCommutes, "Number of instructions commuted"); |
| 32 | STATISTIC(NumDRM , "Number of re-materializable defs elided"); |
| 33 | STATISTIC(NumStores , "Number of stores added"); |
| 34 | STATISTIC(NumPSpills , "Number of physical register spills"); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 35 | STATISTIC(NumOmitted , "Number of reloads omitted"); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 36 | STATISTIC(NumAvoided , "Number of reloads deemed unnecessary"); |
| 37 | STATISTIC(NumCopified, "Number of available reloads turned into copies"); |
| 38 | STATISTIC(NumReMats , "Number of re-materialization"); |
| 39 | STATISTIC(NumLoads , "Number of loads added"); |
| 40 | STATISTIC(NumReused , "Number of values reused"); |
| 41 | STATISTIC(NumDCE , "Number of copies elided"); |
| 42 | STATISTIC(NumSUnfold , "Number of stores unfolded"); |
| 43 | STATISTIC(NumModRefUnfold, "Number of modref unfolded"); |
| 44 | |
| 45 | namespace { |
| 46 | enum RewriterName { local, trivial }; |
| 47 | } |
| 48 | |
| 49 | static cl::opt<RewriterName> |
| 50 | RewriterOpt("rewriter", |
| 51 | cl::desc("Rewriter to use (default=local)"), |
| 52 | cl::Prefix, |
| 53 | cl::values(clEnumVal(local, "local rewriter"), |
| 54 | clEnumVal(trivial, "trivial rewriter"), |
| 55 | clEnumValEnd), |
| 56 | cl::init(local)); |
| 57 | |
| 58 | static cl::opt<bool> |
| 59 | ScheduleSpills("schedule-spills", |
| 60 | cl::desc("Schedule spill code"), |
| 61 | cl::init(false)); |
| 62 | |
| 63 | VirtRegRewriter::~VirtRegRewriter() {} |
| 64 | |
| 65 | /// substitutePhysReg - Replace virtual register in MachineOperand with a |
| 66 | /// physical register. Do the right thing with the sub-register index. |
| 67 | /// Note that operands may be added, so the MO reference is no longer valid. |
| 68 | static void substitutePhysReg(MachineOperand &MO, unsigned Reg, |
| 69 | const TargetRegisterInfo &TRI) { |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 70 | if (MO.getSubReg()) { |
| 71 | MO.substPhysReg(Reg, TRI); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 72 | |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 73 | // Any kill flags apply to the full virtual register, so they also apply to |
| 74 | // the full physical register. |
| 75 | // We assume that partial defs have already been decorated with a super-reg |
| 76 | // <imp-def> operand by LiveIntervals. |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 77 | MachineInstr &MI = *MO.getParent(); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 78 | if (MO.isUse() && !MO.isUndef() && |
| 79 | (MO.isKill() || MI.isRegTiedToDefOperand(&MO-&MI.getOperand(0)))) |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 80 | MI.addRegisterKilled(Reg, &TRI, /*AddIfNotFound=*/ true); |
| 81 | } else { |
| 82 | MO.setReg(Reg); |
| 83 | } |
| 84 | } |
| 85 | |
| 86 | namespace { |
| 87 | |
| 88 | /// This class is intended for use with the new spilling framework only. It |
| 89 | /// rewrites vreg def/uses to use the assigned preg, but does not insert any |
| 90 | /// spill code. |
| 91 | struct TrivialRewriter : public VirtRegRewriter { |
| 92 | |
| 93 | bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM, |
| 94 | LiveIntervals* LIs) { |
| 95 | DEBUG(dbgs() << "********** REWRITE MACHINE CODE **********\n"); |
| 96 | DEBUG(dbgs() << "********** Function: " |
| 97 | << MF.getFunction()->getName() << '\n'); |
| 98 | DEBUG(dbgs() << "**** Machine Instrs" |
| 99 | << "(NOTE! Does not include spills and reloads!) ****\n"); |
| 100 | DEBUG(MF.dump()); |
| 101 | |
| 102 | MachineRegisterInfo *mri = &MF.getRegInfo(); |
| 103 | const TargetRegisterInfo *tri = MF.getTarget().getRegisterInfo(); |
| 104 | |
| 105 | bool changed = false; |
| 106 | |
| 107 | for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end(); |
| 108 | liItr != liEnd; ++liItr) { |
| 109 | |
| 110 | const LiveInterval *li = liItr->second; |
| 111 | unsigned reg = li->reg; |
| 112 | |
| 113 | if (TargetRegisterInfo::isPhysicalRegister(reg)) { |
| 114 | if (!li->empty()) |
| 115 | mri->setPhysRegUsed(reg); |
| 116 | } |
| 117 | else { |
| 118 | if (!VRM.hasPhys(reg)) |
| 119 | continue; |
| 120 | unsigned pReg = VRM.getPhys(reg); |
| 121 | mri->setPhysRegUsed(pReg); |
| 122 | // Copy the register use-list before traversing it. |
| 123 | SmallVector<std::pair<MachineInstr*, unsigned>, 32> reglist; |
| 124 | for (MachineRegisterInfo::reg_iterator I = mri->reg_begin(reg), |
| 125 | E = mri->reg_end(); I != E; ++I) |
| 126 | reglist.push_back(std::make_pair(&*I, I.getOperandNo())); |
| 127 | for (unsigned N=0; N != reglist.size(); ++N) |
| 128 | substitutePhysReg(reglist[N].first->getOperand(reglist[N].second), |
| 129 | pReg, *tri); |
| 130 | changed |= !reglist.empty(); |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | DEBUG(dbgs() << "**** Post Machine Instrs ****\n"); |
| 135 | DEBUG(MF.dump()); |
| 136 | |
| 137 | return changed; |
| 138 | } |
| 139 | |
| 140 | }; |
| 141 | |
| 142 | } |
| 143 | |
| 144 | // ************************************************************************ // |
| 145 | |
| 146 | namespace { |
| 147 | |
| 148 | /// AvailableSpills - As the local rewriter is scanning and rewriting an MBB |
| 149 | /// from top down, keep track of which spill slots or remat are available in |
| 150 | /// each register. |
| 151 | /// |
| 152 | /// Note that not all physregs are created equal here. In particular, some |
| 153 | /// physregs are reloads that we are allowed to clobber or ignore at any time. |
| 154 | /// Other physregs are values that the register allocated program is using |
| 155 | /// that we cannot CHANGE, but we can read if we like. We keep track of this |
| 156 | /// on a per-stack-slot / remat id basis as the low bit in the value of the |
| 157 | /// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks |
| 158 | /// this bit and addAvailable sets it if. |
| 159 | class AvailableSpills { |
| 160 | const TargetRegisterInfo *TRI; |
| 161 | const TargetInstrInfo *TII; |
| 162 | |
| 163 | // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled |
| 164 | // or remat'ed virtual register values that are still available, due to |
| 165 | // being loaded or stored to, but not invalidated yet. |
| 166 | std::map<int, unsigned> SpillSlotsOrReMatsAvailable; |
| 167 | |
| 168 | // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable, |
| 169 | // indicating which stack slot values are currently held by a physreg. This |
| 170 | // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a |
| 171 | // physreg is modified. |
| 172 | std::multimap<unsigned, int> PhysRegsAvailable; |
| 173 | |
| 174 | void disallowClobberPhysRegOnly(unsigned PhysReg); |
| 175 | |
| 176 | void ClobberPhysRegOnly(unsigned PhysReg); |
| 177 | public: |
| 178 | AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii) |
| 179 | : TRI(tri), TII(tii) { |
| 180 | } |
| 181 | |
| 182 | /// clear - Reset the state. |
| 183 | void clear() { |
| 184 | SpillSlotsOrReMatsAvailable.clear(); |
| 185 | PhysRegsAvailable.clear(); |
| 186 | } |
| 187 | |
| 188 | const TargetRegisterInfo *getRegInfo() const { return TRI; } |
| 189 | |
| 190 | /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is |
| 191 | /// available in a physical register, return that PhysReg, otherwise |
| 192 | /// return 0. |
| 193 | unsigned getSpillSlotOrReMatPhysReg(int Slot) const { |
| 194 | std::map<int, unsigned>::const_iterator I = |
| 195 | SpillSlotsOrReMatsAvailable.find(Slot); |
| 196 | if (I != SpillSlotsOrReMatsAvailable.end()) { |
| 197 | return I->second >> 1; // Remove the CanClobber bit. |
| 198 | } |
| 199 | return 0; |
| 200 | } |
| 201 | |
| 202 | /// addAvailable - Mark that the specified stack slot / remat is available |
| 203 | /// in the specified physreg. If CanClobber is true, the physreg can be |
| 204 | /// modified at any time without changing the semantics of the program. |
| 205 | void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) { |
| 206 | // If this stack slot is thought to be available in some other physreg, |
| 207 | // remove its record. |
| 208 | ModifyStackSlotOrReMat(SlotOrReMat); |
| 209 | |
| 210 | PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat)); |
| 211 | SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | |
| 212 | (unsigned)CanClobber; |
| 213 | |
| 214 | if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT) |
| 215 | DEBUG(dbgs() << "Remembering RM#" |
| 216 | << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1); |
| 217 | else |
| 218 | DEBUG(dbgs() << "Remembering SS#" << SlotOrReMat); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 219 | DEBUG(dbgs() << " in physreg " << TRI->getName(Reg) |
| 220 | << (CanClobber ? " canclobber" : "") << "\n"); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 221 | } |
| 222 | |
| 223 | /// canClobberPhysRegForSS - Return true if the spiller is allowed to change |
| 224 | /// the value of the specified stackslot register if it desires. The |
| 225 | /// specified stack slot must be available in a physreg for this query to |
| 226 | /// make sense. |
| 227 | bool canClobberPhysRegForSS(int SlotOrReMat) const { |
| 228 | assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) && |
| 229 | "Value not available!"); |
| 230 | return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1; |
| 231 | } |
| 232 | |
| 233 | /// canClobberPhysReg - Return true if the spiller is allowed to clobber the |
| 234 | /// physical register where values for some stack slot(s) might be |
| 235 | /// available. |
| 236 | bool canClobberPhysReg(unsigned PhysReg) const { |
| 237 | std::multimap<unsigned, int>::const_iterator I = |
| 238 | PhysRegsAvailable.lower_bound(PhysReg); |
| 239 | while (I != PhysRegsAvailable.end() && I->first == PhysReg) { |
| 240 | int SlotOrReMat = I->second; |
| 241 | I++; |
| 242 | if (!canClobberPhysRegForSS(SlotOrReMat)) |
| 243 | return false; |
| 244 | } |
| 245 | return true; |
| 246 | } |
| 247 | |
| 248 | /// disallowClobberPhysReg - Unset the CanClobber bit of the specified |
| 249 | /// stackslot register. The register is still available but is no longer |
| 250 | /// allowed to be modifed. |
| 251 | void disallowClobberPhysReg(unsigned PhysReg); |
| 252 | |
| 253 | /// ClobberPhysReg - This is called when the specified physreg changes |
| 254 | /// value. We use this to invalidate any info about stuff that lives in |
| 255 | /// it and any of its aliases. |
| 256 | void ClobberPhysReg(unsigned PhysReg); |
| 257 | |
| 258 | /// ModifyStackSlotOrReMat - This method is called when the value in a stack |
| 259 | /// slot changes. This removes information about which register the |
| 260 | /// previous value for this slot lives in (as the previous value is dead |
| 261 | /// now). |
| 262 | void ModifyStackSlotOrReMat(int SlotOrReMat); |
| 263 | |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 264 | /// ClobberSharingStackSlots - When a register mapped to a stack slot changes, |
| 265 | /// other stack slots sharing the same register are no longer valid. |
| 266 | void ClobberSharingStackSlots(int StackSlot); |
| 267 | |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 268 | /// AddAvailableRegsToLiveIn - Availability information is being kept coming |
| 269 | /// into the specified MBB. Add available physical registers as potential |
| 270 | /// live-in's. If they are reused in the MBB, they will be added to the |
| 271 | /// live-in set to make register scavenger and post-allocation scheduler. |
| 272 | void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills, |
| 273 | std::vector<MachineOperand*> &KillOps); |
| 274 | }; |
| 275 | |
| 276 | } |
| 277 | |
| 278 | // ************************************************************************ // |
| 279 | |
| 280 | // Given a location where a reload of a spilled register or a remat of |
| 281 | // a constant is to be inserted, attempt to find a safe location to |
| 282 | // insert the load at an earlier point in the basic-block, to hide |
| 283 | // latency of the load and to avoid address-generation interlock |
| 284 | // issues. |
| 285 | static MachineBasicBlock::iterator |
| 286 | ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc, |
| 287 | MachineBasicBlock::iterator const Begin, |
| 288 | unsigned PhysReg, |
| 289 | const TargetRegisterInfo *TRI, |
| 290 | bool DoReMat, |
| 291 | int SSorRMId, |
| 292 | const TargetInstrInfo *TII, |
| 293 | const MachineFunction &MF) |
| 294 | { |
| 295 | if (!ScheduleSpills) |
| 296 | return InsertLoc; |
| 297 | |
| 298 | // Spill backscheduling is of primary interest to addresses, so |
| 299 | // don't do anything if the register isn't in the register class |
| 300 | // used for pointers. |
| 301 | |
| 302 | const TargetLowering *TL = MF.getTarget().getTargetLowering(); |
| 303 | |
| 304 | if (!TL->isTypeLegal(TL->getPointerTy())) |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 305 | // Believe it or not, this is true on 16-bit targets like PIC16. |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 306 | return InsertLoc; |
| 307 | |
| 308 | const TargetRegisterClass *ptrRegClass = |
| 309 | TL->getRegClassFor(TL->getPointerTy()); |
| 310 | if (!ptrRegClass->contains(PhysReg)) |
| 311 | return InsertLoc; |
| 312 | |
| 313 | // Scan upwards through the preceding instructions. If an instruction doesn't |
| 314 | // reference the stack slot or the register we're loading, we can |
| 315 | // backschedule the reload up past it. |
| 316 | MachineBasicBlock::iterator NewInsertLoc = InsertLoc; |
| 317 | while (NewInsertLoc != Begin) { |
| 318 | MachineBasicBlock::iterator Prev = prior(NewInsertLoc); |
| 319 | for (unsigned i = 0; i < Prev->getNumOperands(); ++i) { |
| 320 | MachineOperand &Op = Prev->getOperand(i); |
| 321 | if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId) |
| 322 | goto stop; |
| 323 | } |
| 324 | if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 || |
| 325 | Prev->findRegisterDefOperand(PhysReg)) |
| 326 | goto stop; |
| 327 | for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias) |
| 328 | if (Prev->findRegisterUseOperandIdx(*Alias) != -1 || |
| 329 | Prev->findRegisterDefOperand(*Alias)) |
| 330 | goto stop; |
| 331 | NewInsertLoc = Prev; |
| 332 | } |
| 333 | stop:; |
| 334 | |
| 335 | // If we made it to the beginning of the block, turn around and move back |
| 336 | // down just past any existing reloads. They're likely to be reloads/remats |
| 337 | // for instructions earlier than what our current reload/remat is for, so |
| 338 | // they should be scheduled earlier. |
| 339 | if (NewInsertLoc == Begin) { |
| 340 | int FrameIdx; |
| 341 | while (InsertLoc != NewInsertLoc && |
| 342 | (TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) || |
| 343 | TII->isTriviallyReMaterializable(NewInsertLoc))) |
| 344 | ++NewInsertLoc; |
| 345 | } |
| 346 | |
| 347 | return NewInsertLoc; |
| 348 | } |
| 349 | |
| 350 | namespace { |
| 351 | |
| 352 | // ReusedOp - For each reused operand, we keep track of a bit of information, |
| 353 | // in case we need to rollback upon processing a new operand. See comments |
| 354 | // below. |
| 355 | struct ReusedOp { |
| 356 | // The MachineInstr operand that reused an available value. |
| 357 | unsigned Operand; |
| 358 | |
| 359 | // StackSlotOrReMat - The spill slot or remat id of the value being reused. |
| 360 | unsigned StackSlotOrReMat; |
| 361 | |
| 362 | // PhysRegReused - The physical register the value was available in. |
| 363 | unsigned PhysRegReused; |
| 364 | |
| 365 | // AssignedPhysReg - The physreg that was assigned for use by the reload. |
| 366 | unsigned AssignedPhysReg; |
| 367 | |
| 368 | // VirtReg - The virtual register itself. |
| 369 | unsigned VirtReg; |
| 370 | |
| 371 | ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr, |
| 372 | unsigned vreg) |
| 373 | : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr), |
| 374 | AssignedPhysReg(apr), VirtReg(vreg) {} |
| 375 | }; |
| 376 | |
| 377 | /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that |
| 378 | /// is reused instead of reloaded. |
| 379 | class ReuseInfo { |
| 380 | MachineInstr &MI; |
| 381 | std::vector<ReusedOp> Reuses; |
| 382 | BitVector PhysRegsClobbered; |
| 383 | public: |
| 384 | ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) { |
| 385 | PhysRegsClobbered.resize(tri->getNumRegs()); |
| 386 | } |
| 387 | |
| 388 | bool hasReuses() const { |
| 389 | return !Reuses.empty(); |
| 390 | } |
| 391 | |
| 392 | /// addReuse - If we choose to reuse a virtual register that is already |
| 393 | /// available instead of reloading it, remember that we did so. |
| 394 | void addReuse(unsigned OpNo, unsigned StackSlotOrReMat, |
| 395 | unsigned PhysRegReused, unsigned AssignedPhysReg, |
| 396 | unsigned VirtReg) { |
| 397 | // If the reload is to the assigned register anyway, no undo will be |
| 398 | // required. |
| 399 | if (PhysRegReused == AssignedPhysReg) return; |
| 400 | |
| 401 | // Otherwise, remember this. |
| 402 | Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused, |
| 403 | AssignedPhysReg, VirtReg)); |
| 404 | } |
| 405 | |
| 406 | void markClobbered(unsigned PhysReg) { |
| 407 | PhysRegsClobbered.set(PhysReg); |
| 408 | } |
| 409 | |
| 410 | bool isClobbered(unsigned PhysReg) const { |
| 411 | return PhysRegsClobbered.test(PhysReg); |
| 412 | } |
| 413 | |
| 414 | /// GetRegForReload - We are about to emit a reload into PhysReg. If there |
| 415 | /// is some other operand that is using the specified register, either pick |
| 416 | /// a new register to use, or evict the previous reload and use this reg. |
| 417 | unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg, |
| 418 | MachineFunction &MF, MachineInstr *MI, |
| 419 | AvailableSpills &Spills, |
| 420 | std::vector<MachineInstr*> &MaybeDeadStores, |
| 421 | SmallSet<unsigned, 8> &Rejected, |
| 422 | BitVector &RegKills, |
| 423 | std::vector<MachineOperand*> &KillOps, |
| 424 | VirtRegMap &VRM); |
| 425 | |
| 426 | /// GetRegForReload - Helper for the above GetRegForReload(). Add a |
| 427 | /// 'Rejected' set to remember which registers have been considered and |
| 428 | /// rejected for the reload. This avoids infinite looping in case like |
| 429 | /// this: |
| 430 | /// t1 := op t2, t3 |
| 431 | /// t2 <- assigned r0 for use by the reload but ended up reuse r1 |
| 432 | /// t3 <- assigned r1 for use by the reload but ended up reuse r0 |
| 433 | /// t1 <- desires r1 |
| 434 | /// sees r1 is taken by t2, tries t2's reload register r0 |
| 435 | /// sees r0 is taken by t3, tries t3's reload register r1 |
| 436 | /// sees r1 is taken by t2, tries t2's reload register r0 ... |
| 437 | unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI, |
| 438 | AvailableSpills &Spills, |
| 439 | std::vector<MachineInstr*> &MaybeDeadStores, |
| 440 | BitVector &RegKills, |
| 441 | std::vector<MachineOperand*> &KillOps, |
| 442 | VirtRegMap &VRM) { |
| 443 | SmallSet<unsigned, 8> Rejected; |
| 444 | MachineFunction &MF = *MI->getParent()->getParent(); |
| 445 | const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg); |
| 446 | return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores, |
| 447 | Rejected, RegKills, KillOps, VRM); |
| 448 | } |
| 449 | }; |
| 450 | |
| 451 | } |
| 452 | |
| 453 | // ****************** // |
| 454 | // Utility Functions // |
| 455 | // ****************** // |
| 456 | |
| 457 | /// findSinglePredSuccessor - Return via reference a vector of machine basic |
| 458 | /// blocks each of which is a successor of the specified BB and has no other |
| 459 | /// predecessor. |
| 460 | static void findSinglePredSuccessor(MachineBasicBlock *MBB, |
| 461 | SmallVectorImpl<MachineBasicBlock *> &Succs){ |
| 462 | for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), |
| 463 | SE = MBB->succ_end(); SI != SE; ++SI) { |
| 464 | MachineBasicBlock *SuccMBB = *SI; |
| 465 | if (SuccMBB->pred_size() == 1) |
| 466 | Succs.push_back(SuccMBB); |
| 467 | } |
| 468 | } |
| 469 | |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 470 | /// ResurrectConfirmedKill - Helper for ResurrectKill. This register is killed |
| 471 | /// but not re-defined and it's being reused. Remove the kill flag for the |
| 472 | /// register and unset the kill's marker and last kill operand. |
| 473 | static void ResurrectConfirmedKill(unsigned Reg, const TargetRegisterInfo* TRI, |
| 474 | BitVector &RegKills, |
| 475 | std::vector<MachineOperand*> &KillOps) { |
| 476 | DEBUG(dbgs() << "Resurrect " << TRI->getName(Reg) << "\n"); |
| 477 | |
| 478 | MachineOperand *KillOp = KillOps[Reg]; |
| 479 | KillOp->setIsKill(false); |
| 480 | // KillOps[Reg] might be a def of a super-register. |
| 481 | unsigned KReg = KillOp->getReg(); |
| 482 | if (!RegKills[KReg]) |
| 483 | return; |
| 484 | |
| 485 | assert(KillOps[KReg]->getParent() == KillOp->getParent() && |
| 486 | "invalid superreg kill flags"); |
| 487 | KillOps[KReg] = NULL; |
| 488 | RegKills.reset(KReg); |
| 489 | |
| 490 | // If it's a def of a super-register. Its other sub-regsters are no |
| 491 | // longer killed as well. |
| 492 | for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) { |
| 493 | DEBUG(dbgs() << " Resurrect subreg " << TRI->getName(*SR) << "\n"); |
| 494 | |
| 495 | assert(KillOps[*SR]->getParent() == KillOp->getParent() && |
| 496 | "invalid subreg kill flags"); |
| 497 | KillOps[*SR] = NULL; |
| 498 | RegKills.reset(*SR); |
| 499 | } |
| 500 | } |
| 501 | |
| 502 | /// ResurrectKill - Invalidate kill info associated with a previous MI. An |
| 503 | /// optimization may have decided that it's safe to reuse a previously killed |
| 504 | /// register. If we fail to erase the invalid kill flags, then the register |
| 505 | /// scavenger may later clobber the register used by this MI. Note that this |
| 506 | /// must be done even if this MI is being deleted! Consider: |
| 507 | /// |
| 508 | /// USE $r1 (vreg1) <kill> |
| 509 | /// ... |
| 510 | /// $r1(vreg3) = COPY $r1 (vreg2) |
| 511 | /// |
| 512 | /// RegAlloc has smartly assigned all three vregs to the same physreg. Initially |
| 513 | /// vreg1's only use is a kill. The rewriter doesn't know it should be live |
| 514 | /// until it rewrites vreg2. At that points it sees that the copy is dead and |
| 515 | /// deletes it. However, deleting the copy implicitly forwards liveness of $r1 |
| 516 | /// (it's copy coalescing). We must resurrect $r1 by removing the kill flag at |
| 517 | /// vreg1 before deleting the copy. |
| 518 | static void ResurrectKill(MachineInstr &MI, unsigned Reg, |
| 519 | const TargetRegisterInfo* TRI, BitVector &RegKills, |
| 520 | std::vector<MachineOperand*> &KillOps) { |
| 521 | if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) { |
| 522 | ResurrectConfirmedKill(Reg, TRI, RegKills, KillOps); |
| 523 | return; |
| 524 | } |
| 525 | // No previous kill for this reg. Check for subreg kills as well. |
| 526 | // d4 = |
| 527 | // store d4, fi#0 |
| 528 | // ... |
| 529 | // = s8<kill> |
| 530 | // ... |
| 531 | // = d4 <avoiding reload> |
| 532 | for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) { |
| 533 | unsigned SReg = *SR; |
| 534 | if (RegKills[SReg] && KillOps[SReg]->getParent() != &MI) |
| 535 | ResurrectConfirmedKill(SReg, TRI, RegKills, KillOps); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 536 | } |
| 537 | } |
| 538 | |
| 539 | /// InvalidateKills - MI is going to be deleted. If any of its operands are |
| 540 | /// marked kill, then invalidate the information. |
| 541 | static void InvalidateKills(MachineInstr &MI, |
| 542 | const TargetRegisterInfo* TRI, |
| 543 | BitVector &RegKills, |
| 544 | std::vector<MachineOperand*> &KillOps, |
| 545 | SmallVector<unsigned, 2> *KillRegs = NULL) { |
| 546 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| 547 | MachineOperand &MO = MI.getOperand(i); |
| 548 | if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef()) |
| 549 | continue; |
| 550 | unsigned Reg = MO.getReg(); |
| 551 | if (TargetRegisterInfo::isVirtualRegister(Reg)) |
| 552 | continue; |
| 553 | if (KillRegs) |
| 554 | KillRegs->push_back(Reg); |
| 555 | assert(Reg < KillOps.size()); |
| 556 | if (KillOps[Reg] == &MO) { |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 557 | // This operand was the kill, now no longer. |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 558 | KillOps[Reg] = NULL; |
| 559 | RegKills.reset(Reg); |
| 560 | for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) { |
| 561 | if (RegKills[*SR]) { |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 562 | assert(KillOps[*SR] == &MO && "bad subreg kill flags"); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 563 | KillOps[*SR] = NULL; |
| 564 | RegKills.reset(*SR); |
| 565 | } |
| 566 | } |
| 567 | } |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 568 | else { |
| 569 | // This operand may have reused a previously killed reg. Keep it live in |
| 570 | // case it continues to be used after erasing this instruction. |
| 571 | ResurrectKill(MI, Reg, TRI, RegKills, KillOps); |
| 572 | } |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 573 | } |
| 574 | } |
| 575 | |
| 576 | /// InvalidateRegDef - If the def operand of the specified def MI is now dead |
| 577 | /// (since its spill instruction is removed), mark it isDead. Also checks if |
| 578 | /// the def MI has other definition operands that are not dead. Returns it by |
| 579 | /// reference. |
| 580 | static bool InvalidateRegDef(MachineBasicBlock::iterator I, |
| 581 | MachineInstr &NewDef, unsigned Reg, |
| 582 | bool &HasLiveDef, |
| 583 | const TargetRegisterInfo *TRI) { |
| 584 | // Due to remat, it's possible this reg isn't being reused. That is, |
| 585 | // the def of this reg (by prev MI) is now dead. |
| 586 | MachineInstr *DefMI = I; |
| 587 | MachineOperand *DefOp = NULL; |
| 588 | for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) { |
| 589 | MachineOperand &MO = DefMI->getOperand(i); |
| 590 | if (!MO.isReg() || !MO.isDef() || !MO.isKill() || MO.isUndef()) |
| 591 | continue; |
| 592 | if (MO.getReg() == Reg) |
| 593 | DefOp = &MO; |
| 594 | else if (!MO.isDead()) |
| 595 | HasLiveDef = true; |
| 596 | } |
| 597 | if (!DefOp) |
| 598 | return false; |
| 599 | |
| 600 | bool FoundUse = false, Done = false; |
| 601 | MachineBasicBlock::iterator E = &NewDef; |
| 602 | ++I; ++E; |
| 603 | for (; !Done && I != E; ++I) { |
| 604 | MachineInstr *NMI = I; |
| 605 | for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) { |
| 606 | MachineOperand &MO = NMI->getOperand(j); |
| 607 | if (!MO.isReg() || MO.getReg() == 0 || |
| 608 | (MO.getReg() != Reg && !TRI->isSubRegister(Reg, MO.getReg()))) |
| 609 | continue; |
| 610 | if (MO.isUse()) |
| 611 | FoundUse = true; |
| 612 | Done = true; // Stop after scanning all the operands of this MI. |
| 613 | } |
| 614 | } |
| 615 | if (!FoundUse) { |
| 616 | // Def is dead! |
| 617 | DefOp->setIsDead(); |
| 618 | return true; |
| 619 | } |
| 620 | return false; |
| 621 | } |
| 622 | |
| 623 | /// UpdateKills - Track and update kill info. If a MI reads a register that is |
| 624 | /// marked kill, then it must be due to register reuse. Transfer the kill info |
| 625 | /// over. |
| 626 | static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI, |
| 627 | BitVector &RegKills, |
| 628 | std::vector<MachineOperand*> &KillOps) { |
| 629 | // These do not affect kill info at all. |
| 630 | if (MI.isDebugValue()) |
| 631 | return; |
| 632 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| 633 | MachineOperand &MO = MI.getOperand(i); |
| 634 | if (!MO.isReg() || !MO.isUse() || MO.isUndef()) |
| 635 | continue; |
| 636 | unsigned Reg = MO.getReg(); |
| 637 | if (Reg == 0) |
| 638 | continue; |
| 639 | |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 640 | // This operand may have reused a previously killed reg. Keep it live. |
| 641 | ResurrectKill(MI, Reg, TRI, RegKills, KillOps); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 642 | |
| 643 | if (MO.isKill()) { |
| 644 | RegKills.set(Reg); |
| 645 | KillOps[Reg] = &MO; |
| 646 | for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) { |
| 647 | RegKills.set(*SR); |
| 648 | KillOps[*SR] = &MO; |
| 649 | } |
| 650 | } |
| 651 | } |
| 652 | |
| 653 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| 654 | const MachineOperand &MO = MI.getOperand(i); |
| 655 | if (!MO.isReg() || !MO.getReg() || !MO.isDef()) |
| 656 | continue; |
| 657 | unsigned Reg = MO.getReg(); |
| 658 | RegKills.reset(Reg); |
| 659 | KillOps[Reg] = NULL; |
| 660 | // It also defines (or partially define) aliases. |
| 661 | for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) { |
| 662 | RegKills.reset(*SR); |
| 663 | KillOps[*SR] = NULL; |
| 664 | } |
| 665 | for (const unsigned *SR = TRI->getSuperRegisters(Reg); *SR; ++SR) { |
| 666 | RegKills.reset(*SR); |
| 667 | KillOps[*SR] = NULL; |
| 668 | } |
| 669 | } |
| 670 | } |
| 671 | |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 672 | /// ReMaterialize - Re-materialize definition for Reg targeting DestReg. |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 673 | /// |
| 674 | static void ReMaterialize(MachineBasicBlock &MBB, |
| 675 | MachineBasicBlock::iterator &MII, |
| 676 | unsigned DestReg, unsigned Reg, |
| 677 | const TargetInstrInfo *TII, |
| 678 | const TargetRegisterInfo *TRI, |
| 679 | VirtRegMap &VRM) { |
| 680 | MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg); |
| 681 | #ifndef NDEBUG |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 682 | const MCInstrDesc &MCID = ReMatDefMI->getDesc(); |
| 683 | assert(MCID.getNumDefs() == 1 && |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 684 | "Don't know how to remat instructions that define > 1 values!"); |
| 685 | #endif |
| 686 | TII->reMaterialize(MBB, MII, DestReg, 0, ReMatDefMI, *TRI); |
| 687 | MachineInstr *NewMI = prior(MII); |
| 688 | for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { |
| 689 | MachineOperand &MO = NewMI->getOperand(i); |
| 690 | if (!MO.isReg() || MO.getReg() == 0) |
| 691 | continue; |
| 692 | unsigned VirtReg = MO.getReg(); |
| 693 | if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) |
| 694 | continue; |
| 695 | assert(MO.isUse()); |
| 696 | unsigned Phys = VRM.getPhys(VirtReg); |
| 697 | assert(Phys && "Virtual register is not assigned a register?"); |
| 698 | substitutePhysReg(MO, Phys, *TRI); |
| 699 | } |
| 700 | ++NumReMats; |
| 701 | } |
| 702 | |
| 703 | /// findSuperReg - Find the SubReg's super-register of given register class |
| 704 | /// where its SubIdx sub-register is SubReg. |
| 705 | static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg, |
| 706 | unsigned SubIdx, const TargetRegisterInfo *TRI) { |
| 707 | for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); |
| 708 | I != E; ++I) { |
| 709 | unsigned Reg = *I; |
| 710 | if (TRI->getSubReg(Reg, SubIdx) == SubReg) |
| 711 | return Reg; |
| 712 | } |
| 713 | return 0; |
| 714 | } |
| 715 | |
| 716 | // ******************************** // |
| 717 | // Available Spills Implementation // |
| 718 | // ******************************** // |
| 719 | |
| 720 | /// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified |
| 721 | /// stackslot register. The register is still available but is no longer |
| 722 | /// allowed to be modifed. |
| 723 | void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) { |
| 724 | std::multimap<unsigned, int>::iterator I = |
| 725 | PhysRegsAvailable.lower_bound(PhysReg); |
| 726 | while (I != PhysRegsAvailable.end() && I->first == PhysReg) { |
| 727 | int SlotOrReMat = I->second; |
| 728 | I++; |
| 729 | assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg && |
| 730 | "Bidirectional map mismatch!"); |
| 731 | SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1; |
| 732 | DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg) |
| 733 | << " copied, it is available for use but can no longer be modified\n"); |
| 734 | } |
| 735 | } |
| 736 | |
| 737 | /// disallowClobberPhysReg - Unset the CanClobber bit of the specified |
| 738 | /// stackslot register and its aliases. The register and its aliases may |
| 739 | /// still available but is no longer allowed to be modifed. |
| 740 | void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) { |
| 741 | for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS) |
| 742 | disallowClobberPhysRegOnly(*AS); |
| 743 | disallowClobberPhysRegOnly(PhysReg); |
| 744 | } |
| 745 | |
| 746 | /// ClobberPhysRegOnly - This is called when the specified physreg changes |
| 747 | /// value. We use this to invalidate any info about stuff we thing lives in it. |
| 748 | void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) { |
| 749 | std::multimap<unsigned, int>::iterator I = |
| 750 | PhysRegsAvailable.lower_bound(PhysReg); |
| 751 | while (I != PhysRegsAvailable.end() && I->first == PhysReg) { |
| 752 | int SlotOrReMat = I->second; |
| 753 | PhysRegsAvailable.erase(I++); |
| 754 | assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg && |
| 755 | "Bidirectional map mismatch!"); |
| 756 | SpillSlotsOrReMatsAvailable.erase(SlotOrReMat); |
| 757 | DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg) |
| 758 | << " clobbered, invalidating "); |
| 759 | if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT) |
| 760 | DEBUG(dbgs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n"); |
| 761 | else |
| 762 | DEBUG(dbgs() << "SS#" << SlotOrReMat << "\n"); |
| 763 | } |
| 764 | } |
| 765 | |
| 766 | /// ClobberPhysReg - This is called when the specified physreg changes |
| 767 | /// value. We use this to invalidate any info about stuff we thing lives in |
| 768 | /// it and any of its aliases. |
| 769 | void AvailableSpills::ClobberPhysReg(unsigned PhysReg) { |
| 770 | for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS) |
| 771 | ClobberPhysRegOnly(*AS); |
| 772 | ClobberPhysRegOnly(PhysReg); |
| 773 | } |
| 774 | |
| 775 | /// AddAvailableRegsToLiveIn - Availability information is being kept coming |
| 776 | /// into the specified MBB. Add available physical registers as potential |
| 777 | /// live-in's. If they are reused in the MBB, they will be added to the |
| 778 | /// live-in set to make register scavenger and post-allocation scheduler. |
| 779 | void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, |
| 780 | BitVector &RegKills, |
| 781 | std::vector<MachineOperand*> &KillOps) { |
| 782 | std::set<unsigned> NotAvailable; |
| 783 | for (std::multimap<unsigned, int>::iterator |
| 784 | I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end(); |
| 785 | I != E; ++I) { |
| 786 | unsigned Reg = I->first; |
| 787 | const TargetRegisterClass* RC = TRI->getMinimalPhysRegClass(Reg); |
| 788 | // FIXME: A temporary workaround. We can't reuse available value if it's |
| 789 | // not safe to move the def of the virtual register's class. e.g. |
| 790 | // X86::RFP* register classes. Do not add it as a live-in. |
| 791 | if (!TII->isSafeToMoveRegClassDefs(RC)) |
| 792 | // This is no longer available. |
| 793 | NotAvailable.insert(Reg); |
| 794 | else { |
| 795 | MBB.addLiveIn(Reg); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 796 | if (RegKills[Reg]) |
| 797 | ResurrectConfirmedKill(Reg, TRI, RegKills, KillOps); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 798 | } |
| 799 | |
| 800 | // Skip over the same register. |
| 801 | std::multimap<unsigned, int>::iterator NI = llvm::next(I); |
| 802 | while (NI != E && NI->first == Reg) { |
| 803 | ++I; |
| 804 | ++NI; |
| 805 | } |
| 806 | } |
| 807 | |
| 808 | for (std::set<unsigned>::iterator I = NotAvailable.begin(), |
| 809 | E = NotAvailable.end(); I != E; ++I) { |
| 810 | ClobberPhysReg(*I); |
| 811 | for (const unsigned *SubRegs = TRI->getSubRegisters(*I); |
| 812 | *SubRegs; ++SubRegs) |
| 813 | ClobberPhysReg(*SubRegs); |
| 814 | } |
| 815 | } |
| 816 | |
| 817 | /// ModifyStackSlotOrReMat - This method is called when the value in a stack |
| 818 | /// slot changes. This removes information about which register the previous |
| 819 | /// value for this slot lives in (as the previous value is dead now). |
| 820 | void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) { |
| 821 | std::map<int, unsigned>::iterator It = |
| 822 | SpillSlotsOrReMatsAvailable.find(SlotOrReMat); |
| 823 | if (It == SpillSlotsOrReMatsAvailable.end()) return; |
| 824 | unsigned Reg = It->second >> 1; |
| 825 | SpillSlotsOrReMatsAvailable.erase(It); |
| 826 | |
| 827 | // This register may hold the value of multiple stack slots, only remove this |
| 828 | // stack slot from the set of values the register contains. |
| 829 | std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg); |
| 830 | for (; ; ++I) { |
| 831 | assert(I != PhysRegsAvailable.end() && I->first == Reg && |
| 832 | "Map inverse broken!"); |
| 833 | if (I->second == SlotOrReMat) break; |
| 834 | } |
| 835 | PhysRegsAvailable.erase(I); |
| 836 | } |
| 837 | |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 838 | void AvailableSpills::ClobberSharingStackSlots(int StackSlot) { |
| 839 | std::map<int, unsigned>::iterator It = |
| 840 | SpillSlotsOrReMatsAvailable.find(StackSlot); |
| 841 | if (It == SpillSlotsOrReMatsAvailable.end()) return; |
| 842 | unsigned Reg = It->second >> 1; |
| 843 | |
| 844 | // Erase entries in PhysRegsAvailable for other stack slots. |
| 845 | std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg); |
| 846 | while (I != PhysRegsAvailable.end() && I->first == Reg) { |
| 847 | std::multimap<unsigned, int>::iterator NextI = llvm::next(I); |
| 848 | if (I->second != StackSlot) { |
| 849 | DEBUG(dbgs() << "Clobbered sharing SS#" << I->second << " in " |
| 850 | << PrintReg(Reg, TRI) << '\n'); |
| 851 | SpillSlotsOrReMatsAvailable.erase(I->second); |
| 852 | PhysRegsAvailable.erase(I); |
| 853 | } |
| 854 | I = NextI; |
| 855 | } |
| 856 | } |
| 857 | |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 858 | // ************************** // |
| 859 | // Reuse Info Implementation // |
| 860 | // ************************** // |
| 861 | |
| 862 | /// GetRegForReload - We are about to emit a reload into PhysReg. If there |
| 863 | /// is some other operand that is using the specified register, either pick |
| 864 | /// a new register to use, or evict the previous reload and use this reg. |
| 865 | unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC, |
| 866 | unsigned PhysReg, |
| 867 | MachineFunction &MF, |
| 868 | MachineInstr *MI, AvailableSpills &Spills, |
| 869 | std::vector<MachineInstr*> &MaybeDeadStores, |
| 870 | SmallSet<unsigned, 8> &Rejected, |
| 871 | BitVector &RegKills, |
| 872 | std::vector<MachineOperand*> &KillOps, |
| 873 | VirtRegMap &VRM) { |
| 874 | const TargetInstrInfo* TII = MF.getTarget().getInstrInfo(); |
| 875 | const TargetRegisterInfo *TRI = Spills.getRegInfo(); |
| 876 | |
| 877 | if (Reuses.empty()) return PhysReg; // This is most often empty. |
| 878 | |
| 879 | for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) { |
| 880 | ReusedOp &Op = Reuses[ro]; |
| 881 | // If we find some other reuse that was supposed to use this register |
| 882 | // exactly for its reload, we can change this reload to use ITS reload |
| 883 | // register. That is, unless its reload register has already been |
| 884 | // considered and subsequently rejected because it has also been reused |
| 885 | // by another operand. |
| 886 | if (Op.PhysRegReused == PhysReg && |
| 887 | Rejected.count(Op.AssignedPhysReg) == 0 && |
| 888 | RC->contains(Op.AssignedPhysReg)) { |
| 889 | // Yup, use the reload register that we didn't use before. |
| 890 | unsigned NewReg = Op.AssignedPhysReg; |
| 891 | Rejected.insert(PhysReg); |
| 892 | return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores, |
| 893 | Rejected, RegKills, KillOps, VRM); |
| 894 | } else { |
| 895 | // Otherwise, we might also have a problem if a previously reused |
| 896 | // value aliases the new register. If so, codegen the previous reload |
| 897 | // and use this one. |
| 898 | unsigned PRRU = Op.PhysRegReused; |
| 899 | if (TRI->regsOverlap(PRRU, PhysReg)) { |
| 900 | // Okay, we found out that an alias of a reused register |
| 901 | // was used. This isn't good because it means we have |
| 902 | // to undo a previous reuse. |
| 903 | MachineBasicBlock *MBB = MI->getParent(); |
| 904 | const TargetRegisterClass *AliasRC = |
| 905 | MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg); |
| 906 | |
| 907 | // Copy Op out of the vector and remove it, we're going to insert an |
| 908 | // explicit load for it. |
| 909 | ReusedOp NewOp = Op; |
| 910 | Reuses.erase(Reuses.begin()+ro); |
| 911 | |
| 912 | // MI may be using only a sub-register of PhysRegUsed. |
| 913 | unsigned RealPhysRegUsed = MI->getOperand(NewOp.Operand).getReg(); |
| 914 | unsigned SubIdx = 0; |
| 915 | assert(TargetRegisterInfo::isPhysicalRegister(RealPhysRegUsed) && |
| 916 | "A reuse cannot be a virtual register"); |
| 917 | if (PRRU != RealPhysRegUsed) { |
| 918 | // What was the sub-register index? |
| 919 | SubIdx = TRI->getSubRegIndex(PRRU, RealPhysRegUsed); |
| 920 | assert(SubIdx && |
| 921 | "Operand physreg is not a sub-register of PhysRegUsed"); |
| 922 | } |
| 923 | |
| 924 | // Ok, we're going to try to reload the assigned physreg into the |
| 925 | // slot that we were supposed to in the first place. However, that |
| 926 | // register could hold a reuse. Check to see if it conflicts or |
| 927 | // would prefer us to use a different register. |
| 928 | unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg, |
| 929 | MF, MI, Spills, MaybeDeadStores, |
| 930 | Rejected, RegKills, KillOps, VRM); |
| 931 | |
| 932 | bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT; |
| 933 | int SSorRMId = DoReMat |
| 934 | ? VRM.getReMatId(NewOp.VirtReg) : (int) NewOp.StackSlotOrReMat; |
| 935 | |
| 936 | // Back-schedule reloads and remats. |
| 937 | MachineBasicBlock::iterator InsertLoc = |
| 938 | ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI, |
| 939 | DoReMat, SSorRMId, TII, MF); |
| 940 | |
| 941 | if (DoReMat) { |
| 942 | ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII, |
| 943 | TRI, VRM); |
| 944 | } else { |
| 945 | TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg, |
| 946 | NewOp.StackSlotOrReMat, AliasRC, TRI); |
| 947 | MachineInstr *LoadMI = prior(InsertLoc); |
| 948 | VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI); |
| 949 | // Any stores to this stack slot are not dead anymore. |
| 950 | MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL; |
| 951 | ++NumLoads; |
| 952 | } |
| 953 | Spills.ClobberPhysReg(NewPhysReg); |
| 954 | Spills.ClobberPhysReg(NewOp.PhysRegReused); |
| 955 | |
| 956 | unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) :NewPhysReg; |
| 957 | MI->getOperand(NewOp.Operand).setReg(RReg); |
| 958 | MI->getOperand(NewOp.Operand).setSubReg(0); |
| 959 | |
| 960 | Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg); |
| 961 | UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps); |
| 962 | DEBUG(dbgs() << '\t' << *prior(InsertLoc)); |
| 963 | |
| 964 | DEBUG(dbgs() << "Reuse undone!\n"); |
| 965 | --NumReused; |
| 966 | |
| 967 | // Finally, PhysReg is now available, go ahead and use it. |
| 968 | return PhysReg; |
| 969 | } |
| 970 | } |
| 971 | } |
| 972 | return PhysReg; |
| 973 | } |
| 974 | |
| 975 | // ************************************************************************ // |
| 976 | |
| 977 | /// FoldsStackSlotModRef - Return true if the specified MI folds the specified |
| 978 | /// stack slot mod/ref. It also checks if it's possible to unfold the |
| 979 | /// instruction by having it define a specified physical register instead. |
| 980 | static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg, |
| 981 | const TargetInstrInfo *TII, |
| 982 | const TargetRegisterInfo *TRI, |
| 983 | VirtRegMap &VRM) { |
| 984 | if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI)) |
| 985 | return false; |
| 986 | |
| 987 | bool Found = false; |
| 988 | VirtRegMap::MI2VirtMapTy::const_iterator I, End; |
| 989 | for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) { |
| 990 | unsigned VirtReg = I->second.first; |
| 991 | VirtRegMap::ModRef MR = I->second.second; |
| 992 | if (MR & VirtRegMap::isModRef) |
| 993 | if (VRM.getStackSlot(VirtReg) == SS) { |
| 994 | Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0; |
| 995 | break; |
| 996 | } |
| 997 | } |
| 998 | if (!Found) |
| 999 | return false; |
| 1000 | |
| 1001 | // Does the instruction uses a register that overlaps the scratch register? |
| 1002 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| 1003 | MachineOperand &MO = MI.getOperand(i); |
| 1004 | if (!MO.isReg() || MO.getReg() == 0) |
| 1005 | continue; |
| 1006 | unsigned Reg = MO.getReg(); |
| 1007 | if (TargetRegisterInfo::isVirtualRegister(Reg)) { |
| 1008 | if (!VRM.hasPhys(Reg)) |
| 1009 | continue; |
| 1010 | Reg = VRM.getPhys(Reg); |
| 1011 | } |
| 1012 | if (TRI->regsOverlap(PhysReg, Reg)) |
| 1013 | return false; |
| 1014 | } |
| 1015 | return true; |
| 1016 | } |
| 1017 | |
| 1018 | /// FindFreeRegister - Find a free register of a given register class by looking |
| 1019 | /// at (at most) the last two machine instructions. |
| 1020 | static unsigned FindFreeRegister(MachineBasicBlock::iterator MII, |
| 1021 | MachineBasicBlock &MBB, |
| 1022 | const TargetRegisterClass *RC, |
| 1023 | const TargetRegisterInfo *TRI, |
| 1024 | BitVector &AllocatableRegs) { |
| 1025 | BitVector Defs(TRI->getNumRegs()); |
| 1026 | BitVector Uses(TRI->getNumRegs()); |
| 1027 | SmallVector<unsigned, 4> LocalUses; |
| 1028 | SmallVector<unsigned, 4> Kills; |
| 1029 | |
| 1030 | // Take a look at 2 instructions at most. |
| 1031 | unsigned Count = 0; |
| 1032 | while (Count < 2) { |
| 1033 | if (MII == MBB.begin()) |
| 1034 | break; |
| 1035 | MachineInstr *PrevMI = prior(MII); |
| 1036 | MII = PrevMI; |
| 1037 | |
| 1038 | if (PrevMI->isDebugValue()) |
| 1039 | continue; // Skip over dbg_value instructions. |
| 1040 | ++Count; |
| 1041 | |
| 1042 | for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) { |
| 1043 | MachineOperand &MO = PrevMI->getOperand(i); |
| 1044 | if (!MO.isReg() || MO.getReg() == 0) |
| 1045 | continue; |
| 1046 | unsigned Reg = MO.getReg(); |
| 1047 | if (MO.isDef()) { |
| 1048 | Defs.set(Reg); |
| 1049 | for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) |
| 1050 | Defs.set(*AS); |
| 1051 | } else { |
| 1052 | LocalUses.push_back(Reg); |
| 1053 | if (MO.isKill() && AllocatableRegs[Reg]) |
| 1054 | Kills.push_back(Reg); |
| 1055 | } |
| 1056 | } |
| 1057 | |
| 1058 | for (unsigned i = 0, e = Kills.size(); i != e; ++i) { |
| 1059 | unsigned Kill = Kills[i]; |
| 1060 | if (!Defs[Kill] && !Uses[Kill] && |
| 1061 | RC->contains(Kill)) |
| 1062 | return Kill; |
| 1063 | } |
| 1064 | for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) { |
| 1065 | unsigned Reg = LocalUses[i]; |
| 1066 | Uses.set(Reg); |
| 1067 | for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) |
| 1068 | Uses.set(*AS); |
| 1069 | } |
| 1070 | } |
| 1071 | |
| 1072 | return 0; |
| 1073 | } |
| 1074 | |
| 1075 | static |
| 1076 | void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg, |
| 1077 | const TargetRegisterInfo &TRI) { |
| 1078 | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| 1079 | MachineOperand &MO = MI->getOperand(i); |
| 1080 | if (MO.isReg() && MO.getReg() == VirtReg) |
| 1081 | substitutePhysReg(MO, PhysReg, TRI); |
| 1082 | } |
| 1083 | } |
| 1084 | |
| 1085 | namespace { |
| 1086 | |
| 1087 | struct RefSorter { |
| 1088 | bool operator()(const std::pair<MachineInstr*, int> &A, |
| 1089 | const std::pair<MachineInstr*, int> &B) { |
| 1090 | return A.second < B.second; |
| 1091 | } |
| 1092 | }; |
| 1093 | |
| 1094 | // ***************************** // |
| 1095 | // Local Spiller Implementation // |
| 1096 | // ***************************** // |
| 1097 | |
| 1098 | class LocalRewriter : public VirtRegRewriter { |
| 1099 | MachineRegisterInfo *MRI; |
| 1100 | const TargetRegisterInfo *TRI; |
| 1101 | const TargetInstrInfo *TII; |
| 1102 | VirtRegMap *VRM; |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1103 | LiveIntervals *LIs; |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1104 | BitVector AllocatableRegs; |
| 1105 | DenseMap<MachineInstr*, unsigned> DistanceMap; |
| 1106 | DenseMap<int, SmallVector<MachineInstr*,4> > Slot2DbgValues; |
| 1107 | |
| 1108 | MachineBasicBlock *MBB; // Basic block currently being processed. |
| 1109 | |
| 1110 | public: |
| 1111 | |
| 1112 | bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM, |
| 1113 | LiveIntervals* LIs); |
| 1114 | |
| 1115 | private: |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1116 | void EraseInstr(MachineInstr *MI) { |
| 1117 | VRM->RemoveMachineInstrFromMaps(MI); |
| 1118 | LIs->RemoveMachineInstrFromMaps(MI); |
| 1119 | MI->eraseFromParent(); |
| 1120 | } |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1121 | |
| 1122 | bool OptimizeByUnfold2(unsigned VirtReg, int SS, |
| 1123 | MachineBasicBlock::iterator &MII, |
| 1124 | std::vector<MachineInstr*> &MaybeDeadStores, |
| 1125 | AvailableSpills &Spills, |
| 1126 | BitVector &RegKills, |
| 1127 | std::vector<MachineOperand*> &KillOps); |
| 1128 | |
| 1129 | bool OptimizeByUnfold(MachineBasicBlock::iterator &MII, |
| 1130 | std::vector<MachineInstr*> &MaybeDeadStores, |
| 1131 | AvailableSpills &Spills, |
| 1132 | BitVector &RegKills, |
| 1133 | std::vector<MachineOperand*> &KillOps); |
| 1134 | |
| 1135 | bool CommuteToFoldReload(MachineBasicBlock::iterator &MII, |
| 1136 | unsigned VirtReg, unsigned SrcReg, int SS, |
| 1137 | AvailableSpills &Spills, |
| 1138 | BitVector &RegKills, |
| 1139 | std::vector<MachineOperand*> &KillOps, |
| 1140 | const TargetRegisterInfo *TRI); |
| 1141 | |
| 1142 | void SpillRegToStackSlot(MachineBasicBlock::iterator &MII, |
| 1143 | int Idx, unsigned PhysReg, int StackSlot, |
| 1144 | const TargetRegisterClass *RC, |
| 1145 | bool isAvailable, MachineInstr *&LastStore, |
| 1146 | AvailableSpills &Spills, |
| 1147 | SmallSet<MachineInstr*, 4> &ReMatDefs, |
| 1148 | BitVector &RegKills, |
| 1149 | std::vector<MachineOperand*> &KillOps); |
| 1150 | |
| 1151 | void TransferDeadness(unsigned Reg, BitVector &RegKills, |
| 1152 | std::vector<MachineOperand*> &KillOps); |
| 1153 | |
| 1154 | bool InsertEmergencySpills(MachineInstr *MI); |
| 1155 | |
| 1156 | bool InsertRestores(MachineInstr *MI, |
| 1157 | AvailableSpills &Spills, |
| 1158 | BitVector &RegKills, |
| 1159 | std::vector<MachineOperand*> &KillOps); |
| 1160 | |
| 1161 | bool InsertSpills(MachineInstr *MI); |
| 1162 | |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1163 | void ProcessUses(MachineInstr &MI, AvailableSpills &Spills, |
| 1164 | std::vector<MachineInstr*> &MaybeDeadStores, |
| 1165 | BitVector &RegKills, |
| 1166 | ReuseInfo &ReusedOperands, |
| 1167 | std::vector<MachineOperand*> &KillOps); |
| 1168 | |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1169 | void RewriteMBB(LiveIntervals *LIs, |
| 1170 | AvailableSpills &Spills, BitVector &RegKills, |
| 1171 | std::vector<MachineOperand*> &KillOps); |
| 1172 | }; |
| 1173 | } |
| 1174 | |
| 1175 | bool LocalRewriter::runOnMachineFunction(MachineFunction &MF, VirtRegMap &vrm, |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1176 | LiveIntervals* lis) { |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1177 | MRI = &MF.getRegInfo(); |
| 1178 | TRI = MF.getTarget().getRegisterInfo(); |
| 1179 | TII = MF.getTarget().getInstrInfo(); |
| 1180 | VRM = &vrm; |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1181 | LIs = lis; |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1182 | AllocatableRegs = TRI->getAllocatableSet(MF); |
| 1183 | DEBUG(dbgs() << "\n**** Local spiller rewriting function '" |
| 1184 | << MF.getFunction()->getName() << "':\n"); |
| 1185 | DEBUG(dbgs() << "**** Machine Instrs (NOTE! Does not include spills and" |
| 1186 | " reloads!) ****\n"); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1187 | DEBUG(MF.print(dbgs(), LIs->getSlotIndexes())); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1188 | |
| 1189 | // Spills - Keep track of which spilled values are available in physregs |
| 1190 | // so that we can choose to reuse the physregs instead of emitting |
| 1191 | // reloads. This is usually refreshed per basic block. |
| 1192 | AvailableSpills Spills(TRI, TII); |
| 1193 | |
| 1194 | // Keep track of kill information. |
| 1195 | BitVector RegKills(TRI->getNumRegs()); |
| 1196 | std::vector<MachineOperand*> KillOps; |
| 1197 | KillOps.resize(TRI->getNumRegs(), NULL); |
| 1198 | |
| 1199 | // SingleEntrySuccs - Successor blocks which have a single predecessor. |
| 1200 | SmallVector<MachineBasicBlock*, 4> SinglePredSuccs; |
| 1201 | SmallPtrSet<MachineBasicBlock*,16> EarlyVisited; |
| 1202 | |
| 1203 | // Traverse the basic blocks depth first. |
| 1204 | MachineBasicBlock *Entry = MF.begin(); |
| 1205 | SmallPtrSet<MachineBasicBlock*,16> Visited; |
| 1206 | for (df_ext_iterator<MachineBasicBlock*, |
| 1207 | SmallPtrSet<MachineBasicBlock*,16> > |
| 1208 | DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); |
| 1209 | DFI != E; ++DFI) { |
| 1210 | MBB = *DFI; |
| 1211 | if (!EarlyVisited.count(MBB)) |
| 1212 | RewriteMBB(LIs, Spills, RegKills, KillOps); |
| 1213 | |
| 1214 | // If this MBB is the only predecessor of a successor. Keep the |
| 1215 | // availability information and visit it next. |
| 1216 | do { |
| 1217 | // Keep visiting single predecessor successor as long as possible. |
| 1218 | SinglePredSuccs.clear(); |
| 1219 | findSinglePredSuccessor(MBB, SinglePredSuccs); |
| 1220 | if (SinglePredSuccs.empty()) |
| 1221 | MBB = 0; |
| 1222 | else { |
| 1223 | // FIXME: More than one successors, each of which has MBB has |
| 1224 | // the only predecessor. |
| 1225 | MBB = SinglePredSuccs[0]; |
| 1226 | if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) { |
| 1227 | Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps); |
| 1228 | RewriteMBB(LIs, Spills, RegKills, KillOps); |
| 1229 | } |
| 1230 | } |
| 1231 | } while (MBB); |
| 1232 | |
| 1233 | // Clear the availability info. |
| 1234 | Spills.clear(); |
| 1235 | } |
| 1236 | |
| 1237 | DEBUG(dbgs() << "**** Post Machine Instrs ****\n"); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1238 | DEBUG(MF.print(dbgs(), LIs->getSlotIndexes())); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1239 | |
| 1240 | // Mark unused spill slots. |
| 1241 | MachineFrameInfo *MFI = MF.getFrameInfo(); |
| 1242 | int SS = VRM->getLowSpillSlot(); |
| 1243 | if (SS != VirtRegMap::NO_STACK_SLOT) { |
| 1244 | for (int e = VRM->getHighSpillSlot(); SS <= e; ++SS) { |
| 1245 | SmallVector<MachineInstr*, 4> &DbgValues = Slot2DbgValues[SS]; |
| 1246 | if (!VRM->isSpillSlotUsed(SS)) { |
| 1247 | MFI->RemoveStackObject(SS); |
| 1248 | for (unsigned j = 0, ee = DbgValues.size(); j != ee; ++j) { |
| 1249 | MachineInstr *DVMI = DbgValues[j]; |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1250 | DEBUG(dbgs() << "Removing debug info referencing FI#" << SS << '\n'); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1251 | EraseInstr(DVMI); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1252 | } |
| 1253 | ++NumDSS; |
| 1254 | } |
| 1255 | DbgValues.clear(); |
| 1256 | } |
| 1257 | } |
| 1258 | Slot2DbgValues.clear(); |
| 1259 | |
| 1260 | return true; |
| 1261 | } |
| 1262 | |
| 1263 | /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if |
| 1264 | /// a scratch register is available. |
| 1265 | /// xorq %r12<kill>, %r13 |
| 1266 | /// addq %rax, -184(%rbp) |
| 1267 | /// addq %r13, -184(%rbp) |
| 1268 | /// ==> |
| 1269 | /// xorq %r12<kill>, %r13 |
| 1270 | /// movq -184(%rbp), %r12 |
| 1271 | /// addq %rax, %r12 |
| 1272 | /// addq %r13, %r12 |
| 1273 | /// movq %r12, -184(%rbp) |
| 1274 | bool LocalRewriter:: |
| 1275 | OptimizeByUnfold2(unsigned VirtReg, int SS, |
| 1276 | MachineBasicBlock::iterator &MII, |
| 1277 | std::vector<MachineInstr*> &MaybeDeadStores, |
| 1278 | AvailableSpills &Spills, |
| 1279 | BitVector &RegKills, |
| 1280 | std::vector<MachineOperand*> &KillOps) { |
| 1281 | |
| 1282 | MachineBasicBlock::iterator NextMII = llvm::next(MII); |
| 1283 | // Skip over dbg_value instructions. |
| 1284 | while (NextMII != MBB->end() && NextMII->isDebugValue()) |
| 1285 | NextMII = llvm::next(NextMII); |
| 1286 | if (NextMII == MBB->end()) |
| 1287 | return false; |
| 1288 | |
| 1289 | if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0) |
| 1290 | return false; |
| 1291 | |
| 1292 | // Now let's see if the last couple of instructions happens to have freed up |
| 1293 | // a register. |
| 1294 | const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); |
| 1295 | unsigned PhysReg = FindFreeRegister(MII, *MBB, RC, TRI, AllocatableRegs); |
| 1296 | if (!PhysReg) |
| 1297 | return false; |
| 1298 | |
| 1299 | MachineFunction &MF = *MBB->getParent(); |
| 1300 | TRI = MF.getTarget().getRegisterInfo(); |
| 1301 | MachineInstr &MI = *MII; |
| 1302 | if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, *VRM)) |
| 1303 | return false; |
| 1304 | |
| 1305 | // If the next instruction also folds the same SS modref and can be unfoled, |
| 1306 | // then it's worthwhile to issue a load from SS into the free register and |
| 1307 | // then unfold these instructions. |
| 1308 | if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM)) |
| 1309 | return false; |
| 1310 | |
| 1311 | // Back-schedule reloads and remats. |
| 1312 | ComputeReloadLoc(MII, MBB->begin(), PhysReg, TRI, false, SS, TII, MF); |
| 1313 | |
| 1314 | // Load from SS to the spare physical register. |
| 1315 | TII->loadRegFromStackSlot(*MBB, MII, PhysReg, SS, RC, TRI); |
| 1316 | // This invalidates Phys. |
| 1317 | Spills.ClobberPhysReg(PhysReg); |
| 1318 | // Remember it's available. |
| 1319 | Spills.addAvailable(SS, PhysReg); |
| 1320 | MaybeDeadStores[SS] = NULL; |
| 1321 | |
| 1322 | // Unfold current MI. |
| 1323 | SmallVector<MachineInstr*, 4> NewMIs; |
| 1324 | if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs)) |
| 1325 | llvm_unreachable("Unable unfold the load / store folding instruction!"); |
| 1326 | assert(NewMIs.size() == 1); |
| 1327 | AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI); |
| 1328 | VRM->transferRestorePts(&MI, NewMIs[0]); |
| 1329 | MII = MBB->insert(MII, NewMIs[0]); |
| 1330 | InvalidateKills(MI, TRI, RegKills, KillOps); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1331 | EraseInstr(&MI); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1332 | ++NumModRefUnfold; |
| 1333 | |
| 1334 | // Unfold next instructions that fold the same SS. |
| 1335 | do { |
| 1336 | MachineInstr &NextMI = *NextMII; |
| 1337 | NextMII = llvm::next(NextMII); |
| 1338 | NewMIs.clear(); |
| 1339 | if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs)) |
| 1340 | llvm_unreachable("Unable unfold the load / store folding instruction!"); |
| 1341 | assert(NewMIs.size() == 1); |
| 1342 | AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI); |
| 1343 | VRM->transferRestorePts(&NextMI, NewMIs[0]); |
| 1344 | MBB->insert(NextMII, NewMIs[0]); |
| 1345 | InvalidateKills(NextMI, TRI, RegKills, KillOps); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1346 | EraseInstr(&NextMI); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1347 | ++NumModRefUnfold; |
| 1348 | // Skip over dbg_value instructions. |
| 1349 | while (NextMII != MBB->end() && NextMII->isDebugValue()) |
| 1350 | NextMII = llvm::next(NextMII); |
| 1351 | if (NextMII == MBB->end()) |
| 1352 | break; |
| 1353 | } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM)); |
| 1354 | |
| 1355 | // Store the value back into SS. |
| 1356 | TII->storeRegToStackSlot(*MBB, NextMII, PhysReg, true, SS, RC, TRI); |
| 1357 | MachineInstr *StoreMI = prior(NextMII); |
| 1358 | VRM->addSpillSlotUse(SS, StoreMI); |
| 1359 | VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); |
| 1360 | |
| 1361 | return true; |
| 1362 | } |
| 1363 | |
| 1364 | /// OptimizeByUnfold - Turn a store folding instruction into a load folding |
| 1365 | /// instruction. e.g. |
| 1366 | /// xorl %edi, %eax |
| 1367 | /// movl %eax, -32(%ebp) |
| 1368 | /// movl -36(%ebp), %eax |
| 1369 | /// orl %eax, -32(%ebp) |
| 1370 | /// ==> |
| 1371 | /// xorl %edi, %eax |
| 1372 | /// orl -36(%ebp), %eax |
| 1373 | /// mov %eax, -32(%ebp) |
| 1374 | /// This enables unfolding optimization for a subsequent instruction which will |
| 1375 | /// also eliminate the newly introduced store instruction. |
| 1376 | bool LocalRewriter:: |
| 1377 | OptimizeByUnfold(MachineBasicBlock::iterator &MII, |
| 1378 | std::vector<MachineInstr*> &MaybeDeadStores, |
| 1379 | AvailableSpills &Spills, |
| 1380 | BitVector &RegKills, |
| 1381 | std::vector<MachineOperand*> &KillOps) { |
| 1382 | MachineFunction &MF = *MBB->getParent(); |
| 1383 | MachineInstr &MI = *MII; |
| 1384 | unsigned UnfoldedOpc = 0; |
| 1385 | unsigned UnfoldPR = 0; |
| 1386 | unsigned UnfoldVR = 0; |
| 1387 | int FoldedSS = VirtRegMap::NO_STACK_SLOT; |
| 1388 | VirtRegMap::MI2VirtMapTy::const_iterator I, End; |
| 1389 | for (tie(I, End) = VRM->getFoldedVirts(&MI); I != End; ) { |
| 1390 | // Only transform a MI that folds a single register. |
| 1391 | if (UnfoldedOpc) |
| 1392 | return false; |
| 1393 | UnfoldVR = I->second.first; |
| 1394 | VirtRegMap::ModRef MR = I->second.second; |
| 1395 | // MI2VirtMap be can updated which invalidate the iterator. |
| 1396 | // Increment the iterator first. |
| 1397 | ++I; |
| 1398 | if (VRM->isAssignedReg(UnfoldVR)) |
| 1399 | continue; |
| 1400 | // If this reference is not a use, any previous store is now dead. |
| 1401 | // Otherwise, the store to this stack slot is not dead anymore. |
| 1402 | FoldedSS = VRM->getStackSlot(UnfoldVR); |
| 1403 | MachineInstr* DeadStore = MaybeDeadStores[FoldedSS]; |
| 1404 | if (DeadStore && (MR & VirtRegMap::isModRef)) { |
| 1405 | unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS); |
| 1406 | if (!PhysReg || !DeadStore->readsRegister(PhysReg)) |
| 1407 | continue; |
| 1408 | UnfoldPR = PhysReg; |
| 1409 | UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), |
| 1410 | false, true); |
| 1411 | } |
| 1412 | } |
| 1413 | |
| 1414 | if (!UnfoldedOpc) { |
| 1415 | if (!UnfoldVR) |
| 1416 | return false; |
| 1417 | |
| 1418 | // Look for other unfolding opportunities. |
| 1419 | return OptimizeByUnfold2(UnfoldVR, FoldedSS, MII, MaybeDeadStores, Spills, |
| 1420 | RegKills, KillOps); |
| 1421 | } |
| 1422 | |
| 1423 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| 1424 | MachineOperand &MO = MI.getOperand(i); |
| 1425 | if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse()) |
| 1426 | continue; |
| 1427 | unsigned VirtReg = MO.getReg(); |
| 1428 | if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg()) |
| 1429 | continue; |
| 1430 | if (VRM->isAssignedReg(VirtReg)) { |
| 1431 | unsigned PhysReg = VRM->getPhys(VirtReg); |
| 1432 | if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR)) |
| 1433 | return false; |
| 1434 | } else if (VRM->isReMaterialized(VirtReg)) |
| 1435 | continue; |
| 1436 | int SS = VRM->getStackSlot(VirtReg); |
| 1437 | unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); |
| 1438 | if (PhysReg) { |
| 1439 | if (TRI->regsOverlap(PhysReg, UnfoldPR)) |
| 1440 | return false; |
| 1441 | continue; |
| 1442 | } |
| 1443 | if (VRM->hasPhys(VirtReg)) { |
| 1444 | PhysReg = VRM->getPhys(VirtReg); |
| 1445 | if (!TRI->regsOverlap(PhysReg, UnfoldPR)) |
| 1446 | continue; |
| 1447 | } |
| 1448 | |
| 1449 | // Ok, we'll need to reload the value into a register which makes |
| 1450 | // it impossible to perform the store unfolding optimization later. |
| 1451 | // Let's see if it is possible to fold the load if the store is |
| 1452 | // unfolded. This allows us to perform the store unfolding |
| 1453 | // optimization. |
| 1454 | SmallVector<MachineInstr*, 4> NewMIs; |
| 1455 | if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) { |
| 1456 | assert(NewMIs.size() == 1); |
| 1457 | MachineInstr *NewMI = NewMIs.back(); |
| 1458 | MBB->insert(MII, NewMI); |
| 1459 | NewMIs.clear(); |
| 1460 | int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false); |
| 1461 | assert(Idx != -1); |
| 1462 | SmallVector<unsigned, 1> Ops; |
| 1463 | Ops.push_back(Idx); |
| 1464 | MachineInstr *FoldedMI = TII->foldMemoryOperand(NewMI, Ops, SS); |
| 1465 | NewMI->eraseFromParent(); |
| 1466 | if (FoldedMI) { |
| 1467 | VRM->addSpillSlotUse(SS, FoldedMI); |
| 1468 | if (!VRM->hasPhys(UnfoldVR)) |
| 1469 | VRM->assignVirt2Phys(UnfoldVR, UnfoldPR); |
| 1470 | VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef); |
| 1471 | MII = FoldedMI; |
| 1472 | InvalidateKills(MI, TRI, RegKills, KillOps); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1473 | EraseInstr(&MI); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1474 | return true; |
| 1475 | } |
| 1476 | } |
| 1477 | } |
| 1478 | |
| 1479 | return false; |
| 1480 | } |
| 1481 | |
| 1482 | /// CommuteChangesDestination - We are looking for r0 = op r1, r2 and |
| 1483 | /// where SrcReg is r1 and it is tied to r0. Return true if after |
| 1484 | /// commuting this instruction it will be r0 = op r2, r1. |
| 1485 | static bool CommuteChangesDestination(MachineInstr *DefMI, |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1486 | const MCInstrDesc &MCID, |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1487 | unsigned SrcReg, |
| 1488 | const TargetInstrInfo *TII, |
| 1489 | unsigned &DstIdx) { |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1490 | if (MCID.getNumDefs() != 1 && MCID.getNumOperands() != 3) |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1491 | return false; |
| 1492 | if (!DefMI->getOperand(1).isReg() || |
| 1493 | DefMI->getOperand(1).getReg() != SrcReg) |
| 1494 | return false; |
| 1495 | unsigned DefIdx; |
| 1496 | if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0) |
| 1497 | return false; |
| 1498 | unsigned SrcIdx1, SrcIdx2; |
| 1499 | if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2)) |
| 1500 | return false; |
| 1501 | if (SrcIdx1 == 1 && SrcIdx2 == 2) { |
| 1502 | DstIdx = 2; |
| 1503 | return true; |
| 1504 | } |
| 1505 | return false; |
| 1506 | } |
| 1507 | |
| 1508 | /// CommuteToFoldReload - |
| 1509 | /// Look for |
| 1510 | /// r1 = load fi#1 |
| 1511 | /// r1 = op r1, r2<kill> |
| 1512 | /// store r1, fi#1 |
| 1513 | /// |
| 1514 | /// If op is commutable and r2 is killed, then we can xform these to |
| 1515 | /// r2 = op r2, fi#1 |
| 1516 | /// store r2, fi#1 |
| 1517 | bool LocalRewriter:: |
| 1518 | CommuteToFoldReload(MachineBasicBlock::iterator &MII, |
| 1519 | unsigned VirtReg, unsigned SrcReg, int SS, |
| 1520 | AvailableSpills &Spills, |
| 1521 | BitVector &RegKills, |
| 1522 | std::vector<MachineOperand*> &KillOps, |
| 1523 | const TargetRegisterInfo *TRI) { |
| 1524 | if (MII == MBB->begin() || !MII->killsRegister(SrcReg)) |
| 1525 | return false; |
| 1526 | |
| 1527 | MachineInstr &MI = *MII; |
| 1528 | MachineBasicBlock::iterator DefMII = prior(MII); |
| 1529 | MachineInstr *DefMI = DefMII; |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1530 | const MCInstrDesc &MCID = DefMI->getDesc(); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1531 | unsigned NewDstIdx; |
| 1532 | if (DefMII != MBB->begin() && |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1533 | MCID.isCommutable() && |
| 1534 | CommuteChangesDestination(DefMI, MCID, SrcReg, TII, NewDstIdx)) { |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1535 | MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); |
| 1536 | unsigned NewReg = NewDstMO.getReg(); |
| 1537 | if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg)) |
| 1538 | return false; |
| 1539 | MachineInstr *ReloadMI = prior(DefMII); |
| 1540 | int FrameIdx; |
| 1541 | unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx); |
| 1542 | if (DestReg != SrcReg || FrameIdx != SS) |
| 1543 | return false; |
| 1544 | int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false); |
| 1545 | if (UseIdx == -1) |
| 1546 | return false; |
| 1547 | unsigned DefIdx; |
| 1548 | if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx)) |
| 1549 | return false; |
| 1550 | assert(DefMI->getOperand(DefIdx).isReg() && |
| 1551 | DefMI->getOperand(DefIdx).getReg() == SrcReg); |
| 1552 | |
| 1553 | // Now commute def instruction. |
| 1554 | MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true); |
| 1555 | if (!CommutedMI) |
| 1556 | return false; |
| 1557 | MBB->insert(MII, CommutedMI); |
| 1558 | SmallVector<unsigned, 1> Ops; |
| 1559 | Ops.push_back(NewDstIdx); |
| 1560 | MachineInstr *FoldedMI = TII->foldMemoryOperand(CommutedMI, Ops, SS); |
| 1561 | // Not needed since foldMemoryOperand returns new MI. |
| 1562 | CommutedMI->eraseFromParent(); |
| 1563 | if (!FoldedMI) |
| 1564 | return false; |
| 1565 | |
| 1566 | VRM->addSpillSlotUse(SS, FoldedMI); |
| 1567 | VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef); |
| 1568 | // Insert new def MI and spill MI. |
| 1569 | const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); |
| 1570 | TII->storeRegToStackSlot(*MBB, &MI, NewReg, true, SS, RC, TRI); |
| 1571 | MII = prior(MII); |
| 1572 | MachineInstr *StoreMI = MII; |
| 1573 | VRM->addSpillSlotUse(SS, StoreMI); |
| 1574 | VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); |
| 1575 | MII = FoldedMI; // Update MII to backtrack. |
| 1576 | |
| 1577 | // Delete all 3 old instructions. |
| 1578 | InvalidateKills(*ReloadMI, TRI, RegKills, KillOps); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1579 | EraseInstr(ReloadMI); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1580 | InvalidateKills(*DefMI, TRI, RegKills, KillOps); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1581 | EraseInstr(DefMI); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1582 | InvalidateKills(MI, TRI, RegKills, KillOps); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1583 | EraseInstr(&MI); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1584 | |
| 1585 | // If NewReg was previously holding value of some SS, it's now clobbered. |
| 1586 | // This has to be done now because it's a physical register. When this |
| 1587 | // instruction is re-visited, it's ignored. |
| 1588 | Spills.ClobberPhysReg(NewReg); |
| 1589 | |
| 1590 | ++NumCommutes; |
| 1591 | return true; |
| 1592 | } |
| 1593 | |
| 1594 | return false; |
| 1595 | } |
| 1596 | |
| 1597 | /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if |
| 1598 | /// the last store to the same slot is now dead. If so, remove the last store. |
| 1599 | void LocalRewriter:: |
| 1600 | SpillRegToStackSlot(MachineBasicBlock::iterator &MII, |
| 1601 | int Idx, unsigned PhysReg, int StackSlot, |
| 1602 | const TargetRegisterClass *RC, |
| 1603 | bool isAvailable, MachineInstr *&LastStore, |
| 1604 | AvailableSpills &Spills, |
| 1605 | SmallSet<MachineInstr*, 4> &ReMatDefs, |
| 1606 | BitVector &RegKills, |
| 1607 | std::vector<MachineOperand*> &KillOps) { |
| 1608 | |
| 1609 | MachineBasicBlock::iterator oldNextMII = llvm::next(MII); |
| 1610 | TII->storeRegToStackSlot(*MBB, llvm::next(MII), PhysReg, true, StackSlot, RC, |
| 1611 | TRI); |
| 1612 | MachineInstr *StoreMI = prior(oldNextMII); |
| 1613 | VRM->addSpillSlotUse(StackSlot, StoreMI); |
| 1614 | DEBUG(dbgs() << "Store:\t" << *StoreMI); |
| 1615 | |
| 1616 | // If there is a dead store to this stack slot, nuke it now. |
| 1617 | if (LastStore) { |
| 1618 | DEBUG(dbgs() << "Removed dead store:\t" << *LastStore); |
| 1619 | ++NumDSE; |
| 1620 | SmallVector<unsigned, 2> KillRegs; |
| 1621 | InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs); |
| 1622 | MachineBasicBlock::iterator PrevMII = LastStore; |
| 1623 | bool CheckDef = PrevMII != MBB->begin(); |
| 1624 | if (CheckDef) |
| 1625 | --PrevMII; |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1626 | EraseInstr(LastStore); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1627 | if (CheckDef) { |
| 1628 | // Look at defs of killed registers on the store. Mark the defs |
| 1629 | // as dead since the store has been deleted and they aren't |
| 1630 | // being reused. |
| 1631 | for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) { |
| 1632 | bool HasOtherDef = false; |
| 1633 | if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef, TRI)) { |
| 1634 | MachineInstr *DeadDef = PrevMII; |
| 1635 | if (ReMatDefs.count(DeadDef) && !HasOtherDef) { |
| 1636 | // FIXME: This assumes a remat def does not have side effects. |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1637 | EraseInstr(DeadDef); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1638 | ++NumDRM; |
| 1639 | } |
| 1640 | } |
| 1641 | } |
| 1642 | } |
| 1643 | } |
| 1644 | |
| 1645 | // Allow for multi-instruction spill sequences, as on PPC Altivec. Presume |
| 1646 | // the last of multiple instructions is the actual store. |
| 1647 | LastStore = prior(oldNextMII); |
| 1648 | |
| 1649 | // If the stack slot value was previously available in some other |
| 1650 | // register, change it now. Otherwise, make the register available, |
| 1651 | // in PhysReg. |
| 1652 | Spills.ModifyStackSlotOrReMat(StackSlot); |
| 1653 | Spills.ClobberPhysReg(PhysReg); |
| 1654 | Spills.addAvailable(StackSlot, PhysReg, isAvailable); |
| 1655 | ++NumStores; |
| 1656 | } |
| 1657 | |
| 1658 | /// isSafeToDelete - Return true if this instruction doesn't produce any side |
| 1659 | /// effect and all of its defs are dead. |
| 1660 | static bool isSafeToDelete(MachineInstr &MI) { |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1661 | const MCInstrDesc &MCID = MI.getDesc(); |
| 1662 | if (MCID.mayLoad() || MCID.mayStore() || MCID.isTerminator() || |
| 1663 | MCID.isCall() || MCID.isBarrier() || MCID.isReturn() || |
| 1664 | MI.isLabel() || MI.isDebugValue() || |
| 1665 | MI.hasUnmodeledSideEffects()) |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1666 | return false; |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1667 | |
| 1668 | // Technically speaking inline asm without side effects and no defs can still |
| 1669 | // be deleted. But there is so much bad inline asm code out there, we should |
| 1670 | // let them be. |
| 1671 | if (MI.isInlineAsm()) |
| 1672 | return false; |
| 1673 | |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1674 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| 1675 | MachineOperand &MO = MI.getOperand(i); |
| 1676 | if (!MO.isReg() || !MO.getReg()) |
| 1677 | continue; |
| 1678 | if (MO.isDef() && !MO.isDead()) |
| 1679 | return false; |
| 1680 | if (MO.isUse() && MO.isKill()) |
| 1681 | // FIXME: We can't remove kill markers or else the scavenger will assert. |
| 1682 | // An alternative is to add a ADD pseudo instruction to replace kill |
| 1683 | // markers. |
| 1684 | return false; |
| 1685 | } |
| 1686 | return true; |
| 1687 | } |
| 1688 | |
| 1689 | /// TransferDeadness - A identity copy definition is dead and it's being |
| 1690 | /// removed. Find the last def or use and mark it as dead / kill. |
| 1691 | void LocalRewriter:: |
| 1692 | TransferDeadness(unsigned Reg, BitVector &RegKills, |
| 1693 | std::vector<MachineOperand*> &KillOps) { |
| 1694 | SmallPtrSet<MachineInstr*, 4> Seens; |
| 1695 | SmallVector<std::pair<MachineInstr*, int>,8> Refs; |
| 1696 | for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg), |
| 1697 | RE = MRI->reg_end(); RI != RE; ++RI) { |
| 1698 | MachineInstr *UDMI = &*RI; |
| 1699 | if (UDMI->isDebugValue() || UDMI->getParent() != MBB) |
| 1700 | continue; |
| 1701 | DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI); |
| 1702 | if (DI == DistanceMap.end()) |
| 1703 | continue; |
| 1704 | if (Seens.insert(UDMI)) |
| 1705 | Refs.push_back(std::make_pair(UDMI, DI->second)); |
| 1706 | } |
| 1707 | |
| 1708 | if (Refs.empty()) |
| 1709 | return; |
| 1710 | std::sort(Refs.begin(), Refs.end(), RefSorter()); |
| 1711 | |
| 1712 | while (!Refs.empty()) { |
| 1713 | MachineInstr *LastUDMI = Refs.back().first; |
| 1714 | Refs.pop_back(); |
| 1715 | |
| 1716 | MachineOperand *LastUD = NULL; |
| 1717 | for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) { |
| 1718 | MachineOperand &MO = LastUDMI->getOperand(i); |
| 1719 | if (!MO.isReg() || MO.getReg() != Reg) |
| 1720 | continue; |
| 1721 | if (!LastUD || (LastUD->isUse() && MO.isDef())) |
| 1722 | LastUD = &MO; |
| 1723 | if (LastUDMI->isRegTiedToDefOperand(i)) |
| 1724 | break; |
| 1725 | } |
| 1726 | if (LastUD->isDef()) { |
| 1727 | // If the instruction has no side effect, delete it and propagate |
| 1728 | // backward further. Otherwise, mark is dead and we are done. |
| 1729 | if (!isSafeToDelete(*LastUDMI)) { |
| 1730 | LastUD->setIsDead(); |
| 1731 | break; |
| 1732 | } |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1733 | EraseInstr(LastUDMI); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1734 | } else { |
| 1735 | LastUD->setIsKill(); |
| 1736 | RegKills.set(Reg); |
| 1737 | KillOps[Reg] = LastUD; |
| 1738 | break; |
| 1739 | } |
| 1740 | } |
| 1741 | } |
| 1742 | |
| 1743 | /// InsertEmergencySpills - Insert emergency spills before MI if requested by |
| 1744 | /// VRM. Return true if spills were inserted. |
| 1745 | bool LocalRewriter::InsertEmergencySpills(MachineInstr *MI) { |
| 1746 | if (!VRM->hasEmergencySpills(MI)) |
| 1747 | return false; |
| 1748 | MachineBasicBlock::iterator MII = MI; |
| 1749 | SmallSet<int, 4> UsedSS; |
| 1750 | std::vector<unsigned> &EmSpills = VRM->getEmergencySpills(MI); |
| 1751 | for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) { |
| 1752 | unsigned PhysReg = EmSpills[i]; |
| 1753 | const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysReg); |
| 1754 | assert(RC && "Unable to determine register class!"); |
| 1755 | int SS = VRM->getEmergencySpillSlot(RC); |
| 1756 | if (UsedSS.count(SS)) |
| 1757 | llvm_unreachable("Need to spill more than one physical registers!"); |
| 1758 | UsedSS.insert(SS); |
| 1759 | TII->storeRegToStackSlot(*MBB, MII, PhysReg, true, SS, RC, TRI); |
| 1760 | MachineInstr *StoreMI = prior(MII); |
| 1761 | VRM->addSpillSlotUse(SS, StoreMI); |
| 1762 | |
| 1763 | // Back-schedule reloads and remats. |
| 1764 | MachineBasicBlock::iterator InsertLoc = |
| 1765 | ComputeReloadLoc(llvm::next(MII), MBB->begin(), PhysReg, TRI, false, SS, |
| 1766 | TII, *MBB->getParent()); |
| 1767 | |
| 1768 | TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SS, RC, TRI); |
| 1769 | |
| 1770 | MachineInstr *LoadMI = prior(InsertLoc); |
| 1771 | VRM->addSpillSlotUse(SS, LoadMI); |
| 1772 | ++NumPSpills; |
| 1773 | DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size())); |
| 1774 | } |
| 1775 | return true; |
| 1776 | } |
| 1777 | |
| 1778 | /// InsertRestores - Restore registers before MI is requested by VRM. Return |
| 1779 | /// true is any instructions were inserted. |
| 1780 | bool LocalRewriter::InsertRestores(MachineInstr *MI, |
| 1781 | AvailableSpills &Spills, |
| 1782 | BitVector &RegKills, |
| 1783 | std::vector<MachineOperand*> &KillOps) { |
| 1784 | if (!VRM->isRestorePt(MI)) |
| 1785 | return false; |
| 1786 | MachineBasicBlock::iterator MII = MI; |
| 1787 | std::vector<unsigned> &RestoreRegs = VRM->getRestorePtRestores(MI); |
| 1788 | for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) { |
| 1789 | unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order. |
| 1790 | if (!VRM->getPreSplitReg(VirtReg)) |
| 1791 | continue; // Split interval spilled again. |
| 1792 | unsigned Phys = VRM->getPhys(VirtReg); |
| 1793 | MRI->setPhysRegUsed(Phys); |
| 1794 | |
| 1795 | // Check if the value being restored if available. If so, it must be |
| 1796 | // from a predecessor BB that fallthrough into this BB. We do not |
| 1797 | // expect: |
| 1798 | // BB1: |
| 1799 | // r1 = load fi#1 |
| 1800 | // ... |
| 1801 | // = r1<kill> |
| 1802 | // ... # r1 not clobbered |
| 1803 | // ... |
| 1804 | // = load fi#1 |
| 1805 | bool DoReMat = VRM->isReMaterialized(VirtReg); |
| 1806 | int SSorRMId = DoReMat |
| 1807 | ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg); |
| 1808 | unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId); |
| 1809 | if (InReg == Phys) { |
| 1810 | // If the value is already available in the expected register, save |
| 1811 | // a reload / remat. |
| 1812 | if (SSorRMId) |
| 1813 | DEBUG(dbgs() << "Reusing RM#" |
| 1814 | << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1); |
| 1815 | else |
| 1816 | DEBUG(dbgs() << "Reusing SS#" << SSorRMId); |
| 1817 | DEBUG(dbgs() << " from physreg " |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1818 | << TRI->getName(InReg) << " for " << PrintReg(VirtReg) |
| 1819 | <<" instead of reloading into physreg " |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1820 | << TRI->getName(Phys) << '\n'); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1821 | |
| 1822 | // Reusing a physreg may resurrect it. But we expect ProcessUses to update |
| 1823 | // the kill flags for the current instruction after processing it. |
| 1824 | |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1825 | ++NumOmitted; |
| 1826 | continue; |
| 1827 | } else if (InReg && InReg != Phys) { |
| 1828 | if (SSorRMId) |
| 1829 | DEBUG(dbgs() << "Reusing RM#" |
| 1830 | << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1); |
| 1831 | else |
| 1832 | DEBUG(dbgs() << "Reusing SS#" << SSorRMId); |
| 1833 | DEBUG(dbgs() << " from physreg " |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1834 | << TRI->getName(InReg) << " for " << PrintReg(VirtReg) |
| 1835 | <<" by copying it into physreg " |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1836 | << TRI->getName(Phys) << '\n'); |
| 1837 | |
| 1838 | // If the reloaded / remat value is available in another register, |
| 1839 | // copy it to the desired register. |
| 1840 | |
| 1841 | // Back-schedule reloads and remats. |
| 1842 | MachineBasicBlock::iterator InsertLoc = |
| 1843 | ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII, |
| 1844 | *MBB->getParent()); |
| 1845 | MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI->getDebugLoc(), |
| 1846 | TII->get(TargetOpcode::COPY), Phys) |
| 1847 | .addReg(InReg, RegState::Kill); |
| 1848 | |
| 1849 | // This invalidates Phys. |
| 1850 | Spills.ClobberPhysReg(Phys); |
| 1851 | // Remember it's available. |
| 1852 | Spills.addAvailable(SSorRMId, Phys); |
| 1853 | |
| 1854 | CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse); |
| 1855 | UpdateKills(*CopyMI, TRI, RegKills, KillOps); |
| 1856 | |
| 1857 | DEBUG(dbgs() << '\t' << *CopyMI); |
| 1858 | ++NumCopified; |
| 1859 | continue; |
| 1860 | } |
| 1861 | |
| 1862 | // Back-schedule reloads and remats. |
| 1863 | MachineBasicBlock::iterator InsertLoc = |
| 1864 | ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII, |
| 1865 | *MBB->getParent()); |
| 1866 | |
| 1867 | if (VRM->isReMaterialized(VirtReg)) { |
| 1868 | ReMaterialize(*MBB, InsertLoc, Phys, VirtReg, TII, TRI, *VRM); |
| 1869 | } else { |
| 1870 | const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); |
| 1871 | TII->loadRegFromStackSlot(*MBB, InsertLoc, Phys, SSorRMId, RC, TRI); |
| 1872 | MachineInstr *LoadMI = prior(InsertLoc); |
| 1873 | VRM->addSpillSlotUse(SSorRMId, LoadMI); |
| 1874 | ++NumLoads; |
| 1875 | DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size())); |
| 1876 | } |
| 1877 | |
| 1878 | // This invalidates Phys. |
| 1879 | Spills.ClobberPhysReg(Phys); |
| 1880 | // Remember it's available. |
| 1881 | Spills.addAvailable(SSorRMId, Phys); |
| 1882 | |
| 1883 | UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps); |
| 1884 | DEBUG(dbgs() << '\t' << *prior(MII)); |
| 1885 | } |
| 1886 | return true; |
| 1887 | } |
| 1888 | |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1889 | /// InsertSpills - Insert spills after MI if requested by VRM. Return |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1890 | /// true if spills were inserted. |
| 1891 | bool LocalRewriter::InsertSpills(MachineInstr *MI) { |
| 1892 | if (!VRM->isSpillPt(MI)) |
| 1893 | return false; |
| 1894 | MachineBasicBlock::iterator MII = MI; |
| 1895 | std::vector<std::pair<unsigned,bool> > &SpillRegs = |
| 1896 | VRM->getSpillPtSpills(MI); |
| 1897 | for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) { |
| 1898 | unsigned VirtReg = SpillRegs[i].first; |
| 1899 | bool isKill = SpillRegs[i].second; |
| 1900 | if (!VRM->getPreSplitReg(VirtReg)) |
| 1901 | continue; // Split interval spilled again. |
| 1902 | const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); |
| 1903 | unsigned Phys = VRM->getPhys(VirtReg); |
| 1904 | int StackSlot = VRM->getStackSlot(VirtReg); |
| 1905 | MachineBasicBlock::iterator oldNextMII = llvm::next(MII); |
| 1906 | TII->storeRegToStackSlot(*MBB, llvm::next(MII), Phys, isKill, StackSlot, |
| 1907 | RC, TRI); |
| 1908 | MachineInstr *StoreMI = prior(oldNextMII); |
| 1909 | VRM->addSpillSlotUse(StackSlot, StoreMI); |
| 1910 | DEBUG(dbgs() << "Store:\t" << *StoreMI); |
| 1911 | VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); |
| 1912 | } |
| 1913 | return true; |
| 1914 | } |
| 1915 | |
| 1916 | |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 1917 | /// ProcessUses - Process all of MI's spilled operands and all available |
| 1918 | /// operands. |
| 1919 | void LocalRewriter::ProcessUses(MachineInstr &MI, AvailableSpills &Spills, |
| 1920 | std::vector<MachineInstr*> &MaybeDeadStores, |
| 1921 | BitVector &RegKills, |
| 1922 | ReuseInfo &ReusedOperands, |
| 1923 | std::vector<MachineOperand*> &KillOps) { |
| 1924 | // Clear kill info. |
| 1925 | SmallSet<unsigned, 2> KilledMIRegs; |
| 1926 | SmallVector<unsigned, 4> VirtUseOps; |
| 1927 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| 1928 | MachineOperand &MO = MI.getOperand(i); |
| 1929 | if (!MO.isReg() || MO.getReg() == 0) |
| 1930 | continue; // Ignore non-register operands. |
| 1931 | |
| 1932 | unsigned VirtReg = MO.getReg(); |
| 1933 | |
| 1934 | if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) { |
| 1935 | // Ignore physregs for spilling, but remember that it is used by this |
| 1936 | // function. |
| 1937 | MRI->setPhysRegUsed(VirtReg); |
| 1938 | continue; |
| 1939 | } |
| 1940 | |
| 1941 | // We want to process implicit virtual register uses first. |
| 1942 | if (MO.isImplicit()) |
| 1943 | // If the virtual register is implicitly defined, emit a implicit_def |
| 1944 | // before so scavenger knows it's "defined". |
| 1945 | // FIXME: This is a horrible hack done the by register allocator to |
| 1946 | // remat a definition with virtual register operand. |
| 1947 | VirtUseOps.insert(VirtUseOps.begin(), i); |
| 1948 | else |
| 1949 | VirtUseOps.push_back(i); |
| 1950 | |
| 1951 | // A partial def causes problems because the same operand both reads and |
| 1952 | // writes the register. This rewriter is designed to rewrite uses and defs |
| 1953 | // separately, so a partial def would already have been rewritten to a |
| 1954 | // physreg by the time we get to processing defs. |
| 1955 | // Add an implicit use operand to model the partial def. |
| 1956 | if (MO.isDef() && MO.getSubReg() && MI.readsVirtualRegister(VirtReg) && |
| 1957 | MI.findRegisterUseOperandIdx(VirtReg) == -1) { |
| 1958 | VirtUseOps.insert(VirtUseOps.begin(), MI.getNumOperands()); |
| 1959 | MI.addOperand(MachineOperand::CreateReg(VirtReg, |
| 1960 | false, // isDef |
| 1961 | true)); // isImplicit |
| 1962 | DEBUG(dbgs() << "Partial redef: " << MI); |
| 1963 | } |
| 1964 | } |
| 1965 | |
| 1966 | // Process all of the spilled uses and all non spilled reg references. |
| 1967 | SmallVector<int, 2> PotentialDeadStoreSlots; |
| 1968 | KilledMIRegs.clear(); |
| 1969 | for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) { |
| 1970 | unsigned i = VirtUseOps[j]; |
| 1971 | unsigned VirtReg = MI.getOperand(i).getReg(); |
| 1972 | assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && |
| 1973 | "Not a virtual register?"); |
| 1974 | |
| 1975 | unsigned SubIdx = MI.getOperand(i).getSubReg(); |
| 1976 | if (VRM->isAssignedReg(VirtReg)) { |
| 1977 | // This virtual register was assigned a physreg! |
| 1978 | unsigned Phys = VRM->getPhys(VirtReg); |
| 1979 | MRI->setPhysRegUsed(Phys); |
| 1980 | if (MI.getOperand(i).isDef()) |
| 1981 | ReusedOperands.markClobbered(Phys); |
| 1982 | substitutePhysReg(MI.getOperand(i), Phys, *TRI); |
| 1983 | if (VRM->isImplicitlyDefined(VirtReg)) |
| 1984 | // FIXME: Is this needed? |
| 1985 | BuildMI(*MBB, &MI, MI.getDebugLoc(), |
| 1986 | TII->get(TargetOpcode::IMPLICIT_DEF), Phys); |
| 1987 | continue; |
| 1988 | } |
| 1989 | |
| 1990 | // This virtual register is now known to be a spilled value. |
| 1991 | if (!MI.getOperand(i).isUse()) |
| 1992 | continue; // Handle defs in the loop below (handle use&def here though) |
| 1993 | |
| 1994 | bool AvoidReload = MI.getOperand(i).isUndef(); |
| 1995 | // Check if it is defined by an implicit def. It should not be spilled. |
| 1996 | // Note, this is for correctness reason. e.g. |
| 1997 | // 8 %reg1024<def> = IMPLICIT_DEF |
| 1998 | // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2 |
| 1999 | // The live range [12, 14) are not part of the r1024 live interval since |
| 2000 | // it's defined by an implicit def. It will not conflicts with live |
| 2001 | // interval of r1025. Now suppose both registers are spilled, you can |
| 2002 | // easily see a situation where both registers are reloaded before |
| 2003 | // the INSERT_SUBREG and both target registers that would overlap. |
| 2004 | bool DoReMat = VRM->isReMaterialized(VirtReg); |
| 2005 | int SSorRMId = DoReMat |
| 2006 | ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg); |
| 2007 | int ReuseSlot = SSorRMId; |
| 2008 | |
| 2009 | // Check to see if this stack slot is available. |
| 2010 | unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId); |
| 2011 | |
| 2012 | // If this is a sub-register use, make sure the reuse register is in the |
| 2013 | // right register class. For example, for x86 not all of the 32-bit |
| 2014 | // registers have accessible sub-registers. |
| 2015 | // Similarly so for EXTRACT_SUBREG. Consider this: |
| 2016 | // EDI = op |
| 2017 | // MOV32_mr fi#1, EDI |
| 2018 | // ... |
| 2019 | // = EXTRACT_SUBREG fi#1 |
| 2020 | // fi#1 is available in EDI, but it cannot be reused because it's not in |
| 2021 | // the right register file. |
| 2022 | if (PhysReg && !AvoidReload && SubIdx) { |
| 2023 | const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); |
| 2024 | if (!RC->contains(PhysReg)) |
| 2025 | PhysReg = 0; |
| 2026 | } |
| 2027 | |
| 2028 | if (PhysReg && !AvoidReload) { |
| 2029 | // This spilled operand might be part of a two-address operand. If this |
| 2030 | // is the case, then changing it will necessarily require changing the |
| 2031 | // def part of the instruction as well. However, in some cases, we |
| 2032 | // aren't allowed to modify the reused register. If none of these cases |
| 2033 | // apply, reuse it. |
| 2034 | bool CanReuse = true; |
| 2035 | bool isTied = MI.isRegTiedToDefOperand(i); |
| 2036 | if (isTied) { |
| 2037 | // Okay, we have a two address operand. We can reuse this physreg as |
| 2038 | // long as we are allowed to clobber the value and there isn't an |
| 2039 | // earlier def that has already clobbered the physreg. |
| 2040 | CanReuse = !ReusedOperands.isClobbered(PhysReg) && |
| 2041 | Spills.canClobberPhysReg(PhysReg); |
| 2042 | } |
| 2043 | // If this is an asm, and a PhysReg alias is used elsewhere as an |
| 2044 | // earlyclobber operand, we can't also use it as an input. |
| 2045 | if (MI.isInlineAsm()) { |
| 2046 | for (unsigned k = 0, e = MI.getNumOperands(); k != e; ++k) { |
| 2047 | MachineOperand &MOk = MI.getOperand(k); |
| 2048 | if (MOk.isReg() && MOk.isEarlyClobber() && |
| 2049 | TRI->regsOverlap(MOk.getReg(), PhysReg)) { |
| 2050 | CanReuse = false; |
| 2051 | DEBUG(dbgs() << "Not reusing physreg " << TRI->getName(PhysReg) |
| 2052 | << " for " << PrintReg(VirtReg) << ": " << MOk |
| 2053 | << '\n'); |
| 2054 | break; |
| 2055 | } |
| 2056 | } |
| 2057 | } |
| 2058 | |
| 2059 | if (CanReuse) { |
| 2060 | // If this stack slot value is already available, reuse it! |
| 2061 | if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) |
| 2062 | DEBUG(dbgs() << "Reusing RM#" |
| 2063 | << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1); |
| 2064 | else |
| 2065 | DEBUG(dbgs() << "Reusing SS#" << ReuseSlot); |
| 2066 | DEBUG(dbgs() << " from physreg " |
| 2067 | << TRI->getName(PhysReg) << " for " << PrintReg(VirtReg) |
| 2068 | << " instead of reloading into " |
| 2069 | << PrintReg(VRM->getPhys(VirtReg), TRI) << '\n'); |
| 2070 | unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; |
| 2071 | MI.getOperand(i).setReg(RReg); |
| 2072 | MI.getOperand(i).setSubReg(0); |
| 2073 | |
| 2074 | // Reusing a physreg may resurrect it. But we expect ProcessUses to |
| 2075 | // update the kill flags for the current instr after processing it. |
| 2076 | |
| 2077 | // The only technical detail we have is that we don't know that |
| 2078 | // PhysReg won't be clobbered by a reloaded stack slot that occurs |
| 2079 | // later in the instruction. In particular, consider 'op V1, V2'. |
| 2080 | // If V1 is available in physreg R0, we would choose to reuse it |
| 2081 | // here, instead of reloading it into the register the allocator |
| 2082 | // indicated (say R1). However, V2 might have to be reloaded |
| 2083 | // later, and it might indicate that it needs to live in R0. When |
| 2084 | // this occurs, we need to have information available that |
| 2085 | // indicates it is safe to use R1 for the reload instead of R0. |
| 2086 | // |
| 2087 | // To further complicate matters, we might conflict with an alias, |
| 2088 | // or R0 and R1 might not be compatible with each other. In this |
| 2089 | // case, we actually insert a reload for V1 in R1, ensuring that |
| 2090 | // we can get at R0 or its alias. |
| 2091 | ReusedOperands.addReuse(i, ReuseSlot, PhysReg, |
| 2092 | VRM->getPhys(VirtReg), VirtReg); |
| 2093 | if (isTied) |
| 2094 | // Only mark it clobbered if this is a use&def operand. |
| 2095 | ReusedOperands.markClobbered(PhysReg); |
| 2096 | ++NumReused; |
| 2097 | |
| 2098 | if (MI.getOperand(i).isKill() && |
| 2099 | ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) { |
| 2100 | |
| 2101 | // The store of this spilled value is potentially dead, but we |
| 2102 | // won't know for certain until we've confirmed that the re-use |
| 2103 | // above is valid, which means waiting until the other operands |
| 2104 | // are processed. For now we just track the spill slot, we'll |
| 2105 | // remove it after the other operands are processed if valid. |
| 2106 | |
| 2107 | PotentialDeadStoreSlots.push_back(ReuseSlot); |
| 2108 | } |
| 2109 | |
| 2110 | // Mark is isKill if it's there no other uses of the same virtual |
| 2111 | // register and it's not a two-address operand. IsKill will be |
| 2112 | // unset if reg is reused. |
| 2113 | if (!isTied && KilledMIRegs.count(VirtReg) == 0) { |
| 2114 | MI.getOperand(i).setIsKill(); |
| 2115 | KilledMIRegs.insert(VirtReg); |
| 2116 | } |
| 2117 | continue; |
| 2118 | } // CanReuse |
| 2119 | |
| 2120 | // Otherwise we have a situation where we have a two-address instruction |
| 2121 | // whose mod/ref operand needs to be reloaded. This reload is already |
| 2122 | // available in some register "PhysReg", but if we used PhysReg as the |
| 2123 | // operand to our 2-addr instruction, the instruction would modify |
| 2124 | // PhysReg. This isn't cool if something later uses PhysReg and expects |
| 2125 | // to get its initial value. |
| 2126 | // |
| 2127 | // To avoid this problem, and to avoid doing a load right after a store, |
| 2128 | // we emit a copy from PhysReg into the designated register for this |
| 2129 | // operand. |
| 2130 | // |
| 2131 | // This case also applies to an earlyclobber'd PhysReg. |
| 2132 | unsigned DesignatedReg = VRM->getPhys(VirtReg); |
| 2133 | assert(DesignatedReg && "Must map virtreg to physreg!"); |
| 2134 | |
| 2135 | // Note that, if we reused a register for a previous operand, the |
| 2136 | // register we want to reload into might not actually be |
| 2137 | // available. If this occurs, use the register indicated by the |
| 2138 | // reuser. |
| 2139 | if (ReusedOperands.hasReuses()) |
| 2140 | DesignatedReg = ReusedOperands. |
| 2141 | GetRegForReload(VirtReg, DesignatedReg, &MI, Spills, |
| 2142 | MaybeDeadStores, RegKills, KillOps, *VRM); |
| 2143 | |
| 2144 | // If the mapped designated register is actually the physreg we have |
| 2145 | // incoming, we don't need to inserted a dead copy. |
| 2146 | if (DesignatedReg == PhysReg) { |
| 2147 | // If this stack slot value is already available, reuse it! |
| 2148 | if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) |
| 2149 | DEBUG(dbgs() << "Reusing RM#" |
| 2150 | << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1); |
| 2151 | else |
| 2152 | DEBUG(dbgs() << "Reusing SS#" << ReuseSlot); |
| 2153 | DEBUG(dbgs() << " from physreg " << TRI->getName(PhysReg) |
| 2154 | << " for " << PrintReg(VirtReg) |
| 2155 | << " instead of reloading into same physreg.\n"); |
| 2156 | unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; |
| 2157 | MI.getOperand(i).setReg(RReg); |
| 2158 | MI.getOperand(i).setSubReg(0); |
| 2159 | ReusedOperands.markClobbered(RReg); |
| 2160 | ++NumReused; |
| 2161 | continue; |
| 2162 | } |
| 2163 | |
| 2164 | MRI->setPhysRegUsed(DesignatedReg); |
| 2165 | ReusedOperands.markClobbered(DesignatedReg); |
| 2166 | |
| 2167 | // Back-schedule reloads and remats. |
| 2168 | MachineBasicBlock::iterator InsertLoc = |
| 2169 | ComputeReloadLoc(&MI, MBB->begin(), PhysReg, TRI, DoReMat, |
| 2170 | SSorRMId, TII, *MBB->getParent()); |
| 2171 | MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI.getDebugLoc(), |
| 2172 | TII->get(TargetOpcode::COPY), |
| 2173 | DesignatedReg).addReg(PhysReg); |
| 2174 | CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse); |
| 2175 | UpdateKills(*CopyMI, TRI, RegKills, KillOps); |
| 2176 | |
| 2177 | // This invalidates DesignatedReg. |
| 2178 | Spills.ClobberPhysReg(DesignatedReg); |
| 2179 | |
| 2180 | Spills.addAvailable(ReuseSlot, DesignatedReg); |
| 2181 | unsigned RReg = |
| 2182 | SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg; |
| 2183 | MI.getOperand(i).setReg(RReg); |
| 2184 | MI.getOperand(i).setSubReg(0); |
| 2185 | DEBUG(dbgs() << '\t' << *prior(InsertLoc)); |
| 2186 | ++NumReused; |
| 2187 | continue; |
| 2188 | } // if (PhysReg) |
| 2189 | |
| 2190 | // Otherwise, reload it and remember that we have it. |
| 2191 | PhysReg = VRM->getPhys(VirtReg); |
| 2192 | assert(PhysReg && "Must map virtreg to physreg!"); |
| 2193 | |
| 2194 | // Note that, if we reused a register for a previous operand, the |
| 2195 | // register we want to reload into might not actually be |
| 2196 | // available. If this occurs, use the register indicated by the |
| 2197 | // reuser. |
| 2198 | if (ReusedOperands.hasReuses()) |
| 2199 | PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI, |
| 2200 | Spills, MaybeDeadStores, RegKills, KillOps, *VRM); |
| 2201 | |
| 2202 | MRI->setPhysRegUsed(PhysReg); |
| 2203 | ReusedOperands.markClobbered(PhysReg); |
| 2204 | if (AvoidReload) |
| 2205 | ++NumAvoided; |
| 2206 | else { |
| 2207 | // Back-schedule reloads and remats. |
| 2208 | MachineBasicBlock::iterator InsertLoc = |
| 2209 | ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI, DoReMat, |
| 2210 | SSorRMId, TII, *MBB->getParent()); |
| 2211 | |
| 2212 | if (DoReMat) { |
| 2213 | ReMaterialize(*MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, *VRM); |
| 2214 | } else { |
| 2215 | const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); |
| 2216 | TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SSorRMId, RC,TRI); |
| 2217 | MachineInstr *LoadMI = prior(InsertLoc); |
| 2218 | VRM->addSpillSlotUse(SSorRMId, LoadMI); |
| 2219 | ++NumLoads; |
| 2220 | DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size())); |
| 2221 | } |
| 2222 | // This invalidates PhysReg. |
| 2223 | Spills.ClobberPhysReg(PhysReg); |
| 2224 | |
| 2225 | // Any stores to this stack slot are not dead anymore. |
| 2226 | if (!DoReMat) |
| 2227 | MaybeDeadStores[SSorRMId] = NULL; |
| 2228 | Spills.addAvailable(SSorRMId, PhysReg); |
| 2229 | // Assumes this is the last use. IsKill will be unset if reg is reused |
| 2230 | // unless it's a two-address operand. |
| 2231 | if (!MI.isRegTiedToDefOperand(i) && |
| 2232 | KilledMIRegs.count(VirtReg) == 0) { |
| 2233 | MI.getOperand(i).setIsKill(); |
| 2234 | KilledMIRegs.insert(VirtReg); |
| 2235 | } |
| 2236 | |
| 2237 | UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps); |
| 2238 | DEBUG(dbgs() << '\t' << *prior(InsertLoc)); |
| 2239 | } |
| 2240 | unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; |
| 2241 | MI.getOperand(i).setReg(RReg); |
| 2242 | MI.getOperand(i).setSubReg(0); |
| 2243 | } |
| 2244 | |
| 2245 | // Ok - now we can remove stores that have been confirmed dead. |
| 2246 | for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) { |
| 2247 | // This was the last use and the spilled value is still available |
| 2248 | // for reuse. That means the spill was unnecessary! |
| 2249 | int PDSSlot = PotentialDeadStoreSlots[j]; |
| 2250 | MachineInstr* DeadStore = MaybeDeadStores[PDSSlot]; |
| 2251 | if (DeadStore) { |
| 2252 | DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore); |
| 2253 | InvalidateKills(*DeadStore, TRI, RegKills, KillOps); |
| 2254 | EraseInstr(DeadStore); |
| 2255 | MaybeDeadStores[PDSSlot] = NULL; |
| 2256 | ++NumDSE; |
| 2257 | } |
| 2258 | } |
| 2259 | } |
| 2260 | |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 2261 | /// rewriteMBB - Keep track of which spills are available even after the |
| 2262 | /// register allocator is done with them. If possible, avoid reloading vregs. |
| 2263 | void |
| 2264 | LocalRewriter::RewriteMBB(LiveIntervals *LIs, |
| 2265 | AvailableSpills &Spills, BitVector &RegKills, |
| 2266 | std::vector<MachineOperand*> &KillOps) { |
| 2267 | |
| 2268 | DEBUG(dbgs() << "\n**** Local spiller rewriting MBB '" |
| 2269 | << MBB->getName() << "':\n"); |
| 2270 | |
| 2271 | MachineFunction &MF = *MBB->getParent(); |
| 2272 | |
| 2273 | // MaybeDeadStores - When we need to write a value back into a stack slot, |
| 2274 | // keep track of the inserted store. If the stack slot value is never read |
| 2275 | // (because the value was used from some available register, for example), and |
| 2276 | // subsequently stored to, the original store is dead. This map keeps track |
| 2277 | // of inserted stores that are not used. If we see a subsequent store to the |
| 2278 | // same stack slot, the original store is deleted. |
| 2279 | std::vector<MachineInstr*> MaybeDeadStores; |
| 2280 | MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL); |
| 2281 | |
| 2282 | // ReMatDefs - These are rematerializable def MIs which are not deleted. |
| 2283 | SmallSet<MachineInstr*, 4> ReMatDefs; |
| 2284 | |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 2285 | // Keep track of the registers we have already spilled in case there are |
| 2286 | // multiple defs of the same register in MI. |
| 2287 | SmallSet<unsigned, 8> SpilledMIRegs; |
| 2288 | |
| 2289 | RegKills.reset(); |
| 2290 | KillOps.clear(); |
| 2291 | KillOps.resize(TRI->getNumRegs(), NULL); |
| 2292 | |
| 2293 | DistanceMap.clear(); |
| 2294 | for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); |
| 2295 | MII != E; ) { |
| 2296 | MachineBasicBlock::iterator NextMII = llvm::next(MII); |
| 2297 | |
| 2298 | if (OptimizeByUnfold(MII, MaybeDeadStores, Spills, RegKills, KillOps)) |
| 2299 | NextMII = llvm::next(MII); |
| 2300 | |
| 2301 | if (InsertEmergencySpills(MII)) |
| 2302 | NextMII = llvm::next(MII); |
| 2303 | |
| 2304 | InsertRestores(MII, Spills, RegKills, KillOps); |
| 2305 | |
| 2306 | if (InsertSpills(MII)) |
| 2307 | NextMII = llvm::next(MII); |
| 2308 | |
| 2309 | bool Erased = false; |
| 2310 | bool BackTracked = false; |
| 2311 | MachineInstr &MI = *MII; |
| 2312 | |
| 2313 | // Remember DbgValue's which reference stack slots. |
| 2314 | if (MI.isDebugValue() && MI.getOperand(0).isFI()) |
| 2315 | Slot2DbgValues[MI.getOperand(0).getIndex()].push_back(&MI); |
| 2316 | |
| 2317 | /// ReusedOperands - Keep track of operand reuse in case we need to undo |
| 2318 | /// reuse. |
| 2319 | ReuseInfo ReusedOperands(MI, TRI); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 2320 | |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 2321 | ProcessUses(MI, Spills, MaybeDeadStores, RegKills, ReusedOperands, KillOps); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 2322 | |
| 2323 | DEBUG(dbgs() << '\t' << MI); |
| 2324 | |
| 2325 | |
| 2326 | // If we have folded references to memory operands, make sure we clear all |
| 2327 | // physical registers that may contain the value of the spilled virtual |
| 2328 | // register |
| 2329 | |
| 2330 | // Copy the folded virts to a small vector, we may change MI2VirtMap. |
| 2331 | SmallVector<std::pair<unsigned, VirtRegMap::ModRef>, 4> FoldedVirts; |
| 2332 | // C++0x FTW! |
| 2333 | for (std::pair<VirtRegMap::MI2VirtMapTy::const_iterator, |
| 2334 | VirtRegMap::MI2VirtMapTy::const_iterator> FVRange = |
| 2335 | VRM->getFoldedVirts(&MI); |
| 2336 | FVRange.first != FVRange.second; ++FVRange.first) |
| 2337 | FoldedVirts.push_back(FVRange.first->second); |
| 2338 | |
| 2339 | SmallSet<int, 2> FoldedSS; |
| 2340 | for (unsigned FVI = 0, FVE = FoldedVirts.size(); FVI != FVE; ++FVI) { |
| 2341 | unsigned VirtReg = FoldedVirts[FVI].first; |
| 2342 | VirtRegMap::ModRef MR = FoldedVirts[FVI].second; |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 2343 | DEBUG(dbgs() << "Folded " << PrintReg(VirtReg) << " MR: " << MR); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 2344 | |
| 2345 | int SS = VRM->getStackSlot(VirtReg); |
| 2346 | if (SS == VirtRegMap::NO_STACK_SLOT) |
| 2347 | continue; |
| 2348 | FoldedSS.insert(SS); |
| 2349 | DEBUG(dbgs() << " - StackSlot: " << SS << "\n"); |
| 2350 | |
| 2351 | // If this folded instruction is just a use, check to see if it's a |
| 2352 | // straight load from the virt reg slot. |
| 2353 | if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) { |
| 2354 | int FrameIdx; |
| 2355 | unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx); |
| 2356 | if (DestReg && FrameIdx == SS) { |
| 2357 | // If this spill slot is available, turn it into a copy (or nothing) |
| 2358 | // instead of leaving it as a load! |
| 2359 | if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) { |
| 2360 | DEBUG(dbgs() << "Promoted Load To Copy: " << MI); |
| 2361 | if (DestReg != InReg) { |
| 2362 | MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg); |
| 2363 | MachineInstr *CopyMI = BuildMI(*MBB, &MI, MI.getDebugLoc(), |
| 2364 | TII->get(TargetOpcode::COPY)) |
| 2365 | .addReg(DestReg, RegState::Define, DefMO->getSubReg()) |
| 2366 | .addReg(InReg, RegState::Kill); |
| 2367 | // Revisit the copy so we make sure to notice the effects of the |
| 2368 | // operation on the destreg (either needing to RA it if it's |
| 2369 | // virtual or needing to clobber any values if it's physical). |
| 2370 | NextMII = CopyMI; |
| 2371 | NextMII->setAsmPrinterFlag(MachineInstr::ReloadReuse); |
| 2372 | BackTracked = true; |
| 2373 | } else { |
| 2374 | DEBUG(dbgs() << "Removing now-noop copy: " << MI); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 2375 | // InvalidateKills resurrects any prior kill of the copy's source |
| 2376 | // allowing the source reg to be reused in place of the copy. |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 2377 | Spills.disallowClobberPhysReg(InReg); |
| 2378 | } |
| 2379 | |
| 2380 | InvalidateKills(MI, TRI, RegKills, KillOps); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 2381 | EraseInstr(&MI); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 2382 | Erased = true; |
| 2383 | goto ProcessNextInst; |
| 2384 | } |
| 2385 | } else { |
| 2386 | unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); |
| 2387 | SmallVector<MachineInstr*, 4> NewMIs; |
| 2388 | if (PhysReg && |
| 2389 | TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)){ |
| 2390 | MBB->insert(MII, NewMIs[0]); |
| 2391 | InvalidateKills(MI, TRI, RegKills, KillOps); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 2392 | EraseInstr(&MI); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 2393 | Erased = true; |
| 2394 | --NextMII; // backtrack to the unfolded instruction. |
| 2395 | BackTracked = true; |
| 2396 | goto ProcessNextInst; |
| 2397 | } |
| 2398 | } |
| 2399 | } |
| 2400 | |
| 2401 | // If this reference is not a use, any previous store is now dead. |
| 2402 | // Otherwise, the store to this stack slot is not dead anymore. |
| 2403 | MachineInstr* DeadStore = MaybeDeadStores[SS]; |
| 2404 | if (DeadStore) { |
| 2405 | bool isDead = !(MR & VirtRegMap::isRef); |
| 2406 | MachineInstr *NewStore = NULL; |
| 2407 | if (MR & VirtRegMap::isModRef) { |
| 2408 | unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); |
| 2409 | SmallVector<MachineInstr*, 4> NewMIs; |
| 2410 | // We can reuse this physreg as long as we are allowed to clobber |
| 2411 | // the value and there isn't an earlier def that has already clobbered |
| 2412 | // the physreg. |
| 2413 | if (PhysReg && |
| 2414 | !ReusedOperands.isClobbered(PhysReg) && |
| 2415 | Spills.canClobberPhysReg(PhysReg) && |
| 2416 | !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable! |
| 2417 | MachineOperand *KillOpnd = |
| 2418 | DeadStore->findRegisterUseOperand(PhysReg, true); |
| 2419 | // Note, if the store is storing a sub-register, it's possible the |
| 2420 | // super-register is needed below. |
| 2421 | if (KillOpnd && !KillOpnd->getSubReg() && |
| 2422 | TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){ |
| 2423 | MBB->insert(MII, NewMIs[0]); |
| 2424 | NewStore = NewMIs[1]; |
| 2425 | MBB->insert(MII, NewStore); |
| 2426 | VRM->addSpillSlotUse(SS, NewStore); |
| 2427 | InvalidateKills(MI, TRI, RegKills, KillOps); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 2428 | EraseInstr(&MI); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 2429 | Erased = true; |
| 2430 | --NextMII; |
| 2431 | --NextMII; // backtrack to the unfolded instruction. |
| 2432 | BackTracked = true; |
| 2433 | isDead = true; |
| 2434 | ++NumSUnfold; |
| 2435 | } |
| 2436 | } |
| 2437 | } |
| 2438 | |
| 2439 | if (isDead) { // Previous store is dead. |
| 2440 | // If we get here, the store is dead, nuke it now. |
| 2441 | DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore); |
| 2442 | InvalidateKills(*DeadStore, TRI, RegKills, KillOps); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 2443 | EraseInstr(DeadStore); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 2444 | if (!NewStore) |
| 2445 | ++NumDSE; |
| 2446 | } |
| 2447 | |
| 2448 | MaybeDeadStores[SS] = NULL; |
| 2449 | if (NewStore) { |
| 2450 | // Treat this store as a spill merged into a copy. That makes the |
| 2451 | // stack slot value available. |
| 2452 | VRM->virtFolded(VirtReg, NewStore, VirtRegMap::isMod); |
| 2453 | goto ProcessNextInst; |
| 2454 | } |
| 2455 | } |
| 2456 | |
| 2457 | // If the spill slot value is available, and this is a new definition of |
| 2458 | // the value, the value is not available anymore. |
| 2459 | if (MR & VirtRegMap::isMod) { |
| 2460 | // Notice that the value in this stack slot has been modified. |
| 2461 | Spills.ModifyStackSlotOrReMat(SS); |
| 2462 | |
| 2463 | // If this is *just* a mod of the value, check to see if this is just a |
| 2464 | // store to the spill slot (i.e. the spill got merged into the copy). If |
| 2465 | // so, realize that the vreg is available now, and add the store to the |
| 2466 | // MaybeDeadStore info. |
| 2467 | int StackSlot; |
| 2468 | if (!(MR & VirtRegMap::isRef)) { |
| 2469 | if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) { |
| 2470 | assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) && |
| 2471 | "Src hasn't been allocated yet?"); |
| 2472 | |
| 2473 | if (CommuteToFoldReload(MII, VirtReg, SrcReg, StackSlot, |
| 2474 | Spills, RegKills, KillOps, TRI)) { |
| 2475 | NextMII = llvm::next(MII); |
| 2476 | BackTracked = true; |
| 2477 | goto ProcessNextInst; |
| 2478 | } |
| 2479 | |
| 2480 | // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark |
| 2481 | // this as a potentially dead store in case there is a subsequent |
| 2482 | // store into the stack slot without a read from it. |
| 2483 | MaybeDeadStores[StackSlot] = &MI; |
| 2484 | |
| 2485 | // If the stack slot value was previously available in some other |
| 2486 | // register, change it now. Otherwise, make the register |
| 2487 | // available in PhysReg. |
| 2488 | Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg)); |
| 2489 | } |
| 2490 | } |
| 2491 | } |
| 2492 | } |
| 2493 | |
| 2494 | // Process all of the spilled defs. |
| 2495 | SpilledMIRegs.clear(); |
| 2496 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| 2497 | MachineOperand &MO = MI.getOperand(i); |
| 2498 | if (!(MO.isReg() && MO.getReg() && MO.isDef())) |
| 2499 | continue; |
| 2500 | |
| 2501 | unsigned VirtReg = MO.getReg(); |
| 2502 | if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) { |
| 2503 | // Check to see if this is a noop copy. If so, eliminate the |
| 2504 | // instruction before considering the dest reg to be changed. |
| 2505 | // Also check if it's copying from an "undef", if so, we can't |
| 2506 | // eliminate this or else the undef marker is lost and it will |
| 2507 | // confuses the scavenger. This is extremely rare. |
| 2508 | if (MI.isIdentityCopy() && !MI.getOperand(1).isUndef() && |
| 2509 | MI.getNumOperands() == 2) { |
| 2510 | ++NumDCE; |
| 2511 | DEBUG(dbgs() << "Removing now-noop copy: " << MI); |
| 2512 | SmallVector<unsigned, 2> KillRegs; |
| 2513 | InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs); |
| 2514 | if (MO.isDead() && !KillRegs.empty()) { |
| 2515 | // Source register or an implicit super/sub-register use is killed. |
| 2516 | assert(TRI->regsOverlap(KillRegs[0], MI.getOperand(0).getReg())); |
| 2517 | // Last def is now dead. |
| 2518 | TransferDeadness(MI.getOperand(1).getReg(), RegKills, KillOps); |
| 2519 | } |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 2520 | EraseInstr(&MI); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 2521 | Erased = true; |
| 2522 | Spills.disallowClobberPhysReg(VirtReg); |
| 2523 | goto ProcessNextInst; |
| 2524 | } |
| 2525 | |
| 2526 | // If it's not a no-op copy, it clobbers the value in the destreg. |
| 2527 | Spills.ClobberPhysReg(VirtReg); |
| 2528 | ReusedOperands.markClobbered(VirtReg); |
| 2529 | |
| 2530 | // Check to see if this instruction is a load from a stack slot into |
| 2531 | // a register. If so, this provides the stack slot value in the reg. |
| 2532 | int FrameIdx; |
| 2533 | if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) { |
| 2534 | assert(DestReg == VirtReg && "Unknown load situation!"); |
| 2535 | |
| 2536 | // If it is a folded reference, then it's not safe to clobber. |
| 2537 | bool Folded = FoldedSS.count(FrameIdx); |
| 2538 | // Otherwise, if it wasn't available, remember that it is now! |
| 2539 | Spills.addAvailable(FrameIdx, DestReg, !Folded); |
| 2540 | goto ProcessNextInst; |
| 2541 | } |
| 2542 | |
| 2543 | continue; |
| 2544 | } |
| 2545 | |
| 2546 | unsigned SubIdx = MO.getSubReg(); |
| 2547 | bool DoReMat = VRM->isReMaterialized(VirtReg); |
| 2548 | if (DoReMat) |
| 2549 | ReMatDefs.insert(&MI); |
| 2550 | |
| 2551 | // The only vregs left are stack slot definitions. |
| 2552 | int StackSlot = VRM->getStackSlot(VirtReg); |
| 2553 | const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); |
| 2554 | |
| 2555 | // If this def is part of a two-address operand, make sure to execute |
| 2556 | // the store from the correct physical register. |
| 2557 | unsigned PhysReg; |
| 2558 | unsigned TiedOp; |
| 2559 | if (MI.isRegTiedToUseOperand(i, &TiedOp)) { |
| 2560 | PhysReg = MI.getOperand(TiedOp).getReg(); |
| 2561 | if (SubIdx) { |
| 2562 | unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI); |
| 2563 | assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg && |
| 2564 | "Can't find corresponding super-register!"); |
| 2565 | PhysReg = SuperReg; |
| 2566 | } |
| 2567 | } else { |
| 2568 | PhysReg = VRM->getPhys(VirtReg); |
| 2569 | if (ReusedOperands.isClobbered(PhysReg)) { |
| 2570 | // Another def has taken the assigned physreg. It must have been a |
| 2571 | // use&def which got it due to reuse. Undo the reuse! |
| 2572 | PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI, |
| 2573 | Spills, MaybeDeadStores, RegKills, KillOps, *VRM); |
| 2574 | } |
| 2575 | } |
| 2576 | |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 2577 | // If StackSlot is available in a register that also holds other stack |
| 2578 | // slots, clobber those stack slots now. |
| 2579 | Spills.ClobberSharingStackSlots(StackSlot); |
| 2580 | |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 2581 | assert(PhysReg && "VR not assigned a physical register?"); |
| 2582 | MRI->setPhysRegUsed(PhysReg); |
| 2583 | unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; |
| 2584 | ReusedOperands.markClobbered(RReg); |
| 2585 | MI.getOperand(i).setReg(RReg); |
| 2586 | MI.getOperand(i).setSubReg(0); |
| 2587 | |
| 2588 | if (!MO.isDead() && SpilledMIRegs.insert(VirtReg)) { |
| 2589 | MachineInstr *&LastStore = MaybeDeadStores[StackSlot]; |
| 2590 | SpillRegToStackSlot(MII, -1, PhysReg, StackSlot, RC, true, |
| 2591 | LastStore, Spills, ReMatDefs, RegKills, KillOps); |
| 2592 | NextMII = llvm::next(MII); |
| 2593 | |
| 2594 | // Check to see if this is a noop copy. If so, eliminate the |
| 2595 | // instruction before considering the dest reg to be changed. |
| 2596 | if (MI.isIdentityCopy()) { |
| 2597 | ++NumDCE; |
| 2598 | DEBUG(dbgs() << "Removing now-noop copy: " << MI); |
| 2599 | InvalidateKills(MI, TRI, RegKills, KillOps); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 2600 | EraseInstr(&MI); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 2601 | Erased = true; |
| 2602 | UpdateKills(*LastStore, TRI, RegKills, KillOps); |
| 2603 | goto ProcessNextInst; |
| 2604 | } |
| 2605 | } |
| 2606 | } |
| 2607 | ProcessNextInst: |
| 2608 | // Delete dead instructions without side effects. |
| 2609 | if (!Erased && !BackTracked && isSafeToDelete(MI)) { |
| 2610 | InvalidateKills(MI, TRI, RegKills, KillOps); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame] | 2611 | EraseInstr(&MI); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 2612 | Erased = true; |
| 2613 | } |
| 2614 | if (!Erased) |
| 2615 | DistanceMap.insert(std::make_pair(&MI, DistanceMap.size())); |
| 2616 | if (!Erased && !BackTracked) { |
| 2617 | for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II) |
| 2618 | UpdateKills(*II, TRI, RegKills, KillOps); |
| 2619 | } |
| 2620 | MII = NextMII; |
| 2621 | } |
| 2622 | |
| 2623 | } |
| 2624 | |
| 2625 | llvm::VirtRegRewriter* llvm::createVirtRegRewriter() { |
| 2626 | switch (RewriterOpt) { |
| 2627 | default: llvm_unreachable("Unreachable!"); |
| 2628 | case local: |
| 2629 | return new LocalRewriter(); |
| 2630 | case trivial: |
| 2631 | return new TrivialRewriter(); |
| 2632 | } |
| 2633 | } |