Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 1 | //===- subzero/src/IceTargetLoweringX8632.cpp - x86-32 lowering -----------===// |
| 2 | // |
| 3 | // The Subzero Code Generator |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the TargetLoweringX8632 class, which |
| 11 | // consists almost entirely of the lowering sequence for each |
| 12 | // high-level instruction. It also implements |
| 13 | // TargetX8632Fast::postLower() which does the simplest possible |
| 14 | // register allocation for the "fast" target. |
| 15 | // |
| 16 | //===----------------------------------------------------------------------===// |
| 17 | |
| 18 | #include "IceDefs.h" |
| 19 | #include "IceCfg.h" |
| 20 | #include "IceCfgNode.h" |
| 21 | #include "IceInstX8632.h" |
| 22 | #include "IceOperand.h" |
| 23 | #include "IceTargetLoweringX8632.def" |
| 24 | #include "IceTargetLoweringX8632.h" |
| 25 | |
| 26 | namespace Ice { |
| 27 | |
| 28 | namespace { |
| 29 | |
| 30 | // The following table summarizes the logic for lowering the fcmp instruction. |
| 31 | // There is one table entry for each of the 16 conditions. A comment in |
| 32 | // lowerFcmp() describes the lowering template. In the most general case, there |
| 33 | // is a compare followed by two conditional branches, because some fcmp |
| 34 | // conditions don't map to a single x86 conditional branch. However, in many |
| 35 | // cases it is possible to swap the operands in the comparison and have a single |
| 36 | // conditional branch. Since it's quite tedious to validate the table by hand, |
| 37 | // good execution tests are helpful. |
| 38 | |
| 39 | const struct TableFcmp_ { |
| 40 | uint32_t Default; |
| 41 | bool SwapOperands; |
| 42 | InstX8632Br::BrCond C1, C2; |
| 43 | } TableFcmp[] = { |
| 44 | #define X(val, dflt, swap, C1, C2) \ |
| 45 | { dflt, swap, InstX8632Br::C1, InstX8632Br::C2 } \ |
| 46 | , |
| 47 | FCMPX8632_TABLE |
| 48 | #undef X |
| 49 | }; |
| 50 | const size_t TableFcmpSize = llvm::array_lengthof(TableFcmp); |
| 51 | |
| 52 | // The following table summarizes the logic for lowering the icmp instruction |
| 53 | // for i32 and narrower types. Each icmp condition has a clear mapping to an |
| 54 | // x86 conditional branch instruction. |
| 55 | |
| 56 | const struct TableIcmp32_ { |
| 57 | InstX8632Br::BrCond Mapping; |
| 58 | } TableIcmp32[] = { |
| 59 | #define X(val, C_32, C1_64, C2_64, C3_64) \ |
| 60 | { InstX8632Br::C_32 } \ |
| 61 | , |
| 62 | ICMPX8632_TABLE |
| 63 | #undef X |
| 64 | }; |
| 65 | const size_t TableIcmp32Size = llvm::array_lengthof(TableIcmp32); |
| 66 | |
| 67 | // The following table summarizes the logic for lowering the icmp instruction |
| 68 | // for the i64 type. For Eq and Ne, two separate 32-bit comparisons and |
| 69 | // conditional branches are needed. For the other conditions, three separate |
| 70 | // conditional branches are needed. |
| 71 | const struct TableIcmp64_ { |
| 72 | InstX8632Br::BrCond C1, C2, C3; |
| 73 | } TableIcmp64[] = { |
| 74 | #define X(val, C_32, C1_64, C2_64, C3_64) \ |
| 75 | { InstX8632Br::C1_64, InstX8632Br::C2_64, InstX8632Br::C3_64 } \ |
| 76 | , |
| 77 | ICMPX8632_TABLE |
| 78 | #undef X |
| 79 | }; |
| 80 | const size_t TableIcmp64Size = llvm::array_lengthof(TableIcmp64); |
| 81 | |
| 82 | InstX8632Br::BrCond getIcmp32Mapping(InstIcmp::ICond Cond) { |
| 83 | size_t Index = static_cast<size_t>(Cond); |
| 84 | assert(Index < TableIcmp32Size); |
| 85 | return TableIcmp32[Index].Mapping; |
| 86 | } |
| 87 | |
| 88 | // In some cases, there are x-macros tables for both high-level and |
| 89 | // low-level instructions/operands that use the same enum key value. |
| 90 | // The tables are kept separate to maintain a proper separation |
| 91 | // between abstraction layers. There is a risk that the tables |
| 92 | // could get out of sync if enum values are reordered or if entries |
| 93 | // are added or deleted. This dummy function uses static_assert to |
| 94 | // ensure everything is kept in sync. |
| 95 | void xMacroIntegrityCheck() { |
| 96 | // Validate the enum values in FCMPX8632_TABLE. |
| 97 | { |
| 98 | // Define a temporary set of enum values based on low-level |
| 99 | // table entries. |
| 100 | enum _tmp_enum { |
| 101 | #define X(val, dflt, swap, C1, C2) _tmp_##val, |
| 102 | FCMPX8632_TABLE |
| 103 | #undef X |
Jim Stichnoth | 4376d29 | 2014-05-23 13:39:02 -0700 | [diff] [blame] | 104 | _num |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 105 | }; |
| 106 | // Define a set of constants based on high-level table entries. |
| 107 | #define X(tag, str) static const int _table1_##tag = InstFcmp::tag; |
| 108 | ICEINSTFCMP_TABLE; |
| 109 | #undef X |
| 110 | // Define a set of constants based on low-level table entries, |
| 111 | // and ensure the table entry keys are consistent. |
| 112 | #define X(val, dflt, swap, C1, C2) \ |
| 113 | static const int _table2_##val = _tmp_##val; \ |
| 114 | STATIC_ASSERT(_table1_##val == _table2_##val); |
| 115 | FCMPX8632_TABLE; |
| 116 | #undef X |
| 117 | // Repeat the static asserts with respect to the high-level |
| 118 | // table entries in case the high-level table has extra entries. |
| 119 | #define X(tag, str) STATIC_ASSERT(_table1_##tag == _table2_##tag); |
| 120 | ICEINSTFCMP_TABLE; |
| 121 | #undef X |
| 122 | } |
| 123 | |
| 124 | // Validate the enum values in ICMPX8632_TABLE. |
| 125 | { |
| 126 | // Define a temporary set of enum values based on low-level |
| 127 | // table entries. |
| 128 | enum _tmp_enum { |
| 129 | #define X(val, C_32, C1_64, C2_64, C3_64) _tmp_##val, |
| 130 | ICMPX8632_TABLE |
| 131 | #undef X |
Jim Stichnoth | 4376d29 | 2014-05-23 13:39:02 -0700 | [diff] [blame] | 132 | _num |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 133 | }; |
| 134 | // Define a set of constants based on high-level table entries. |
| 135 | #define X(tag, str) static const int _table1_##tag = InstIcmp::tag; |
| 136 | ICEINSTICMP_TABLE; |
| 137 | #undef X |
| 138 | // Define a set of constants based on low-level table entries, |
| 139 | // and ensure the table entry keys are consistent. |
| 140 | #define X(val, C_32, C1_64, C2_64, C3_64) \ |
| 141 | static const int _table2_##val = _tmp_##val; \ |
| 142 | STATIC_ASSERT(_table1_##val == _table2_##val); |
| 143 | ICMPX8632_TABLE; |
| 144 | #undef X |
| 145 | // Repeat the static asserts with respect to the high-level |
| 146 | // table entries in case the high-level table has extra entries. |
| 147 | #define X(tag, str) STATIC_ASSERT(_table1_##tag == _table2_##tag); |
| 148 | ICEINSTICMP_TABLE; |
| 149 | #undef X |
| 150 | } |
| 151 | |
| 152 | // Validate the enum values in ICETYPEX8632_TABLE. |
| 153 | { |
| 154 | // Define a temporary set of enum values based on low-level |
| 155 | // table entries. |
| 156 | enum _tmp_enum { |
| 157 | #define X(tag, cvt, sdss, width) _tmp_##tag, |
| 158 | ICETYPEX8632_TABLE |
| 159 | #undef X |
Jim Stichnoth | 4376d29 | 2014-05-23 13:39:02 -0700 | [diff] [blame] | 160 | _num |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 161 | }; |
| 162 | // Define a set of constants based on high-level table entries. |
| 163 | #define X(tag, size, align, str) static const int _table1_##tag = tag; |
| 164 | ICETYPE_TABLE; |
| 165 | #undef X |
| 166 | // Define a set of constants based on low-level table entries, |
| 167 | // and ensure the table entry keys are consistent. |
| 168 | #define X(tag, cvt, sdss, width) \ |
| 169 | static const int _table2_##tag = _tmp_##tag; \ |
| 170 | STATIC_ASSERT(_table1_##tag == _table2_##tag); |
| 171 | ICETYPEX8632_TABLE; |
| 172 | #undef X |
| 173 | // Repeat the static asserts with respect to the high-level |
| 174 | // table entries in case the high-level table has extra entries. |
| 175 | #define X(tag, size, align, str) STATIC_ASSERT(_table1_##tag == _table2_##tag); |
| 176 | ICETYPE_TABLE; |
| 177 | #undef X |
| 178 | } |
| 179 | } |
| 180 | |
| 181 | } // end of anonymous namespace |
| 182 | |
| 183 | TargetX8632::TargetX8632(Cfg *Func) |
| 184 | : TargetLowering(Func), IsEbpBasedFrame(false), FrameSizeLocals(0), |
| 185 | LocalsSizeBytes(0), NextLabelNumber(0), ComputedLiveRanges(false), |
| 186 | PhysicalRegisters(VarList(Reg_NUM)) { |
| 187 | // TODO: Don't initialize IntegerRegisters and friends every time. |
| 188 | // Instead, initialize in some sort of static initializer for the |
| 189 | // class. |
| 190 | llvm::SmallBitVector IntegerRegisters(Reg_NUM); |
| 191 | llvm::SmallBitVector IntegerRegistersI8(Reg_NUM); |
| 192 | llvm::SmallBitVector FloatRegisters(Reg_NUM); |
| 193 | llvm::SmallBitVector InvalidRegisters(Reg_NUM); |
| 194 | ScratchRegs.resize(Reg_NUM); |
| 195 | #define X(val, init, name, name16, name8, scratch, preserved, stackptr, \ |
| 196 | frameptr, isI8, isInt, isFP) \ |
| 197 | IntegerRegisters[val] = isInt; \ |
| 198 | IntegerRegistersI8[val] = isI8; \ |
| 199 | FloatRegisters[val] = isFP; \ |
| 200 | ScratchRegs[val] = scratch; |
| 201 | REGX8632_TABLE; |
| 202 | #undef X |
| 203 | TypeToRegisterSet[IceType_void] = InvalidRegisters; |
| 204 | TypeToRegisterSet[IceType_i1] = IntegerRegistersI8; |
| 205 | TypeToRegisterSet[IceType_i8] = IntegerRegistersI8; |
| 206 | TypeToRegisterSet[IceType_i16] = IntegerRegisters; |
| 207 | TypeToRegisterSet[IceType_i32] = IntegerRegisters; |
| 208 | TypeToRegisterSet[IceType_i64] = IntegerRegisters; |
| 209 | TypeToRegisterSet[IceType_f32] = FloatRegisters; |
| 210 | TypeToRegisterSet[IceType_f64] = FloatRegisters; |
| 211 | } |
| 212 | |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 213 | void TargetX8632::translateO2() { |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 214 | GlobalContext *Context = Func->getContext(); |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 215 | |
| 216 | // Lower Phi instructions. |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 217 | Timer T_placePhiLoads; |
| 218 | Func->placePhiLoads(); |
| 219 | if (Func->hasError()) |
| 220 | return; |
| 221 | T_placePhiLoads.printElapsedUs(Context, "placePhiLoads()"); |
| 222 | Timer T_placePhiStores; |
| 223 | Func->placePhiStores(); |
| 224 | if (Func->hasError()) |
| 225 | return; |
| 226 | T_placePhiStores.printElapsedUs(Context, "placePhiStores()"); |
| 227 | Timer T_deletePhis; |
| 228 | Func->deletePhis(); |
| 229 | if (Func->hasError()) |
| 230 | return; |
| 231 | T_deletePhis.printElapsedUs(Context, "deletePhis()"); |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 232 | Func->dump("After Phi lowering"); |
| 233 | |
| 234 | // Address mode optimization. |
| 235 | Timer T_doAddressOpt; |
| 236 | Func->doAddressOpt(); |
| 237 | T_doAddressOpt.printElapsedUs(Context, "doAddressOpt()"); |
| 238 | |
| 239 | // Target lowering. This requires liveness analysis for some parts |
| 240 | // of the lowering decisions, such as compare/branch fusing. If |
| 241 | // non-lightweight liveness analysis is used, the instructions need |
| 242 | // to be renumbered first. TODO: This renumbering should only be |
| 243 | // necessary if we're actually calculating live intervals, which we |
| 244 | // only do for register allocation. |
| 245 | Timer T_renumber1; |
| 246 | Func->renumberInstructions(); |
| 247 | if (Func->hasError()) |
| 248 | return; |
| 249 | T_renumber1.printElapsedUs(Context, "renumberInstructions()"); |
| 250 | // TODO: It should be sufficient to use the fastest liveness |
| 251 | // calculation, i.e. livenessLightweight(). However, for some |
| 252 | // reason that slows down the rest of the translation. Investigate. |
| 253 | Timer T_liveness1; |
| 254 | Func->liveness(Liveness_Basic); |
| 255 | if (Func->hasError()) |
| 256 | return; |
| 257 | T_liveness1.printElapsedUs(Context, "liveness()"); |
| 258 | Func->dump("After x86 address mode opt"); |
| 259 | Timer T_genCode; |
| 260 | Func->genCode(); |
| 261 | if (Func->hasError()) |
| 262 | return; |
| 263 | T_genCode.printElapsedUs(Context, "genCode()"); |
| 264 | |
| 265 | // Register allocation. This requires instruction renumbering and |
| 266 | // full liveness analysis. |
| 267 | Timer T_renumber2; |
| 268 | Func->renumberInstructions(); |
| 269 | if (Func->hasError()) |
| 270 | return; |
| 271 | T_renumber2.printElapsedUs(Context, "renumberInstructions()"); |
| 272 | Timer T_liveness2; |
| 273 | Func->liveness(Liveness_Intervals); |
| 274 | if (Func->hasError()) |
| 275 | return; |
| 276 | T_liveness2.printElapsedUs(Context, "liveness()"); |
| 277 | // Validate the live range computations. Do it outside the timing |
| 278 | // code. TODO: Put this under a flag. |
| 279 | bool ValidLiveness = Func->validateLiveness(); |
| 280 | assert(ValidLiveness); |
| 281 | (void)ValidLiveness; // used only in assert() |
| 282 | ComputedLiveRanges = true; |
| 283 | // The post-codegen dump is done here, after liveness analysis and |
| 284 | // associated cleanup, to make the dump cleaner and more useful. |
| 285 | Func->dump("After initial x8632 codegen"); |
| 286 | Timer T_regAlloc; |
| 287 | regAlloc(); |
| 288 | if (Func->hasError()) |
| 289 | return; |
| 290 | T_regAlloc.printElapsedUs(Context, "regAlloc()"); |
| 291 | Func->dump("After linear scan regalloc"); |
| 292 | |
| 293 | // Stack frame mapping. |
| 294 | Timer T_genFrame; |
| 295 | Func->genFrame(); |
| 296 | if (Func->hasError()) |
| 297 | return; |
| 298 | T_genFrame.printElapsedUs(Context, "genFrame()"); |
| 299 | Func->dump("After stack frame mapping"); |
| 300 | } |
| 301 | |
| 302 | void TargetX8632::translateOm1() { |
| 303 | GlobalContext *Context = Func->getContext(); |
| 304 | Timer T_placePhiLoads; |
| 305 | Func->placePhiLoads(); |
| 306 | if (Func->hasError()) |
| 307 | return; |
| 308 | T_placePhiLoads.printElapsedUs(Context, "placePhiLoads()"); |
| 309 | Timer T_placePhiStores; |
| 310 | Func->placePhiStores(); |
| 311 | if (Func->hasError()) |
| 312 | return; |
| 313 | T_placePhiStores.printElapsedUs(Context, "placePhiStores()"); |
| 314 | Timer T_deletePhis; |
| 315 | Func->deletePhis(); |
| 316 | if (Func->hasError()) |
| 317 | return; |
| 318 | T_deletePhis.printElapsedUs(Context, "deletePhis()"); |
| 319 | Func->dump("After Phi lowering"); |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 320 | |
| 321 | Timer T_genCode; |
| 322 | Func->genCode(); |
| 323 | if (Func->hasError()) |
| 324 | return; |
| 325 | T_genCode.printElapsedUs(Context, "genCode()"); |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 326 | Func->dump("After initial x8632 codegen"); |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 327 | |
| 328 | Timer T_genFrame; |
| 329 | Func->genFrame(); |
| 330 | if (Func->hasError()) |
| 331 | return; |
| 332 | T_genFrame.printElapsedUs(Context, "genFrame()"); |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 333 | Func->dump("After stack frame mapping"); |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 334 | } |
| 335 | |
| 336 | IceString TargetX8632::RegNames[] = { |
| 337 | #define X(val, init, name, name16, name8, scratch, preserved, stackptr, \ |
| 338 | frameptr, isI8, isInt, isFP) \ |
| 339 | name, |
| 340 | REGX8632_TABLE |
| 341 | #undef X |
| 342 | }; |
| 343 | |
| 344 | Variable *TargetX8632::getPhysicalRegister(SizeT RegNum) { |
| 345 | assert(RegNum < PhysicalRegisters.size()); |
| 346 | Variable *Reg = PhysicalRegisters[RegNum]; |
| 347 | if (Reg == NULL) { |
| 348 | CfgNode *Node = NULL; // NULL means multi-block lifetime |
| 349 | Reg = Func->makeVariable(IceType_i32, Node); |
| 350 | Reg->setRegNum(RegNum); |
| 351 | PhysicalRegisters[RegNum] = Reg; |
| 352 | } |
| 353 | return Reg; |
| 354 | } |
| 355 | |
| 356 | IceString TargetX8632::getRegName(SizeT RegNum, Type Ty) const { |
| 357 | assert(RegNum < Reg_NUM); |
| 358 | static IceString RegNames8[] = { |
| 359 | #define X(val, init, name, name16, name8, scratch, preserved, stackptr, \ |
| 360 | frameptr, isI8, isInt, isFP) \ |
Jim Stichnoth | 4376d29 | 2014-05-23 13:39:02 -0700 | [diff] [blame] | 361 | name8, |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 362 | REGX8632_TABLE |
| 363 | #undef X |
| 364 | }; |
| 365 | static IceString RegNames16[] = { |
| 366 | #define X(val, init, name, name16, name8, scratch, preserved, stackptr, \ |
| 367 | frameptr, isI8, isInt, isFP) \ |
Jim Stichnoth | 4376d29 | 2014-05-23 13:39:02 -0700 | [diff] [blame] | 368 | name16, |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 369 | REGX8632_TABLE |
| 370 | #undef X |
| 371 | }; |
| 372 | switch (Ty) { |
| 373 | case IceType_i1: |
| 374 | case IceType_i8: |
| 375 | return RegNames8[RegNum]; |
| 376 | case IceType_i16: |
| 377 | return RegNames16[RegNum]; |
| 378 | default: |
| 379 | return RegNames[RegNum]; |
| 380 | } |
| 381 | } |
| 382 | |
| 383 | void TargetX8632::emitVariable(const Variable *Var, const Cfg *Func) const { |
| 384 | Ostream &Str = Ctx->getStrEmit(); |
| 385 | assert(Var->getLocalUseNode() == NULL || |
| 386 | Var->getLocalUseNode() == Func->getCurrentNode()); |
| 387 | if (Var->hasReg()) { |
| 388 | Str << getRegName(Var->getRegNum(), Var->getType()); |
| 389 | return; |
| 390 | } |
| 391 | Str << InstX8632::getWidthString(Var->getType()); |
| 392 | Str << " [" << getRegName(getFrameOrStackReg(), IceType_i32); |
Jim Stichnoth | b0e142b | 2014-06-12 15:28:56 -0700 | [diff] [blame] | 393 | int32_t Offset = Var->getStackOffset(); |
| 394 | if (!hasFramePointer()) |
| 395 | Offset += getStackAdjustment(); |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 396 | if (Offset) { |
| 397 | if (Offset > 0) |
| 398 | Str << "+"; |
| 399 | Str << Offset; |
| 400 | } |
| 401 | Str << "]"; |
| 402 | } |
| 403 | |
| 404 | // Helper function for addProlog(). Sets the frame offset for Arg, |
| 405 | // updates InArgsSizeBytes according to Arg's width, and generates an |
| 406 | // instruction to copy Arg into its assigned register if applicable. |
| 407 | // For an I64 arg that has been split into Lo and Hi components, it |
| 408 | // calls itself recursively on the components, taking care to handle |
| 409 | // Lo first because of the little-endian architecture. |
| 410 | void TargetX8632::setArgOffsetAndCopy(Variable *Arg, Variable *FramePtr, |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 411 | size_t BasicFrameOffset, |
| 412 | size_t &InArgsSizeBytes) { |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 413 | Variable *Lo = Arg->getLo(); |
| 414 | Variable *Hi = Arg->getHi(); |
| 415 | Type Ty = Arg->getType(); |
| 416 | if (Lo && Hi && Ty == IceType_i64) { |
| 417 | assert(Lo->getType() != IceType_i64); // don't want infinite recursion |
| 418 | assert(Hi->getType() != IceType_i64); // don't want infinite recursion |
| 419 | setArgOffsetAndCopy(Lo, FramePtr, BasicFrameOffset, InArgsSizeBytes); |
| 420 | setArgOffsetAndCopy(Hi, FramePtr, BasicFrameOffset, InArgsSizeBytes); |
| 421 | return; |
| 422 | } |
| 423 | Arg->setStackOffset(BasicFrameOffset + InArgsSizeBytes); |
| 424 | if (Arg->hasReg()) { |
| 425 | assert(Ty != IceType_i64); |
| 426 | OperandX8632Mem *Mem = OperandX8632Mem::create( |
| 427 | Func, Ty, FramePtr, |
| 428 | Ctx->getConstantInt(IceType_i32, Arg->getStackOffset())); |
| 429 | _mov(Arg, Mem); |
| 430 | } |
| 431 | InArgsSizeBytes += typeWidthInBytesOnStack(Ty); |
| 432 | } |
| 433 | |
| 434 | void TargetX8632::addProlog(CfgNode *Node) { |
| 435 | // If SimpleCoalescing is false, each variable without a register |
| 436 | // gets its own unique stack slot, which leads to large stack |
| 437 | // frames. If SimpleCoalescing is true, then each "global" variable |
| 438 | // without a register gets its own slot, but "local" variable slots |
| 439 | // are reused across basic blocks. E.g., if A and B are local to |
| 440 | // block 1 and C is local to block 2, then C may share a slot with A |
| 441 | // or B. |
| 442 | const bool SimpleCoalescing = true; |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 443 | size_t InArgsSizeBytes = 0; |
| 444 | size_t RetIpSizeBytes = 4; |
| 445 | size_t PreservedRegsSizeBytes = 0; |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 446 | LocalsSizeBytes = 0; |
| 447 | Context.init(Node); |
| 448 | Context.setInsertPoint(Context.getCur()); |
| 449 | |
| 450 | // Determine stack frame offsets for each Variable without a |
| 451 | // register assignment. This can be done as one variable per stack |
| 452 | // slot. Or, do coalescing by running the register allocator again |
| 453 | // with an infinite set of registers (as a side effect, this gives |
| 454 | // variables a second chance at physical register assignment). |
| 455 | // |
| 456 | // A middle ground approach is to leverage sparsity and allocate one |
| 457 | // block of space on the frame for globals (variables with |
| 458 | // multi-block lifetime), and one block to share for locals |
| 459 | // (single-block lifetime). |
| 460 | |
| 461 | llvm::SmallBitVector CalleeSaves = |
| 462 | getRegisterSet(RegSet_CalleeSave, RegSet_None); |
| 463 | |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 464 | size_t GlobalsSize = 0; |
| 465 | std::vector<size_t> LocalsSize(Func->getNumNodes()); |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 466 | |
| 467 | // Prepass. Compute RegsUsed, PreservedRegsSizeBytes, and |
| 468 | // LocalsSizeBytes. |
| 469 | RegsUsed = llvm::SmallBitVector(CalleeSaves.size()); |
| 470 | const VarList &Variables = Func->getVariables(); |
| 471 | const VarList &Args = Func->getArgs(); |
| 472 | for (VarList::const_iterator I = Variables.begin(), E = Variables.end(); |
| 473 | I != E; ++I) { |
| 474 | Variable *Var = *I; |
| 475 | if (Var->hasReg()) { |
| 476 | RegsUsed[Var->getRegNum()] = true; |
| 477 | continue; |
| 478 | } |
| 479 | // An argument passed on the stack already has a stack slot. |
| 480 | if (Var->getIsArg()) |
| 481 | continue; |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 482 | // An unreferenced variable doesn't need a stack slot. |
| 483 | if (ComputedLiveRanges && Var->getLiveRange().isEmpty()) |
| 484 | continue; |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 485 | // A spill slot linked to a variable with a stack slot should reuse |
| 486 | // that stack slot. |
| 487 | if (Var->getWeight() == RegWeight::Zero && Var->getRegisterOverlap()) { |
| 488 | if (Variable *Linked = Var->getPreferredRegister()) { |
| 489 | if (!Linked->hasReg()) |
| 490 | continue; |
| 491 | } |
| 492 | } |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 493 | size_t Increment = typeWidthInBytesOnStack(Var->getType()); |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 494 | if (SimpleCoalescing) { |
| 495 | if (Var->isMultiblockLife()) { |
| 496 | GlobalsSize += Increment; |
| 497 | } else { |
| 498 | SizeT NodeIndex = Var->getLocalUseNode()->getIndex(); |
| 499 | LocalsSize[NodeIndex] += Increment; |
| 500 | if (LocalsSize[NodeIndex] > LocalsSizeBytes) |
| 501 | LocalsSizeBytes = LocalsSize[NodeIndex]; |
| 502 | } |
| 503 | } else { |
| 504 | LocalsSizeBytes += Increment; |
| 505 | } |
| 506 | } |
| 507 | LocalsSizeBytes += GlobalsSize; |
| 508 | |
| 509 | // Add push instructions for preserved registers. |
| 510 | for (SizeT i = 0; i < CalleeSaves.size(); ++i) { |
| 511 | if (CalleeSaves[i] && RegsUsed[i]) { |
| 512 | PreservedRegsSizeBytes += 4; |
| 513 | const bool SuppressStackAdjustment = true; |
| 514 | _push(getPhysicalRegister(i), SuppressStackAdjustment); |
| 515 | } |
| 516 | } |
| 517 | |
| 518 | // Generate "push ebp; mov ebp, esp" |
| 519 | if (IsEbpBasedFrame) { |
| 520 | assert((RegsUsed & getRegisterSet(RegSet_FramePointer, RegSet_None)) |
| 521 | .count() == 0); |
| 522 | PreservedRegsSizeBytes += 4; |
| 523 | Variable *ebp = getPhysicalRegister(Reg_ebp); |
| 524 | Variable *esp = getPhysicalRegister(Reg_esp); |
| 525 | const bool SuppressStackAdjustment = true; |
| 526 | _push(ebp, SuppressStackAdjustment); |
| 527 | _mov(ebp, esp); |
| 528 | } |
| 529 | |
| 530 | // Generate "sub esp, LocalsSizeBytes" |
| 531 | if (LocalsSizeBytes) |
| 532 | _sub(getPhysicalRegister(Reg_esp), |
| 533 | Ctx->getConstantInt(IceType_i32, LocalsSizeBytes)); |
| 534 | |
| 535 | resetStackAdjustment(); |
| 536 | |
| 537 | // Fill in stack offsets for args, and copy args into registers for |
| 538 | // those that were register-allocated. Args are pushed right to |
| 539 | // left, so Arg[0] is closest to the stack/frame pointer. |
| 540 | // |
| 541 | // TODO: Make this right for different width args, calling |
| 542 | // conventions, etc. For one thing, args passed in registers will |
| 543 | // need to be copied/shuffled to their home registers (the |
| 544 | // RegManager code may have some permutation logic to leverage), |
| 545 | // and if they have no home register, home space will need to be |
| 546 | // allocated on the stack to copy into. |
| 547 | Variable *FramePtr = getPhysicalRegister(getFrameOrStackReg()); |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 548 | size_t BasicFrameOffset = PreservedRegsSizeBytes + RetIpSizeBytes; |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 549 | if (!IsEbpBasedFrame) |
| 550 | BasicFrameOffset += LocalsSizeBytes; |
| 551 | for (SizeT i = 0; i < Args.size(); ++i) { |
| 552 | Variable *Arg = Args[i]; |
| 553 | setArgOffsetAndCopy(Arg, FramePtr, BasicFrameOffset, InArgsSizeBytes); |
| 554 | } |
| 555 | |
| 556 | // Fill in stack offsets for locals. |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 557 | size_t TotalGlobalsSize = GlobalsSize; |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 558 | GlobalsSize = 0; |
| 559 | LocalsSize.assign(LocalsSize.size(), 0); |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 560 | size_t NextStackOffset = 0; |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 561 | for (VarList::const_iterator I = Variables.begin(), E = Variables.end(); |
| 562 | I != E; ++I) { |
| 563 | Variable *Var = *I; |
| 564 | if (Var->hasReg()) { |
| 565 | RegsUsed[Var->getRegNum()] = true; |
| 566 | continue; |
| 567 | } |
| 568 | if (Var->getIsArg()) |
| 569 | continue; |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 570 | if (ComputedLiveRanges && Var->getLiveRange().isEmpty()) |
| 571 | continue; |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 572 | if (Var->getWeight() == RegWeight::Zero && Var->getRegisterOverlap()) { |
| 573 | if (Variable *Linked = Var->getPreferredRegister()) { |
| 574 | if (!Linked->hasReg()) { |
| 575 | // TODO: Make sure Linked has already been assigned a stack |
| 576 | // slot. |
| 577 | Var->setStackOffset(Linked->getStackOffset()); |
| 578 | continue; |
| 579 | } |
| 580 | } |
| 581 | } |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 582 | size_t Increment = typeWidthInBytesOnStack(Var->getType()); |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 583 | if (SimpleCoalescing) { |
| 584 | if (Var->isMultiblockLife()) { |
| 585 | GlobalsSize += Increment; |
| 586 | NextStackOffset = GlobalsSize; |
| 587 | } else { |
| 588 | SizeT NodeIndex = Var->getLocalUseNode()->getIndex(); |
| 589 | LocalsSize[NodeIndex] += Increment; |
| 590 | NextStackOffset = TotalGlobalsSize + LocalsSize[NodeIndex]; |
| 591 | } |
| 592 | } else { |
| 593 | NextStackOffset += Increment; |
| 594 | } |
| 595 | if (IsEbpBasedFrame) |
| 596 | Var->setStackOffset(-NextStackOffset); |
| 597 | else |
| 598 | Var->setStackOffset(LocalsSizeBytes - NextStackOffset); |
| 599 | } |
| 600 | this->FrameSizeLocals = NextStackOffset; |
| 601 | this->HasComputedFrame = true; |
| 602 | |
| 603 | if (Func->getContext()->isVerbose(IceV_Frame)) { |
| 604 | Func->getContext()->getStrDump() << "LocalsSizeBytes=" << LocalsSizeBytes |
| 605 | << "\n" |
| 606 | << "InArgsSizeBytes=" << InArgsSizeBytes |
| 607 | << "\n" |
| 608 | << "PreservedRegsSizeBytes=" |
| 609 | << PreservedRegsSizeBytes << "\n"; |
| 610 | } |
| 611 | } |
| 612 | |
| 613 | void TargetX8632::addEpilog(CfgNode *Node) { |
| 614 | InstList &Insts = Node->getInsts(); |
| 615 | InstList::reverse_iterator RI, E; |
| 616 | for (RI = Insts.rbegin(), E = Insts.rend(); RI != E; ++RI) { |
| 617 | if (llvm::isa<InstX8632Ret>(*RI)) |
| 618 | break; |
| 619 | } |
| 620 | if (RI == E) |
| 621 | return; |
| 622 | |
| 623 | // Convert the reverse_iterator position into its corresponding |
| 624 | // (forward) iterator position. |
| 625 | InstList::iterator InsertPoint = RI.base(); |
| 626 | --InsertPoint; |
| 627 | Context.init(Node); |
| 628 | Context.setInsertPoint(InsertPoint); |
| 629 | |
| 630 | Variable *esp = getPhysicalRegister(Reg_esp); |
| 631 | if (IsEbpBasedFrame) { |
| 632 | Variable *ebp = getPhysicalRegister(Reg_ebp); |
| 633 | _mov(esp, ebp); |
| 634 | _pop(ebp); |
| 635 | } else { |
| 636 | // add esp, LocalsSizeBytes |
| 637 | if (LocalsSizeBytes) |
| 638 | _add(esp, Ctx->getConstantInt(IceType_i32, LocalsSizeBytes)); |
| 639 | } |
| 640 | |
| 641 | // Add pop instructions for preserved registers. |
| 642 | llvm::SmallBitVector CalleeSaves = |
| 643 | getRegisterSet(RegSet_CalleeSave, RegSet_None); |
| 644 | for (SizeT i = 0; i < CalleeSaves.size(); ++i) { |
| 645 | SizeT j = CalleeSaves.size() - i - 1; |
| 646 | if (j == Reg_ebp && IsEbpBasedFrame) |
| 647 | continue; |
| 648 | if (CalleeSaves[j] && RegsUsed[j]) { |
| 649 | _pop(getPhysicalRegister(j)); |
| 650 | } |
| 651 | } |
| 652 | } |
| 653 | |
Jim Stichnoth | f61d5b2 | 2014-05-23 13:31:24 -0700 | [diff] [blame] | 654 | template <typename T> struct PoolTypeConverter {}; |
| 655 | |
| 656 | template <> struct PoolTypeConverter<float> { |
| 657 | typedef float PrimitiveFpType; |
| 658 | typedef uint32_t PrimitiveIntType; |
| 659 | typedef ConstantFloat IceType; |
| 660 | static const Type Ty = IceType_f32; |
| 661 | static const char *TypeName; |
| 662 | static const char *AsmTag; |
| 663 | static const char *PrintfString; |
| 664 | }; |
| 665 | const char *PoolTypeConverter<float>::TypeName = "float"; |
| 666 | const char *PoolTypeConverter<float>::AsmTag = ".long"; |
| 667 | const char *PoolTypeConverter<float>::PrintfString = "0x%x"; |
| 668 | |
| 669 | template <> struct PoolTypeConverter<double> { |
| 670 | typedef double PrimitiveFpType; |
| 671 | typedef uint64_t PrimitiveIntType; |
| 672 | typedef ConstantDouble IceType; |
| 673 | static const Type Ty = IceType_f64; |
| 674 | static const char *TypeName; |
| 675 | static const char *AsmTag; |
| 676 | static const char *PrintfString; |
| 677 | }; |
| 678 | const char *PoolTypeConverter<double>::TypeName = "double"; |
| 679 | const char *PoolTypeConverter<double>::AsmTag = ".quad"; |
| 680 | const char *PoolTypeConverter<double>::PrintfString = "0x%llx"; |
| 681 | |
| 682 | template <typename T> void TargetX8632::emitConstantPool() const { |
| 683 | Ostream &Str = Ctx->getStrEmit(); |
| 684 | Type Ty = T::Ty; |
| 685 | SizeT Align = typeAlignInBytes(Ty); |
| 686 | ConstantList Pool = Ctx->getConstantPool(Ty); |
| 687 | |
| 688 | Str << "\t.section\t.rodata.cst" << Align << ",\"aM\",@progbits," << Align |
| 689 | << "\n"; |
| 690 | Str << "\t.align\t" << Align << "\n"; |
| 691 | for (ConstantList::const_iterator I = Pool.begin(), E = Pool.end(); I != E; |
| 692 | ++I) { |
| 693 | typename T::IceType *Const = llvm::cast<typename T::IceType>(*I); |
| 694 | typename T::PrimitiveFpType Value = Const->getValue(); |
| 695 | // Use memcpy() to copy bits from Value into RawValue in a way |
| 696 | // that avoids breaking strict-aliasing rules. |
| 697 | typename T::PrimitiveIntType RawValue; |
| 698 | memcpy(&RawValue, &Value, sizeof(Value)); |
| 699 | char buf[30]; |
| 700 | int CharsPrinted = |
| 701 | snprintf(buf, llvm::array_lengthof(buf), T::PrintfString, RawValue); |
| 702 | assert(CharsPrinted >= 0 && |
| 703 | (size_t)CharsPrinted < llvm::array_lengthof(buf)); |
| 704 | (void)CharsPrinted; // avoid warnings if asserts are disabled |
| 705 | Str << "L$" << Ty << "$" << Const->getPoolEntryID() << ":\n"; |
| 706 | Str << "\t" << T::AsmTag << "\t" << buf << "\t# " << T::TypeName << " " |
| 707 | << Value << "\n"; |
| 708 | } |
| 709 | } |
| 710 | |
| 711 | void TargetX8632::emitConstants() const { |
| 712 | emitConstantPool<PoolTypeConverter<float> >(); |
| 713 | emitConstantPool<PoolTypeConverter<double> >(); |
| 714 | |
| 715 | // No need to emit constants from the int pool since (for x86) they |
| 716 | // are embedded as immediates in the instructions. |
| 717 | } |
| 718 | |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 719 | void TargetX8632::split64(Variable *Var) { |
| 720 | switch (Var->getType()) { |
| 721 | default: |
| 722 | return; |
| 723 | case IceType_i64: |
| 724 | // TODO: Only consider F64 if we need to push each half when |
| 725 | // passing as an argument to a function call. Note that each half |
| 726 | // is still typed as I32. |
| 727 | case IceType_f64: |
| 728 | break; |
| 729 | } |
| 730 | Variable *Lo = Var->getLo(); |
| 731 | Variable *Hi = Var->getHi(); |
| 732 | if (Lo) { |
| 733 | assert(Hi); |
| 734 | return; |
| 735 | } |
| 736 | assert(Hi == NULL); |
| 737 | Lo = Func->makeVariable(IceType_i32, Context.getNode(), |
| 738 | Var->getName() + "__lo"); |
| 739 | Hi = Func->makeVariable(IceType_i32, Context.getNode(), |
| 740 | Var->getName() + "__hi"); |
| 741 | Var->setLoHi(Lo, Hi); |
| 742 | if (Var->getIsArg()) { |
| 743 | Lo->setIsArg(Func); |
| 744 | Hi->setIsArg(Func); |
| 745 | } |
| 746 | } |
| 747 | |
| 748 | Operand *TargetX8632::loOperand(Operand *Operand) { |
| 749 | assert(Operand->getType() == IceType_i64); |
| 750 | if (Operand->getType() != IceType_i64) |
| 751 | return Operand; |
| 752 | if (Variable *Var = llvm::dyn_cast<Variable>(Operand)) { |
| 753 | split64(Var); |
| 754 | return Var->getLo(); |
| 755 | } |
| 756 | if (ConstantInteger *Const = llvm::dyn_cast<ConstantInteger>(Operand)) { |
| 757 | uint64_t Mask = (1ull << 32) - 1; |
| 758 | return Ctx->getConstantInt(IceType_i32, Const->getValue() & Mask); |
| 759 | } |
| 760 | if (OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(Operand)) { |
| 761 | return OperandX8632Mem::create(Func, IceType_i32, Mem->getBase(), |
| 762 | Mem->getOffset(), Mem->getIndex(), |
| 763 | Mem->getShift()); |
| 764 | } |
| 765 | llvm_unreachable("Unsupported operand type"); |
| 766 | return NULL; |
| 767 | } |
| 768 | |
| 769 | Operand *TargetX8632::hiOperand(Operand *Operand) { |
| 770 | assert(Operand->getType() == IceType_i64); |
| 771 | if (Operand->getType() != IceType_i64) |
| 772 | return Operand; |
| 773 | if (Variable *Var = llvm::dyn_cast<Variable>(Operand)) { |
| 774 | split64(Var); |
| 775 | return Var->getHi(); |
| 776 | } |
| 777 | if (ConstantInteger *Const = llvm::dyn_cast<ConstantInteger>(Operand)) { |
| 778 | return Ctx->getConstantInt(IceType_i32, Const->getValue() >> 32); |
| 779 | } |
| 780 | if (OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(Operand)) { |
| 781 | Constant *Offset = Mem->getOffset(); |
| 782 | if (Offset == NULL) |
| 783 | Offset = Ctx->getConstantInt(IceType_i32, 4); |
| 784 | else if (ConstantInteger *IntOffset = |
| 785 | llvm::dyn_cast<ConstantInteger>(Offset)) { |
| 786 | Offset = Ctx->getConstantInt(IceType_i32, 4 + IntOffset->getValue()); |
| 787 | } else if (ConstantRelocatable *SymOffset = |
| 788 | llvm::dyn_cast<ConstantRelocatable>(Offset)) { |
| 789 | Offset = Ctx->getConstantSym(IceType_i32, 4 + SymOffset->getOffset(), |
| 790 | SymOffset->getName()); |
| 791 | } |
| 792 | return OperandX8632Mem::create(Func, IceType_i32, Mem->getBase(), Offset, |
| 793 | Mem->getIndex(), Mem->getShift()); |
| 794 | } |
| 795 | llvm_unreachable("Unsupported operand type"); |
| 796 | return NULL; |
| 797 | } |
| 798 | |
| 799 | llvm::SmallBitVector TargetX8632::getRegisterSet(RegSetMask Include, |
| 800 | RegSetMask Exclude) const { |
| 801 | llvm::SmallBitVector Registers(Reg_NUM); |
| 802 | |
| 803 | #define X(val, init, name, name16, name8, scratch, preserved, stackptr, \ |
| 804 | frameptr, isI8, isInt, isFP) \ |
| 805 | if (scratch && (Include & RegSet_CallerSave)) \ |
| 806 | Registers[val] = true; \ |
| 807 | if (preserved && (Include & RegSet_CalleeSave)) \ |
| 808 | Registers[val] = true; \ |
| 809 | if (stackptr && (Include & RegSet_StackPointer)) \ |
| 810 | Registers[val] = true; \ |
| 811 | if (frameptr && (Include & RegSet_FramePointer)) \ |
| 812 | Registers[val] = true; \ |
| 813 | if (scratch && (Exclude & RegSet_CallerSave)) \ |
| 814 | Registers[val] = false; \ |
| 815 | if (preserved && (Exclude & RegSet_CalleeSave)) \ |
| 816 | Registers[val] = false; \ |
| 817 | if (stackptr && (Exclude & RegSet_StackPointer)) \ |
| 818 | Registers[val] = false; \ |
| 819 | if (frameptr && (Exclude & RegSet_FramePointer)) \ |
| 820 | Registers[val] = false; |
| 821 | |
| 822 | REGX8632_TABLE |
| 823 | |
| 824 | #undef X |
| 825 | |
| 826 | return Registers; |
| 827 | } |
| 828 | |
| 829 | void TargetX8632::lowerAlloca(const InstAlloca *Inst) { |
| 830 | IsEbpBasedFrame = true; |
| 831 | // TODO(sehr,stichnot): align allocated memory, keep stack aligned, minimize |
| 832 | // the number of adjustments of esp, etc. |
| 833 | Variable *esp = getPhysicalRegister(Reg_esp); |
| 834 | Operand *TotalSize = legalize(Inst->getSizeInBytes()); |
| 835 | Variable *Dest = Inst->getDest(); |
| 836 | _sub(esp, TotalSize); |
| 837 | _mov(Dest, esp); |
| 838 | } |
| 839 | |
| 840 | void TargetX8632::lowerArithmetic(const InstArithmetic *Inst) { |
| 841 | Variable *Dest = Inst->getDest(); |
| 842 | Operand *Src0 = legalize(Inst->getSrc(0)); |
| 843 | Operand *Src1 = legalize(Inst->getSrc(1)); |
| 844 | if (Dest->getType() == IceType_i64) { |
| 845 | Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); |
| 846 | Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); |
| 847 | Operand *Src0Lo = loOperand(Src0); |
| 848 | Operand *Src0Hi = hiOperand(Src0); |
| 849 | Operand *Src1Lo = loOperand(Src1); |
| 850 | Operand *Src1Hi = hiOperand(Src1); |
| 851 | Variable *T_Lo = NULL, *T_Hi = NULL; |
| 852 | switch (Inst->getOp()) { |
Jim Stichnoth | 4376d29 | 2014-05-23 13:39:02 -0700 | [diff] [blame] | 853 | case InstArithmetic::_num: |
| 854 | llvm_unreachable("Unknown arithmetic operator"); |
| 855 | break; |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 856 | case InstArithmetic::Add: |
| 857 | _mov(T_Lo, Src0Lo); |
| 858 | _add(T_Lo, Src1Lo); |
| 859 | _mov(DestLo, T_Lo); |
| 860 | _mov(T_Hi, Src0Hi); |
| 861 | _adc(T_Hi, Src1Hi); |
| 862 | _mov(DestHi, T_Hi); |
| 863 | break; |
| 864 | case InstArithmetic::And: |
| 865 | _mov(T_Lo, Src0Lo); |
| 866 | _and(T_Lo, Src1Lo); |
| 867 | _mov(DestLo, T_Lo); |
| 868 | _mov(T_Hi, Src0Hi); |
| 869 | _and(T_Hi, Src1Hi); |
| 870 | _mov(DestHi, T_Hi); |
| 871 | break; |
| 872 | case InstArithmetic::Or: |
| 873 | _mov(T_Lo, Src0Lo); |
| 874 | _or(T_Lo, Src1Lo); |
| 875 | _mov(DestLo, T_Lo); |
| 876 | _mov(T_Hi, Src0Hi); |
| 877 | _or(T_Hi, Src1Hi); |
| 878 | _mov(DestHi, T_Hi); |
| 879 | break; |
| 880 | case InstArithmetic::Xor: |
| 881 | _mov(T_Lo, Src0Lo); |
| 882 | _xor(T_Lo, Src1Lo); |
| 883 | _mov(DestLo, T_Lo); |
| 884 | _mov(T_Hi, Src0Hi); |
| 885 | _xor(T_Hi, Src1Hi); |
| 886 | _mov(DestHi, T_Hi); |
| 887 | break; |
| 888 | case InstArithmetic::Sub: |
| 889 | _mov(T_Lo, Src0Lo); |
| 890 | _sub(T_Lo, Src1Lo); |
| 891 | _mov(DestLo, T_Lo); |
| 892 | _mov(T_Hi, Src0Hi); |
| 893 | _sbb(T_Hi, Src1Hi); |
| 894 | _mov(DestHi, T_Hi); |
| 895 | break; |
| 896 | case InstArithmetic::Mul: { |
| 897 | Variable *T_1 = NULL, *T_2 = NULL, *T_3 = NULL; |
| 898 | Variable *T_4Lo = makeReg(IceType_i32, Reg_eax); |
| 899 | Variable *T_4Hi = makeReg(IceType_i32, Reg_edx); |
| 900 | // gcc does the following: |
| 901 | // a=b*c ==> |
| 902 | // t1 = b.hi; t1 *=(imul) c.lo |
| 903 | // t2 = c.hi; t2 *=(imul) b.lo |
| 904 | // t3:eax = b.lo |
| 905 | // t4.hi:edx,t4.lo:eax = t3:eax *(mul) c.lo |
| 906 | // a.lo = t4.lo |
| 907 | // t4.hi += t1 |
| 908 | // t4.hi += t2 |
| 909 | // a.hi = t4.hi |
| 910 | _mov(T_1, Src0Hi); |
| 911 | _imul(T_1, Src1Lo); |
| 912 | _mov(T_2, Src1Hi); |
| 913 | _imul(T_2, Src0Lo); |
| 914 | _mov(T_3, Src0Lo, Reg_eax); |
| 915 | _mul(T_4Lo, T_3, Src1Lo); |
| 916 | // The mul instruction produces two dest variables, edx:eax. We |
| 917 | // create a fake definition of edx to account for this. |
| 918 | Context.insert(InstFakeDef::create(Func, T_4Hi, T_4Lo)); |
| 919 | _mov(DestLo, T_4Lo); |
| 920 | _add(T_4Hi, T_1); |
| 921 | _add(T_4Hi, T_2); |
| 922 | _mov(DestHi, T_4Hi); |
| 923 | } break; |
| 924 | case InstArithmetic::Shl: { |
| 925 | // TODO: Refactor the similarities between Shl, Lshr, and Ashr. |
| 926 | // gcc does the following: |
| 927 | // a=b<<c ==> |
| 928 | // t1:ecx = c.lo & 0xff |
| 929 | // t2 = b.lo |
| 930 | // t3 = b.hi |
| 931 | // t3 = shld t3, t2, t1 |
| 932 | // t2 = shl t2, t1 |
| 933 | // test t1, 0x20 |
| 934 | // je L1 |
| 935 | // use(t3) |
| 936 | // t3 = t2 |
| 937 | // t2 = 0 |
| 938 | // L1: |
| 939 | // a.lo = t2 |
| 940 | // a.hi = t3 |
| 941 | Variable *T_1 = NULL, *T_2 = NULL, *T_3 = NULL; |
| 942 | Constant *BitTest = Ctx->getConstantInt(IceType_i32, 0x20); |
| 943 | Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); |
| 944 | InstX8632Label *Label = InstX8632Label::create(Func, this); |
| 945 | _mov(T_1, Src1Lo, Reg_ecx); |
| 946 | _mov(T_2, Src0Lo); |
| 947 | _mov(T_3, Src0Hi); |
| 948 | _shld(T_3, T_2, T_1); |
| 949 | _shl(T_2, T_1); |
| 950 | _test(T_1, BitTest); |
| 951 | _br(InstX8632Br::Br_e, Label); |
| 952 | // Because of the intra-block control flow, we need to fake a use |
| 953 | // of T_3 to prevent its earlier definition from being dead-code |
| 954 | // eliminated in the presence of its later definition. |
| 955 | Context.insert(InstFakeUse::create(Func, T_3)); |
| 956 | _mov(T_3, T_2); |
| 957 | _mov(T_2, Zero); |
| 958 | Context.insert(Label); |
| 959 | _mov(DestLo, T_2); |
| 960 | _mov(DestHi, T_3); |
| 961 | } break; |
| 962 | case InstArithmetic::Lshr: { |
| 963 | // a=b>>c (unsigned) ==> |
| 964 | // t1:ecx = c.lo & 0xff |
| 965 | // t2 = b.lo |
| 966 | // t3 = b.hi |
| 967 | // t2 = shrd t2, t3, t1 |
| 968 | // t3 = shr t3, t1 |
| 969 | // test t1, 0x20 |
| 970 | // je L1 |
| 971 | // use(t2) |
| 972 | // t2 = t3 |
| 973 | // t3 = 0 |
| 974 | // L1: |
| 975 | // a.lo = t2 |
| 976 | // a.hi = t3 |
| 977 | Variable *T_1 = NULL, *T_2 = NULL, *T_3 = NULL; |
| 978 | Constant *BitTest = Ctx->getConstantInt(IceType_i32, 0x20); |
| 979 | Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); |
| 980 | InstX8632Label *Label = InstX8632Label::create(Func, this); |
| 981 | _mov(T_1, Src1Lo, Reg_ecx); |
| 982 | _mov(T_2, Src0Lo); |
| 983 | _mov(T_3, Src0Hi); |
| 984 | _shrd(T_2, T_3, T_1); |
| 985 | _shr(T_3, T_1); |
| 986 | _test(T_1, BitTest); |
| 987 | _br(InstX8632Br::Br_e, Label); |
| 988 | // Because of the intra-block control flow, we need to fake a use |
| 989 | // of T_3 to prevent its earlier definition from being dead-code |
| 990 | // eliminated in the presence of its later definition. |
| 991 | Context.insert(InstFakeUse::create(Func, T_2)); |
| 992 | _mov(T_2, T_3); |
| 993 | _mov(T_3, Zero); |
| 994 | Context.insert(Label); |
| 995 | _mov(DestLo, T_2); |
| 996 | _mov(DestHi, T_3); |
| 997 | } break; |
| 998 | case InstArithmetic::Ashr: { |
| 999 | // a=b>>c (signed) ==> |
| 1000 | // t1:ecx = c.lo & 0xff |
| 1001 | // t2 = b.lo |
| 1002 | // t3 = b.hi |
| 1003 | // t2 = shrd t2, t3, t1 |
| 1004 | // t3 = sar t3, t1 |
| 1005 | // test t1, 0x20 |
| 1006 | // je L1 |
| 1007 | // use(t2) |
| 1008 | // t2 = t3 |
| 1009 | // t3 = sar t3, 0x1f |
| 1010 | // L1: |
| 1011 | // a.lo = t2 |
| 1012 | // a.hi = t3 |
| 1013 | Variable *T_1 = NULL, *T_2 = NULL, *T_3 = NULL; |
| 1014 | Constant *BitTest = Ctx->getConstantInt(IceType_i32, 0x20); |
| 1015 | Constant *SignExtend = Ctx->getConstantInt(IceType_i32, 0x1f); |
| 1016 | InstX8632Label *Label = InstX8632Label::create(Func, this); |
| 1017 | _mov(T_1, Src1Lo, Reg_ecx); |
| 1018 | _mov(T_2, Src0Lo); |
| 1019 | _mov(T_3, Src0Hi); |
| 1020 | _shrd(T_2, T_3, T_1); |
| 1021 | _sar(T_3, T_1); |
| 1022 | _test(T_1, BitTest); |
| 1023 | _br(InstX8632Br::Br_e, Label); |
| 1024 | // Because of the intra-block control flow, we need to fake a use |
| 1025 | // of T_3 to prevent its earlier definition from being dead-code |
| 1026 | // eliminated in the presence of its later definition. |
| 1027 | Context.insert(InstFakeUse::create(Func, T_2)); |
| 1028 | _mov(T_2, T_3); |
| 1029 | _sar(T_3, SignExtend); |
| 1030 | Context.insert(Label); |
| 1031 | _mov(DestLo, T_2); |
| 1032 | _mov(DestHi, T_3); |
| 1033 | } break; |
| 1034 | case InstArithmetic::Udiv: { |
| 1035 | const SizeT MaxSrcs = 2; |
| 1036 | InstCall *Call = makeHelperCall("__udivdi3", Dest, MaxSrcs); |
| 1037 | Call->addArg(Inst->getSrc(0)); |
| 1038 | Call->addArg(Inst->getSrc(1)); |
| 1039 | lowerCall(Call); |
| 1040 | } break; |
| 1041 | case InstArithmetic::Sdiv: { |
| 1042 | const SizeT MaxSrcs = 2; |
| 1043 | InstCall *Call = makeHelperCall("__divdi3", Dest, MaxSrcs); |
| 1044 | Call->addArg(Inst->getSrc(0)); |
| 1045 | Call->addArg(Inst->getSrc(1)); |
| 1046 | lowerCall(Call); |
| 1047 | } break; |
| 1048 | case InstArithmetic::Urem: { |
| 1049 | const SizeT MaxSrcs = 2; |
| 1050 | InstCall *Call = makeHelperCall("__umoddi3", Dest, MaxSrcs); |
| 1051 | Call->addArg(Inst->getSrc(0)); |
| 1052 | Call->addArg(Inst->getSrc(1)); |
| 1053 | lowerCall(Call); |
| 1054 | } break; |
| 1055 | case InstArithmetic::Srem: { |
| 1056 | const SizeT MaxSrcs = 2; |
| 1057 | InstCall *Call = makeHelperCall("__moddi3", Dest, MaxSrcs); |
| 1058 | Call->addArg(Inst->getSrc(0)); |
| 1059 | Call->addArg(Inst->getSrc(1)); |
| 1060 | lowerCall(Call); |
| 1061 | } break; |
| 1062 | case InstArithmetic::Fadd: |
| 1063 | case InstArithmetic::Fsub: |
| 1064 | case InstArithmetic::Fmul: |
| 1065 | case InstArithmetic::Fdiv: |
| 1066 | case InstArithmetic::Frem: |
| 1067 | llvm_unreachable("FP instruction with i64 type"); |
| 1068 | break; |
| 1069 | } |
| 1070 | } else { // Dest->getType() != IceType_i64 |
| 1071 | Variable *T_edx = NULL; |
| 1072 | Variable *T = NULL; |
| 1073 | switch (Inst->getOp()) { |
Jim Stichnoth | 4376d29 | 2014-05-23 13:39:02 -0700 | [diff] [blame] | 1074 | case InstArithmetic::_num: |
| 1075 | llvm_unreachable("Unknown arithmetic operator"); |
| 1076 | break; |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 1077 | case InstArithmetic::Add: |
| 1078 | _mov(T, Src0); |
| 1079 | _add(T, Src1); |
| 1080 | _mov(Dest, T); |
| 1081 | break; |
| 1082 | case InstArithmetic::And: |
| 1083 | _mov(T, Src0); |
| 1084 | _and(T, Src1); |
| 1085 | _mov(Dest, T); |
| 1086 | break; |
| 1087 | case InstArithmetic::Or: |
| 1088 | _mov(T, Src0); |
| 1089 | _or(T, Src1); |
| 1090 | _mov(Dest, T); |
| 1091 | break; |
| 1092 | case InstArithmetic::Xor: |
| 1093 | _mov(T, Src0); |
| 1094 | _xor(T, Src1); |
| 1095 | _mov(Dest, T); |
| 1096 | break; |
| 1097 | case InstArithmetic::Sub: |
| 1098 | _mov(T, Src0); |
| 1099 | _sub(T, Src1); |
| 1100 | _mov(Dest, T); |
| 1101 | break; |
| 1102 | case InstArithmetic::Mul: |
| 1103 | // TODO: Optimize for llvm::isa<Constant>(Src1) |
| 1104 | // TODO: Strength-reduce multiplications by a constant, |
| 1105 | // particularly -1 and powers of 2. Advanced: use lea to |
| 1106 | // multiply by 3, 5, 9. |
| 1107 | // |
| 1108 | // The 8-bit version of imul only allows the form "imul r/m8" |
| 1109 | // where T must be in eax. |
| 1110 | if (Dest->getType() == IceType_i8) |
| 1111 | _mov(T, Src0, Reg_eax); |
| 1112 | else |
| 1113 | _mov(T, Src0); |
| 1114 | _imul(T, Src1); |
| 1115 | _mov(Dest, T); |
| 1116 | break; |
| 1117 | case InstArithmetic::Shl: |
| 1118 | _mov(T, Src0); |
| 1119 | if (!llvm::isa<Constant>(Src1)) |
| 1120 | Src1 = legalizeToVar(Src1, false, Reg_ecx); |
| 1121 | _shl(T, Src1); |
| 1122 | _mov(Dest, T); |
| 1123 | break; |
| 1124 | case InstArithmetic::Lshr: |
| 1125 | _mov(T, Src0); |
| 1126 | if (!llvm::isa<Constant>(Src1)) |
| 1127 | Src1 = legalizeToVar(Src1, false, Reg_ecx); |
| 1128 | _shr(T, Src1); |
| 1129 | _mov(Dest, T); |
| 1130 | break; |
| 1131 | case InstArithmetic::Ashr: |
| 1132 | _mov(T, Src0); |
| 1133 | if (!llvm::isa<Constant>(Src1)) |
| 1134 | Src1 = legalizeToVar(Src1, false, Reg_ecx); |
| 1135 | _sar(T, Src1); |
| 1136 | _mov(Dest, T); |
| 1137 | break; |
| 1138 | case InstArithmetic::Udiv: |
Jan Voung | 70d6883 | 2014-06-17 10:02:37 -0700 | [diff] [blame] | 1139 | // div and idiv are the few arithmetic operators that do not allow |
| 1140 | // immediates as the operand. |
| 1141 | Src1 = legalize(Src1, Legal_Reg | Legal_Mem); |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 1142 | if (Dest->getType() == IceType_i8) { |
| 1143 | Variable *T_ah = NULL; |
| 1144 | Constant *Zero = Ctx->getConstantInt(IceType_i8, 0); |
| 1145 | _mov(T, Src0, Reg_eax); |
| 1146 | _mov(T_ah, Zero, Reg_ah); |
| 1147 | _div(T, Src1, T_ah); |
| 1148 | _mov(Dest, T); |
| 1149 | } else { |
| 1150 | Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); |
| 1151 | _mov(T, Src0, Reg_eax); |
| 1152 | _mov(T_edx, Zero, Reg_edx); |
| 1153 | _div(T, Src1, T_edx); |
| 1154 | _mov(Dest, T); |
| 1155 | } |
| 1156 | break; |
| 1157 | case InstArithmetic::Sdiv: |
Jan Voung | 70d6883 | 2014-06-17 10:02:37 -0700 | [diff] [blame] | 1158 | Src1 = legalize(Src1, Legal_Reg | Legal_Mem); |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 1159 | T_edx = makeReg(IceType_i32, Reg_edx); |
| 1160 | _mov(T, Src0, Reg_eax); |
| 1161 | _cdq(T_edx, T); |
| 1162 | _idiv(T, Src1, T_edx); |
| 1163 | _mov(Dest, T); |
| 1164 | break; |
| 1165 | case InstArithmetic::Urem: |
Jan Voung | 70d6883 | 2014-06-17 10:02:37 -0700 | [diff] [blame] | 1166 | Src1 = legalize(Src1, Legal_Reg | Legal_Mem); |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 1167 | if (Dest->getType() == IceType_i8) { |
| 1168 | Variable *T_ah = NULL; |
| 1169 | Constant *Zero = Ctx->getConstantInt(IceType_i8, 0); |
| 1170 | _mov(T, Src0, Reg_eax); |
| 1171 | _mov(T_ah, Zero, Reg_ah); |
| 1172 | _div(T_ah, Src1, T); |
| 1173 | _mov(Dest, T_ah); |
| 1174 | } else { |
| 1175 | Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); |
| 1176 | _mov(T_edx, Zero, Reg_edx); |
| 1177 | _mov(T, Src0, Reg_eax); |
| 1178 | _div(T_edx, Src1, T); |
| 1179 | _mov(Dest, T_edx); |
| 1180 | } |
| 1181 | break; |
| 1182 | case InstArithmetic::Srem: |
Jan Voung | 70d6883 | 2014-06-17 10:02:37 -0700 | [diff] [blame] | 1183 | Src1 = legalize(Src1, Legal_Reg | Legal_Mem); |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 1184 | T_edx = makeReg(IceType_i32, Reg_edx); |
| 1185 | _mov(T, Src0, Reg_eax); |
| 1186 | _cdq(T_edx, T); |
| 1187 | _idiv(T_edx, Src1, T); |
| 1188 | _mov(Dest, T_edx); |
| 1189 | break; |
| 1190 | case InstArithmetic::Fadd: |
| 1191 | _mov(T, Src0); |
| 1192 | _addss(T, Src1); |
| 1193 | _mov(Dest, T); |
| 1194 | break; |
| 1195 | case InstArithmetic::Fsub: |
| 1196 | _mov(T, Src0); |
| 1197 | _subss(T, Src1); |
| 1198 | _mov(Dest, T); |
| 1199 | break; |
| 1200 | case InstArithmetic::Fmul: |
| 1201 | _mov(T, Src0); |
| 1202 | _mulss(T, Src1); |
| 1203 | _mov(Dest, T); |
| 1204 | break; |
| 1205 | case InstArithmetic::Fdiv: |
| 1206 | _mov(T, Src0); |
| 1207 | _divss(T, Src1); |
| 1208 | _mov(Dest, T); |
| 1209 | break; |
| 1210 | case InstArithmetic::Frem: { |
| 1211 | const SizeT MaxSrcs = 2; |
| 1212 | Type Ty = Dest->getType(); |
| 1213 | InstCall *Call = |
| 1214 | makeHelperCall(Ty == IceType_f32 ? "fmodf" : "fmod", Dest, MaxSrcs); |
| 1215 | Call->addArg(Src0); |
| 1216 | Call->addArg(Src1); |
| 1217 | return lowerCall(Call); |
| 1218 | } break; |
| 1219 | } |
| 1220 | } |
| 1221 | } |
| 1222 | |
| 1223 | void TargetX8632::lowerAssign(const InstAssign *Inst) { |
| 1224 | Variable *Dest = Inst->getDest(); |
| 1225 | Operand *Src0 = Inst->getSrc(0); |
| 1226 | assert(Dest->getType() == Src0->getType()); |
| 1227 | if (Dest->getType() == IceType_i64) { |
| 1228 | Src0 = legalize(Src0); |
| 1229 | Operand *Src0Lo = loOperand(Src0); |
| 1230 | Operand *Src0Hi = hiOperand(Src0); |
| 1231 | Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); |
| 1232 | Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); |
| 1233 | Variable *T_Lo = NULL, *T_Hi = NULL; |
| 1234 | _mov(T_Lo, Src0Lo); |
| 1235 | _mov(DestLo, T_Lo); |
| 1236 | _mov(T_Hi, Src0Hi); |
| 1237 | _mov(DestHi, T_Hi); |
| 1238 | } else { |
| 1239 | const bool AllowOverlap = true; |
| 1240 | // RI is either a physical register or an immediate. |
| 1241 | Operand *RI = legalize(Src0, Legal_Reg | Legal_Imm, AllowOverlap); |
| 1242 | _mov(Dest, RI); |
| 1243 | } |
| 1244 | } |
| 1245 | |
| 1246 | void TargetX8632::lowerBr(const InstBr *Inst) { |
| 1247 | if (Inst->isUnconditional()) { |
| 1248 | _br(Inst->getTargetUnconditional()); |
| 1249 | } else { |
| 1250 | Operand *Src0 = legalize(Inst->getCondition()); |
| 1251 | Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); |
| 1252 | _cmp(Src0, Zero); |
| 1253 | _br(InstX8632Br::Br_ne, Inst->getTargetTrue(), Inst->getTargetFalse()); |
| 1254 | } |
| 1255 | } |
| 1256 | |
| 1257 | void TargetX8632::lowerCall(const InstCall *Instr) { |
| 1258 | // Generate a sequence of push instructions, pushing right to left, |
| 1259 | // keeping track of stack offsets in case a push involves a stack |
| 1260 | // operand and we are using an esp-based frame. |
| 1261 | uint32_t StackOffset = 0; |
| 1262 | // TODO: If for some reason the call instruction gets dead-code |
| 1263 | // eliminated after lowering, we would need to ensure that the |
| 1264 | // pre-call push instructions and the post-call esp adjustment get |
| 1265 | // eliminated as well. |
| 1266 | for (SizeT NumArgs = Instr->getNumArgs(), i = 0; i < NumArgs; ++i) { |
| 1267 | Operand *Arg = legalize(Instr->getArg(NumArgs - i - 1)); |
| 1268 | if (Arg->getType() == IceType_i64) { |
| 1269 | _push(hiOperand(Arg)); |
| 1270 | _push(loOperand(Arg)); |
| 1271 | } else if (Arg->getType() == IceType_f64) { |
| 1272 | // If the Arg turns out to be a memory operand, we need to push |
| 1273 | // 8 bytes, which requires two push instructions. This ends up |
| 1274 | // being somewhat clumsy in the current IR, so we use a |
| 1275 | // workaround. Force the operand into a (xmm) register, and |
| 1276 | // then push the register. An xmm register push is actually not |
| 1277 | // possible in x86, but the Push instruction emitter handles |
| 1278 | // this by decrementing the stack pointer and directly writing |
| 1279 | // the xmm register value. |
| 1280 | Variable *T = NULL; |
| 1281 | _mov(T, Arg); |
| 1282 | _push(T); |
| 1283 | } else { |
| 1284 | _push(Arg); |
| 1285 | } |
| 1286 | StackOffset += typeWidthInBytesOnStack(Arg->getType()); |
| 1287 | } |
| 1288 | // Generate the call instruction. Assign its result to a temporary |
| 1289 | // with high register allocation weight. |
| 1290 | Variable *Dest = Instr->getDest(); |
| 1291 | Variable *eax = NULL; // doubles as RegLo as necessary |
| 1292 | Variable *edx = NULL; |
| 1293 | if (Dest) { |
| 1294 | switch (Dest->getType()) { |
| 1295 | case IceType_NUM: |
| 1296 | llvm_unreachable("Invalid Call dest type"); |
| 1297 | break; |
| 1298 | case IceType_void: |
| 1299 | break; |
| 1300 | case IceType_i1: |
| 1301 | case IceType_i8: |
| 1302 | case IceType_i16: |
| 1303 | case IceType_i32: |
| 1304 | eax = makeReg(Dest->getType(), Reg_eax); |
| 1305 | break; |
| 1306 | case IceType_i64: |
| 1307 | eax = makeReg(IceType_i32, Reg_eax); |
| 1308 | edx = makeReg(IceType_i32, Reg_edx); |
| 1309 | break; |
| 1310 | case IceType_f32: |
| 1311 | case IceType_f64: |
| 1312 | // Leave eax==edx==NULL, and capture the result with the fstp |
| 1313 | // instruction. |
| 1314 | break; |
| 1315 | } |
| 1316 | } |
| 1317 | Operand *CallTarget = legalize(Instr->getCallTarget()); |
| 1318 | Inst *NewCall = InstX8632Call::create(Func, eax, CallTarget); |
| 1319 | Context.insert(NewCall); |
| 1320 | if (edx) |
| 1321 | Context.insert(InstFakeDef::create(Func, edx)); |
| 1322 | |
| 1323 | // Add the appropriate offset to esp. |
| 1324 | if (StackOffset) { |
| 1325 | Variable *esp = Func->getTarget()->getPhysicalRegister(Reg_esp); |
| 1326 | _add(esp, Ctx->getConstantInt(IceType_i32, StackOffset)); |
| 1327 | } |
| 1328 | |
| 1329 | // Insert a register-kill pseudo instruction. |
| 1330 | VarList KilledRegs; |
| 1331 | for (SizeT i = 0; i < ScratchRegs.size(); ++i) { |
| 1332 | if (ScratchRegs[i]) |
| 1333 | KilledRegs.push_back(Func->getTarget()->getPhysicalRegister(i)); |
| 1334 | } |
| 1335 | Context.insert(InstFakeKill::create(Func, KilledRegs, NewCall)); |
| 1336 | |
| 1337 | // Generate a FakeUse to keep the call live if necessary. |
| 1338 | if (Instr->hasSideEffects() && eax) { |
| 1339 | Inst *FakeUse = InstFakeUse::create(Func, eax); |
| 1340 | Context.insert(FakeUse); |
| 1341 | } |
| 1342 | |
| 1343 | // Generate Dest=eax assignment. |
| 1344 | if (Dest && eax) { |
| 1345 | if (edx) { |
| 1346 | split64(Dest); |
| 1347 | Variable *DestLo = Dest->getLo(); |
| 1348 | Variable *DestHi = Dest->getHi(); |
| 1349 | DestLo->setPreferredRegister(eax, false); |
| 1350 | DestHi->setPreferredRegister(edx, false); |
| 1351 | _mov(DestLo, eax); |
| 1352 | _mov(DestHi, edx); |
| 1353 | } else { |
| 1354 | Dest->setPreferredRegister(eax, false); |
| 1355 | _mov(Dest, eax); |
| 1356 | } |
| 1357 | } |
| 1358 | |
| 1359 | // Special treatment for an FP function which returns its result in |
| 1360 | // st(0). |
| 1361 | if (Dest && |
| 1362 | (Dest->getType() == IceType_f32 || Dest->getType() == IceType_f64)) { |
| 1363 | _fstp(Dest); |
| 1364 | // If Dest ends up being a physical xmm register, the fstp emit |
| 1365 | // code will route st(0) through a temporary stack slot. |
| 1366 | } |
| 1367 | } |
| 1368 | |
| 1369 | void TargetX8632::lowerCast(const InstCast *Inst) { |
| 1370 | // a = cast(b) ==> t=cast(b); a=t; (link t->b, link a->t, no overlap) |
| 1371 | InstCast::OpKind CastKind = Inst->getCastKind(); |
| 1372 | Variable *Dest = Inst->getDest(); |
| 1373 | // Src0RM is the source operand legalized to physical register or memory, but |
| 1374 | // not immediate, since the relevant x86 native instructions don't allow an |
| 1375 | // immediate operand. If the operand is an immediate, we could consider |
| 1376 | // computing the strength-reduced result at translation time, but we're |
| 1377 | // unlikely to see something like that in the bitcode that the optimizer |
| 1378 | // wouldn't have already taken care of. |
Jan Voung | 70d6883 | 2014-06-17 10:02:37 -0700 | [diff] [blame] | 1379 | Operand *Src0RM = legalize(Inst->getSrc(0), Legal_Reg | Legal_Mem); |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 1380 | switch (CastKind) { |
| 1381 | default: |
| 1382 | Func->setError("Cast type not supported"); |
| 1383 | return; |
| 1384 | case InstCast::Sext: |
| 1385 | if (Dest->getType() == IceType_i64) { |
| 1386 | // t1=movsx src; t2=t1; t2=sar t2, 31; dst.lo=t1; dst.hi=t2 |
| 1387 | Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); |
| 1388 | Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); |
| 1389 | Variable *T_Lo = makeReg(DestLo->getType()); |
| 1390 | if (Src0RM->getType() == IceType_i32) |
| 1391 | _mov(T_Lo, Src0RM); |
| 1392 | else |
| 1393 | _movsx(T_Lo, Src0RM); |
| 1394 | _mov(DestLo, T_Lo); |
| 1395 | Variable *T_Hi = NULL; |
| 1396 | Constant *Shift = Ctx->getConstantInt(IceType_i32, 31); |
| 1397 | _mov(T_Hi, T_Lo); |
| 1398 | _sar(T_Hi, Shift); |
| 1399 | _mov(DestHi, T_Hi); |
| 1400 | } else { |
| 1401 | // TODO: Sign-extend an i1 via "shl reg, 31; sar reg, 31", and |
| 1402 | // also copy to the high operand of a 64-bit variable. |
| 1403 | // t1 = movsx src; dst = t1 |
| 1404 | Variable *T = makeReg(Dest->getType()); |
| 1405 | _movsx(T, Src0RM); |
| 1406 | _mov(Dest, T); |
| 1407 | } |
| 1408 | break; |
| 1409 | case InstCast::Zext: |
| 1410 | if (Dest->getType() == IceType_i64) { |
| 1411 | // t1=movzx src; dst.lo=t1; dst.hi=0 |
| 1412 | Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); |
| 1413 | Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); |
| 1414 | Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); |
| 1415 | Variable *Tmp = makeReg(DestLo->getType()); |
| 1416 | if (Src0RM->getType() == IceType_i32) |
| 1417 | _mov(Tmp, Src0RM); |
| 1418 | else |
| 1419 | _movzx(Tmp, Src0RM); |
| 1420 | _mov(DestLo, Tmp); |
| 1421 | _mov(DestHi, Zero); |
| 1422 | } else if (Src0RM->getType() == IceType_i1) { |
| 1423 | // t = Src0RM; t &= 1; Dest = t |
| 1424 | Operand *One = Ctx->getConstantInt(IceType_i32, 1); |
| 1425 | Variable *T = makeReg(IceType_i32); |
| 1426 | _movzx(T, Src0RM); |
| 1427 | _and(T, One); |
| 1428 | _mov(Dest, T); |
| 1429 | } else { |
| 1430 | // t1 = movzx src; dst = t1 |
| 1431 | Variable *T = makeReg(Dest->getType()); |
| 1432 | _movzx(T, Src0RM); |
| 1433 | _mov(Dest, T); |
| 1434 | } |
| 1435 | break; |
| 1436 | case InstCast::Trunc: { |
| 1437 | if (Src0RM->getType() == IceType_i64) |
| 1438 | Src0RM = loOperand(Src0RM); |
| 1439 | // t1 = trunc Src0RM; Dest = t1 |
| 1440 | Variable *T = NULL; |
| 1441 | _mov(T, Src0RM); |
| 1442 | _mov(Dest, T); |
| 1443 | break; |
| 1444 | } |
| 1445 | case InstCast::Fptrunc: |
| 1446 | case InstCast::Fpext: { |
| 1447 | // t1 = cvt Src0RM; Dest = t1 |
| 1448 | Variable *T = makeReg(Dest->getType()); |
| 1449 | _cvt(T, Src0RM); |
| 1450 | _mov(Dest, T); |
| 1451 | break; |
| 1452 | } |
| 1453 | case InstCast::Fptosi: |
| 1454 | if (Dest->getType() == IceType_i64) { |
| 1455 | // Use a helper for converting floating-point values to 64-bit |
| 1456 | // integers. SSE2 appears to have no way to convert from xmm |
| 1457 | // registers to something like the edx:eax register pair, and |
| 1458 | // gcc and clang both want to use x87 instructions complete with |
| 1459 | // temporary manipulation of the status word. This helper is |
| 1460 | // not needed for x86-64. |
| 1461 | split64(Dest); |
| 1462 | const SizeT MaxSrcs = 1; |
| 1463 | Type SrcType = Inst->getSrc(0)->getType(); |
| 1464 | InstCall *Call = makeHelperCall( |
| 1465 | SrcType == IceType_f32 ? "cvtftosi64" : "cvtdtosi64", Dest, MaxSrcs); |
| 1466 | // TODO: Call the correct compiler-rt helper function. |
| 1467 | Call->addArg(Inst->getSrc(0)); |
| 1468 | lowerCall(Call); |
| 1469 | } else { |
| 1470 | // t1.i32 = cvt Src0RM; t2.dest_type = t1; Dest = t2.dest_type |
| 1471 | Variable *T_1 = makeReg(IceType_i32); |
| 1472 | Variable *T_2 = makeReg(Dest->getType()); |
| 1473 | _cvt(T_1, Src0RM); |
| 1474 | _mov(T_2, T_1); // T_1 and T_2 may have different integer types |
| 1475 | _mov(Dest, T_2); |
| 1476 | T_2->setPreferredRegister(T_1, true); |
| 1477 | } |
| 1478 | break; |
| 1479 | case InstCast::Fptoui: |
| 1480 | if (Dest->getType() == IceType_i64 || Dest->getType() == IceType_i32) { |
| 1481 | // Use a helper for both x86-32 and x86-64. |
| 1482 | split64(Dest); |
| 1483 | const SizeT MaxSrcs = 1; |
| 1484 | Type DestType = Dest->getType(); |
| 1485 | Type SrcType = Src0RM->getType(); |
| 1486 | IceString DstSubstring = (DestType == IceType_i64 ? "64" : "32"); |
| 1487 | IceString SrcSubstring = (SrcType == IceType_f32 ? "f" : "d"); |
| 1488 | // Possibilities are cvtftoui32, cvtdtoui32, cvtftoui64, cvtdtoui64 |
| 1489 | IceString TargetString = "cvt" + SrcSubstring + "toui" + DstSubstring; |
| 1490 | // TODO: Call the correct compiler-rt helper function. |
| 1491 | InstCall *Call = makeHelperCall(TargetString, Dest, MaxSrcs); |
| 1492 | Call->addArg(Inst->getSrc(0)); |
| 1493 | lowerCall(Call); |
| 1494 | return; |
| 1495 | } else { |
| 1496 | // t1.i32 = cvt Src0RM; t2.dest_type = t1; Dest = t2.dest_type |
| 1497 | Variable *T_1 = makeReg(IceType_i32); |
| 1498 | Variable *T_2 = makeReg(Dest->getType()); |
| 1499 | _cvt(T_1, Src0RM); |
| 1500 | _mov(T_2, T_1); // T_1 and T_2 may have different integer types |
| 1501 | _mov(Dest, T_2); |
| 1502 | T_2->setPreferredRegister(T_1, true); |
| 1503 | } |
| 1504 | break; |
| 1505 | case InstCast::Sitofp: |
| 1506 | if (Src0RM->getType() == IceType_i64) { |
| 1507 | // Use a helper for x86-32. |
| 1508 | const SizeT MaxSrcs = 1; |
| 1509 | Type DestType = Dest->getType(); |
| 1510 | InstCall *Call = makeHelperCall( |
| 1511 | DestType == IceType_f32 ? "cvtsi64tof" : "cvtsi64tod", Dest, MaxSrcs); |
| 1512 | // TODO: Call the correct compiler-rt helper function. |
| 1513 | Call->addArg(Inst->getSrc(0)); |
| 1514 | lowerCall(Call); |
| 1515 | return; |
| 1516 | } else { |
| 1517 | // Sign-extend the operand. |
| 1518 | // t1.i32 = movsx Src0RM; t2 = Cvt t1.i32; Dest = t2 |
| 1519 | Variable *T_1 = makeReg(IceType_i32); |
| 1520 | Variable *T_2 = makeReg(Dest->getType()); |
| 1521 | if (Src0RM->getType() == IceType_i32) |
| 1522 | _mov(T_1, Src0RM); |
| 1523 | else |
| 1524 | _movsx(T_1, Src0RM); |
| 1525 | _cvt(T_2, T_1); |
| 1526 | _mov(Dest, T_2); |
| 1527 | } |
| 1528 | break; |
| 1529 | case InstCast::Uitofp: |
| 1530 | if (Src0RM->getType() == IceType_i64 || Src0RM->getType() == IceType_i32) { |
| 1531 | // Use a helper for x86-32 and x86-64. Also use a helper for |
| 1532 | // i32 on x86-32. |
| 1533 | const SizeT MaxSrcs = 1; |
| 1534 | Type DestType = Dest->getType(); |
| 1535 | IceString SrcSubstring = (Src0RM->getType() == IceType_i64 ? "64" : "32"); |
| 1536 | IceString DstSubstring = (DestType == IceType_f32 ? "f" : "d"); |
| 1537 | // Possibilities are cvtui32tof, cvtui32tod, cvtui64tof, cvtui64tod |
| 1538 | IceString TargetString = "cvtui" + SrcSubstring + "to" + DstSubstring; |
| 1539 | // TODO: Call the correct compiler-rt helper function. |
| 1540 | InstCall *Call = makeHelperCall(TargetString, Dest, MaxSrcs); |
| 1541 | Call->addArg(Inst->getSrc(0)); |
| 1542 | lowerCall(Call); |
| 1543 | return; |
| 1544 | } else { |
| 1545 | // Zero-extend the operand. |
| 1546 | // t1.i32 = movzx Src0RM; t2 = Cvt t1.i32; Dest = t2 |
| 1547 | Variable *T_1 = makeReg(IceType_i32); |
| 1548 | Variable *T_2 = makeReg(Dest->getType()); |
| 1549 | if (Src0RM->getType() == IceType_i32) |
| 1550 | _mov(T_1, Src0RM); |
| 1551 | else |
| 1552 | _movzx(T_1, Src0RM); |
| 1553 | _cvt(T_2, T_1); |
| 1554 | _mov(Dest, T_2); |
| 1555 | } |
| 1556 | break; |
| 1557 | case InstCast::Bitcast: |
| 1558 | if (Dest->getType() == Src0RM->getType()) { |
| 1559 | InstAssign *Assign = InstAssign::create(Func, Dest, Src0RM); |
| 1560 | lowerAssign(Assign); |
| 1561 | return; |
| 1562 | } |
| 1563 | switch (Dest->getType()) { |
| 1564 | default: |
| 1565 | llvm_unreachable("Unexpected Bitcast dest type"); |
| 1566 | case IceType_i32: |
| 1567 | case IceType_f32: { |
| 1568 | Type DestType = Dest->getType(); |
| 1569 | Type SrcType = Src0RM->getType(); |
| 1570 | assert((DestType == IceType_i32 && SrcType == IceType_f32) || |
| 1571 | (DestType == IceType_f32 && SrcType == IceType_i32)); |
| 1572 | // a.i32 = bitcast b.f32 ==> |
| 1573 | // t.f32 = b.f32 |
| 1574 | // s.f32 = spill t.f32 |
| 1575 | // a.i32 = s.f32 |
| 1576 | Variable *T = NULL; |
| 1577 | // TODO: Should be able to force a spill setup by calling legalize() with |
| 1578 | // Legal_Mem and not Legal_Reg or Legal_Imm. |
| 1579 | Variable *Spill = Func->makeVariable(SrcType, Context.getNode()); |
| 1580 | Spill->setWeight(RegWeight::Zero); |
| 1581 | Spill->setPreferredRegister(Dest, true); |
| 1582 | _mov(T, Src0RM); |
| 1583 | _mov(Spill, T); |
| 1584 | _mov(Dest, Spill); |
| 1585 | } break; |
| 1586 | case IceType_i64: { |
| 1587 | assert(Src0RM->getType() == IceType_f64); |
| 1588 | // a.i64 = bitcast b.f64 ==> |
| 1589 | // s.f64 = spill b.f64 |
| 1590 | // t_lo.i32 = lo(s.f64) |
| 1591 | // a_lo.i32 = t_lo.i32 |
| 1592 | // t_hi.i32 = hi(s.f64) |
| 1593 | // a_hi.i32 = t_hi.i32 |
| 1594 | Variable *Spill = Func->makeVariable(IceType_f64, Context.getNode()); |
| 1595 | Spill->setWeight(RegWeight::Zero); |
| 1596 | Spill->setPreferredRegister(llvm::dyn_cast<Variable>(Src0RM), true); |
| 1597 | _mov(Spill, Src0RM); |
| 1598 | |
| 1599 | Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); |
| 1600 | Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); |
| 1601 | Variable *T_Lo = makeReg(IceType_i32); |
| 1602 | Variable *T_Hi = makeReg(IceType_i32); |
| 1603 | VariableSplit *SpillLo = |
| 1604 | VariableSplit::create(Func, Spill, VariableSplit::Low); |
| 1605 | VariableSplit *SpillHi = |
| 1606 | VariableSplit::create(Func, Spill, VariableSplit::High); |
| 1607 | |
| 1608 | _mov(T_Lo, SpillLo); |
| 1609 | _mov(DestLo, T_Lo); |
| 1610 | _mov(T_Hi, SpillHi); |
| 1611 | _mov(DestHi, T_Hi); |
| 1612 | } break; |
| 1613 | case IceType_f64: { |
| 1614 | assert(Src0RM->getType() == IceType_i64); |
| 1615 | // a.f64 = bitcast b.i64 ==> |
| 1616 | // t_lo.i32 = b_lo.i32 |
| 1617 | // lo(s.f64) = t_lo.i32 |
| 1618 | // FakeUse(s.f64) |
| 1619 | // t_hi.i32 = b_hi.i32 |
| 1620 | // hi(s.f64) = t_hi.i32 |
| 1621 | // a.f64 = s.f64 |
| 1622 | Variable *Spill = Func->makeVariable(IceType_f64, Context.getNode()); |
| 1623 | Spill->setWeight(RegWeight::Zero); |
| 1624 | Spill->setPreferredRegister(Dest, true); |
| 1625 | |
| 1626 | Context.insert(InstFakeDef::create(Func, Spill)); |
| 1627 | |
| 1628 | Variable *T_Lo = NULL, *T_Hi = NULL; |
| 1629 | VariableSplit *SpillLo = |
| 1630 | VariableSplit::create(Func, Spill, VariableSplit::Low); |
| 1631 | VariableSplit *SpillHi = |
| 1632 | VariableSplit::create(Func, Spill, VariableSplit::High); |
| 1633 | _mov(T_Lo, loOperand(Src0RM)); |
| 1634 | _store(T_Lo, SpillLo); |
| 1635 | _mov(T_Hi, hiOperand(Src0RM)); |
| 1636 | _store(T_Hi, SpillHi); |
| 1637 | _mov(Dest, Spill); |
| 1638 | } break; |
| 1639 | } |
| 1640 | break; |
| 1641 | } |
| 1642 | } |
| 1643 | |
| 1644 | void TargetX8632::lowerFcmp(const InstFcmp *Inst) { |
| 1645 | Operand *Src0 = Inst->getSrc(0); |
| 1646 | Operand *Src1 = Inst->getSrc(1); |
| 1647 | Variable *Dest = Inst->getDest(); |
| 1648 | // Lowering a = fcmp cond, b, c |
| 1649 | // ucomiss b, c /* only if C1 != Br_None */ |
| 1650 | // /* but swap b,c order if SwapOperands==true */ |
| 1651 | // mov a, <default> |
| 1652 | // j<C1> label /* only if C1 != Br_None */ |
| 1653 | // j<C2> label /* only if C2 != Br_None */ |
| 1654 | // FakeUse(a) /* only if C1 != Br_None */ |
| 1655 | // mov a, !<default> /* only if C1 != Br_None */ |
| 1656 | // label: /* only if C1 != Br_None */ |
| 1657 | InstFcmp::FCond Condition = Inst->getCondition(); |
| 1658 | size_t Index = static_cast<size_t>(Condition); |
| 1659 | assert(Index < TableFcmpSize); |
| 1660 | if (TableFcmp[Index].SwapOperands) { |
| 1661 | Operand *Tmp = Src0; |
| 1662 | Src0 = Src1; |
| 1663 | Src1 = Tmp; |
| 1664 | } |
| 1665 | bool HasC1 = (TableFcmp[Index].C1 != InstX8632Br::Br_None); |
| 1666 | bool HasC2 = (TableFcmp[Index].C2 != InstX8632Br::Br_None); |
| 1667 | if (HasC1) { |
| 1668 | Src0 = legalize(Src0); |
| 1669 | Operand *Src1RM = legalize(Src1, Legal_Reg | Legal_Mem); |
| 1670 | Variable *T = NULL; |
| 1671 | _mov(T, Src0); |
| 1672 | _ucomiss(T, Src1RM); |
| 1673 | } |
| 1674 | Constant *Default = |
| 1675 | Ctx->getConstantInt(IceType_i32, TableFcmp[Index].Default); |
| 1676 | _mov(Dest, Default); |
| 1677 | if (HasC1) { |
| 1678 | InstX8632Label *Label = InstX8632Label::create(Func, this); |
| 1679 | _br(TableFcmp[Index].C1, Label); |
| 1680 | if (HasC2) { |
| 1681 | _br(TableFcmp[Index].C2, Label); |
| 1682 | } |
| 1683 | Context.insert(InstFakeUse::create(Func, Dest)); |
| 1684 | Constant *NonDefault = |
| 1685 | Ctx->getConstantInt(IceType_i32, !TableFcmp[Index].Default); |
| 1686 | _mov(Dest, NonDefault); |
| 1687 | Context.insert(Label); |
| 1688 | } |
| 1689 | } |
| 1690 | |
| 1691 | void TargetX8632::lowerIcmp(const InstIcmp *Inst) { |
| 1692 | Operand *Src0 = legalize(Inst->getSrc(0)); |
| 1693 | Operand *Src1 = legalize(Inst->getSrc(1)); |
| 1694 | Variable *Dest = Inst->getDest(); |
| 1695 | |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 1696 | // If Src1 is an immediate, or known to be a physical register, we can |
| 1697 | // allow Src0 to be a memory operand. Otherwise, Src0 must be copied into |
| 1698 | // a physical register. (Actually, either Src0 or Src1 can be chosen for |
| 1699 | // the physical register, but unfortunately we have to commit to one or |
| 1700 | // the other before register allocation.) |
| 1701 | bool IsSrc1ImmOrReg = false; |
| 1702 | if (llvm::isa<Constant>(Src1)) { |
| 1703 | IsSrc1ImmOrReg = true; |
| 1704 | } else if (Variable *Var = llvm::dyn_cast<Variable>(Src1)) { |
| 1705 | if (Var->hasReg()) |
| 1706 | IsSrc1ImmOrReg = true; |
| 1707 | } |
| 1708 | |
| 1709 | // Try to fuse a compare immediately followed by a conditional branch. This |
| 1710 | // is possible when the compare dest and the branch source operands are the |
| 1711 | // same, and are their only uses. TODO: implement this optimization for i64. |
| 1712 | if (InstBr *NextBr = llvm::dyn_cast_or_null<InstBr>(Context.getNextInst())) { |
| 1713 | if (Src0->getType() != IceType_i64 && !NextBr->isUnconditional() && |
| 1714 | Dest == NextBr->getSrc(0) && NextBr->isLastUse(Dest)) { |
| 1715 | Operand *Src0New = |
| 1716 | legalize(Src0, IsSrc1ImmOrReg ? Legal_All : Legal_Reg, true); |
| 1717 | _cmp(Src0New, Src1); |
| 1718 | _br(getIcmp32Mapping(Inst->getCondition()), NextBr->getTargetTrue(), |
| 1719 | NextBr->getTargetFalse()); |
| 1720 | // Skip over the following branch instruction. |
| 1721 | NextBr->setDeleted(); |
| 1722 | Context.advanceNext(); |
| 1723 | return; |
| 1724 | } |
| 1725 | } |
| 1726 | |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 1727 | // a=icmp cond, b, c ==> cmp b,c; a=1; br cond,L1; FakeUse(a); a=0; L1: |
| 1728 | Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); |
| 1729 | Constant *One = Ctx->getConstantInt(IceType_i32, 1); |
| 1730 | if (Src0->getType() == IceType_i64) { |
| 1731 | InstIcmp::ICond Condition = Inst->getCondition(); |
| 1732 | size_t Index = static_cast<size_t>(Condition); |
| 1733 | assert(Index < TableIcmp64Size); |
| 1734 | Operand *Src1LoRI = legalize(loOperand(Src1), Legal_Reg | Legal_Imm); |
| 1735 | Operand *Src1HiRI = legalize(hiOperand(Src1), Legal_Reg | Legal_Imm); |
| 1736 | if (Condition == InstIcmp::Eq || Condition == InstIcmp::Ne) { |
| 1737 | InstX8632Label *Label = InstX8632Label::create(Func, this); |
| 1738 | _mov(Dest, (Condition == InstIcmp::Eq ? Zero : One)); |
| 1739 | _cmp(loOperand(Src0), Src1LoRI); |
| 1740 | _br(InstX8632Br::Br_ne, Label); |
| 1741 | _cmp(hiOperand(Src0), Src1HiRI); |
| 1742 | _br(InstX8632Br::Br_ne, Label); |
| 1743 | Context.insert(InstFakeUse::create(Func, Dest)); |
| 1744 | _mov(Dest, (Condition == InstIcmp::Eq ? One : Zero)); |
| 1745 | Context.insert(Label); |
| 1746 | } else { |
| 1747 | InstX8632Label *LabelFalse = InstX8632Label::create(Func, this); |
| 1748 | InstX8632Label *LabelTrue = InstX8632Label::create(Func, this); |
| 1749 | _mov(Dest, One); |
| 1750 | _cmp(hiOperand(Src0), Src1HiRI); |
| 1751 | _br(TableIcmp64[Index].C1, LabelTrue); |
| 1752 | _br(TableIcmp64[Index].C2, LabelFalse); |
| 1753 | _cmp(loOperand(Src0), Src1LoRI); |
| 1754 | _br(TableIcmp64[Index].C3, LabelTrue); |
| 1755 | Context.insert(LabelFalse); |
| 1756 | Context.insert(InstFakeUse::create(Func, Dest)); |
| 1757 | _mov(Dest, Zero); |
| 1758 | Context.insert(LabelTrue); |
| 1759 | } |
| 1760 | return; |
| 1761 | } |
| 1762 | |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 1763 | // cmp b, c |
| 1764 | Operand *Src0New = |
| 1765 | legalize(Src0, IsSrc1ImmOrReg ? Legal_All : Legal_Reg, true); |
| 1766 | InstX8632Label *Label = InstX8632Label::create(Func, this); |
| 1767 | _cmp(Src0New, Src1); |
| 1768 | _mov(Dest, One); |
| 1769 | _br(getIcmp32Mapping(Inst->getCondition()), Label); |
| 1770 | Context.insert(InstFakeUse::create(Func, Dest)); |
| 1771 | _mov(Dest, Zero); |
| 1772 | Context.insert(Label); |
| 1773 | } |
| 1774 | |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 1775 | namespace { |
| 1776 | |
| 1777 | bool isAdd(const Inst *Inst) { |
| 1778 | if (const InstArithmetic *Arith = |
| 1779 | llvm::dyn_cast_or_null<const InstArithmetic>(Inst)) { |
| 1780 | return (Arith->getOp() == InstArithmetic::Add); |
| 1781 | } |
| 1782 | return false; |
| 1783 | } |
| 1784 | |
| 1785 | void computeAddressOpt(Variable *&Base, Variable *&Index, int32_t &Shift, |
| 1786 | int32_t &Offset) { |
| 1787 | (void)Offset; // TODO: pattern-match for non-zero offsets. |
| 1788 | if (Base == NULL) |
| 1789 | return; |
| 1790 | // If the Base has more than one use or is live across multiple |
| 1791 | // blocks, then don't go further. Alternatively (?), never consider |
| 1792 | // a transformation that would change a variable that is currently |
| 1793 | // *not* live across basic block boundaries into one that *is*. |
| 1794 | if (Base->isMultiblockLife() /* || Base->getUseCount() > 1*/) |
| 1795 | return; |
| 1796 | |
| 1797 | while (true) { |
| 1798 | // Base is Base=Var ==> |
| 1799 | // set Base=Var |
| 1800 | const Inst *BaseInst = Base->getDefinition(); |
| 1801 | Operand *BaseOperand0 = BaseInst ? BaseInst->getSrc(0) : NULL; |
| 1802 | Variable *BaseVariable0 = llvm::dyn_cast_or_null<Variable>(BaseOperand0); |
| 1803 | // TODO: Helper function for all instances of assignment |
| 1804 | // transitivity. |
| 1805 | if (BaseInst && llvm::isa<InstAssign>(BaseInst) && BaseVariable0 && |
| 1806 | // TODO: ensure BaseVariable0 stays single-BB |
| 1807 | true) { |
| 1808 | Base = BaseVariable0; |
| 1809 | continue; |
| 1810 | } |
| 1811 | |
| 1812 | // Index is Index=Var ==> |
| 1813 | // set Index=Var |
| 1814 | |
| 1815 | // Index==NULL && Base is Base=Var1+Var2 ==> |
| 1816 | // set Base=Var1, Index=Var2, Shift=0 |
| 1817 | Operand *BaseOperand1 = |
| 1818 | BaseInst && BaseInst->getSrcSize() >= 2 ? BaseInst->getSrc(1) : NULL; |
| 1819 | Variable *BaseVariable1 = llvm::dyn_cast_or_null<Variable>(BaseOperand1); |
| 1820 | if (Index == NULL && isAdd(BaseInst) && BaseVariable0 && BaseVariable1 && |
| 1821 | // TODO: ensure BaseVariable0 and BaseVariable1 stay single-BB |
| 1822 | true) { |
| 1823 | Base = BaseVariable0; |
| 1824 | Index = BaseVariable1; |
| 1825 | Shift = 0; // should already have been 0 |
| 1826 | continue; |
| 1827 | } |
| 1828 | |
| 1829 | // Index is Index=Var*Const && log2(Const)+Shift<=3 ==> |
| 1830 | // Index=Var, Shift+=log2(Const) |
| 1831 | const Inst *IndexInst = Index ? Index->getDefinition() : NULL; |
| 1832 | if (const InstArithmetic *ArithInst = |
| 1833 | llvm::dyn_cast_or_null<InstArithmetic>(IndexInst)) { |
| 1834 | Operand *IndexOperand0 = ArithInst->getSrc(0); |
| 1835 | Variable *IndexVariable0 = llvm::dyn_cast<Variable>(IndexOperand0); |
| 1836 | Operand *IndexOperand1 = ArithInst->getSrc(1); |
| 1837 | ConstantInteger *IndexConstant1 = |
| 1838 | llvm::dyn_cast<ConstantInteger>(IndexOperand1); |
| 1839 | if (ArithInst->getOp() == InstArithmetic::Mul && IndexVariable0 && |
| 1840 | IndexOperand1->getType() == IceType_i32 && IndexConstant1) { |
| 1841 | uint64_t Mult = IndexConstant1->getValue(); |
| 1842 | uint32_t LogMult; |
| 1843 | switch (Mult) { |
| 1844 | case 1: |
| 1845 | LogMult = 0; |
| 1846 | break; |
| 1847 | case 2: |
| 1848 | LogMult = 1; |
| 1849 | break; |
| 1850 | case 4: |
| 1851 | LogMult = 2; |
| 1852 | break; |
| 1853 | case 8: |
| 1854 | LogMult = 3; |
| 1855 | break; |
| 1856 | default: |
| 1857 | LogMult = 4; |
| 1858 | break; |
| 1859 | } |
| 1860 | if (Shift + LogMult <= 3) { |
| 1861 | Index = IndexVariable0; |
| 1862 | Shift += LogMult; |
| 1863 | continue; |
| 1864 | } |
| 1865 | } |
| 1866 | } |
| 1867 | |
| 1868 | // Index is Index=Var<<Const && Const+Shift<=3 ==> |
| 1869 | // Index=Var, Shift+=Const |
| 1870 | |
| 1871 | // Index is Index=Const*Var && log2(Const)+Shift<=3 ==> |
| 1872 | // Index=Var, Shift+=log2(Const) |
| 1873 | |
| 1874 | // Index && Shift==0 && Base is Base=Var*Const && log2(Const)+Shift<=3 ==> |
| 1875 | // swap(Index,Base) |
| 1876 | // Similar for Base=Const*Var and Base=Var<<Const |
| 1877 | |
| 1878 | // Base is Base=Var+Const ==> |
| 1879 | // set Base=Var, Offset+=Const |
| 1880 | |
| 1881 | // Base is Base=Const+Var ==> |
| 1882 | // set Base=Var, Offset+=Const |
| 1883 | |
| 1884 | // Base is Base=Var-Const ==> |
| 1885 | // set Base=Var, Offset-=Const |
| 1886 | |
| 1887 | // Index is Index=Var+Const ==> |
| 1888 | // set Index=Var, Offset+=(Const<<Shift) |
| 1889 | |
| 1890 | // Index is Index=Const+Var ==> |
| 1891 | // set Index=Var, Offset+=(Const<<Shift) |
| 1892 | |
| 1893 | // Index is Index=Var-Const ==> |
| 1894 | // set Index=Var, Offset-=(Const<<Shift) |
| 1895 | |
| 1896 | // TODO: consider overflow issues with respect to Offset. |
| 1897 | // TODO: handle symbolic constants. |
| 1898 | break; |
| 1899 | } |
| 1900 | } |
| 1901 | |
| 1902 | } // anonymous namespace |
| 1903 | |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 1904 | void TargetX8632::lowerLoad(const InstLoad *Inst) { |
| 1905 | // A Load instruction can be treated the same as an Assign |
| 1906 | // instruction, after the source operand is transformed into an |
| 1907 | // OperandX8632Mem operand. Note that the address mode |
| 1908 | // optimization already creates an OperandX8632Mem operand, so it |
| 1909 | // doesn't need another level of transformation. |
| 1910 | Type Ty = Inst->getDest()->getType(); |
| 1911 | Operand *Src0 = Inst->getSourceAddress(); |
| 1912 | // Address mode optimization already creates an OperandX8632Mem |
| 1913 | // operand, so it doesn't need another level of transformation. |
| 1914 | if (!llvm::isa<OperandX8632Mem>(Src0)) { |
| 1915 | Variable *Base = llvm::dyn_cast<Variable>(Src0); |
| 1916 | Constant *Offset = llvm::dyn_cast<Constant>(Src0); |
| 1917 | assert(Base || Offset); |
| 1918 | Src0 = OperandX8632Mem::create(Func, Ty, Base, Offset); |
| 1919 | } |
| 1920 | |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 1921 | // Fuse this load with a subsequent Arithmetic instruction in the |
| 1922 | // following situations: |
| 1923 | // a=[mem]; c=b+a ==> c=b+[mem] if last use of a and a not in b |
| 1924 | // a=[mem]; c=a+b ==> c=b+[mem] if commutative and above is true |
| 1925 | // |
| 1926 | // TODO: Clean up and test thoroughly. |
| 1927 | // |
| 1928 | // TODO: Why limit to Arithmetic instructions? This could probably be |
| 1929 | // applied to most any instruction type. Look at all source operands |
| 1930 | // in the following instruction, and if there is one instance of the |
| 1931 | // load instruction's dest variable, and that instruction ends that |
| 1932 | // variable's live range, then make the substitution. Deal with |
| 1933 | // commutativity optimization in the arithmetic instruction lowering. |
| 1934 | InstArithmetic *NewArith = NULL; |
| 1935 | if (InstArithmetic *Arith = |
| 1936 | llvm::dyn_cast_or_null<InstArithmetic>(Context.getNextInst())) { |
| 1937 | Variable *DestLoad = Inst->getDest(); |
| 1938 | Variable *Src0Arith = llvm::dyn_cast<Variable>(Arith->getSrc(0)); |
| 1939 | Variable *Src1Arith = llvm::dyn_cast<Variable>(Arith->getSrc(1)); |
| 1940 | if (Src1Arith == DestLoad && Arith->isLastUse(Src1Arith) && |
| 1941 | DestLoad != Src0Arith) { |
| 1942 | NewArith = InstArithmetic::create(Func, Arith->getOp(), Arith->getDest(), |
| 1943 | Arith->getSrc(0), Src0); |
| 1944 | } else if (Src0Arith == DestLoad && Arith->isCommutative() && |
| 1945 | Arith->isLastUse(Src0Arith) && DestLoad != Src1Arith) { |
| 1946 | NewArith = InstArithmetic::create(Func, Arith->getOp(), Arith->getDest(), |
| 1947 | Arith->getSrc(1), Src0); |
| 1948 | } |
| 1949 | if (NewArith) { |
| 1950 | Arith->setDeleted(); |
| 1951 | Context.advanceNext(); |
| 1952 | lowerArithmetic(NewArith); |
| 1953 | return; |
| 1954 | } |
| 1955 | } |
| 1956 | |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 1957 | InstAssign *Assign = InstAssign::create(Func, Inst->getDest(), Src0); |
| 1958 | lowerAssign(Assign); |
| 1959 | } |
| 1960 | |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 1961 | void TargetX8632::doAddressOptLoad() { |
| 1962 | Inst *Inst = *Context.getCur(); |
| 1963 | Variable *Dest = Inst->getDest(); |
| 1964 | Operand *Addr = Inst->getSrc(0); |
| 1965 | Variable *Index = NULL; |
| 1966 | int32_t Shift = 0; |
| 1967 | int32_t Offset = 0; // TODO: make Constant |
| 1968 | Variable *Base = llvm::dyn_cast<Variable>(Addr); |
| 1969 | computeAddressOpt(Base, Index, Shift, Offset); |
| 1970 | if (Base && Addr != Base) { |
| 1971 | Constant *OffsetOp = Ctx->getConstantInt(IceType_i32, Offset); |
| 1972 | Addr = OperandX8632Mem::create(Func, Dest->getType(), Base, OffsetOp, Index, |
| 1973 | Shift); |
| 1974 | Inst->setDeleted(); |
| 1975 | Context.insert(InstLoad::create(Func, Dest, Addr)); |
| 1976 | } |
| 1977 | } |
| 1978 | |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 1979 | void TargetX8632::lowerPhi(const InstPhi * /*Inst*/) { |
| 1980 | Func->setError("Phi found in regular instruction list"); |
| 1981 | } |
| 1982 | |
| 1983 | void TargetX8632::lowerRet(const InstRet *Inst) { |
| 1984 | Variable *Reg = NULL; |
| 1985 | if (Inst->hasRetValue()) { |
| 1986 | Operand *Src0 = legalize(Inst->getRetValue()); |
| 1987 | if (Src0->getType() == IceType_i64) { |
| 1988 | Variable *eax = legalizeToVar(loOperand(Src0), false, Reg_eax); |
| 1989 | Variable *edx = legalizeToVar(hiOperand(Src0), false, Reg_edx); |
| 1990 | Reg = eax; |
| 1991 | Context.insert(InstFakeUse::create(Func, edx)); |
| 1992 | } else if (Src0->getType() == IceType_f32 || |
| 1993 | Src0->getType() == IceType_f64) { |
| 1994 | _fld(Src0); |
| 1995 | } else { |
| 1996 | _mov(Reg, Src0, Reg_eax); |
| 1997 | } |
| 1998 | } |
| 1999 | _ret(Reg); |
| 2000 | // Add a fake use of esp to make sure esp stays alive for the entire |
| 2001 | // function. Otherwise post-call esp adjustments get dead-code |
| 2002 | // eliminated. TODO: Are there more places where the fake use |
| 2003 | // should be inserted? E.g. "void f(int n){while(1) g(n);}" may not |
| 2004 | // have a ret instruction. |
| 2005 | Variable *esp = Func->getTarget()->getPhysicalRegister(Reg_esp); |
| 2006 | Context.insert(InstFakeUse::create(Func, esp)); |
| 2007 | } |
| 2008 | |
| 2009 | void TargetX8632::lowerSelect(const InstSelect *Inst) { |
| 2010 | // a=d?b:c ==> cmp d,0; a=b; jne L1; FakeUse(a); a=c; L1: |
| 2011 | Variable *Dest = Inst->getDest(); |
| 2012 | Operand *SrcT = Inst->getTrueOperand(); |
| 2013 | Operand *SrcF = Inst->getFalseOperand(); |
| 2014 | Operand *Condition = legalize(Inst->getCondition()); |
| 2015 | Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); |
| 2016 | InstX8632Label *Label = InstX8632Label::create(Func, this); |
| 2017 | |
| 2018 | if (Dest->getType() == IceType_i64) { |
| 2019 | Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); |
| 2020 | Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); |
| 2021 | Operand *SrcLoRI = legalize(loOperand(SrcT), Legal_Reg | Legal_Imm, true); |
| 2022 | Operand *SrcHiRI = legalize(hiOperand(SrcT), Legal_Reg | Legal_Imm, true); |
| 2023 | _cmp(Condition, Zero); |
| 2024 | _mov(DestLo, SrcLoRI); |
| 2025 | _mov(DestHi, SrcHiRI); |
| 2026 | _br(InstX8632Br::Br_ne, Label); |
| 2027 | Context.insert(InstFakeUse::create(Func, DestLo)); |
| 2028 | Context.insert(InstFakeUse::create(Func, DestHi)); |
| 2029 | Operand *SrcFLo = loOperand(SrcF); |
| 2030 | Operand *SrcFHi = hiOperand(SrcF); |
| 2031 | SrcLoRI = legalize(SrcFLo, Legal_Reg | Legal_Imm, true); |
| 2032 | SrcHiRI = legalize(SrcFHi, Legal_Reg | Legal_Imm, true); |
| 2033 | _mov(DestLo, SrcLoRI); |
| 2034 | _mov(DestHi, SrcHiRI); |
| 2035 | } else { |
| 2036 | _cmp(Condition, Zero); |
| 2037 | SrcT = legalize(SrcT, Legal_Reg | Legal_Imm, true); |
| 2038 | _mov(Dest, SrcT); |
| 2039 | _br(InstX8632Br::Br_ne, Label); |
| 2040 | Context.insert(InstFakeUse::create(Func, Dest)); |
| 2041 | SrcF = legalize(SrcF, Legal_Reg | Legal_Imm, true); |
| 2042 | _mov(Dest, SrcF); |
| 2043 | } |
| 2044 | |
| 2045 | Context.insert(Label); |
| 2046 | } |
| 2047 | |
| 2048 | void TargetX8632::lowerStore(const InstStore *Inst) { |
| 2049 | Operand *Value = Inst->getData(); |
| 2050 | Operand *Addr = Inst->getAddr(); |
| 2051 | OperandX8632Mem *NewAddr = llvm::dyn_cast<OperandX8632Mem>(Addr); |
| 2052 | // Address mode optimization already creates an OperandX8632Mem |
| 2053 | // operand, so it doesn't need another level of transformation. |
| 2054 | if (!NewAddr) { |
| 2055 | // The address will be either a constant (which represents a global |
| 2056 | // variable) or a variable, so either the Base or Offset component |
| 2057 | // of the OperandX8632Mem will be set. |
| 2058 | Variable *Base = llvm::dyn_cast<Variable>(Addr); |
| 2059 | Constant *Offset = llvm::dyn_cast<Constant>(Addr); |
| 2060 | assert(Base || Offset); |
| 2061 | NewAddr = OperandX8632Mem::create(Func, Value->getType(), Base, Offset); |
| 2062 | } |
| 2063 | NewAddr = llvm::cast<OperandX8632Mem>(legalize(NewAddr)); |
| 2064 | |
| 2065 | if (NewAddr->getType() == IceType_i64) { |
| 2066 | Value = legalize(Value); |
| 2067 | Operand *ValueHi = legalize(hiOperand(Value), Legal_Reg | Legal_Imm, true); |
| 2068 | Operand *ValueLo = legalize(loOperand(Value), Legal_Reg | Legal_Imm, true); |
| 2069 | _store(ValueHi, llvm::cast<OperandX8632Mem>(hiOperand(NewAddr))); |
| 2070 | _store(ValueLo, llvm::cast<OperandX8632Mem>(loOperand(NewAddr))); |
| 2071 | } else { |
| 2072 | Value = legalize(Value, Legal_Reg | Legal_Imm, true); |
| 2073 | _store(Value, NewAddr); |
| 2074 | } |
| 2075 | } |
| 2076 | |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 2077 | void TargetX8632::doAddressOptStore() { |
| 2078 | InstStore *Inst = llvm::cast<InstStore>(*Context.getCur()); |
| 2079 | Operand *Data = Inst->getData(); |
| 2080 | Operand *Addr = Inst->getAddr(); |
| 2081 | Variable *Index = NULL; |
| 2082 | int32_t Shift = 0; |
| 2083 | int32_t Offset = 0; // TODO: make Constant |
| 2084 | Variable *Base = llvm::dyn_cast<Variable>(Addr); |
| 2085 | computeAddressOpt(Base, Index, Shift, Offset); |
| 2086 | if (Base && Addr != Base) { |
| 2087 | Constant *OffsetOp = Ctx->getConstantInt(IceType_i32, Offset); |
| 2088 | Addr = OperandX8632Mem::create(Func, Data->getType(), Base, OffsetOp, Index, |
| 2089 | Shift); |
| 2090 | Inst->setDeleted(); |
| 2091 | Context.insert(InstStore::create(Func, Data, Addr)); |
| 2092 | } |
| 2093 | } |
| 2094 | |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 2095 | void TargetX8632::lowerSwitch(const InstSwitch *Inst) { |
| 2096 | // This implements the most naive possible lowering. |
| 2097 | // cmp a,val[0]; jeq label[0]; cmp a,val[1]; jeq label[1]; ... jmp default |
| 2098 | Operand *Src0 = Inst->getComparison(); |
| 2099 | SizeT NumCases = Inst->getNumCases(); |
| 2100 | // OK, we'll be slightly less naive by forcing Src into a physical |
| 2101 | // register if there are 2 or more uses. |
| 2102 | if (NumCases >= 2) |
| 2103 | Src0 = legalizeToVar(Src0, true); |
| 2104 | else |
| 2105 | Src0 = legalize(Src0, Legal_All, true); |
| 2106 | for (SizeT I = 0; I < NumCases; ++I) { |
| 2107 | Operand *Value = Ctx->getConstantInt(IceType_i32, Inst->getValue(I)); |
| 2108 | _cmp(Src0, Value); |
| 2109 | _br(InstX8632Br::Br_e, Inst->getLabel(I)); |
| 2110 | } |
| 2111 | |
| 2112 | _br(Inst->getLabelDefault()); |
| 2113 | } |
| 2114 | |
| 2115 | void TargetX8632::lowerUnreachable(const InstUnreachable * /*Inst*/) { |
| 2116 | const SizeT MaxSrcs = 0; |
| 2117 | Variable *Dest = NULL; |
| 2118 | InstCall *Call = makeHelperCall("ice_unreachable", Dest, MaxSrcs); |
| 2119 | lowerCall(Call); |
| 2120 | } |
| 2121 | |
| 2122 | Operand *TargetX8632::legalize(Operand *From, LegalMask Allowed, |
| 2123 | bool AllowOverlap, int32_t RegNum) { |
| 2124 | // Assert that a physical register is allowed. To date, all calls |
| 2125 | // to legalize() allow a physical register. If a physical register |
| 2126 | // needs to be explicitly disallowed, then new code will need to be |
| 2127 | // written to force a spill. |
| 2128 | assert(Allowed & Legal_Reg); |
| 2129 | // If we're asking for a specific physical register, make sure we're |
| 2130 | // not allowing any other operand kinds. (This could be future |
| 2131 | // work, e.g. allow the shl shift amount to be either an immediate |
| 2132 | // or in ecx.) |
| 2133 | assert(RegNum == Variable::NoRegister || Allowed == Legal_Reg); |
| 2134 | if (OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(From)) { |
| 2135 | // Before doing anything with a Mem operand, we need to ensure |
| 2136 | // that the Base and Index components are in physical registers. |
| 2137 | Variable *Base = Mem->getBase(); |
| 2138 | Variable *Index = Mem->getIndex(); |
| 2139 | Variable *RegBase = NULL; |
| 2140 | Variable *RegIndex = NULL; |
| 2141 | if (Base) { |
| 2142 | RegBase = legalizeToVar(Base, true); |
| 2143 | } |
| 2144 | if (Index) { |
| 2145 | RegIndex = legalizeToVar(Index, true); |
| 2146 | } |
| 2147 | if (Base != RegBase || Index != RegIndex) { |
| 2148 | From = |
| 2149 | OperandX8632Mem::create(Func, Mem->getType(), RegBase, |
| 2150 | Mem->getOffset(), RegIndex, Mem->getShift()); |
| 2151 | } |
| 2152 | |
| 2153 | if (!(Allowed & Legal_Mem)) { |
| 2154 | Variable *Reg = makeReg(From->getType(), RegNum); |
| 2155 | _mov(Reg, From, RegNum); |
| 2156 | From = Reg; |
| 2157 | } |
| 2158 | return From; |
| 2159 | } |
| 2160 | if (llvm::isa<Constant>(From)) { |
| 2161 | if (!(Allowed & Legal_Imm)) { |
| 2162 | Variable *Reg = makeReg(From->getType(), RegNum); |
| 2163 | _mov(Reg, From); |
| 2164 | From = Reg; |
| 2165 | } |
| 2166 | return From; |
| 2167 | } |
| 2168 | if (Variable *Var = llvm::dyn_cast<Variable>(From)) { |
| 2169 | // We need a new physical register for the operand if: |
| 2170 | // Mem is not allowed and Var->getRegNum() is unknown, or |
| 2171 | // RegNum is required and Var->getRegNum() doesn't match. |
| 2172 | if ((!(Allowed & Legal_Mem) && !Var->hasReg()) || |
| 2173 | (RegNum != Variable::NoRegister && RegNum != Var->getRegNum())) { |
| 2174 | Variable *Reg = makeReg(From->getType(), RegNum); |
| 2175 | if (RegNum == Variable::NoRegister) { |
| 2176 | Reg->setPreferredRegister(Var, AllowOverlap); |
| 2177 | } |
| 2178 | _mov(Reg, From); |
| 2179 | From = Reg; |
| 2180 | } |
| 2181 | return From; |
| 2182 | } |
| 2183 | llvm_unreachable("Unhandled operand kind in legalize()"); |
| 2184 | return From; |
| 2185 | } |
| 2186 | |
| 2187 | // Provide a trivial wrapper to legalize() for this common usage. |
| 2188 | Variable *TargetX8632::legalizeToVar(Operand *From, bool AllowOverlap, |
| 2189 | int32_t RegNum) { |
| 2190 | return llvm::cast<Variable>(legalize(From, Legal_Reg, AllowOverlap, RegNum)); |
| 2191 | } |
| 2192 | |
| 2193 | Variable *TargetX8632::makeReg(Type Type, int32_t RegNum) { |
| 2194 | Variable *Reg = Func->makeVariable(Type, Context.getNode()); |
| 2195 | if (RegNum == Variable::NoRegister) |
| 2196 | Reg->setWeightInfinite(); |
| 2197 | else |
| 2198 | Reg->setRegNum(RegNum); |
| 2199 | return Reg; |
| 2200 | } |
| 2201 | |
| 2202 | void TargetX8632::postLower() { |
| 2203 | if (Ctx->getOptLevel() != Opt_m1) |
| 2204 | return; |
| 2205 | // TODO: Avoid recomputing WhiteList every instruction. |
| 2206 | llvm::SmallBitVector WhiteList = getRegisterSet(RegSet_All, RegSet_None); |
| 2207 | // Make one pass to black-list pre-colored registers. TODO: If |
| 2208 | // there was some prior register allocation pass that made register |
| 2209 | // assignments, those registers need to be black-listed here as |
| 2210 | // well. |
| 2211 | for (InstList::iterator I = Context.getCur(), E = Context.getEnd(); I != E; |
| 2212 | ++I) { |
| 2213 | const Inst *Inst = *I; |
| 2214 | if (Inst->isDeleted()) |
| 2215 | continue; |
| 2216 | if (llvm::isa<InstFakeKill>(Inst)) |
| 2217 | continue; |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 2218 | for (SizeT SrcNum = 0; SrcNum < Inst->getSrcSize(); ++SrcNum) { |
| 2219 | Operand *Src = Inst->getSrc(SrcNum); |
| 2220 | SizeT NumVars = Src->getNumVars(); |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 2221 | for (SizeT J = 0; J < NumVars; ++J) { |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 2222 | const Variable *Var = Src->getVar(J); |
| 2223 | if (!Var->hasReg()) |
| 2224 | continue; |
| 2225 | WhiteList[Var->getRegNum()] = false; |
| 2226 | } |
| 2227 | } |
| 2228 | } |
| 2229 | // The second pass colors infinite-weight variables. |
| 2230 | llvm::SmallBitVector AvailableRegisters = WhiteList; |
| 2231 | for (InstList::iterator I = Context.getCur(), E = Context.getEnd(); I != E; |
| 2232 | ++I) { |
| 2233 | const Inst *Inst = *I; |
| 2234 | if (Inst->isDeleted()) |
| 2235 | continue; |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 2236 | for (SizeT SrcNum = 0; SrcNum < Inst->getSrcSize(); ++SrcNum) { |
| 2237 | Operand *Src = Inst->getSrc(SrcNum); |
| 2238 | SizeT NumVars = Src->getNumVars(); |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 2239 | for (SizeT J = 0; J < NumVars; ++J) { |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 2240 | Variable *Var = Src->getVar(J); |
| 2241 | if (Var->hasReg()) |
| 2242 | continue; |
| 2243 | if (!Var->getWeight().isInf()) |
| 2244 | continue; |
| 2245 | llvm::SmallBitVector AvailableTypedRegisters = |
| 2246 | AvailableRegisters & getRegisterSetForType(Var->getType()); |
| 2247 | if (!AvailableTypedRegisters.any()) { |
| 2248 | // This is a hack in case we run out of physical registers |
| 2249 | // due to an excessive number of "push" instructions from |
| 2250 | // lowering a call. |
| 2251 | AvailableRegisters = WhiteList; |
| 2252 | AvailableTypedRegisters = |
| 2253 | AvailableRegisters & getRegisterSetForType(Var->getType()); |
| 2254 | } |
| 2255 | assert(AvailableTypedRegisters.any()); |
| 2256 | int32_t RegNum = AvailableTypedRegisters.find_first(); |
| 2257 | Var->setRegNum(RegNum); |
| 2258 | AvailableRegisters[RegNum] = false; |
| 2259 | } |
| 2260 | } |
| 2261 | } |
| 2262 | } |
| 2263 | |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 2264 | template <> void ConstantFloat::emit(GlobalContext *Ctx) const { |
| 2265 | Ostream &Str = Ctx->getStrEmit(); |
Jim Stichnoth | f61d5b2 | 2014-05-23 13:31:24 -0700 | [diff] [blame] | 2266 | // It would be better to prefix with ".L$" instead of "L$", but |
| 2267 | // llvm-mc doesn't parse "dword ptr [.L$foo]". |
| 2268 | Str << "dword ptr [L$" << IceType_f32 << "$" << getPoolEntryID() << "]"; |
| 2269 | } |
| 2270 | |
Jim Stichnoth | d97c7df | 2014-06-04 11:57:08 -0700 | [diff] [blame] | 2271 | template <> void ConstantDouble::emit(GlobalContext *Ctx) const { |
| 2272 | Ostream &Str = Ctx->getStrEmit(); |
Jim Stichnoth | f61d5b2 | 2014-05-23 13:31:24 -0700 | [diff] [blame] | 2273 | Str << "qword ptr [L$" << IceType_f64 << "$" << getPoolEntryID() << "]"; |
| 2274 | } |
| 2275 | |
Jim Stichnoth | 5bc2b1d | 2014-05-22 13:38:48 -0700 | [diff] [blame] | 2276 | } // end of namespace Ice |