blob: b3d318cf47f32bb34da804c743fdbfa6c279bd38 [file] [log] [blame]
Nicolas Capens0cf20062016-09-26 15:02:51 -04001//===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the Value class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_IR_VALUE_H
15#define LLVM_IR_VALUE_H
16
17#include "llvm/ADT/iterator_range.h"
18#include "llvm/IR/Use.h"
19#include "llvm/Support/CBindingWrapping.h"
20#include "llvm/Support/Casting.h"
21
22namespace llvm {
23
24class APInt;
25class Argument;
26class AssemblyAnnotationWriter;
27class BasicBlock;
28class Constant;
29class ConstantData;
30class ConstantAggregate;
31class DataLayout;
32class Function;
33class GlobalAlias;
34class GlobalIFunc;
35class GlobalIndirectSymbol;
36class GlobalObject;
37class GlobalValue;
38class GlobalVariable;
39class InlineAsm;
40class Instruction;
41class LLVMContext;
42class Module;
43class ModuleSlotTracker;
44class StringRef;
45class Twine;
46class Type;
47class ValueHandleBase;
48class ValueSymbolTable;
49class raw_ostream;
50
51template<typename ValueTy> class StringMapEntry;
52typedef StringMapEntry<Value*> ValueName;
53
54//===----------------------------------------------------------------------===//
55// Value Class
56//===----------------------------------------------------------------------===//
57
58/// \brief LLVM Value Representation
59///
60/// This is a very important LLVM class. It is the base class of all values
61/// computed by a program that may be used as operands to other values. Value is
62/// the super class of other important classes such as Instruction and Function.
63/// All Values have a Type. Type is not a subclass of Value. Some values can
64/// have a name and they belong to some Module. Setting the name on the Value
65/// automatically updates the module's symbol table.
66///
67/// Every value has a "use list" that keeps track of which other Values are
68/// using this Value. A Value can also have an arbitrary number of ValueHandle
69/// objects that watch it and listen to RAUW and Destroy events. See
70/// llvm/IR/ValueHandle.h for details.
71class Value {
72 Type *VTy;
73 Use *UseList;
74
75 friend class ValueAsMetadata; // Allow access to IsUsedByMD.
76 friend class ValueHandleBase;
77
78 const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast)
79 unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
80protected:
81 /// \brief Hold subclass data that can be dropped.
82 ///
83 /// This member is similar to SubclassData, however it is for holding
84 /// information which may be used to aid optimization, but which may be
85 /// cleared to zero without affecting conservative interpretation.
86 unsigned char SubclassOptionalData : 7;
87
88private:
89 /// \brief Hold arbitrary subclass data.
90 ///
91 /// This member is defined by this class, but is not used for anything.
92 /// Subclasses can use it to hold whatever state they find useful. This
93 /// field is initialized to zero by the ctor.
94 unsigned short SubclassData;
95
96protected:
97 /// \brief The number of operands in the subclass.
98 ///
99 /// This member is defined by this class, but not used for anything.
100 /// Subclasses can use it to store their number of operands, if they have
101 /// any.
102 ///
103 /// This is stored here to save space in User on 64-bit hosts. Since most
104 /// instances of Value have operands, 32-bit hosts aren't significantly
105 /// affected.
106 ///
107 /// Note, this should *NOT* be used directly by any class other than User.
108 /// User uses this value to find the Use list.
109 enum : unsigned { NumUserOperandsBits = 28 };
110 unsigned NumUserOperands : NumUserOperandsBits;
111
112 // Use the same type as the bitfield above so that MSVC will pack them.
113 unsigned IsUsedByMD : 1;
114 unsigned HasName : 1;
115 unsigned HasHungOffUses : 1;
116 unsigned HasDescriptor : 1;
117
118private:
119 template <typename UseT> // UseT == 'Use' or 'const Use'
120 class use_iterator_impl
121 : public std::iterator<std::forward_iterator_tag, UseT *> {
122 UseT *U;
123 explicit use_iterator_impl(UseT *u) : U(u) {}
124 friend class Value;
125
126 public:
127 use_iterator_impl() : U() {}
128
129 bool operator==(const use_iterator_impl &x) const { return U == x.U; }
130 bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
131
132 use_iterator_impl &operator++() { // Preincrement
133 assert(U && "Cannot increment end iterator!");
134 U = U->getNext();
135 return *this;
136 }
137 use_iterator_impl operator++(int) { // Postincrement
138 auto tmp = *this;
139 ++*this;
140 return tmp;
141 }
142
143 UseT &operator*() const {
144 assert(U && "Cannot dereference end iterator!");
145 return *U;
146 }
147
148 UseT *operator->() const { return &operator*(); }
149
150 operator use_iterator_impl<const UseT>() const {
151 return use_iterator_impl<const UseT>(U);
152 }
153 };
154
155 template <typename UserTy> // UserTy == 'User' or 'const User'
156 class user_iterator_impl
157 : public std::iterator<std::forward_iterator_tag, UserTy *> {
158 use_iterator_impl<Use> UI;
159 explicit user_iterator_impl(Use *U) : UI(U) {}
160 friend class Value;
161
162 public:
163 user_iterator_impl() {}
164
165 bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
166 bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
167
168 /// \brief Returns true if this iterator is equal to user_end() on the value.
169 bool atEnd() const { return *this == user_iterator_impl(); }
170
171 user_iterator_impl &operator++() { // Preincrement
172 ++UI;
173 return *this;
174 }
175 user_iterator_impl operator++(int) { // Postincrement
176 auto tmp = *this;
177 ++*this;
178 return tmp;
179 }
180
181 // Retrieve a pointer to the current User.
182 UserTy *operator*() const {
183 return UI->getUser();
184 }
185
186 UserTy *operator->() const { return operator*(); }
187
188 operator user_iterator_impl<const UserTy>() const {
189 return user_iterator_impl<const UserTy>(*UI);
190 }
191
192 Use &getUse() const { return *UI; }
193 };
194
195 void operator=(const Value &) = delete;
196 Value(const Value &) = delete;
197
198protected:
199 Value(Type *Ty, unsigned scid);
200public:
201 virtual ~Value();
202
203 /// \brief Support for debugging, callable in GDB: V->dump()
204 void dump() const;
205
206 /// \brief Implement operator<< on Value.
207 /// @{
208 void print(raw_ostream &O, bool IsForDebug = false) const;
209 void print(raw_ostream &O, ModuleSlotTracker &MST,
210 bool IsForDebug = false) const;
211 /// @}
212
213 /// \brief Print the name of this Value out to the specified raw_ostream.
214 ///
215 /// This is useful when you just want to print 'int %reg126', not the
216 /// instruction that generated it. If you specify a Module for context, then
217 /// even constanst get pretty-printed; for example, the type of a null
218 /// pointer is printed symbolically.
219 /// @{
220 void printAsOperand(raw_ostream &O, bool PrintType = true,
221 const Module *M = nullptr) const;
222 void printAsOperand(raw_ostream &O, bool PrintType,
223 ModuleSlotTracker &MST) const;
224 /// @}
225
226 /// \brief All values are typed, get the type of this value.
227 Type *getType() const { return VTy; }
228
229 /// \brief All values hold a context through their type.
230 LLVMContext &getContext() const;
231
232 // \brief All values can potentially be named.
233 bool hasName() const { return HasName; }
234 ValueName *getValueName() const;
235 void setValueName(ValueName *VN);
236
237private:
238 void destroyValueName();
239 void setNameImpl(const Twine &Name);
240
241public:
242 /// \brief Return a constant reference to the value's name.
243 ///
244 /// This is cheap and guaranteed to return the same reference as long as the
245 /// value is not modified.
246 StringRef getName() const;
247
248 /// \brief Change the name of the value.
249 ///
250 /// Choose a new unique name if the provided name is taken.
251 ///
252 /// \param Name The new name; or "" if the value's name should be removed.
253 void setName(const Twine &Name);
254
255
256 /// \brief Transfer the name from V to this value.
257 ///
258 /// After taking V's name, sets V's name to empty.
259 ///
260 /// \note It is an error to call V->takeName(V).
261 void takeName(Value *V);
262
263 /// \brief Change all uses of this to point to a new Value.
264 ///
265 /// Go through the uses list for this definition and make each use point to
266 /// "V" instead of "this". After this completes, 'this's use list is
267 /// guaranteed to be empty.
268 void replaceAllUsesWith(Value *V);
269
270 /// replaceUsesOutsideBlock - Go through the uses list for this definition and
271 /// make each use point to "V" instead of "this" when the use is outside the
272 /// block. 'This's use list is expected to have at least one element.
273 /// Unlike replaceAllUsesWith this function does not support basic block
274 /// values or constant users.
275 void replaceUsesOutsideBlock(Value *V, BasicBlock *BB);
276
277 //----------------------------------------------------------------------
278 // Methods for handling the chain of uses of this Value.
279 //
280 // Materializing a function can introduce new uses, so these methods come in
281 // two variants:
282 // The methods that start with materialized_ check the uses that are
283 // currently known given which functions are materialized. Be very careful
284 // when using them since you might not get all uses.
285 // The methods that don't start with materialized_ assert that modules is
286 // fully materialized.
287 void assertModuleIsMaterialized() const;
288
289 bool use_empty() const {
290 assertModuleIsMaterialized();
291 return UseList == nullptr;
292 }
293
294 typedef use_iterator_impl<Use> use_iterator;
295 typedef use_iterator_impl<const Use> const_use_iterator;
296 use_iterator materialized_use_begin() { return use_iterator(UseList); }
297 const_use_iterator materialized_use_begin() const {
298 return const_use_iterator(UseList);
299 }
300 use_iterator use_begin() {
301 assertModuleIsMaterialized();
302 return materialized_use_begin();
303 }
304 const_use_iterator use_begin() const {
305 assertModuleIsMaterialized();
306 return materialized_use_begin();
307 }
308 use_iterator use_end() { return use_iterator(); }
309 const_use_iterator use_end() const { return const_use_iterator(); }
310 iterator_range<use_iterator> materialized_uses() {
311 return make_range(materialized_use_begin(), use_end());
312 }
313 iterator_range<const_use_iterator> materialized_uses() const {
314 return make_range(materialized_use_begin(), use_end());
315 }
316 iterator_range<use_iterator> uses() {
317 assertModuleIsMaterialized();
318 return materialized_uses();
319 }
320 iterator_range<const_use_iterator> uses() const {
321 assertModuleIsMaterialized();
322 return materialized_uses();
323 }
324
325 bool user_empty() const {
326 assertModuleIsMaterialized();
327 return UseList == nullptr;
328 }
329
330 typedef user_iterator_impl<User> user_iterator;
331 typedef user_iterator_impl<const User> const_user_iterator;
332 user_iterator materialized_user_begin() { return user_iterator(UseList); }
333 const_user_iterator materialized_user_begin() const {
334 return const_user_iterator(UseList);
335 }
336 user_iterator user_begin() {
337 assertModuleIsMaterialized();
338 return materialized_user_begin();
339 }
340 const_user_iterator user_begin() const {
341 assertModuleIsMaterialized();
342 return materialized_user_begin();
343 }
344 user_iterator user_end() { return user_iterator(); }
345 const_user_iterator user_end() const { return const_user_iterator(); }
346 User *user_back() {
347 assertModuleIsMaterialized();
348 return *materialized_user_begin();
349 }
350 const User *user_back() const {
351 assertModuleIsMaterialized();
352 return *materialized_user_begin();
353 }
354 iterator_range<user_iterator> materialized_users() {
355 return make_range(materialized_user_begin(), user_end());
356 }
357 iterator_range<const_user_iterator> materialized_users() const {
358 return make_range(materialized_user_begin(), user_end());
359 }
360 iterator_range<user_iterator> users() {
361 assertModuleIsMaterialized();
362 return materialized_users();
363 }
364 iterator_range<const_user_iterator> users() const {
365 assertModuleIsMaterialized();
366 return materialized_users();
367 }
368
369 /// \brief Return true if there is exactly one user of this value.
370 ///
371 /// This is specialized because it is a common request and does not require
372 /// traversing the whole use list.
373 bool hasOneUse() const {
374 const_use_iterator I = use_begin(), E = use_end();
375 if (I == E) return false;
376 return ++I == E;
377 }
378
379 /// \brief Return true if this Value has exactly N users.
380 bool hasNUses(unsigned N) const;
381
382 /// \brief Return true if this value has N users or more.
383 ///
384 /// This is logically equivalent to getNumUses() >= N.
385 bool hasNUsesOrMore(unsigned N) const;
386
387 /// \brief Check if this value is used in the specified basic block.
388 bool isUsedInBasicBlock(const BasicBlock *BB) const;
389
390 /// \brief This method computes the number of uses of this Value.
391 ///
392 /// This is a linear time operation. Use hasOneUse, hasNUses, or
393 /// hasNUsesOrMore to check for specific values.
394 unsigned getNumUses() const;
395
396 /// \brief This method should only be used by the Use class.
397 void addUse(Use &U) { U.addToList(&UseList); }
398
399 /// \brief Concrete subclass of this.
400 ///
401 /// An enumeration for keeping track of the concrete subclass of Value that
402 /// is actually instantiated. Values of this enumeration are kept in the
403 /// Value classes SubclassID field. They are used for concrete type
404 /// identification.
405 enum ValueTy {
406#define HANDLE_VALUE(Name) Name##Val,
407#include "llvm/IR/Value.def"
408
409 // Markers:
410#define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val,
411#include "llvm/IR/Value.def"
412 };
413
414 /// \brief Return an ID for the concrete type of this object.
415 ///
416 /// This is used to implement the classof checks. This should not be used
417 /// for any other purpose, as the values may change as LLVM evolves. Also,
418 /// note that for instructions, the Instruction's opcode is added to
419 /// InstructionVal. So this means three things:
420 /// # there is no value with code InstructionVal (no opcode==0).
421 /// # there are more possible values for the value type than in ValueTy enum.
422 /// # the InstructionVal enumerator must be the highest valued enumerator in
423 /// the ValueTy enum.
424 unsigned getValueID() const {
425 return SubclassID;
426 }
427
428 /// \brief Return the raw optional flags value contained in this value.
429 ///
430 /// This should only be used when testing two Values for equivalence.
431 unsigned getRawSubclassOptionalData() const {
432 return SubclassOptionalData;
433 }
434
435 /// \brief Clear the optional flags contained in this value.
436 void clearSubclassOptionalData() {
437 SubclassOptionalData = 0;
438 }
439
440 /// \brief Check the optional flags for equality.
441 bool hasSameSubclassOptionalData(const Value *V) const {
442 return SubclassOptionalData == V->SubclassOptionalData;
443 }
444
445 /// \brief Return true if there is a value handle associated with this value.
446 bool hasValueHandle() const { return HasValueHandle; }
447
448 /// \brief Return true if there is metadata referencing this value.
449 bool isUsedByMetadata() const { return IsUsedByMD; }
450
451 /// \brief Strip off pointer casts, all-zero GEPs, and aliases.
452 ///
453 /// Returns the original uncasted value. If this is called on a non-pointer
454 /// value, it returns 'this'.
455 Value *stripPointerCasts();
456 const Value *stripPointerCasts() const {
457 return const_cast<Value*>(this)->stripPointerCasts();
458 }
459
460 /// \brief Strip off pointer casts and all-zero GEPs.
461 ///
462 /// Returns the original uncasted value. If this is called on a non-pointer
463 /// value, it returns 'this'.
464 Value *stripPointerCastsNoFollowAliases();
465 const Value *stripPointerCastsNoFollowAliases() const {
466 return const_cast<Value*>(this)->stripPointerCastsNoFollowAliases();
467 }
468
469 /// \brief Strip off pointer casts and all-constant inbounds GEPs.
470 ///
471 /// Returns the original pointer value. If this is called on a non-pointer
472 /// value, it returns 'this'.
473 Value *stripInBoundsConstantOffsets();
474 const Value *stripInBoundsConstantOffsets() const {
475 return const_cast<Value*>(this)->stripInBoundsConstantOffsets();
476 }
477
478 /// \brief Accumulate offsets from \a stripInBoundsConstantOffsets().
479 ///
480 /// Stores the resulting constant offset stripped into the APInt provided.
481 /// The provided APInt will be extended or truncated as needed to be the
482 /// correct bitwidth for an offset of this pointer type.
483 ///
484 /// If this is called on a non-pointer value, it returns 'this'.
485 Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
486 APInt &Offset);
487 const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
488 APInt &Offset) const {
489 return const_cast<Value *>(this)
490 ->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
491 }
492
493 /// \brief Strip off pointer casts and inbounds GEPs.
494 ///
495 /// Returns the original pointer value. If this is called on a non-pointer
496 /// value, it returns 'this'.
497 Value *stripInBoundsOffsets();
498 const Value *stripInBoundsOffsets() const {
499 return const_cast<Value*>(this)->stripInBoundsOffsets();
500 }
501
502 /// \brief Returns the number of bytes known to be dereferenceable for the
503 /// pointer value.
504 ///
505 /// If CanBeNull is set by this function the pointer can either be null or be
506 /// dereferenceable up to the returned number of bytes.
507 unsigned getPointerDereferenceableBytes(const DataLayout &DL,
508 bool &CanBeNull) const;
509
510 /// \brief Returns an alignment of the pointer value.
511 ///
512 /// Returns an alignment which is either specified explicitly, e.g. via
513 /// align attribute of a function argument, or guaranteed by DataLayout.
514 unsigned getPointerAlignment(const DataLayout &DL) const;
515
516 /// \brief Translate PHI node to its predecessor from the given basic block.
517 ///
518 /// If this value is a PHI node with CurBB as its parent, return the value in
519 /// the PHI node corresponding to PredBB. If not, return ourself. This is
520 /// useful if you want to know the value something has in a predecessor
521 /// block.
522 Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);
523
524 const Value *DoPHITranslation(const BasicBlock *CurBB,
525 const BasicBlock *PredBB) const{
526 return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB);
527 }
528
529 /// \brief The maximum alignment for instructions.
530 ///
531 /// This is the greatest alignment value supported by load, store, and alloca
532 /// instructions, and global values.
533 static const unsigned MaxAlignmentExponent = 29;
534 static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
535
536 /// \brief Mutate the type of this Value to be of the specified type.
537 ///
538 /// Note that this is an extremely dangerous operation which can create
539 /// completely invalid IR very easily. It is strongly recommended that you
540 /// recreate IR objects with the right types instead of mutating them in
541 /// place.
542 void mutateType(Type *Ty) {
543 VTy = Ty;
544 }
545
546 /// \brief Sort the use-list.
547 ///
548 /// Sorts the Value's use-list by Cmp using a stable mergesort. Cmp is
549 /// expected to compare two \a Use references.
550 template <class Compare> void sortUseList(Compare Cmp);
551
552 /// \brief Reverse the use-list.
553 void reverseUseList();
554
555private:
556 /// \brief Merge two lists together.
557 ///
558 /// Merges \c L and \c R using \c Cmp. To enable stable sorts, always pushes
559 /// "equal" items from L before items from R.
560 ///
561 /// \return the first element in the list.
562 ///
563 /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
564 template <class Compare>
565 static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
566 Use *Merged;
567 Use **Next = &Merged;
568
569 for (;;) {
570 if (!L) {
571 *Next = R;
572 break;
573 }
574 if (!R) {
575 *Next = L;
576 break;
577 }
578 if (Cmp(*R, *L)) {
579 *Next = R;
580 Next = &R->Next;
581 R = R->Next;
582 } else {
583 *Next = L;
584 Next = &L->Next;
585 L = L->Next;
586 }
587 }
588
589 return Merged;
590 }
591
592 /// \brief Tail-recursive helper for \a mergeUseLists().
593 ///
594 /// \param[out] Next the first element in the list.
595 template <class Compare>
596 static void mergeUseListsImpl(Use *L, Use *R, Use **Next, Compare Cmp);
597
598protected:
599 unsigned short getSubclassDataFromValue() const { return SubclassData; }
600 void setValueSubclassData(unsigned short D) { SubclassData = D; }
601};
602
603inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
604 V.print(OS);
605 return OS;
606}
607
608void Use::set(Value *V) {
609 if (Val) removeFromList();
610 Val = V;
611 if (V) V->addUse(*this);
612}
613
614Value *Use::operator=(Value *RHS) {
615 set(RHS);
616 return RHS;
617}
618
619const Use &Use::operator=(const Use &RHS) {
620 set(RHS.Val);
621 return *this;
622}
623
624template <class Compare> void Value::sortUseList(Compare Cmp) {
625 if (!UseList || !UseList->Next)
626 // No need to sort 0 or 1 uses.
627 return;
628
629 // Note: this function completely ignores Prev pointers until the end when
630 // they're fixed en masse.
631
632 // Create a binomial vector of sorted lists, visiting uses one at a time and
633 // merging lists as necessary.
634 const unsigned MaxSlots = 32;
635 Use *Slots[MaxSlots];
636
637 // Collect the first use, turning it into a single-item list.
638 Use *Next = UseList->Next;
639 UseList->Next = nullptr;
640 unsigned NumSlots = 1;
641 Slots[0] = UseList;
642
643 // Collect all but the last use.
644 while (Next->Next) {
645 Use *Current = Next;
646 Next = Current->Next;
647
648 // Turn Current into a single-item list.
649 Current->Next = nullptr;
650
651 // Save Current in the first available slot, merging on collisions.
652 unsigned I;
653 for (I = 0; I < NumSlots; ++I) {
654 if (!Slots[I])
655 break;
656
657 // Merge two lists, doubling the size of Current and emptying slot I.
658 //
659 // Since the uses in Slots[I] originally preceded those in Current, send
660 // Slots[I] in as the left parameter to maintain a stable sort.
661 Current = mergeUseLists(Slots[I], Current, Cmp);
662 Slots[I] = nullptr;
663 }
664 // Check if this is a new slot.
665 if (I == NumSlots) {
666 ++NumSlots;
667 assert(NumSlots <= MaxSlots && "Use list bigger than 2^32");
668 }
669
670 // Found an open slot.
671 Slots[I] = Current;
672 }
673
674 // Merge all the lists together.
675 assert(Next && "Expected one more Use");
676 assert(!Next->Next && "Expected only one Use");
677 UseList = Next;
678 for (unsigned I = 0; I < NumSlots; ++I)
679 if (Slots[I])
680 // Since the uses in Slots[I] originally preceded those in UseList, send
681 // Slots[I] in as the left parameter to maintain a stable sort.
682 UseList = mergeUseLists(Slots[I], UseList, Cmp);
683
684 // Fix the Prev pointers.
685 for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
686 I->setPrev(Prev);
687 Prev = &I->Next;
688 }
689}
690
691// isa - Provide some specializations of isa so that we don't have to include
692// the subtype header files to test to see if the value is a subclass...
693//
694template <> struct isa_impl<Constant, Value> {
695 static inline bool doit(const Value &Val) {
696 return Val.getValueID() >= Value::ConstantFirstVal &&
697 Val.getValueID() <= Value::ConstantLastVal;
698 }
699};
700
701template <> struct isa_impl<ConstantData, Value> {
702 static inline bool doit(const Value &Val) {
703 return Val.getValueID() >= Value::ConstantDataFirstVal &&
704 Val.getValueID() <= Value::ConstantDataLastVal;
705 }
706};
707
708template <> struct isa_impl<ConstantAggregate, Value> {
709 static inline bool doit(const Value &Val) {
710 return Val.getValueID() >= Value::ConstantAggregateFirstVal &&
711 Val.getValueID() <= Value::ConstantAggregateLastVal;
712 }
713};
714
715template <> struct isa_impl<Argument, Value> {
716 static inline bool doit (const Value &Val) {
717 return Val.getValueID() == Value::ArgumentVal;
718 }
719};
720
721template <> struct isa_impl<InlineAsm, Value> {
722 static inline bool doit(const Value &Val) {
723 return Val.getValueID() == Value::InlineAsmVal;
724 }
725};
726
727template <> struct isa_impl<Instruction, Value> {
728 static inline bool doit(const Value &Val) {
729 return Val.getValueID() >= Value::InstructionVal;
730 }
731};
732
733template <> struct isa_impl<BasicBlock, Value> {
734 static inline bool doit(const Value &Val) {
735 return Val.getValueID() == Value::BasicBlockVal;
736 }
737};
738
739template <> struct isa_impl<Function, Value> {
740 static inline bool doit(const Value &Val) {
741 return Val.getValueID() == Value::FunctionVal;
742 }
743};
744
745template <> struct isa_impl<GlobalVariable, Value> {
746 static inline bool doit(const Value &Val) {
747 return Val.getValueID() == Value::GlobalVariableVal;
748 }
749};
750
751template <> struct isa_impl<GlobalAlias, Value> {
752 static inline bool doit(const Value &Val) {
753 return Val.getValueID() == Value::GlobalAliasVal;
754 }
755};
756
757template <> struct isa_impl<GlobalIFunc, Value> {
758 static inline bool doit(const Value &Val) {
759 return Val.getValueID() == Value::GlobalIFuncVal;
760 }
761};
762
763template <> struct isa_impl<GlobalIndirectSymbol, Value> {
764 static inline bool doit(const Value &Val) {
765 return isa<GlobalAlias>(Val) || isa<GlobalIFunc>(Val);
766 }
767};
768
769template <> struct isa_impl<GlobalValue, Value> {
770 static inline bool doit(const Value &Val) {
771 return isa<GlobalObject>(Val) || isa<GlobalIndirectSymbol>(Val);
772 }
773};
774
775template <> struct isa_impl<GlobalObject, Value> {
776 static inline bool doit(const Value &Val) {
777 return isa<GlobalVariable>(Val) || isa<Function>(Val);
778 }
779};
780
781// Value* is only 4-byte aligned.
782template<>
783class PointerLikeTypeTraits<Value*> {
784 typedef Value* PT;
785public:
786 static inline void *getAsVoidPointer(PT P) { return P; }
787 static inline PT getFromVoidPointer(void *P) {
788 return static_cast<PT>(P);
789 }
790 enum { NumLowBitsAvailable = 2 };
791};
792
793// Create wrappers for C Binding types (see CBindingWrapping.h).
794DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)
795
796// Specialized opaque value conversions.
797inline Value **unwrap(LLVMValueRef *Vals) {
798 return reinterpret_cast<Value**>(Vals);
799}
800
801template<typename T>
802inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
803#ifndef NDEBUG
804 for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
805 unwrap<T>(*I); // For side effect of calling assert on invalid usage.
806#endif
807 (void)Length;
808 return reinterpret_cast<T**>(Vals);
809}
810
811inline LLVMValueRef *wrap(const Value **Vals) {
812 return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
813}
814
815} // End llvm namespace
816
817#endif