blob: f98d5e331fefb7b4ae9c423dbc0ad480bbb5f5b9 [file] [log] [blame]
John Bauman19bac1e2014-05-06 15:23:49 -04001//===-- X86MCTargetDesc.cpp - X86 Target Descriptions -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides X86 specific target descriptions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86MCTargetDesc.h"
15#include "X86MCAsmInfo.h"
16#include "InstPrinter/X86ATTInstPrinter.h"
17#include "InstPrinter/X86IntelInstPrinter.h"
18#include "llvm/MC/MachineLocation.h"
19#include "llvm/MC/MCCodeGenInfo.h"
20#include "llvm/MC/MCInstrAnalysis.h"
21#include "llvm/MC/MCInstrInfo.h"
22#include "llvm/MC/MCRegisterInfo.h"
23#include "llvm/MC/MCStreamer.h"
24#include "llvm/MC/MCSubtargetInfo.h"
25#include "llvm/ADT/Triple.h"
26#include "llvm/Support/Host.h"
27#include "llvm/Support/TargetRegistry.h"
28
29#define GET_REGINFO_MC_DESC
30#include "X86GenRegisterInfo.inc"
31
32#define GET_INSTRINFO_MC_DESC
33#include "X86GenInstrInfo.inc"
34
35#define GET_SUBTARGETINFO_MC_DESC
36#include "X86GenSubtargetInfo.inc"
37
38using namespace llvm;
39
40
41std::string X86_MC::ParseX86Triple(StringRef TT) {
42 Triple TheTriple(TT);
43 std::string FS;
44 if (TheTriple.getArch() == Triple::x86_64)
45 FS = "+64bit-mode";
46 else
47 FS = "-64bit-mode";
48 if (TheTriple.getOS() == Triple::NativeClient)
49 FS += ",+nacl-mode";
50 else
51 FS += ",-nacl-mode";
52 return FS;
53}
54
55/// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
56/// specified arguments. If we can't run cpuid on the host, return true.
57bool X86_MC::GetCpuIDAndInfo(unsigned value, unsigned *rEAX,
58 unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
59#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
60 #if defined(__GNUC__)
61 // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
62 asm ("movq\t%%rbx, %%rsi\n\t"
63 "cpuid\n\t"
64 "xchgq\t%%rbx, %%rsi\n\t"
65 : "=a" (*rEAX),
66 "=S" (*rEBX),
67 "=c" (*rECX),
68 "=d" (*rEDX)
69 : "a" (value));
70 return false;
71 #elif defined(_MSC_VER)
72 int registers[4];
73 __cpuid(registers, value);
74 *rEAX = registers[0];
75 *rEBX = registers[1];
76 *rECX = registers[2];
77 *rEDX = registers[3];
78 return false;
79 #endif
80#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
81 #if defined(__GNUC__)
82 asm ("movl\t%%ebx, %%esi\n\t"
83 "cpuid\n\t"
84 "xchgl\t%%ebx, %%esi\n\t"
85 : "=a" (*rEAX),
86 "=S" (*rEBX),
87 "=c" (*rECX),
88 "=d" (*rEDX)
89 : "a" (value));
90 return false;
91 #elif defined(_MSC_VER)
92 __asm {
93 mov eax,value
94 cpuid
95 mov esi,rEAX
96 mov dword ptr [esi],eax
97 mov esi,rEBX
98 mov dword ptr [esi],ebx
99 mov esi,rECX
100 mov dword ptr [esi],ecx
101 mov esi,rEDX
102 mov dword ptr [esi],edx
103 }
104 return false;
105 #endif
106#endif
107 return true;
108}
109
110void X86_MC::DetectFamilyModel(unsigned EAX, unsigned &Family,
111 unsigned &Model) {
112 Family = (EAX >> 8) & 0xf; // Bits 8 - 11
113 Model = (EAX >> 4) & 0xf; // Bits 4 - 7
114 if (Family == 6 || Family == 0xf) {
115 if (Family == 0xf)
116 // Examine extended family ID if family ID is F.
117 Family += (EAX >> 20) & 0xff; // Bits 20 - 27
118 // Examine extended model ID if family ID is 6 or F.
119 Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
120 }
121}
122
123unsigned X86_MC::getDwarfRegFlavour(StringRef TT, bool isEH) {
124 Triple TheTriple(TT);
125 if (TheTriple.getArch() == Triple::x86_64)
126 return DWARFFlavour::X86_64;
127
128 if (TheTriple.isOSDarwin())
129 return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic;
130 if (TheTriple.getOS() == Triple::MinGW32 ||
131 TheTriple.getOS() == Triple::Cygwin)
132 // Unsupported by now, just quick fallback
133 return DWARFFlavour::X86_32_Generic;
134 return DWARFFlavour::X86_32_Generic;
135}
136
137/// getX86RegNum - This function maps LLVM register identifiers to their X86
138/// specific numbering, which is used in various places encoding instructions.
139unsigned X86_MC::getX86RegNum(unsigned RegNo) {
140 switch(RegNo) {
141 case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
142 case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
143 case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
144 case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
145 case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
146 return N86::ESP;
147 case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
148 return N86::EBP;
149 case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
150 return N86::ESI;
151 case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
152 return N86::EDI;
153
154 case X86::R8: case X86::R8D: case X86::R8W: case X86::R8B:
155 return N86::EAX;
156 case X86::R9: case X86::R9D: case X86::R9W: case X86::R9B:
157 return N86::ECX;
158 case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
159 return N86::EDX;
160 case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
161 return N86::EBX;
162 case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
163 return N86::ESP;
164 case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
165 return N86::EBP;
166 case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
167 return N86::ESI;
168 case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
169 return N86::EDI;
170
171 case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
172 case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
173 return RegNo-X86::ST0;
174
175 case X86::XMM0: case X86::XMM8:
176 case X86::YMM0: case X86::YMM8: case X86::MM0:
177 return 0;
178 case X86::XMM1: case X86::XMM9:
179 case X86::YMM1: case X86::YMM9: case X86::MM1:
180 return 1;
181 case X86::XMM2: case X86::XMM10:
182 case X86::YMM2: case X86::YMM10: case X86::MM2:
183 return 2;
184 case X86::XMM3: case X86::XMM11:
185 case X86::YMM3: case X86::YMM11: case X86::MM3:
186 return 3;
187 case X86::XMM4: case X86::XMM12:
188 case X86::YMM4: case X86::YMM12: case X86::MM4:
189 return 4;
190 case X86::XMM5: case X86::XMM13:
191 case X86::YMM5: case X86::YMM13: case X86::MM5:
192 return 5;
193 case X86::XMM6: case X86::XMM14:
194 case X86::YMM6: case X86::YMM14: case X86::MM6:
195 return 6;
196 case X86::XMM7: case X86::XMM15:
197 case X86::YMM7: case X86::YMM15: case X86::MM7:
198 return 7;
199
200 case X86::ES: return 0;
201 case X86::CS: return 1;
202 case X86::SS: return 2;
203 case X86::DS: return 3;
204 case X86::FS: return 4;
205 case X86::GS: return 5;
206
207 case X86::CR0: case X86::CR8 : case X86::DR0: return 0;
208 case X86::CR1: case X86::CR9 : case X86::DR1: return 1;
209 case X86::CR2: case X86::CR10: case X86::DR2: return 2;
210 case X86::CR3: case X86::CR11: case X86::DR3: return 3;
211 case X86::CR4: case X86::CR12: case X86::DR4: return 4;
212 case X86::CR5: case X86::CR13: case X86::DR5: return 5;
213 case X86::CR6: case X86::CR14: case X86::DR6: return 6;
214 case X86::CR7: case X86::CR15: case X86::DR7: return 7;
215
216 // Pseudo index registers are equivalent to a "none"
217 // scaled index (See Intel Manual 2A, table 2-3)
218 case X86::EIZ:
219 case X86::RIZ:
220 return 4;
221
222 default:
223 assert((int(RegNo) > 0) && "Unknown physical register!");
224 return 0;
225 }
226}
227
228void X86_MC::InitLLVM2SEHRegisterMapping(MCRegisterInfo *MRI) {
229 // FIXME: TableGen these.
230 for (unsigned Reg = X86::NoRegister+1; Reg < X86::NUM_TARGET_REGS; ++Reg) {
231 int SEH = X86_MC::getX86RegNum(Reg);
232 switch (Reg) {
233 case X86::R8: case X86::R8D: case X86::R8W: case X86::R8B:
234 case X86::R9: case X86::R9D: case X86::R9W: case X86::R9B:
235 case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
236 case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
237 case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
238 case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
239 case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
240 case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
241 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
242 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
243 case X86::YMM8: case X86::YMM9: case X86::YMM10: case X86::YMM11:
244 case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15:
245 SEH += 8;
246 break;
247 }
248 MRI->mapLLVMRegToSEHReg(Reg, SEH);
249 }
250}
251
252MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(StringRef TT, StringRef CPU,
253 StringRef FS) {
254 std::string ArchFS = X86_MC::ParseX86Triple(TT);
255 if (!FS.empty()) {
256 if (!ArchFS.empty())
257 ArchFS = ArchFS + "," + FS.str();
258 else
259 ArchFS = FS;
260 }
261
262 std::string CPUName = CPU;
263 if (CPUName.empty()) {
264#if defined (__x86_64__) || defined(__i386__)
265 CPUName = sys::getHostCPUName();
266#else
267 CPUName = "generic";
268#endif
269 }
270
271 MCSubtargetInfo *X = new MCSubtargetInfo();
272 InitX86MCSubtargetInfo(X, TT, CPUName, ArchFS);
273 return X;
274}
275
276static MCInstrInfo *createX86MCInstrInfo() {
277 MCInstrInfo *X = new MCInstrInfo();
278 InitX86MCInstrInfo(X);
279 return X;
280}
281
282static MCRegisterInfo *createX86MCRegisterInfo(StringRef TT) {
283 Triple TheTriple(TT);
284 unsigned RA = (TheTriple.getArch() == Triple::x86_64)
285 ? X86::RIP // Should have dwarf #16.
286 : X86::EIP; // Should have dwarf #8.
287
288 MCRegisterInfo *X = new MCRegisterInfo();
289 InitX86MCRegisterInfo(X, RA,
290 X86_MC::getDwarfRegFlavour(TT, false),
291 X86_MC::getDwarfRegFlavour(TT, true));
292 X86_MC::InitLLVM2SEHRegisterMapping(X);
293 return X;
294}
295
296static MCAsmInfo *createX86MCAsmInfo(const Target &T, StringRef TT) {
297 Triple TheTriple(TT);
298 bool is64Bit = TheTriple.getArch() == Triple::x86_64;
299
300 MCAsmInfo *MAI;
301 if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) {
302 if (is64Bit)
303 MAI = new X86_64MCAsmInfoDarwin(TheTriple);
304 else
305 MAI = new X86MCAsmInfoDarwin(TheTriple);
306 } else if (TheTriple.isOSWindows()) {
307 MAI = new X86MCAsmInfoCOFF(TheTriple);
308 } else {
309 MAI = new X86ELFMCAsmInfo(TheTriple);
310 }
311
312 // Initialize initial frame state.
313 // Calculate amount of bytes used for return address storing
314 int stackGrowth = is64Bit ? -8 : -4;
315
316 // Initial state of the frame pointer is esp+stackGrowth.
317 MachineLocation Dst(MachineLocation::VirtualFP);
318 MachineLocation Src(is64Bit ? X86::RSP : X86::ESP, stackGrowth);
319 MAI->addInitialFrameState(0, Dst, Src);
320
321 // Add return address to move list
322 MachineLocation CSDst(is64Bit ? X86::RSP : X86::ESP, stackGrowth);
323 MachineLocation CSSrc(is64Bit ? X86::RIP : X86::EIP);
324 MAI->addInitialFrameState(0, CSDst, CSSrc);
325
326 return MAI;
327}
328
329static MCCodeGenInfo *createX86MCCodeGenInfo(StringRef TT, Reloc::Model RM,
330 CodeModel::Model CM) {
331 MCCodeGenInfo *X = new MCCodeGenInfo();
332
333 Triple T(TT);
334 bool is64Bit = T.getArch() == Triple::x86_64;
335
336 if (RM == Reloc::Default) {
337 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
338 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
339 // use static relocation model by default.
340 if (T.isOSDarwin()) {
341 if (is64Bit)
342 RM = Reloc::PIC_;
343 else
344 RM = Reloc::DynamicNoPIC;
345 } else if (T.isOSWindows() && is64Bit)
346 RM = Reloc::PIC_;
347 else
348 RM = Reloc::Static;
349 }
350
351 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC
352 // is defined as a model for code which may be used in static or dynamic
353 // executables but not necessarily a shared library. On X86-32 we just
354 // compile in -static mode, in x86-64 we use PIC.
355 if (RM == Reloc::DynamicNoPIC) {
356 if (is64Bit)
357 RM = Reloc::PIC_;
358 else if (!T.isOSDarwin())
359 RM = Reloc::Static;
360 }
361
362 // If we are on Darwin, disallow static relocation model in X86-64 mode, since
363 // the Mach-O file format doesn't support it.
364 if (RM == Reloc::Static && T.isOSDarwin() && is64Bit)
365 RM = Reloc::PIC_;
366
367 // For static codegen, if we're not already set, use Small codegen.
368 if (CM == CodeModel::Default)
369 CM = CodeModel::Small;
370 else if (CM == CodeModel::JITDefault)
371 // 64-bit JIT places everything in the same buffer except external funcs.
372 CM = is64Bit ? CodeModel::Large : CodeModel::Small;
373
374 X->InitMCCodeGenInfo(RM, CM);
375 return X;
376}
377
378static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
379 MCContext &Ctx, MCAsmBackend &MAB,
380 raw_ostream &_OS,
381 MCCodeEmitter *_Emitter,
382 bool RelaxAll,
383 bool NoExecStack) {
384 Triple TheTriple(TT);
385
386 if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
387 return createMachOStreamer(Ctx, MAB, _OS, _Emitter, RelaxAll);
388
389 if (TheTriple.isOSWindows())
390 return createWinCOFFStreamer(Ctx, MAB, *_Emitter, _OS, RelaxAll);
391
392 return createELFStreamer(Ctx, MAB, _OS, _Emitter, RelaxAll, NoExecStack);
393}
394
395static MCInstPrinter *createX86MCInstPrinter(const Target &T,
396 unsigned SyntaxVariant,
397 const MCAsmInfo &MAI,
398 const MCSubtargetInfo &STI) {
399 if (SyntaxVariant == 0)
400 return new X86ATTInstPrinter(MAI);
401 if (SyntaxVariant == 1)
402 return new X86IntelInstPrinter(MAI);
403 return 0;
404}
405
406static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) {
407 return new MCInstrAnalysis(Info);
408}
409
410// Force static initialization.
411extern "C" void LLVMInitializeX86TargetMC() {
412 // Register the MC asm info.
413 RegisterMCAsmInfoFn A(TheX86_32Target, createX86MCAsmInfo);
414 RegisterMCAsmInfoFn B(TheX86_64Target, createX86MCAsmInfo);
415
416 // Register the MC codegen info.
417 RegisterMCCodeGenInfoFn C(TheX86_32Target, createX86MCCodeGenInfo);
418 RegisterMCCodeGenInfoFn D(TheX86_64Target, createX86MCCodeGenInfo);
419
420 // Register the MC instruction info.
421 TargetRegistry::RegisterMCInstrInfo(TheX86_32Target, createX86MCInstrInfo);
422 TargetRegistry::RegisterMCInstrInfo(TheX86_64Target, createX86MCInstrInfo);
423
424 // Register the MC register info.
425 TargetRegistry::RegisterMCRegInfo(TheX86_32Target, createX86MCRegisterInfo);
426 TargetRegistry::RegisterMCRegInfo(TheX86_64Target, createX86MCRegisterInfo);
427
428 // Register the MC subtarget info.
429 TargetRegistry::RegisterMCSubtargetInfo(TheX86_32Target,
430 X86_MC::createX86MCSubtargetInfo);
431 TargetRegistry::RegisterMCSubtargetInfo(TheX86_64Target,
432 X86_MC::createX86MCSubtargetInfo);
433
434 // Register the MC instruction analyzer.
435 TargetRegistry::RegisterMCInstrAnalysis(TheX86_32Target,
436 createX86MCInstrAnalysis);
437 TargetRegistry::RegisterMCInstrAnalysis(TheX86_64Target,
438 createX86MCInstrAnalysis);
439
440 // Register the code emitter.
441 TargetRegistry::RegisterMCCodeEmitter(TheX86_32Target,
442 createX86MCCodeEmitter);
443 TargetRegistry::RegisterMCCodeEmitter(TheX86_64Target,
444 createX86MCCodeEmitter);
445
446 // Register the asm backend.
447 TargetRegistry::RegisterMCAsmBackend(TheX86_32Target,
448 createX86_32AsmBackend);
449 TargetRegistry::RegisterMCAsmBackend(TheX86_64Target,
450 createX86_64AsmBackend);
451
452 // Register the object streamer.
453 TargetRegistry::RegisterMCObjectStreamer(TheX86_32Target,
454 createMCStreamer);
455 TargetRegistry::RegisterMCObjectStreamer(TheX86_64Target,
456 createMCStreamer);
457
458 // Register the MCInstPrinter.
459 TargetRegistry::RegisterMCInstPrinter(TheX86_32Target,
460 createX86MCInstPrinter);
461 TargetRegistry::RegisterMCInstPrinter(TheX86_64Target,
462 createX86MCInstPrinter);
463}