John Porto | 2fea26c | 2015-07-28 16:28:07 -0700 | [diff] [blame] | 1 | //===- subzero/unittest/unittest/AssemblerX8632/TestUtil.h ------*- C++ -*-===// |
| 2 | // |
| 3 | // The Subzero Code Generator |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // Utility classes for testing the X8632 Assembler. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef ASSEMBLERX8632_TESTUTIL_H_ |
| 15 | #define ASSEMBLERX8632_TESTUTIL_H_ |
| 16 | |
| 17 | #include "IceAssemblerX8632.h" |
John Porto | 4a56686 | 2016-01-04 09:33:41 -0800 | [diff] [blame] | 18 | #include "IceDefs.h" |
John Porto | 2fea26c | 2015-07-28 16:28:07 -0700 | [diff] [blame] | 19 | |
| 20 | #include "gtest/gtest.h" |
| 21 | |
Nicolas Capens | 46f4fea | 2016-10-06 17:25:39 -0400 | [diff] [blame] | 22 | #if defined(__unix__) |
John Porto | 2fea26c | 2015-07-28 16:28:07 -0700 | [diff] [blame] | 23 | #include <sys/mman.h> |
Nicolas Capens | 46f4fea | 2016-10-06 17:25:39 -0400 | [diff] [blame] | 24 | #elif defined(_WIN32) |
| 25 | #define NOMINMAX |
| 26 | #include <Windows.h> |
| 27 | #else |
| 28 | #error "Platform unsupported" |
| 29 | #endif |
| 30 | |
| 31 | #include <cassert> |
John Porto | 2fea26c | 2015-07-28 16:28:07 -0700 | [diff] [blame] | 32 | |
| 33 | namespace Ice { |
| 34 | namespace X8632 { |
| 35 | namespace Test { |
| 36 | |
| 37 | class AssemblerX8632TestBase : public ::testing::Test { |
| 38 | protected: |
| 39 | using Address = AssemblerX8632::Traits::Address; |
John Porto | 2fea26c | 2015-07-28 16:28:07 -0700 | [diff] [blame] | 40 | using Cond = AssemblerX8632::Traits::Cond; |
| 41 | using GPRRegister = AssemblerX8632::Traits::GPRRegister; |
Jim Stichnoth | 5bff61c | 2015-10-28 09:26:00 -0700 | [diff] [blame] | 42 | using ByteRegister = AssemblerX8632::Traits::ByteRegister; |
John Porto | 4a56686 | 2016-01-04 09:33:41 -0800 | [diff] [blame] | 43 | using Label = ::Ice::X8632::Label; |
John Porto | 2fea26c | 2015-07-28 16:28:07 -0700 | [diff] [blame] | 44 | using Traits = AssemblerX8632::Traits; |
| 45 | using XmmRegister = AssemblerX8632::Traits::XmmRegister; |
| 46 | using X87STRegister = AssemblerX8632::Traits::X87STRegister; |
| 47 | |
| 48 | AssemblerX8632TestBase() { reset(); } |
| 49 | |
John Porto | 4a56686 | 2016-01-04 09:33:41 -0800 | [diff] [blame] | 50 | void reset() { Assembler = makeUnique<AssemblerX8632>(); } |
John Porto | 2fea26c | 2015-07-28 16:28:07 -0700 | [diff] [blame] | 51 | |
| 52 | AssemblerX8632 *assembler() const { return Assembler.get(); } |
| 53 | |
| 54 | size_t codeBytesSize() const { return Assembler->getBufferView().size(); } |
| 55 | |
| 56 | const uint8_t *codeBytes() const { |
| 57 | return static_cast<const uint8_t *>( |
| 58 | static_cast<const void *>(Assembler->getBufferView().data())); |
| 59 | } |
| 60 | |
| 61 | private: |
| 62 | std::unique_ptr<AssemblerX8632> Assembler; |
| 63 | }; |
| 64 | |
| 65 | // __ is a helper macro. It allows test cases to emit X8632 assembly |
| 66 | // instructions with |
| 67 | // |
| 68 | // __ mov(GPRRegister::Reg_Eax, 1); |
| 69 | // __ ret(); |
| 70 | // |
| 71 | // and so on. The idea of having this was "stolen" from dart's unit tests. |
| 72 | #define __ (this->assembler())-> |
| 73 | |
| 74 | // AssemblerX8632LowLevelTest verify that the "basic" instructions the tests |
| 75 | // rely on are encoded correctly. Therefore, instead of executing the assembled |
| 76 | // code, these tests will verify that the assembled bytes are sane. |
| 77 | class AssemblerX8632LowLevelTest : public AssemblerX8632TestBase { |
| 78 | protected: |
| 79 | // verifyBytes is a template helper that takes a Buffer, and a variable number |
| 80 | // of bytes. As the name indicates, it is used to verify the bytes for an |
| 81 | // instruction encoding. |
| 82 | template <int N, int I> static bool verifyBytes(const uint8_t *) { |
| 83 | static_assert(I == N, "Invalid template instantiation."); |
| 84 | return true; |
| 85 | } |
| 86 | |
| 87 | template <int N, int I = 0, typename... Args> |
| 88 | static bool verifyBytes(const uint8_t *Buffer, uint8_t Byte, |
| 89 | Args... OtherBytes) { |
| 90 | static_assert(I < N, "Invalid template instantiation."); |
| 91 | EXPECT_EQ(Byte, Buffer[I]) << "Byte " << (I + 1) << " of " << N; |
| 92 | return verifyBytes<N, I + 1>(Buffer, OtherBytes...) && Buffer[I] == Byte; |
| 93 | } |
| 94 | }; |
| 95 | |
| 96 | // After these tests we should have a sane environment; we know the following |
| 97 | // work: |
| 98 | // |
| 99 | // (*) zeroing eax, ebx, ecx, edx, edi, and esi; |
| 100 | // (*) call $4 instruction (used for ip materialization); |
| 101 | // (*) register push and pop; |
| 102 | // (*) cmp reg, reg; and |
| 103 | // (*) returning from functions. |
| 104 | // |
| 105 | // We can now dive into testing each emitting method in AssemblerX8632. Each |
| 106 | // test will emit some instructions for performing the test. The assembled |
| 107 | // instructions will operate in a "safe" environment. All x86-32 registers are |
| 108 | // spilled to the program stack, and the registers are then zeroed out, with the |
| 109 | // exception of %esp and %ebp. |
| 110 | // |
| 111 | // The jitted code and the unittest code will share the same stack. Therefore, |
| 112 | // test harnesses need to ensure it does not leave anything it pushed on the |
| 113 | // stack. |
| 114 | // |
| 115 | // %ebp is initialized with a pointer for rIP-based addressing. This pointer is |
| 116 | // used for position-independent access to a scratchpad area for use in tests. |
| 117 | // This mechanism is used because the test framework needs to generate addresses |
| 118 | // that work on both x86-32 and x86-64 hosts, but are encodable using our x86-32 |
| 119 | // assembler. This is made possible because the encoding for |
| 120 | // |
| 121 | // pushq %rax (x86-64 only) |
| 122 | // |
| 123 | // is the same as the one for |
| 124 | // |
| 125 | // pushl %eax (x86-32 only; not encodable in x86-64) |
| 126 | // |
| 127 | // Likewise, the encodings for |
| 128 | // |
| 129 | // movl offset(%ebp), %reg (32-bit only) |
| 130 | // movl <src>, offset(%ebp) (32-bit only) |
| 131 | // |
| 132 | // and |
| 133 | // |
| 134 | // movl offset(%rbp), %reg (64-bit only) |
| 135 | // movl <src>, offset(%rbp) (64-bit only) |
| 136 | // |
| 137 | // are also the same. |
| 138 | // |
| 139 | // We use a call instruction in order to generate a natural sized address on the |
| 140 | // stack. Said address is then removed from the stack with a pop %rBP, which can |
| 141 | // then be used to address memory safely in either x86-32 or x86-64, as long as |
| 142 | // the test code does not perform any arithmetic operation that writes to %rBP. |
| 143 | // This PC materialization technique is very common in x86-32 PIC. |
| 144 | // |
| 145 | // %rBP is used to provide the tests with a scratchpad area that can safely and |
| 146 | // portably be written to and read from. This scratchpad area is also used to |
| 147 | // store the "final" values in eax, ebx, ecx, edx, esi, and edi, allowing the |
| 148 | // harnesses access to 6 "return values" instead of the usual single return |
| 149 | // value supported by C++. |
| 150 | // |
| 151 | // The jitted code will look like the following: |
| 152 | // |
| 153 | // test: |
| 154 | // push %eax |
| 155 | // push %ebx |
| 156 | // push %ecx |
| 157 | // push %edx |
| 158 | // push %edi |
| 159 | // push %esi |
| 160 | // push %ebp |
| 161 | // call test$materialize_ip |
| 162 | // test$materialize_ip: <<------- %eBP will point here |
| 163 | // pop %ebp |
| 164 | // mov $0, %eax |
| 165 | // mov $0, %ebx |
| 166 | // mov $0, %ecx |
| 167 | // mov $0, %edx |
| 168 | // mov $0, %edi |
| 169 | // mov $0, %esi |
| 170 | // |
| 171 | // << test code goes here >> |
| 172 | // |
| 173 | // mov %eax, { 0 + $ScratchpadOffset}(%ebp) |
| 174 | // mov %ebx, { 4 + $ScratchpadOffset}(%ebp) |
| 175 | // mov %ecx, { 8 + $ScratchpadOffset}(%ebp) |
| 176 | // mov %edx, {12 + $ScratchpadOffset}(%ebp) |
| 177 | // mov %edi, {16 + $ScratchpadOffset}(%ebp) |
| 178 | // mov %esi, {20 + $ScratchpadOffset}(%ebp) |
| 179 | // mov %ebp, {24 + $ScratchpadOffset}(%ebp) |
| 180 | // mov %esp, {28 + $ScratchpadOffset}(%ebp) |
| 181 | // movups %xmm0, {32 + $ScratchpadOffset}(%ebp) |
| 182 | // movups %xmm1, {48 + $ScratchpadOffset}(%ebp) |
| 183 | // movups %xmm2, {64 + $ScratchpadOffset}(%ebp) |
| 184 | // movusp %xmm3, {80 + $ScratchpadOffset}(%ebp) |
| 185 | // movusp %xmm4, {96 + $ScratchpadOffset}(%ebp) |
| 186 | // movusp %xmm5, {112 + $ScratchpadOffset}(%ebp) |
| 187 | // movusp %xmm6, {128 + $ScratchpadOffset}(%ebp) |
| 188 | // movusp %xmm7, {144 + $ScratchpadOffset}(%ebp) |
| 189 | // |
| 190 | // pop %ebp |
| 191 | // pop %esi |
| 192 | // pop %edi |
| 193 | // pop %edx |
| 194 | // pop %ecx |
| 195 | // pop %ebx |
| 196 | // pop %eax |
| 197 | // ret |
| 198 | // |
| 199 | // << ... >> |
| 200 | // |
| 201 | // scratchpad: <<------- accessed via $Offset(%ebp) |
| 202 | // |
| 203 | // << test scratch area >> |
| 204 | // |
| 205 | // TODO(jpp): test the |
| 206 | // |
| 207 | // mov %reg, $Offset(%ebp) |
| 208 | // movups %xmm, $Offset(%ebp) |
| 209 | // |
| 210 | // encodings using the low level assembler test ensuring that the register |
| 211 | // values can be written to the scratchpad area. |
| 212 | class AssemblerX8632Test : public AssemblerX8632TestBase { |
| 213 | protected: |
| 214 | // Dqword is used to represent 128-bit data types. The Dqword's contents are |
| 215 | // the same as the contents read from memory. Tests can then use the union |
| 216 | // members to verify the tests' outputs. |
| 217 | // |
| 218 | // NOTE: We want sizeof(Dqword) == sizeof(uint64_t) * 2. In other words, we |
| 219 | // want Dqword's contents to be **exactly** what the memory contents were so |
| 220 | // that we can do, e.g., |
| 221 | // |
| 222 | // ... |
| 223 | // float Ret[4]; |
| 224 | // // populate Ret |
| 225 | // return *reinterpret_cast<Dqword *>(&Ret); |
| 226 | // |
| 227 | // While being an ugly hack, this kind of return statements are used |
| 228 | // extensively in the PackedArith (see below) class. |
| 229 | union Dqword { |
| 230 | template <typename T0, typename T1, typename T2, typename T3, |
| 231 | typename = typename std::enable_if< |
| 232 | std::is_floating_point<T0>::value>::type> |
| 233 | Dqword(T0 F0, T1 F1, T2 F2, T3 F3) { |
| 234 | F32[0] = F0; |
| 235 | F32[1] = F1; |
| 236 | F32[2] = F2; |
| 237 | F32[3] = F3; |
| 238 | } |
| 239 | |
| 240 | template <typename T> |
| 241 | Dqword(typename std::enable_if<std::is_same<T, int32_t>::value, T>::type I0, |
| 242 | T I1, T I2, T I3) { |
| 243 | I32[0] = I0; |
| 244 | I32[1] = I1; |
| 245 | I32[2] = I2; |
| 246 | I32[3] = I3; |
| 247 | } |
| 248 | |
| 249 | template <typename T> |
| 250 | Dqword(typename std::enable_if<std::is_same<T, uint64_t>::value, T>::type |
| 251 | U64_0, |
| 252 | T U64_1) { |
| 253 | U64[0] = U64_0; |
| 254 | U64[1] = U64_1; |
| 255 | } |
| 256 | |
| 257 | template <typename T> |
| 258 | Dqword(typename std::enable_if<std::is_same<T, double>::value, T>::type D0, |
| 259 | T D1) { |
| 260 | F64[0] = D0; |
| 261 | F64[1] = D1; |
| 262 | } |
| 263 | |
| 264 | bool operator==(const Dqword &Rhs) const { |
| 265 | return std::memcmp(this, &Rhs, sizeof(*this)) == 0; |
| 266 | } |
| 267 | |
| 268 | double F64[2]; |
| 269 | uint64_t U64[2]; |
| 270 | int64_t I64[2]; |
| 271 | |
| 272 | float F32[4]; |
| 273 | uint32_t U32[4]; |
| 274 | int32_t I32[4]; |
| 275 | |
| 276 | uint16_t U16[8]; |
| 277 | int16_t I16[8]; |
| 278 | |
| 279 | uint8_t U8[16]; |
| 280 | int8_t I8[16]; |
| 281 | |
| 282 | private: |
| 283 | Dqword() = delete; |
| 284 | }; |
| 285 | |
| 286 | // As stated, we want this condition to hold, so we assert. |
| 287 | static_assert(sizeof(Dqword) == 2 * sizeof(uint64_t), |
| 288 | "Dqword has the wrong size."); |
| 289 | |
| 290 | // PackedArith is an interface provider for Dqwords. PackedArith's C argument |
| 291 | // is the undelying Dqword's type, which is then used so that we can define |
| 292 | // operators in terms of C++ operators on the underlying elements' type. |
| 293 | template <typename C> class PackedArith { |
| 294 | public: |
| 295 | static constexpr uint32_t N = sizeof(Dqword) / sizeof(C); |
| 296 | static_assert(N * sizeof(C) == sizeof(Dqword), |
| 297 | "Invalid template paramenter."); |
| 298 | static_assert((N & 1) == 0, "N should be divisible by 2"); |
| 299 | |
| 300 | #define DefinePackedComparisonOperator(Op) \ |
| 301 | template <typename Container = C, int Size = N> \ |
| 302 | typename std::enable_if<std::is_floating_point<Container>::value, \ |
| 303 | Dqword>::type \ |
| 304 | operator Op(const Dqword &Rhs) const { \ |
| 305 | using ElemType = \ |
| 306 | typename std::conditional<std::is_same<float, Container>::value, \ |
| 307 | int32_t, int64_t>::type; \ |
| 308 | static_assert(sizeof(ElemType) == sizeof(Container), \ |
| 309 | "Check ElemType definition."); \ |
| 310 | const ElemType *const RhsPtr = \ |
| 311 | reinterpret_cast<const ElemType *const>(&Rhs); \ |
| 312 | const ElemType *const LhsPtr = \ |
| 313 | reinterpret_cast<const ElemType *const>(&Lhs); \ |
| 314 | ElemType Ret[N]; \ |
| 315 | for (uint32_t i = 0; i < N; ++i) { \ |
| 316 | Ret[i] = (LhsPtr[i] Op RhsPtr[i]) ? -1 : 0; \ |
| 317 | } \ |
| 318 | return *reinterpret_cast<Dqword *>(&Ret); \ |
| 319 | } |
| 320 | |
| 321 | DefinePackedComparisonOperator(< ); |
| 322 | DefinePackedComparisonOperator(<= ); |
| 323 | DefinePackedComparisonOperator(> ); |
| 324 | DefinePackedComparisonOperator(>= ); |
| 325 | DefinePackedComparisonOperator(== ); |
| 326 | DefinePackedComparisonOperator(!= ); |
| 327 | |
| 328 | #undef DefinePackedComparisonOperator |
| 329 | |
| 330 | #define DefinePackedOrdUnordComparisonOperator(Op, Ordered) \ |
| 331 | template <typename Container = C, int Size = N> \ |
| 332 | typename std::enable_if<std::is_floating_point<Container>::value, \ |
| 333 | Dqword>::type \ |
| 334 | Op(const Dqword &Rhs) const { \ |
| 335 | using ElemType = \ |
| 336 | typename std::conditional<std::is_same<float, Container>::value, \ |
| 337 | int32_t, int64_t>::type; \ |
| 338 | static_assert(sizeof(ElemType) == sizeof(Container), \ |
| 339 | "Check ElemType definition."); \ |
| 340 | const Container *const RhsPtr = \ |
| 341 | reinterpret_cast<const Container *const>(&Rhs); \ |
| 342 | const Container *const LhsPtr = \ |
| 343 | reinterpret_cast<const Container *const>(&Lhs); \ |
| 344 | ElemType Ret[N]; \ |
| 345 | for (uint32_t i = 0; i < N; ++i) { \ |
| 346 | Ret[i] = (!(LhsPtr[i] == LhsPtr[i]) || !(RhsPtr[i] == RhsPtr[i])) != \ |
| 347 | (Ordered) \ |
| 348 | ? -1 \ |
| 349 | : 0; \ |
| 350 | } \ |
| 351 | return *reinterpret_cast<Dqword *>(&Ret); \ |
| 352 | } |
| 353 | |
| 354 | DefinePackedOrdUnordComparisonOperator(ord, true); |
| 355 | DefinePackedOrdUnordComparisonOperator(unord, false); |
| 356 | #undef DefinePackedOrdUnordComparisonOperator |
| 357 | |
| 358 | #define DefinePackedArithOperator(Op, RhsIndexChanges, NeedsInt) \ |
| 359 | template <typename Container = C, int Size = N> \ |
| 360 | Dqword operator Op(const Dqword &Rhs) const { \ |
| 361 | using ElemTypeForFp = typename std::conditional< \ |
| 362 | !(NeedsInt), Container, \ |
| 363 | typename std::conditional< \ |
| 364 | std::is_same<Container, float>::value, uint32_t, \ |
| 365 | typename std::conditional<std::is_same<Container, double>::value, \ |
| 366 | uint64_t, void>::type>::type>::type; \ |
| 367 | using ElemType = \ |
| 368 | typename std::conditional<std::is_integral<Container>::value, \ |
| 369 | Container, ElemTypeForFp>::type; \ |
| 370 | static_assert(!std::is_same<void, ElemType>::value, \ |
| 371 | "Check ElemType definition."); \ |
| 372 | const ElemType *const RhsPtr = \ |
| 373 | reinterpret_cast<const ElemType *const>(&Rhs); \ |
| 374 | const ElemType *const LhsPtr = \ |
| 375 | reinterpret_cast<const ElemType *const>(&Lhs); \ |
| 376 | ElemType Ret[N]; \ |
| 377 | for (uint32_t i = 0; i < N; ++i) { \ |
| 378 | Ret[i] = LhsPtr[i] Op RhsPtr[(RhsIndexChanges) ? i : 0]; \ |
| 379 | } \ |
| 380 | return *reinterpret_cast<Dqword *>(&Ret); \ |
| 381 | } |
| 382 | |
| 383 | DefinePackedArithOperator(>>, false, true); |
| 384 | DefinePackedArithOperator(<<, false, true); |
| 385 | DefinePackedArithOperator(+, true, false); |
| 386 | DefinePackedArithOperator(-, true, false); |
| 387 | DefinePackedArithOperator(/, true, false); |
| 388 | DefinePackedArithOperator(&, true, true); |
| 389 | DefinePackedArithOperator(|, true, true); |
| 390 | DefinePackedArithOperator (^, true, true); |
| 391 | |
| 392 | #undef DefinePackedArithOperator |
| 393 | |
| 394 | #define DefinePackedArithShiftImm(Op) \ |
| 395 | template <typename Container = C, int Size = N> \ |
| 396 | Dqword operator Op(uint8_t imm) const { \ |
| 397 | const Container *const LhsPtr = \ |
| 398 | reinterpret_cast<const Container *const>(&Lhs); \ |
| 399 | Container Ret[N]; \ |
| 400 | for (uint32_t i = 0; i < N; ++i) { \ |
| 401 | Ret[i] = LhsPtr[i] Op imm; \ |
| 402 | } \ |
| 403 | return *reinterpret_cast<Dqword *>(&Ret); \ |
| 404 | } |
| 405 | |
| 406 | DefinePackedArithShiftImm(>> ); |
| 407 | DefinePackedArithShiftImm(<< ); |
| 408 | |
| 409 | #undef DefinePackedArithShiftImm |
| 410 | |
| 411 | template <typename Container = C, int Size = N> |
| 412 | typename std::enable_if<std::is_signed<Container>::value || |
| 413 | std::is_floating_point<Container>::value, |
| 414 | Dqword>::type |
| 415 | operator*(const Dqword &Rhs) const { |
| 416 | static_assert((std::is_integral<Container>::value && |
| 417 | sizeof(Container) < sizeof(uint64_t)) || |
| 418 | std::is_floating_point<Container>::value, |
| 419 | "* is only defined for i(8|16|32), and fp types."); |
| 420 | |
| 421 | const Container *const RhsPtr = |
| 422 | reinterpret_cast<const Container *const>(&Rhs); |
| 423 | const Container *const LhsPtr = |
| 424 | reinterpret_cast<const Container *const>(&Lhs); |
| 425 | Container Ret[Size]; |
| 426 | for (uint32_t i = 0; i < Size; ++i) { |
| 427 | Ret[i] = LhsPtr[i] * RhsPtr[i]; |
| 428 | } |
| 429 | return *reinterpret_cast<Dqword *>(&Ret); |
| 430 | } |
| 431 | |
| 432 | template <typename Container = C, int Size = N, |
| 433 | typename = typename std::enable_if< |
| 434 | !std::is_signed<Container>::value>::type> |
| 435 | Dqword operator*(const Dqword &Rhs) const { |
| 436 | static_assert(std::is_integral<Container>::value && |
| 437 | sizeof(Container) < sizeof(uint64_t), |
| 438 | "* is only defined for ui(8|16|32)"); |
| 439 | using NextType = typename std::conditional< |
| 440 | sizeof(Container) == 1, uint16_t, |
| 441 | typename std::conditional<sizeof(Container) == 2, uint32_t, |
| 442 | uint64_t>::type>::type; |
| 443 | static_assert(sizeof(Container) * 2 == sizeof(NextType), |
| 444 | "Unexpected size"); |
| 445 | |
| 446 | const Container *const RhsPtr = |
| 447 | reinterpret_cast<const Container *const>(&Rhs); |
| 448 | const Container *const LhsPtr = |
| 449 | reinterpret_cast<const Container *const>(&Lhs); |
| 450 | NextType Ret[Size / 2]; |
| 451 | for (uint32_t i = 0; i < Size; i += 2) { |
| 452 | Ret[i / 2] = |
| 453 | static_cast<NextType>(LhsPtr[i]) * static_cast<NextType>(RhsPtr[i]); |
| 454 | } |
| 455 | return *reinterpret_cast<Dqword *>(&Ret); |
| 456 | } |
| 457 | |
| 458 | template <typename Container = C, int Size = N> |
| 459 | PackedArith<Container> operator~() const { |
| 460 | const Container *const LhsPtr = |
| 461 | reinterpret_cast<const Container *const>(&Lhs); |
| 462 | Container Ret[Size]; |
| 463 | for (uint32_t i = 0; i < Size; ++i) { |
| 464 | Ret[i] = ~LhsPtr[i]; |
| 465 | } |
| 466 | return PackedArith<Container>(*reinterpret_cast<Dqword *>(&Ret)); |
| 467 | } |
| 468 | |
| 469 | #define MinMaxOperations(Name, Suffix) \ |
| 470 | template <typename Container = C, int Size = N> \ |
| 471 | Dqword Name##Suffix(const Dqword &Rhs) const { \ |
| 472 | static_assert(std::is_floating_point<Container>::value, \ |
| 473 | #Name #Suffix "ps is only available for fp."); \ |
| 474 | const Container *const RhsPtr = \ |
| 475 | reinterpret_cast<const Container *const>(&Rhs); \ |
| 476 | const Container *const LhsPtr = \ |
| 477 | reinterpret_cast<const Container *const>(&Lhs); \ |
| 478 | Container Ret[Size]; \ |
| 479 | for (uint32_t i = 0; i < Size; ++i) { \ |
| 480 | Ret[i] = std::Name(LhsPtr[i], RhsPtr[i]); \ |
| 481 | } \ |
| 482 | return *reinterpret_cast<Dqword *>(&Ret); \ |
| 483 | } |
| 484 | |
| 485 | MinMaxOperations(max, ps); |
| 486 | MinMaxOperations(max, pd); |
| 487 | MinMaxOperations(min, ps); |
| 488 | MinMaxOperations(min, pd); |
| 489 | #undef MinMaxOperations |
| 490 | |
| 491 | template <typename Container = C, int Size = N> |
| 492 | Dqword blendWith(const Dqword &Rhs, const Dqword &Mask) const { |
| 493 | using MaskType = typename std::conditional< |
| 494 | sizeof(Container) == 1, int8_t, |
| 495 | typename std::conditional<sizeof(Container) == 2, int16_t, |
| 496 | int32_t>::type>::type; |
| 497 | static_assert(sizeof(MaskType) == sizeof(Container), |
| 498 | "MaskType has the wrong size."); |
| 499 | const Container *const RhsPtr = |
| 500 | reinterpret_cast<const Container *const>(&Rhs); |
| 501 | const Container *const LhsPtr = |
| 502 | reinterpret_cast<const Container *const>(&Lhs); |
| 503 | const MaskType *const MaskPtr = |
| 504 | reinterpret_cast<const MaskType *const>(&Mask); |
| 505 | Container Ret[Size]; |
| 506 | for (int i = 0; i < Size; ++i) { |
| 507 | Ret[i] = ((MaskPtr[i] < 0) ? RhsPtr : LhsPtr)[i]; |
| 508 | } |
| 509 | return *reinterpret_cast<Dqword *>(&Ret); |
| 510 | } |
| 511 | |
| 512 | private: |
| 513 | // The AssemblerX8632Test class needs to be a friend so that it can create |
| 514 | // PackedArith objects (see below.) |
| 515 | friend class AssemblerX8632Test; |
| 516 | |
| 517 | explicit PackedArith(const Dqword &MyLhs) : Lhs(MyLhs) {} |
| 518 | |
| 519 | // Lhs can't be a & because operator~ returns a temporary object that needs |
| 520 | // access to its own Dqword. |
| 521 | const Dqword Lhs; |
| 522 | }; |
| 523 | |
| 524 | // Named constructor for PackedArith objects. |
| 525 | template <typename C> static PackedArith<C> packedAs(const Dqword &D) { |
| 526 | return PackedArith<C>(D); |
| 527 | } |
| 528 | |
| 529 | AssemblerX8632Test() { reset(); } |
| 530 | |
| 531 | void reset() { |
| 532 | AssemblerX8632TestBase::reset(); |
| 533 | |
| 534 | NeedsEpilogue = true; |
| 535 | // These dwords are allocated for saving the GPR state after the jitted code |
| 536 | // runs. |
| 537 | NumAllocatedDwords = AssembledTest::ScratchpadSlots; |
| 538 | addPrologue(); |
| 539 | } |
| 540 | |
| 541 | // AssembledTest is a wrapper around a PROT_EXEC mmap'ed buffer. This buffer |
| 542 | // contains both the test code as well as prologue/epilogue, and the |
| 543 | // scratchpad area that tests may use -- all tests use this scratchpad area |
| 544 | // for storing the processor's registers after the tests executed. This class |
| 545 | // also exposes helper methods for reading the register state after test |
| 546 | // execution, as well as for reading the scratchpad area. |
| 547 | class AssembledTest { |
| 548 | AssembledTest() = delete; |
| 549 | AssembledTest(const AssembledTest &) = delete; |
| 550 | AssembledTest &operator=(const AssembledTest &) = delete; |
| 551 | |
| 552 | public: |
| 553 | static constexpr uint32_t MaximumCodeSize = 1 << 20; |
| 554 | static constexpr uint32_t EaxSlot = 0; |
| 555 | static constexpr uint32_t EbxSlot = 1; |
| 556 | static constexpr uint32_t EcxSlot = 2; |
| 557 | static constexpr uint32_t EdxSlot = 3; |
| 558 | static constexpr uint32_t EdiSlot = 4; |
| 559 | static constexpr uint32_t EsiSlot = 5; |
| 560 | static constexpr uint32_t EbpSlot = 6; |
| 561 | static constexpr uint32_t EspSlot = 7; |
| 562 | // save 4 dwords for each xmm registers. |
| 563 | static constexpr uint32_t Xmm0Slot = 8; |
| 564 | static constexpr uint32_t Xmm1Slot = 12; |
| 565 | static constexpr uint32_t Xmm2Slot = 16; |
| 566 | static constexpr uint32_t Xmm3Slot = 20; |
| 567 | static constexpr uint32_t Xmm4Slot = 24; |
| 568 | static constexpr uint32_t Xmm5Slot = 28; |
| 569 | static constexpr uint32_t Xmm6Slot = 32; |
| 570 | static constexpr uint32_t Xmm7Slot = 36; |
| 571 | static constexpr uint32_t ScratchpadSlots = 40; |
| 572 | |
| 573 | AssembledTest(const uint8_t *Data, const size_t MySize, |
| 574 | const size_t ExtraStorageDwords) |
| 575 | : Size(MaximumCodeSize + 4 * ExtraStorageDwords) { |
| 576 | // MaxCodeSize is needed because EXPECT_LT needs a symbol with a name -- |
| 577 | // probably a compiler bug? |
| 578 | uint32_t MaxCodeSize = MaximumCodeSize; |
| 579 | EXPECT_LT(MySize, MaxCodeSize); |
| 580 | assert(MySize < MaximumCodeSize); |
Nicolas Capens | 46f4fea | 2016-10-06 17:25:39 -0400 | [diff] [blame] | 581 | |
| 582 | #if defined(__unix__) |
John Porto | 2fea26c | 2015-07-28 16:28:07 -0700 | [diff] [blame] | 583 | ExecutableData = mmap(nullptr, Size, PROT_WRITE | PROT_READ | PROT_EXEC, |
| 584 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
| 585 | EXPECT_NE(MAP_FAILED, ExecutableData) << strerror(errno); |
| 586 | assert(MAP_FAILED != ExecutableData); |
Nicolas Capens | 46f4fea | 2016-10-06 17:25:39 -0400 | [diff] [blame] | 587 | #elif defined(_WIN32) |
| 588 | ExecutableData = VirtualAlloc(NULL, Size, MEM_COMMIT | MEM_RESERVE, |
| 589 | PAGE_EXECUTE_READWRITE); |
| 590 | EXPECT_NE(nullptr, ExecutableData) << strerror(errno); |
| 591 | assert(nullptr != ExecutableData); |
| 592 | #else |
| 593 | #error "Platform unsupported" |
| 594 | #endif |
| 595 | |
John Porto | 2fea26c | 2015-07-28 16:28:07 -0700 | [diff] [blame] | 596 | std::memcpy(ExecutableData, Data, MySize); |
| 597 | } |
| 598 | |
| 599 | // We allow AssembledTest to be moved so that we can return objects of |
| 600 | // this type. |
| 601 | AssembledTest(AssembledTest &&Buffer) |
| 602 | : ExecutableData(Buffer.ExecutableData), Size(Buffer.Size) { |
| 603 | Buffer.ExecutableData = nullptr; |
| 604 | Buffer.Size = 0; |
| 605 | } |
| 606 | |
| 607 | AssembledTest &operator=(AssembledTest &&Buffer) { |
| 608 | ExecutableData = Buffer.ExecutableData; |
| 609 | Buffer.ExecutableData = nullptr; |
| 610 | Size = Buffer.Size; |
| 611 | Buffer.Size = 0; |
| 612 | return *this; |
| 613 | } |
| 614 | |
| 615 | ~AssembledTest() { |
| 616 | if (ExecutableData != nullptr) { |
Nicolas Capens | 46f4fea | 2016-10-06 17:25:39 -0400 | [diff] [blame] | 617 | #if defined(__unix__) |
John Porto | 2fea26c | 2015-07-28 16:28:07 -0700 | [diff] [blame] | 618 | munmap(ExecutableData, Size); |
Nicolas Capens | 46f4fea | 2016-10-06 17:25:39 -0400 | [diff] [blame] | 619 | #elif defined(_WIN32) |
| 620 | VirtualFree(ExecutableData, 0, MEM_RELEASE); |
| 621 | #endif |
John Porto | 2fea26c | 2015-07-28 16:28:07 -0700 | [diff] [blame] | 622 | ExecutableData = nullptr; |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | void run() const { reinterpret_cast<void (*)()>(ExecutableData)(); } |
| 627 | |
| 628 | uint32_t eax() const { return contentsOfDword(AssembledTest::EaxSlot); } |
| 629 | |
| 630 | uint32_t ebx() const { return contentsOfDword(AssembledTest::EbxSlot); } |
| 631 | |
| 632 | uint32_t ecx() const { return contentsOfDword(AssembledTest::EcxSlot); } |
| 633 | |
| 634 | uint32_t edx() const { return contentsOfDword(AssembledTest::EdxSlot); } |
| 635 | |
| 636 | uint32_t edi() const { return contentsOfDword(AssembledTest::EdiSlot); } |
| 637 | |
| 638 | uint32_t esi() const { return contentsOfDword(AssembledTest::EsiSlot); } |
| 639 | |
| 640 | uint32_t ebp() const { return contentsOfDword(AssembledTest::EbpSlot); } |
| 641 | |
| 642 | uint32_t esp() const { return contentsOfDword(AssembledTest::EspSlot); } |
| 643 | |
| 644 | template <typename T> T xmm0() const { |
| 645 | return xmm<T>(AssembledTest::Xmm0Slot); |
| 646 | } |
| 647 | |
| 648 | template <typename T> T xmm1() const { |
| 649 | return xmm<T>(AssembledTest::Xmm1Slot); |
| 650 | } |
| 651 | |
| 652 | template <typename T> T xmm2() const { |
| 653 | return xmm<T>(AssembledTest::Xmm2Slot); |
| 654 | } |
| 655 | |
| 656 | template <typename T> T xmm3() const { |
| 657 | return xmm<T>(AssembledTest::Xmm3Slot); |
| 658 | } |
| 659 | |
| 660 | template <typename T> T xmm4() const { |
| 661 | return xmm<T>(AssembledTest::Xmm4Slot); |
| 662 | } |
| 663 | |
| 664 | template <typename T> T xmm5() const { |
| 665 | return xmm<T>(AssembledTest::Xmm5Slot); |
| 666 | } |
| 667 | |
| 668 | template <typename T> T xmm6() const { |
| 669 | return xmm<T>(AssembledTest::Xmm6Slot); |
| 670 | } |
| 671 | |
| 672 | template <typename T> T xmm7() const { |
| 673 | return xmm<T>(AssembledTest::Xmm7Slot); |
| 674 | } |
| 675 | |
| 676 | // contentsOfDword is used for reading the values in the scratchpad area. |
| 677 | // Valid arguments are the dword ids returned by |
| 678 | // AssemblerX8632Test::allocateDword() -- other inputs are considered |
| 679 | // invalid, and are not guaranteed to work if the implementation changes. |
| 680 | template <typename T = uint32_t, typename = typename std::enable_if< |
| 681 | sizeof(T) == sizeof(uint32_t)>::type> |
| 682 | T contentsOfDword(uint32_t Dword) const { |
| 683 | return *reinterpret_cast<T *>(static_cast<uint8_t *>(ExecutableData) + |
| 684 | dwordOffset(Dword)); |
| 685 | } |
| 686 | |
| 687 | template <typename T = uint64_t, typename = typename std::enable_if< |
| 688 | sizeof(T) == sizeof(uint64_t)>::type> |
| 689 | T contentsOfQword(uint32_t InitialDword) const { |
| 690 | return *reinterpret_cast<T *>(static_cast<uint8_t *>(ExecutableData) + |
| 691 | dwordOffset(InitialDword)); |
| 692 | } |
| 693 | |
| 694 | Dqword contentsOfDqword(uint32_t InitialDword) const { |
| 695 | return *reinterpret_cast<Dqword *>( |
| 696 | static_cast<uint8_t *>(ExecutableData) + |
| 697 | dwordOffset(InitialDword)); |
| 698 | } |
| 699 | |
| 700 | template <typename T = uint32_t, typename = typename std::enable_if< |
| 701 | sizeof(T) == sizeof(uint32_t)>::type> |
| 702 | void setDwordTo(uint32_t Dword, T value) { |
| 703 | *reinterpret_cast<uint32_t *>(static_cast<uint8_t *>(ExecutableData) + |
| 704 | dwordOffset(Dword)) = |
| 705 | *reinterpret_cast<uint32_t *>(&value); |
| 706 | } |
| 707 | |
| 708 | template <typename T = uint64_t, typename = typename std::enable_if< |
| 709 | sizeof(T) == sizeof(uint64_t)>::type> |
| 710 | void setQwordTo(uint32_t InitialDword, T value) { |
| 711 | *reinterpret_cast<uint64_t *>(static_cast<uint8_t *>(ExecutableData) + |
| 712 | dwordOffset(InitialDword)) = |
| 713 | *reinterpret_cast<uint64_t *>(&value); |
| 714 | } |
| 715 | |
| 716 | void setDqwordTo(uint32_t InitialDword, const Dqword &qdword) { |
| 717 | setQwordTo(InitialDword, qdword.U64[0]); |
| 718 | setQwordTo(InitialDword + 2, qdword.U64[1]); |
| 719 | } |
| 720 | |
| 721 | private: |
| 722 | template <typename T> |
| 723 | typename std::enable_if<std::is_same<T, Dqword>::value, Dqword>::type |
| 724 | xmm(uint8_t Slot) const { |
| 725 | return contentsOfDqword(Slot); |
| 726 | } |
| 727 | |
| 728 | template <typename T> |
| 729 | typename std::enable_if<!std::is_same<T, Dqword>::value, T>::type |
| 730 | xmm(uint8_t Slot) const { |
| 731 | constexpr bool TIs64Bit = sizeof(T) == sizeof(uint64_t); |
| 732 | using _64BitType = typename std::conditional<TIs64Bit, T, uint64_t>::type; |
| 733 | using _32BitType = typename std::conditional<TIs64Bit, uint32_t, T>::type; |
| 734 | if (TIs64Bit) { |
| 735 | return contentsOfQword<_64BitType>(Slot); |
| 736 | } |
| 737 | return contentsOfDword<_32BitType>(Slot); |
| 738 | } |
| 739 | |
| 740 | static uint32_t dwordOffset(uint32_t Index) { |
| 741 | return MaximumCodeSize + (Index * 4); |
| 742 | } |
| 743 | |
| 744 | void *ExecutableData = nullptr; |
| 745 | size_t Size; |
| 746 | }; |
| 747 | |
| 748 | // assemble created an AssembledTest with the jitted code. The first time |
| 749 | // assemble is executed it will add the epilogue to the jitted code (which is |
| 750 | // the reason why this method is not const qualified. |
| 751 | AssembledTest assemble() { |
| 752 | if (NeedsEpilogue) { |
| 753 | addEpilogue(); |
| 754 | } |
John Porto | 2fea26c | 2015-07-28 16:28:07 -0700 | [diff] [blame] | 755 | NeedsEpilogue = false; |
John Porto | 6e8d3fa | 2016-02-04 10:35:20 -0800 | [diff] [blame] | 756 | |
| 757 | for (const auto *Fixup : assembler()->fixups()) { |
| 758 | Fixup->emitOffset(assembler()); |
| 759 | } |
| 760 | |
John Porto | 2fea26c | 2015-07-28 16:28:07 -0700 | [diff] [blame] | 761 | return AssembledTest(codeBytes(), codeBytesSize(), NumAllocatedDwords); |
| 762 | } |
| 763 | |
| 764 | // Allocates a new dword slot in the test's scratchpad area. |
| 765 | uint32_t allocateDword() { return NumAllocatedDwords++; } |
| 766 | |
| 767 | // Allocates a new qword slot in the test's scratchpad area. |
| 768 | uint32_t allocateQword() { |
| 769 | uint32_t InitialDword = allocateDword(); |
| 770 | allocateDword(); |
| 771 | return InitialDword; |
| 772 | } |
| 773 | |
| 774 | // Allocates a new dqword slot in the test's scratchpad area. |
| 775 | uint32_t allocateDqword() { |
| 776 | uint32_t InitialDword = allocateQword(); |
| 777 | allocateQword(); |
| 778 | return InitialDword; |
| 779 | } |
| 780 | |
| 781 | Address dwordAddress(uint32_t Dword) { |
David Sehr | aa0b1a1 | 2015-10-27 16:55:40 -0700 | [diff] [blame] | 782 | return Address(GPRRegister::Encoded_Reg_ebp, dwordDisp(Dword), nullptr); |
John Porto | 2fea26c | 2015-07-28 16:28:07 -0700 | [diff] [blame] | 783 | } |
| 784 | |
| 785 | private: |
| 786 | // e??SlotAddress returns an AssemblerX8632::Traits::Address that can be used |
| 787 | // by the test cases to encode an address operand for accessing the slot for |
| 788 | // the specified register. These are all private for, when jitting the test |
| 789 | // code, tests should not tamper with these values. Besides, during the test |
| 790 | // execution these slots' contents are undefined and should not be accessed. |
| 791 | Address eaxSlotAddress() { return dwordAddress(AssembledTest::EaxSlot); } |
| 792 | Address ebxSlotAddress() { return dwordAddress(AssembledTest::EbxSlot); } |
| 793 | Address ecxSlotAddress() { return dwordAddress(AssembledTest::EcxSlot); } |
| 794 | Address edxSlotAddress() { return dwordAddress(AssembledTest::EdxSlot); } |
| 795 | Address ediSlotAddress() { return dwordAddress(AssembledTest::EdiSlot); } |
| 796 | Address esiSlotAddress() { return dwordAddress(AssembledTest::EsiSlot); } |
| 797 | Address ebpSlotAddress() { return dwordAddress(AssembledTest::EbpSlot); } |
| 798 | Address espSlotAddress() { return dwordAddress(AssembledTest::EspSlot); } |
| 799 | Address xmm0SlotAddress() { return dwordAddress(AssembledTest::Xmm0Slot); } |
| 800 | Address xmm1SlotAddress() { return dwordAddress(AssembledTest::Xmm1Slot); } |
| 801 | Address xmm2SlotAddress() { return dwordAddress(AssembledTest::Xmm2Slot); } |
| 802 | Address xmm3SlotAddress() { return dwordAddress(AssembledTest::Xmm3Slot); } |
| 803 | Address xmm4SlotAddress() { return dwordAddress(AssembledTest::Xmm4Slot); } |
| 804 | Address xmm5SlotAddress() { return dwordAddress(AssembledTest::Xmm5Slot); } |
| 805 | Address xmm6SlotAddress() { return dwordAddress(AssembledTest::Xmm6Slot); } |
| 806 | Address xmm7SlotAddress() { return dwordAddress(AssembledTest::Xmm7Slot); } |
| 807 | |
| 808 | // Returns the displacement that should be used when accessing the specified |
| 809 | // Dword in the scratchpad area. It needs to adjust for the initial |
| 810 | // instructions that are emitted before the call that materializes the IP |
| 811 | // register. |
| 812 | uint32_t dwordDisp(uint32_t Dword) const { |
| 813 | EXPECT_LT(Dword, NumAllocatedDwords); |
| 814 | assert(Dword < NumAllocatedDwords); |
| 815 | static constexpr uint8_t PushBytes = 1; |
| 816 | static constexpr uint8_t CallImmBytes = 5; |
| 817 | return AssembledTest::MaximumCodeSize + (Dword * 4) - |
| 818 | (7 * PushBytes + CallImmBytes); |
| 819 | } |
| 820 | |
| 821 | void addPrologue() { |
| 822 | __ pushl(GPRRegister::Encoded_Reg_eax); |
| 823 | __ pushl(GPRRegister::Encoded_Reg_ebx); |
| 824 | __ pushl(GPRRegister::Encoded_Reg_ecx); |
| 825 | __ pushl(GPRRegister::Encoded_Reg_edx); |
| 826 | __ pushl(GPRRegister::Encoded_Reg_edi); |
| 827 | __ pushl(GPRRegister::Encoded_Reg_esi); |
| 828 | __ pushl(GPRRegister::Encoded_Reg_ebp); |
| 829 | |
| 830 | __ call(Immediate(4)); |
| 831 | __ popl(GPRRegister::Encoded_Reg_ebp); |
| 832 | __ mov(IceType_i32, GPRRegister::Encoded_Reg_eax, Immediate(0x00)); |
| 833 | __ mov(IceType_i32, GPRRegister::Encoded_Reg_ebx, Immediate(0x00)); |
| 834 | __ mov(IceType_i32, GPRRegister::Encoded_Reg_ecx, Immediate(0x00)); |
| 835 | __ mov(IceType_i32, GPRRegister::Encoded_Reg_edx, Immediate(0x00)); |
| 836 | __ mov(IceType_i32, GPRRegister::Encoded_Reg_edi, Immediate(0x00)); |
| 837 | __ mov(IceType_i32, GPRRegister::Encoded_Reg_esi, Immediate(0x00)); |
| 838 | } |
| 839 | |
| 840 | void addEpilogue() { |
| 841 | __ mov(IceType_i32, eaxSlotAddress(), GPRRegister::Encoded_Reg_eax); |
| 842 | __ mov(IceType_i32, ebxSlotAddress(), GPRRegister::Encoded_Reg_ebx); |
| 843 | __ mov(IceType_i32, ecxSlotAddress(), GPRRegister::Encoded_Reg_ecx); |
| 844 | __ mov(IceType_i32, edxSlotAddress(), GPRRegister::Encoded_Reg_edx); |
| 845 | __ mov(IceType_i32, ediSlotAddress(), GPRRegister::Encoded_Reg_edi); |
| 846 | __ mov(IceType_i32, esiSlotAddress(), GPRRegister::Encoded_Reg_esi); |
| 847 | __ mov(IceType_i32, ebpSlotAddress(), GPRRegister::Encoded_Reg_ebp); |
| 848 | __ mov(IceType_i32, espSlotAddress(), GPRRegister::Encoded_Reg_esp); |
| 849 | __ movups(xmm0SlotAddress(), XmmRegister::Encoded_Reg_xmm0); |
| 850 | __ movups(xmm1SlotAddress(), XmmRegister::Encoded_Reg_xmm1); |
| 851 | __ movups(xmm2SlotAddress(), XmmRegister::Encoded_Reg_xmm2); |
| 852 | __ movups(xmm3SlotAddress(), XmmRegister::Encoded_Reg_xmm3); |
| 853 | __ movups(xmm4SlotAddress(), XmmRegister::Encoded_Reg_xmm4); |
| 854 | __ movups(xmm5SlotAddress(), XmmRegister::Encoded_Reg_xmm5); |
| 855 | __ movups(xmm6SlotAddress(), XmmRegister::Encoded_Reg_xmm6); |
| 856 | __ movups(xmm7SlotAddress(), XmmRegister::Encoded_Reg_xmm7); |
| 857 | |
| 858 | __ popl(GPRRegister::Encoded_Reg_ebp); |
| 859 | __ popl(GPRRegister::Encoded_Reg_esi); |
| 860 | __ popl(GPRRegister::Encoded_Reg_edi); |
| 861 | __ popl(GPRRegister::Encoded_Reg_edx); |
| 862 | __ popl(GPRRegister::Encoded_Reg_ecx); |
| 863 | __ popl(GPRRegister::Encoded_Reg_ebx); |
| 864 | __ popl(GPRRegister::Encoded_Reg_eax); |
| 865 | |
| 866 | __ ret(); |
| 867 | } |
| 868 | |
| 869 | bool NeedsEpilogue; |
| 870 | uint32_t NumAllocatedDwords; |
| 871 | }; |
| 872 | |
| 873 | } // end of namespace Test |
| 874 | } // end of namespace X8632 |
| 875 | } // end of namespace Ice |
| 876 | |
| 877 | #endif // ASSEMBLERX8632_TESTUTIL_H_ |