Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 1 | //===- subzero/src/IceRegAlloc.cpp - Linear-scan implementation -----------===// |
| 2 | // |
| 3 | // The Subzero Code Generator |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the LinearScan class, which performs the |
| 11 | // linear-scan register allocation after liveness analysis has been |
| 12 | // performed. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #include "IceCfg.h" |
| 17 | #include "IceInst.h" |
| 18 | #include "IceOperand.h" |
| 19 | #include "IceRegAlloc.h" |
| 20 | #include "IceTargetLowering.h" |
| 21 | |
| 22 | namespace Ice { |
| 23 | |
| 24 | // Implements the linear-scan algorithm. Based on "Linear Scan |
| 25 | // Register Allocation in the Context of SSA Form and Register |
| 26 | // Constraints" by Hanspeter Mössenböck and Michael Pfeiffer, |
| 27 | // ftp://ftp.ssw.uni-linz.ac.at/pub/Papers/Moe02.PDF . This |
| 28 | // implementation is modified to take affinity into account and allow |
| 29 | // two interfering variables to share the same register in certain |
| 30 | // cases. |
| 31 | // |
| 32 | // Requires running Cfg::liveness(Liveness_RangesFull) in |
| 33 | // preparation. Results are assigned to Variable::RegNum for each |
| 34 | // Variable. |
| 35 | void LinearScan::scan(const llvm::SmallBitVector &RegMaskFull) { |
| 36 | assert(RegMaskFull.any()); // Sanity check |
| 37 | Unhandled.clear(); |
| 38 | Handled.clear(); |
| 39 | Inactive.clear(); |
| 40 | Active.clear(); |
| 41 | Ostream &Str = Func->getContext()->getStrDump(); |
| 42 | Func->setCurrentNode(NULL); |
| 43 | |
| 44 | // Gather the live ranges of all variables and add them to the |
| 45 | // Unhandled set. TODO: Unhandled is a set<> which is based on a |
| 46 | // balanced binary tree, so inserting live ranges for N variables is |
| 47 | // O(N log N) complexity. N may be proportional to the number of |
| 48 | // instructions, thanks to temporary generation during lowering. As |
| 49 | // a result, it may be useful to design a better data structure for |
| 50 | // storing Func->getVariables(). |
| 51 | const VarList &Vars = Func->getVariables(); |
| 52 | for (VarList::const_iterator I = Vars.begin(), E = Vars.end(); I != E; ++I) { |
| 53 | Variable *Var = *I; |
| 54 | // Explicitly don't consider zero-weight variables, which are |
| 55 | // meant to be spill slots. |
| 56 | if (Var->getWeight() == RegWeight::Zero) |
| 57 | continue; |
| 58 | // Don't bother if the variable has a null live range, which means |
| 59 | // it was never referenced. |
| 60 | if (Var->getLiveRange().isEmpty()) |
| 61 | continue; |
| 62 | Unhandled.insert(LiveRangeWrapper(Var)); |
| 63 | if (Var->hasReg()) { |
| 64 | Var->setRegNumTmp(Var->getRegNum()); |
| 65 | Var->setLiveRangeInfiniteWeight(); |
| 66 | } |
| 67 | } |
| 68 | |
| 69 | // RegUses[I] is the number of live ranges (variables) that register |
| 70 | // I is currently assigned to. It can be greater than 1 as a result |
| 71 | // of Variable::AllowRegisterOverlap. |
| 72 | std::vector<int> RegUses(RegMaskFull.size()); |
| 73 | // Unhandled is already set to all ranges in increasing order of |
| 74 | // start points. |
| 75 | assert(Active.empty()); |
| 76 | assert(Inactive.empty()); |
| 77 | assert(Handled.empty()); |
| 78 | UnorderedRanges::iterator Next; |
| 79 | |
| 80 | while (!Unhandled.empty()) { |
| 81 | LiveRangeWrapper Cur = *Unhandled.begin(); |
| 82 | Unhandled.erase(Unhandled.begin()); |
| 83 | if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| 84 | Str << "\nConsidering "; |
| 85 | Cur.dump(Func); |
| 86 | Str << "\n"; |
| 87 | } |
| 88 | const llvm::SmallBitVector RegMask = |
| 89 | RegMaskFull & |
| 90 | Func->getTarget()->getRegisterSetForType(Cur.Var->getType()); |
| 91 | |
| 92 | // Check for precolored ranges. If Cur is precolored, it |
| 93 | // definitely gets that register. Previously processed live |
| 94 | // ranges would have avoided that register due to it being |
| 95 | // precolored. Future processed live ranges won't evict that |
| 96 | // register because the live range has infinite weight. |
| 97 | if (Cur.Var->hasReg()) { |
| 98 | int32_t RegNum = Cur.Var->getRegNum(); |
| 99 | // RegNumTmp should have already been set above. |
| 100 | assert(Cur.Var->getRegNumTmp() == RegNum); |
| 101 | if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| 102 | Str << "Precoloring "; |
| 103 | Cur.dump(Func); |
| 104 | Str << "\n"; |
| 105 | } |
| 106 | Active.push_back(Cur); |
| 107 | assert(RegUses[RegNum] >= 0); |
| 108 | ++RegUses[RegNum]; |
| 109 | continue; |
| 110 | } |
| 111 | |
| 112 | // Check for active ranges that have expired or become inactive. |
| 113 | for (UnorderedRanges::iterator I = Active.begin(), E = Active.end(); I != E; |
| 114 | I = Next) { |
| 115 | Next = I; |
| 116 | ++Next; |
| 117 | LiveRangeWrapper Item = *I; |
| 118 | bool Moved = false; |
| 119 | if (Item.endsBefore(Cur)) { |
| 120 | // Move Item from Active to Handled list. |
| 121 | if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| 122 | Str << "Expiring "; |
| 123 | Item.dump(Func); |
| 124 | Str << "\n"; |
| 125 | } |
| 126 | Active.erase(I); |
| 127 | Handled.push_back(Item); |
| 128 | Moved = true; |
| 129 | } else if (!Item.overlapsStart(Cur)) { |
| 130 | // Move Item from Active to Inactive list. |
| 131 | if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| 132 | Str << "Inactivating "; |
| 133 | Item.dump(Func); |
| 134 | Str << "\n"; |
| 135 | } |
| 136 | Active.erase(I); |
| 137 | Inactive.push_back(Item); |
| 138 | Moved = true; |
| 139 | } |
| 140 | if (Moved) { |
| 141 | // Decrement Item from RegUses[]. |
| 142 | assert(Item.Var->hasRegTmp()); |
| 143 | int32_t RegNum = Item.Var->getRegNumTmp(); |
| 144 | --RegUses[RegNum]; |
| 145 | assert(RegUses[RegNum] >= 0); |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | // Check for inactive ranges that have expired or reactivated. |
| 150 | for (UnorderedRanges::iterator I = Inactive.begin(), E = Inactive.end(); |
| 151 | I != E; I = Next) { |
| 152 | Next = I; |
| 153 | ++Next; |
| 154 | LiveRangeWrapper Item = *I; |
| 155 | if (Item.endsBefore(Cur)) { |
| 156 | // Move Item from Inactive to Handled list. |
| 157 | if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| 158 | Str << "Expiring "; |
| 159 | Item.dump(Func); |
| 160 | Str << "\n"; |
| 161 | } |
| 162 | Inactive.erase(I); |
| 163 | Handled.push_back(Item); |
| 164 | } else if (Item.overlapsStart(Cur)) { |
| 165 | // Move Item from Inactive to Active list. |
| 166 | if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| 167 | Str << "Reactivating "; |
| 168 | Item.dump(Func); |
| 169 | Str << "\n"; |
| 170 | } |
| 171 | Inactive.erase(I); |
| 172 | Active.push_back(Item); |
| 173 | // Increment Item in RegUses[]. |
| 174 | assert(Item.Var->hasRegTmp()); |
| 175 | int32_t RegNum = Item.Var->getRegNumTmp(); |
| 176 | assert(RegUses[RegNum] >= 0); |
| 177 | ++RegUses[RegNum]; |
| 178 | } |
| 179 | } |
| 180 | |
| 181 | // Calculate available registers into Free[]. |
| 182 | llvm::SmallBitVector Free = RegMask; |
| 183 | for (SizeT i = 0; i < RegMask.size(); ++i) { |
| 184 | if (RegUses[i] > 0) |
| 185 | Free[i] = false; |
| 186 | } |
| 187 | |
| 188 | // Remove registers from the Free[] list where an Inactive range |
| 189 | // overlaps with the current range. |
| 190 | for (UnorderedRanges::const_iterator I = Inactive.begin(), |
| 191 | E = Inactive.end(); |
| 192 | I != E; ++I) { |
| 193 | LiveRangeWrapper Item = *I; |
| 194 | if (Item.overlaps(Cur)) { |
| 195 | int32_t RegNum = Item.Var->getRegNumTmp(); |
| 196 | // Don't assert(Free[RegNum]) because in theory (though |
| 197 | // probably never in practice) there could be two inactive |
| 198 | // variables that were allowed marked with |
| 199 | // AllowRegisterOverlap. |
| 200 | Free[RegNum] = false; |
| 201 | } |
| 202 | } |
| 203 | |
| 204 | // Remove registers from the Free[] list where an Unhandled range |
| 205 | // overlaps with the current range and is precolored. |
| 206 | // Cur.endsBefore(*I) is an early exit check that turns a |
| 207 | // guaranteed O(N^2) algorithm into expected linear complexity. |
Jim Stichnoth | ca662e9 | 2014-07-10 15:32:36 -0700 | [diff] [blame] | 208 | llvm::SmallBitVector PrecoloredUnhandled(RegMask.size()); |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 209 | for (OrderedRanges::const_iterator I = Unhandled.begin(), |
| 210 | E = Unhandled.end(); |
| 211 | I != E && !Cur.endsBefore(*I); ++I) { |
| 212 | LiveRangeWrapper Item = *I; |
| 213 | if (Item.Var->hasReg() && Item.overlaps(Cur)) { |
| 214 | Free[Item.Var->getRegNum()] = false; // Note: getRegNum not getRegNumTmp |
Jim Stichnoth | ca662e9 | 2014-07-10 15:32:36 -0700 | [diff] [blame] | 215 | PrecoloredUnhandled[Item.Var->getRegNum()] = true; |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 216 | } |
| 217 | } |
| 218 | |
| 219 | // Print info about physical register availability. |
| 220 | if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| 221 | for (SizeT i = 0; i < RegMask.size(); ++i) { |
| 222 | if (RegMask[i]) { |
| 223 | Str << Func->getTarget()->getRegName(i, IceType_i32) |
Jim Stichnoth | ca662e9 | 2014-07-10 15:32:36 -0700 | [diff] [blame] | 224 | << "(U=" << RegUses[i] << ",F=" << Free[i] |
| 225 | << ",P=" << PrecoloredUnhandled[i] << ") "; |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 226 | } |
| 227 | } |
| 228 | Str << "\n"; |
| 229 | } |
| 230 | |
| 231 | Variable *Prefer = Cur.Var->getPreferredRegister(); |
| 232 | int32_t PreferReg = Prefer && Prefer->hasRegTmp() ? Prefer->getRegNumTmp() |
| 233 | : Variable::NoRegister; |
Jim Stichnoth | ca662e9 | 2014-07-10 15:32:36 -0700 | [diff] [blame] | 234 | bool AllowedToOverlap = Cur.Var->getRegisterOverlap() && |
| 235 | PreferReg != Variable::NoRegister && |
| 236 | !PrecoloredUnhandled[PreferReg]; |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 237 | if (PreferReg != Variable::NoRegister && |
Jim Stichnoth | ca662e9 | 2014-07-10 15:32:36 -0700 | [diff] [blame] | 238 | (AllowedToOverlap || Free[PreferReg])) { |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 239 | // First choice: a preferred register that is either free or is |
| 240 | // allowed to overlap with its linked variable. |
| 241 | Cur.Var->setRegNumTmp(PreferReg); |
| 242 | if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| 243 | Str << "Preferring "; |
| 244 | Cur.dump(Func); |
| 245 | Str << "\n"; |
| 246 | } |
| 247 | assert(RegUses[PreferReg] >= 0); |
| 248 | ++RegUses[PreferReg]; |
| 249 | Active.push_back(Cur); |
| 250 | } else if (Free.any()) { |
| 251 | // Second choice: any free register. TODO: After explicit |
| 252 | // affinity is considered, is there a strategy better than just |
| 253 | // picking the lowest-numbered available register? |
| 254 | int32_t RegNum = Free.find_first(); |
| 255 | Cur.Var->setRegNumTmp(RegNum); |
| 256 | if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| 257 | Str << "Allocating "; |
| 258 | Cur.dump(Func); |
| 259 | Str << "\n"; |
| 260 | } |
| 261 | assert(RegUses[RegNum] >= 0); |
| 262 | ++RegUses[RegNum]; |
| 263 | Active.push_back(Cur); |
| 264 | } else { |
| 265 | // Fallback: there are no free registers, so we look for the |
| 266 | // lowest-weight register and see if Cur has higher weight. |
| 267 | std::vector<RegWeight> Weights(RegMask.size()); |
| 268 | // Check Active ranges. |
| 269 | for (UnorderedRanges::const_iterator I = Active.begin(), E = Active.end(); |
| 270 | I != E; ++I) { |
| 271 | LiveRangeWrapper Item = *I; |
| 272 | assert(Item.overlaps(Cur)); |
| 273 | int32_t RegNum = Item.Var->getRegNumTmp(); |
| 274 | assert(Item.Var->hasRegTmp()); |
| 275 | Weights[RegNum].addWeight(Item.range().getWeight()); |
| 276 | } |
| 277 | // Same as above, but check Inactive ranges instead of Active. |
| 278 | for (UnorderedRanges::const_iterator I = Inactive.begin(), |
| 279 | E = Inactive.end(); |
| 280 | I != E; ++I) { |
| 281 | LiveRangeWrapper Item = *I; |
| 282 | int32_t RegNum = Item.Var->getRegNumTmp(); |
| 283 | assert(Item.Var->hasRegTmp()); |
| 284 | if (Item.overlaps(Cur)) |
| 285 | Weights[RegNum].addWeight(Item.range().getWeight()); |
| 286 | } |
| 287 | // Check Unhandled ranges that overlap Cur and are precolored. |
| 288 | // Cur.endsBefore(*I) is an early exit check that turns a |
| 289 | // guaranteed O(N^2) algorithm into expected linear complexity. |
| 290 | for (OrderedRanges::const_iterator I = Unhandled.begin(), |
| 291 | E = Unhandled.end(); |
| 292 | I != E && !Cur.endsBefore(*I); ++I) { |
| 293 | LiveRangeWrapper Item = *I; |
| 294 | int32_t RegNum = Item.Var->getRegNumTmp(); |
| 295 | if (RegNum < 0) |
| 296 | continue; |
| 297 | if (Item.overlaps(Cur)) |
| 298 | Weights[RegNum].setWeight(RegWeight::Inf); |
| 299 | } |
| 300 | |
| 301 | // All the weights are now calculated. Find the register with |
| 302 | // smallest weight. |
| 303 | int32_t MinWeightIndex = RegMask.find_first(); |
| 304 | // MinWeightIndex must be valid because of the initial |
| 305 | // RegMask.any() test. |
| 306 | assert(MinWeightIndex >= 0); |
| 307 | for (SizeT i = MinWeightIndex + 1; i < Weights.size(); ++i) { |
| 308 | if (RegMask[i] && Weights[i] < Weights[MinWeightIndex]) |
| 309 | MinWeightIndex = i; |
| 310 | } |
| 311 | |
| 312 | if (Cur.range().getWeight() <= Weights[MinWeightIndex]) { |
| 313 | // Cur doesn't have priority over any other live ranges, so |
| 314 | // don't allocate any register to it, and move it to the |
| 315 | // Handled state. |
| 316 | Handled.push_back(Cur); |
| 317 | if (Cur.range().getWeight().isInf()) { |
| 318 | Func->setError("Unable to find a physical register for an " |
| 319 | "infinite-weight live range"); |
| 320 | } |
| 321 | } else { |
| 322 | // Evict all live ranges in Active that register number |
| 323 | // MinWeightIndex is assigned to. |
| 324 | for (UnorderedRanges::iterator I = Active.begin(), E = Active.end(); |
| 325 | I != E; I = Next) { |
| 326 | Next = I; |
| 327 | ++Next; |
| 328 | LiveRangeWrapper Item = *I; |
| 329 | if (Item.Var->getRegNumTmp() == MinWeightIndex) { |
| 330 | if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| 331 | Str << "Evicting "; |
| 332 | Item.dump(Func); |
| 333 | Str << "\n"; |
| 334 | } |
| 335 | --RegUses[MinWeightIndex]; |
| 336 | assert(RegUses[MinWeightIndex] >= 0); |
| 337 | Item.Var->setRegNumTmp(Variable::NoRegister); |
| 338 | Active.erase(I); |
| 339 | Handled.push_back(Item); |
| 340 | } |
| 341 | } |
| 342 | // Do the same for Inactive. |
| 343 | for (UnorderedRanges::iterator I = Inactive.begin(), E = Inactive.end(); |
| 344 | I != E; I = Next) { |
| 345 | Next = I; |
| 346 | ++Next; |
| 347 | LiveRangeWrapper Item = *I; |
Jim Stichnoth | 68e2819 | 2014-07-24 08:48:15 -0700 | [diff] [blame] | 348 | // Note: The Item.overlaps(Cur) clause is not part of the |
| 349 | // description of AssignMemLoc() in the original paper. But |
| 350 | // there doesn't seem to be any need to evict an inactive |
| 351 | // live range that doesn't overlap with the live range |
| 352 | // currently being considered. It's especially bad if we |
| 353 | // would end up evicting an infinite-weight but |
| 354 | // currently-inactive live range. The most common situation |
| 355 | // for this would be a scratch register kill set for call |
| 356 | // instructions. |
| 357 | if (Item.Var->getRegNumTmp() == MinWeightIndex && |
| 358 | Item.overlaps(Cur)) { |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 359 | if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| 360 | Str << "Evicting "; |
| 361 | Item.dump(Func); |
| 362 | Str << "\n"; |
| 363 | } |
| 364 | Item.Var->setRegNumTmp(Variable::NoRegister); |
| 365 | Inactive.erase(I); |
| 366 | Handled.push_back(Item); |
| 367 | } |
| 368 | } |
| 369 | // Assign the register to Cur. |
| 370 | Cur.Var->setRegNumTmp(MinWeightIndex); |
| 371 | assert(RegUses[MinWeightIndex] >= 0); |
| 372 | ++RegUses[MinWeightIndex]; |
| 373 | Active.push_back(Cur); |
| 374 | if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| 375 | Str << "Allocating "; |
| 376 | Cur.dump(Func); |
| 377 | Str << "\n"; |
| 378 | } |
| 379 | } |
| 380 | } |
| 381 | dump(Func); |
| 382 | } |
| 383 | // Move anything Active or Inactive to Handled for easier handling. |
| 384 | for (UnorderedRanges::iterator I = Active.begin(), E = Active.end(); I != E; |
| 385 | I = Next) { |
| 386 | Next = I; |
| 387 | ++Next; |
| 388 | Handled.push_back(*I); |
| 389 | Active.erase(I); |
| 390 | } |
| 391 | for (UnorderedRanges::iterator I = Inactive.begin(), E = Inactive.end(); |
| 392 | I != E; I = Next) { |
| 393 | Next = I; |
| 394 | ++Next; |
| 395 | Handled.push_back(*I); |
| 396 | Inactive.erase(I); |
| 397 | } |
| 398 | dump(Func); |
| 399 | |
| 400 | // Finish up by assigning RegNumTmp->RegNum for each Variable. |
| 401 | for (UnorderedRanges::const_iterator I = Handled.begin(), E = Handled.end(); |
| 402 | I != E; ++I) { |
| 403 | LiveRangeWrapper Item = *I; |
| 404 | int32_t RegNum = Item.Var->getRegNumTmp(); |
| 405 | if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| 406 | if (!Item.Var->hasRegTmp()) { |
| 407 | Str << "Not assigning "; |
| 408 | Item.Var->dump(Func); |
| 409 | Str << "\n"; |
| 410 | } else { |
| 411 | Str << (RegNum == Item.Var->getRegNum() ? "Reassigning " : "Assigning ") |
| 412 | << Func->getTarget()->getRegName(RegNum, IceType_i32) << "(r" |
| 413 | << RegNum << ") to "; |
| 414 | Item.Var->dump(Func); |
| 415 | Str << "\n"; |
| 416 | } |
| 417 | } |
| 418 | Item.Var->setRegNum(Item.Var->getRegNumTmp()); |
| 419 | } |
| 420 | |
| 421 | // TODO: Consider running register allocation one more time, with |
| 422 | // infinite registers, for two reasons. First, evicted live ranges |
| 423 | // get a second chance for a register. Second, it allows coalescing |
| 424 | // of stack slots. If there is no time budget for the second |
| 425 | // register allocation run, each unallocated variable just gets its |
| 426 | // own slot. |
| 427 | // |
| 428 | // Another idea for coalescing stack slots is to initialize the |
| 429 | // Unhandled list with just the unallocated variables, saving time |
| 430 | // but not offering second-chance opportunities. |
| 431 | } |
| 432 | |
| 433 | // ======================== Dump routines ======================== // |
| 434 | |
| 435 | void LiveRangeWrapper::dump(const Cfg *Func) const { |
| 436 | Ostream &Str = Func->getContext()->getStrDump(); |
| 437 | const static size_t BufLen = 30; |
| 438 | char buf[BufLen]; |
| 439 | snprintf(buf, BufLen, "%2d", Var->getRegNumTmp()); |
| 440 | Str << "R=" << buf << " V="; |
| 441 | Var->dump(Func); |
| 442 | Str << " Range=" << range(); |
| 443 | } |
| 444 | |
| 445 | void LinearScan::dump(Cfg *Func) const { |
| 446 | Ostream &Str = Func->getContext()->getStrDump(); |
| 447 | if (!Func->getContext()->isVerbose(IceV_LinearScan)) |
| 448 | return; |
| 449 | Func->setCurrentNode(NULL); |
| 450 | Str << "**** Current regalloc state:\n"; |
| 451 | Str << "++++++ Handled:\n"; |
| 452 | for (UnorderedRanges::const_iterator I = Handled.begin(), E = Handled.end(); |
| 453 | I != E; ++I) { |
| 454 | I->dump(Func); |
| 455 | Str << "\n"; |
| 456 | } |
| 457 | Str << "++++++ Unhandled:\n"; |
| 458 | for (OrderedRanges::const_iterator I = Unhandled.begin(), E = Unhandled.end(); |
| 459 | I != E; ++I) { |
| 460 | I->dump(Func); |
| 461 | Str << "\n"; |
| 462 | } |
| 463 | Str << "++++++ Active:\n"; |
| 464 | for (UnorderedRanges::const_iterator I = Active.begin(), E = Active.end(); |
| 465 | I != E; ++I) { |
| 466 | I->dump(Func); |
| 467 | Str << "\n"; |
| 468 | } |
| 469 | Str << "++++++ Inactive:\n"; |
| 470 | for (UnorderedRanges::const_iterator I = Inactive.begin(), E = Inactive.end(); |
| 471 | I != E; ++I) { |
| 472 | I->dump(Func); |
| 473 | Str << "\n"; |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | } // end of namespace Ice |