John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 1 | //===-- Local.cpp - Functions to perform local transformations ------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This family of functions perform various local transformations to the |
| 11 | // program. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "llvm/Transforms/Utils/Local.h" |
| 16 | #include "llvm/Constants.h" |
| 17 | #include "llvm/GlobalAlias.h" |
| 18 | #include "llvm/GlobalVariable.h" |
| 19 | #include "llvm/DerivedTypes.h" |
| 20 | #include "llvm/Instructions.h" |
| 21 | #include "llvm/Intrinsics.h" |
| 22 | #include "llvm/IntrinsicInst.h" |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 23 | #include "llvm/Metadata.h" |
| 24 | #include "llvm/Operator.h" |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 25 | #include "llvm/ADT/DenseMap.h" |
| 26 | #include "llvm/ADT/SmallPtrSet.h" |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 27 | #include "llvm/Analysis/DebugInfo.h" |
| 28 | #include "llvm/Analysis/DIBuilder.h" |
| 29 | #include "llvm/Analysis/Dominators.h" |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 30 | #include "llvm/Analysis/InstructionSimplify.h" |
| 31 | #include "llvm/Analysis/ProfileInfo.h" |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 32 | #include "llvm/Analysis/ValueTracking.h" |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 33 | #include "llvm/Target/TargetData.h" |
| 34 | #include "llvm/Support/CFG.h" |
| 35 | #include "llvm/Support/Debug.h" |
| 36 | #include "llvm/Support/GetElementPtrTypeIterator.h" |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 37 | #include "llvm/Support/IRBuilder.h" |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 38 | #include "llvm/Support/MathExtras.h" |
| 39 | #include "llvm/Support/ValueHandle.h" |
| 40 | #include "llvm/Support/raw_ostream.h" |
| 41 | using namespace llvm; |
| 42 | |
| 43 | //===----------------------------------------------------------------------===// |
| 44 | // Local constant propagation. |
| 45 | // |
| 46 | |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 47 | /// ConstantFoldTerminator - If a terminator instruction is predicated on a |
| 48 | /// constant value, convert it into an unconditional branch to the constant |
| 49 | /// destination. This is a nontrivial operation because the successors of this |
| 50 | /// basic block must have their PHI nodes updated. |
| 51 | /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch |
| 52 | /// conditions and indirectbr addresses this might make dead if |
| 53 | /// DeleteDeadConditions is true. |
| 54 | bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions) { |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 55 | TerminatorInst *T = BB->getTerminator(); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 56 | IRBuilder<> Builder(T); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 57 | |
| 58 | // Branch - See if we are conditional jumping on constant |
| 59 | if (BranchInst *BI = dyn_cast<BranchInst>(T)) { |
| 60 | if (BI->isUnconditional()) return false; // Can't optimize uncond branch |
| 61 | BasicBlock *Dest1 = BI->getSuccessor(0); |
| 62 | BasicBlock *Dest2 = BI->getSuccessor(1); |
| 63 | |
| 64 | if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { |
| 65 | // Are we branching on constant? |
| 66 | // YES. Change to unconditional branch... |
| 67 | BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; |
| 68 | BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; |
| 69 | |
| 70 | //cerr << "Function: " << T->getParent()->getParent() |
| 71 | // << "\nRemoving branch from " << T->getParent() |
| 72 | // << "\n\nTo: " << OldDest << endl; |
| 73 | |
| 74 | // Let the basic block know that we are letting go of it. Based on this, |
| 75 | // it will adjust it's PHI nodes. |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 76 | OldDest->removePredecessor(BB); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 77 | |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 78 | // Replace the conditional branch with an unconditional one. |
| 79 | Builder.CreateBr(Destination); |
| 80 | BI->eraseFromParent(); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 81 | return true; |
| 82 | } |
| 83 | |
| 84 | if (Dest2 == Dest1) { // Conditional branch to same location? |
| 85 | // This branch matches something like this: |
| 86 | // br bool %cond, label %Dest, label %Dest |
| 87 | // and changes it into: br label %Dest |
| 88 | |
| 89 | // Let the basic block know that we are letting go of one copy of it. |
| 90 | assert(BI->getParent() && "Terminator not inserted in block!"); |
| 91 | Dest1->removePredecessor(BI->getParent()); |
| 92 | |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 93 | // Replace the conditional branch with an unconditional one. |
| 94 | Builder.CreateBr(Dest1); |
| 95 | Value *Cond = BI->getCondition(); |
| 96 | BI->eraseFromParent(); |
| 97 | if (DeleteDeadConditions) |
| 98 | RecursivelyDeleteTriviallyDeadInstructions(Cond); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 99 | return true; |
| 100 | } |
| 101 | return false; |
| 102 | } |
| 103 | |
| 104 | if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { |
| 105 | // If we are switching on a constant, we can convert the switch into a |
| 106 | // single branch instruction! |
| 107 | ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); |
| 108 | BasicBlock *TheOnlyDest = SI->getSuccessor(0); // The default dest |
| 109 | BasicBlock *DefaultDest = TheOnlyDest; |
| 110 | assert(TheOnlyDest == SI->getDefaultDest() && |
| 111 | "Default destination is not successor #0?"); |
| 112 | |
| 113 | // Figure out which case it goes to. |
| 114 | for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) { |
| 115 | // Found case matching a constant operand? |
| 116 | if (SI->getSuccessorValue(i) == CI) { |
| 117 | TheOnlyDest = SI->getSuccessor(i); |
| 118 | break; |
| 119 | } |
| 120 | |
| 121 | // Check to see if this branch is going to the same place as the default |
| 122 | // dest. If so, eliminate it as an explicit compare. |
| 123 | if (SI->getSuccessor(i) == DefaultDest) { |
| 124 | // Remove this entry. |
| 125 | DefaultDest->removePredecessor(SI->getParent()); |
| 126 | SI->removeCase(i); |
| 127 | --i; --e; // Don't skip an entry... |
| 128 | continue; |
| 129 | } |
| 130 | |
| 131 | // Otherwise, check to see if the switch only branches to one destination. |
| 132 | // We do this by reseting "TheOnlyDest" to null when we find two non-equal |
| 133 | // destinations. |
| 134 | if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0; |
| 135 | } |
| 136 | |
| 137 | if (CI && !TheOnlyDest) { |
| 138 | // Branching on a constant, but not any of the cases, go to the default |
| 139 | // successor. |
| 140 | TheOnlyDest = SI->getDefaultDest(); |
| 141 | } |
| 142 | |
| 143 | // If we found a single destination that we can fold the switch into, do so |
| 144 | // now. |
| 145 | if (TheOnlyDest) { |
| 146 | // Insert the new branch. |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 147 | Builder.CreateBr(TheOnlyDest); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 148 | BasicBlock *BB = SI->getParent(); |
| 149 | |
| 150 | // Remove entries from PHI nodes which we no longer branch to... |
| 151 | for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { |
| 152 | // Found case matching a constant operand? |
| 153 | BasicBlock *Succ = SI->getSuccessor(i); |
| 154 | if (Succ == TheOnlyDest) |
| 155 | TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest |
| 156 | else |
| 157 | Succ->removePredecessor(BB); |
| 158 | } |
| 159 | |
| 160 | // Delete the old switch. |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 161 | Value *Cond = SI->getCondition(); |
| 162 | SI->eraseFromParent(); |
| 163 | if (DeleteDeadConditions) |
| 164 | RecursivelyDeleteTriviallyDeadInstructions(Cond); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 165 | return true; |
| 166 | } |
| 167 | |
| 168 | if (SI->getNumSuccessors() == 2) { |
| 169 | // Otherwise, we can fold this switch into a conditional branch |
| 170 | // instruction if it has only one non-default destination. |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 171 | Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), |
| 172 | SI->getSuccessorValue(1), "cond"); |
| 173 | |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 174 | // Insert the new branch. |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 175 | Builder.CreateCondBr(Cond, SI->getSuccessor(1), SI->getSuccessor(0)); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 176 | |
| 177 | // Delete the old switch. |
| 178 | SI->eraseFromParent(); |
| 179 | return true; |
| 180 | } |
| 181 | return false; |
| 182 | } |
| 183 | |
| 184 | if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { |
| 185 | // indirectbr blockaddress(@F, @BB) -> br label @BB |
| 186 | if (BlockAddress *BA = |
| 187 | dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { |
| 188 | BasicBlock *TheOnlyDest = BA->getBasicBlock(); |
| 189 | // Insert the new branch. |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 190 | Builder.CreateBr(TheOnlyDest); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 191 | |
| 192 | for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { |
| 193 | if (IBI->getDestination(i) == TheOnlyDest) |
| 194 | TheOnlyDest = 0; |
| 195 | else |
| 196 | IBI->getDestination(i)->removePredecessor(IBI->getParent()); |
| 197 | } |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 198 | Value *Address = IBI->getAddress(); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 199 | IBI->eraseFromParent(); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 200 | if (DeleteDeadConditions) |
| 201 | RecursivelyDeleteTriviallyDeadInstructions(Address); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 202 | |
| 203 | // If we didn't find our destination in the IBI successor list, then we |
| 204 | // have undefined behavior. Replace the unconditional branch with an |
| 205 | // 'unreachable' instruction. |
| 206 | if (TheOnlyDest) { |
| 207 | BB->getTerminator()->eraseFromParent(); |
| 208 | new UnreachableInst(BB->getContext(), BB); |
| 209 | } |
| 210 | |
| 211 | return true; |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | return false; |
| 216 | } |
| 217 | |
| 218 | |
| 219 | //===----------------------------------------------------------------------===// |
| 220 | // Local dead code elimination. |
| 221 | // |
| 222 | |
| 223 | /// isInstructionTriviallyDead - Return true if the result produced by the |
| 224 | /// instruction is not used, and the instruction has no side effects. |
| 225 | /// |
| 226 | bool llvm::isInstructionTriviallyDead(Instruction *I) { |
| 227 | if (!I->use_empty() || isa<TerminatorInst>(I)) return false; |
| 228 | |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 229 | // We don't want the landingpad instruction removed by anything this general. |
| 230 | if (isa<LandingPadInst>(I)) |
| 231 | return false; |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 232 | |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 233 | // We don't want debug info removed by anything this general, unless |
| 234 | // debug info is empty. |
| 235 | if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { |
| 236 | if (DDI->getAddress()) |
| 237 | return false; |
| 238 | return true; |
| 239 | } |
| 240 | if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { |
| 241 | if (DVI->getValue()) |
| 242 | return false; |
| 243 | return true; |
| 244 | } |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 245 | |
| 246 | if (!I->mayHaveSideEffects()) return true; |
| 247 | |
| 248 | // Special case intrinsics that "may have side effects" but can be deleted |
| 249 | // when dead. |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 250 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 251 | // Safe to delete llvm.stacksave if dead. |
| 252 | if (II->getIntrinsicID() == Intrinsic::stacksave) |
| 253 | return true; |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 254 | |
| 255 | // Lifetime intrinsics are dead when their right-hand is undef. |
| 256 | if (II->getIntrinsicID() == Intrinsic::lifetime_start || |
| 257 | II->getIntrinsicID() == Intrinsic::lifetime_end) |
| 258 | return isa<UndefValue>(II->getArgOperand(1)); |
| 259 | } |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 260 | return false; |
| 261 | } |
| 262 | |
| 263 | /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a |
| 264 | /// trivially dead instruction, delete it. If that makes any of its operands |
| 265 | /// trivially dead, delete them too, recursively. Return true if any |
| 266 | /// instructions were deleted. |
| 267 | bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) { |
| 268 | Instruction *I = dyn_cast<Instruction>(V); |
| 269 | if (!I || !I->use_empty() || !isInstructionTriviallyDead(I)) |
| 270 | return false; |
| 271 | |
| 272 | SmallVector<Instruction*, 16> DeadInsts; |
| 273 | DeadInsts.push_back(I); |
| 274 | |
| 275 | do { |
| 276 | I = DeadInsts.pop_back_val(); |
| 277 | |
| 278 | // Null out all of the instruction's operands to see if any operand becomes |
| 279 | // dead as we go. |
| 280 | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { |
| 281 | Value *OpV = I->getOperand(i); |
| 282 | I->setOperand(i, 0); |
| 283 | |
| 284 | if (!OpV->use_empty()) continue; |
| 285 | |
| 286 | // If the operand is an instruction that became dead as we nulled out the |
| 287 | // operand, and if it is 'trivially' dead, delete it in a future loop |
| 288 | // iteration. |
| 289 | if (Instruction *OpI = dyn_cast<Instruction>(OpV)) |
| 290 | if (isInstructionTriviallyDead(OpI)) |
| 291 | DeadInsts.push_back(OpI); |
| 292 | } |
| 293 | |
| 294 | I->eraseFromParent(); |
| 295 | } while (!DeadInsts.empty()); |
| 296 | |
| 297 | return true; |
| 298 | } |
| 299 | |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 300 | /// areAllUsesEqual - Check whether the uses of a value are all the same. |
| 301 | /// This is similar to Instruction::hasOneUse() except this will also return |
| 302 | /// true when there are no uses or multiple uses that all refer to the same |
| 303 | /// value. |
| 304 | static bool areAllUsesEqual(Instruction *I) { |
| 305 | Value::use_iterator UI = I->use_begin(); |
| 306 | Value::use_iterator UE = I->use_end(); |
| 307 | if (UI == UE) |
| 308 | return true; |
| 309 | |
| 310 | User *TheUse = *UI; |
| 311 | for (++UI; UI != UE; ++UI) { |
| 312 | if (*UI != TheUse) |
| 313 | return false; |
| 314 | } |
| 315 | return true; |
| 316 | } |
| 317 | |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 318 | /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively |
| 319 | /// dead PHI node, due to being a def-use chain of single-use nodes that |
| 320 | /// either forms a cycle or is terminated by a trivially dead instruction, |
| 321 | /// delete it. If that makes any of its operands trivially dead, delete them |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 322 | /// too, recursively. Return true if a change was made. |
| 323 | bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) { |
| 324 | SmallPtrSet<Instruction*, 4> Visited; |
| 325 | for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); |
| 326 | I = cast<Instruction>(*I->use_begin())) { |
| 327 | if (I->use_empty()) |
| 328 | return RecursivelyDeleteTriviallyDeadInstructions(I); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 329 | |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 330 | // If we find an instruction more than once, we're on a cycle that |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 331 | // won't prove fruitful. |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 332 | if (!Visited.insert(I)) { |
| 333 | // Break the cycle and delete the instruction and its operands. |
| 334 | I->replaceAllUsesWith(UndefValue::get(I->getType())); |
| 335 | (void)RecursivelyDeleteTriviallyDeadInstructions(I); |
| 336 | return true; |
| 337 | } |
| 338 | } |
| 339 | return false; |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 340 | } |
| 341 | |
| 342 | /// SimplifyInstructionsInBlock - Scan the specified basic block and try to |
| 343 | /// simplify any instructions in it and recursively delete dead instructions. |
| 344 | /// |
| 345 | /// This returns true if it changed the code, note that it can delete |
| 346 | /// instructions in other blocks as well in this block. |
| 347 | bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) { |
| 348 | bool MadeChange = false; |
| 349 | for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { |
| 350 | Instruction *Inst = BI++; |
| 351 | |
| 352 | if (Value *V = SimplifyInstruction(Inst, TD)) { |
| 353 | WeakVH BIHandle(BI); |
| 354 | ReplaceAndSimplifyAllUses(Inst, V, TD); |
| 355 | MadeChange = true; |
| 356 | if (BIHandle != BI) |
| 357 | BI = BB->begin(); |
| 358 | continue; |
| 359 | } |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 360 | |
| 361 | if (Inst->isTerminator()) |
| 362 | break; |
| 363 | |
| 364 | WeakVH BIHandle(BI); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 365 | MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 366 | if (BIHandle != BI) |
| 367 | BI = BB->begin(); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 368 | } |
| 369 | return MadeChange; |
| 370 | } |
| 371 | |
| 372 | //===----------------------------------------------------------------------===// |
| 373 | // Control Flow Graph Restructuring. |
| 374 | // |
| 375 | |
| 376 | |
| 377 | /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this |
| 378 | /// method is called when we're about to delete Pred as a predecessor of BB. If |
| 379 | /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. |
| 380 | /// |
| 381 | /// Unlike the removePredecessor method, this attempts to simplify uses of PHI |
| 382 | /// nodes that collapse into identity values. For example, if we have: |
| 383 | /// x = phi(1, 0, 0, 0) |
| 384 | /// y = and x, z |
| 385 | /// |
| 386 | /// .. and delete the predecessor corresponding to the '1', this will attempt to |
| 387 | /// recursively fold the and to 0. |
| 388 | void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, |
| 389 | TargetData *TD) { |
| 390 | // This only adjusts blocks with PHI nodes. |
| 391 | if (!isa<PHINode>(BB->begin())) |
| 392 | return; |
| 393 | |
| 394 | // Remove the entries for Pred from the PHI nodes in BB, but do not simplify |
| 395 | // them down. This will leave us with single entry phi nodes and other phis |
| 396 | // that can be removed. |
| 397 | BB->removePredecessor(Pred, true); |
| 398 | |
| 399 | WeakVH PhiIt = &BB->front(); |
| 400 | while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { |
| 401 | PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 402 | |
| 403 | Value *PNV = SimplifyInstruction(PN, TD); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 404 | if (PNV == 0) continue; |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 405 | |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 406 | // If we're able to simplify the phi to a single value, substitute the new |
| 407 | // value into all of its uses. |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 408 | assert(PNV != PN && "SimplifyInstruction broken!"); |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 409 | |
| 410 | Value *OldPhiIt = PhiIt; |
| 411 | ReplaceAndSimplifyAllUses(PN, PNV, TD); |
| 412 | |
| 413 | // If recursive simplification ended up deleting the next PHI node we would |
| 414 | // iterate to, then our iterator is invalid, restart scanning from the top |
| 415 | // of the block. |
| 416 | if (PhiIt != OldPhiIt) PhiIt = &BB->front(); |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | |
| 421 | /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its |
| 422 | /// predecessor is known to have one successor (DestBB!). Eliminate the edge |
| 423 | /// between them, moving the instructions in the predecessor into DestBB and |
| 424 | /// deleting the predecessor block. |
| 425 | /// |
| 426 | void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) { |
| 427 | // If BB has single-entry PHI nodes, fold them. |
| 428 | while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { |
| 429 | Value *NewVal = PN->getIncomingValue(0); |
| 430 | // Replace self referencing PHI with undef, it must be dead. |
| 431 | if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); |
| 432 | PN->replaceAllUsesWith(NewVal); |
| 433 | PN->eraseFromParent(); |
| 434 | } |
| 435 | |
| 436 | BasicBlock *PredBB = DestBB->getSinglePredecessor(); |
| 437 | assert(PredBB && "Block doesn't have a single predecessor!"); |
| 438 | |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 439 | // Zap anything that took the address of DestBB. Not doing this will give the |
| 440 | // address an invalid value. |
| 441 | if (DestBB->hasAddressTaken()) { |
| 442 | BlockAddress *BA = BlockAddress::get(DestBB); |
| 443 | Constant *Replacement = |
| 444 | ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); |
| 445 | BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, |
| 446 | BA->getType())); |
| 447 | BA->destroyConstant(); |
| 448 | } |
| 449 | |
| 450 | // Anything that branched to PredBB now branches to DestBB. |
| 451 | PredBB->replaceAllUsesWith(DestBB); |
| 452 | |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 453 | // Splice all the instructions from PredBB to DestBB. |
| 454 | PredBB->getTerminator()->eraseFromParent(); |
| 455 | DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); |
| 456 | |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 457 | if (P) { |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 458 | DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>(); |
| 459 | if (DT) { |
| 460 | BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); |
| 461 | DT->changeImmediateDominator(DestBB, PredBBIDom); |
| 462 | DT->eraseNode(PredBB); |
| 463 | } |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 464 | ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>(); |
| 465 | if (PI) { |
| 466 | PI->replaceAllUses(PredBB, DestBB); |
| 467 | PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB)); |
| 468 | } |
| 469 | } |
| 470 | // Nuke BB. |
| 471 | PredBB->eraseFromParent(); |
| 472 | } |
| 473 | |
| 474 | /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an |
| 475 | /// almost-empty BB ending in an unconditional branch to Succ, into succ. |
| 476 | /// |
| 477 | /// Assumption: Succ is the single successor for BB. |
| 478 | /// |
| 479 | static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { |
| 480 | assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); |
| 481 | |
| 482 | DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " |
| 483 | << Succ->getName() << "\n"); |
| 484 | // Shortcut, if there is only a single predecessor it must be BB and merging |
| 485 | // is always safe |
| 486 | if (Succ->getSinglePredecessor()) return true; |
| 487 | |
| 488 | // Make a list of the predecessors of BB |
| 489 | typedef SmallPtrSet<BasicBlock*, 16> BlockSet; |
| 490 | BlockSet BBPreds(pred_begin(BB), pred_end(BB)); |
| 491 | |
| 492 | // Use that list to make another list of common predecessors of BB and Succ |
| 493 | BlockSet CommonPreds; |
| 494 | for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ); |
| 495 | PI != PE; ++PI) { |
| 496 | BasicBlock *P = *PI; |
| 497 | if (BBPreds.count(P)) |
| 498 | CommonPreds.insert(P); |
| 499 | } |
| 500 | |
| 501 | // Shortcut, if there are no common predecessors, merging is always safe |
| 502 | if (CommonPreds.empty()) |
| 503 | return true; |
| 504 | |
| 505 | // Look at all the phi nodes in Succ, to see if they present a conflict when |
| 506 | // merging these blocks |
| 507 | for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { |
| 508 | PHINode *PN = cast<PHINode>(I); |
| 509 | |
| 510 | // If the incoming value from BB is again a PHINode in |
| 511 | // BB which has the same incoming value for *PI as PN does, we can |
| 512 | // merge the phi nodes and then the blocks can still be merged |
| 513 | PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); |
| 514 | if (BBPN && BBPN->getParent() == BB) { |
| 515 | for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end(); |
| 516 | PI != PE; PI++) { |
| 517 | if (BBPN->getIncomingValueForBlock(*PI) |
| 518 | != PN->getIncomingValueForBlock(*PI)) { |
| 519 | DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " |
| 520 | << Succ->getName() << " is conflicting with " |
| 521 | << BBPN->getName() << " with regard to common predecessor " |
| 522 | << (*PI)->getName() << "\n"); |
| 523 | return false; |
| 524 | } |
| 525 | } |
| 526 | } else { |
| 527 | Value* Val = PN->getIncomingValueForBlock(BB); |
| 528 | for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end(); |
| 529 | PI != PE; PI++) { |
| 530 | // See if the incoming value for the common predecessor is equal to the |
| 531 | // one for BB, in which case this phi node will not prevent the merging |
| 532 | // of the block. |
| 533 | if (Val != PN->getIncomingValueForBlock(*PI)) { |
| 534 | DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " |
| 535 | << Succ->getName() << " is conflicting with regard to common " |
| 536 | << "predecessor " << (*PI)->getName() << "\n"); |
| 537 | return false; |
| 538 | } |
| 539 | } |
| 540 | } |
| 541 | } |
| 542 | |
| 543 | return true; |
| 544 | } |
| 545 | |
| 546 | /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an |
| 547 | /// unconditional branch, and contains no instructions other than PHI nodes, |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 548 | /// potential side-effect free intrinsics and the branch. If possible, |
| 549 | /// eliminate BB by rewriting all the predecessors to branch to the successor |
| 550 | /// block and return true. If we can't transform, return false. |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 551 | bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 552 | assert(BB != &BB->getParent()->getEntryBlock() && |
| 553 | "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); |
| 554 | |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 555 | // We can't eliminate infinite loops. |
| 556 | BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); |
| 557 | if (BB == Succ) return false; |
| 558 | |
| 559 | // Check to see if merging these blocks would cause conflicts for any of the |
| 560 | // phi nodes in BB or Succ. If not, we can safely merge. |
| 561 | if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; |
| 562 | |
| 563 | // Check for cases where Succ has multiple predecessors and a PHI node in BB |
| 564 | // has uses which will not disappear when the PHI nodes are merged. It is |
| 565 | // possible to handle such cases, but difficult: it requires checking whether |
| 566 | // BB dominates Succ, which is non-trivial to calculate in the case where |
| 567 | // Succ has multiple predecessors. Also, it requires checking whether |
| 568 | // constructing the necessary self-referential PHI node doesn't intoduce any |
| 569 | // conflicts; this isn't too difficult, but the previous code for doing this |
| 570 | // was incorrect. |
| 571 | // |
| 572 | // Note that if this check finds a live use, BB dominates Succ, so BB is |
| 573 | // something like a loop pre-header (or rarely, a part of an irreducible CFG); |
| 574 | // folding the branch isn't profitable in that case anyway. |
| 575 | if (!Succ->getSinglePredecessor()) { |
| 576 | BasicBlock::iterator BBI = BB->begin(); |
| 577 | while (isa<PHINode>(*BBI)) { |
| 578 | for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); |
| 579 | UI != E; ++UI) { |
| 580 | if (PHINode* PN = dyn_cast<PHINode>(*UI)) { |
| 581 | if (PN->getIncomingBlock(UI) != BB) |
| 582 | return false; |
| 583 | } else { |
| 584 | return false; |
| 585 | } |
| 586 | } |
| 587 | ++BBI; |
| 588 | } |
| 589 | } |
| 590 | |
| 591 | DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); |
| 592 | |
| 593 | if (isa<PHINode>(Succ->begin())) { |
| 594 | // If there is more than one pred of succ, and there are PHI nodes in |
| 595 | // the successor, then we need to add incoming edges for the PHI nodes |
| 596 | // |
| 597 | const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); |
| 598 | |
| 599 | // Loop over all of the PHI nodes in the successor of BB. |
| 600 | for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { |
| 601 | PHINode *PN = cast<PHINode>(I); |
| 602 | Value *OldVal = PN->removeIncomingValue(BB, false); |
| 603 | assert(OldVal && "No entry in PHI for Pred BB!"); |
| 604 | |
| 605 | // If this incoming value is one of the PHI nodes in BB, the new entries |
| 606 | // in the PHI node are the entries from the old PHI. |
| 607 | if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { |
| 608 | PHINode *OldValPN = cast<PHINode>(OldVal); |
| 609 | for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) |
| 610 | // Note that, since we are merging phi nodes and BB and Succ might |
| 611 | // have common predecessors, we could end up with a phi node with |
| 612 | // identical incoming branches. This will be cleaned up later (and |
| 613 | // will trigger asserts if we try to clean it up now, without also |
| 614 | // simplifying the corresponding conditional branch). |
| 615 | PN->addIncoming(OldValPN->getIncomingValue(i), |
| 616 | OldValPN->getIncomingBlock(i)); |
| 617 | } else { |
| 618 | // Add an incoming value for each of the new incoming values. |
| 619 | for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) |
| 620 | PN->addIncoming(OldVal, BBPreds[i]); |
| 621 | } |
| 622 | } |
| 623 | } |
| 624 | |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 625 | if (Succ->getSinglePredecessor()) { |
| 626 | // BB is the only predecessor of Succ, so Succ will end up with exactly |
| 627 | // the same predecessors BB had. |
| 628 | |
| 629 | // Copy over any phi, debug or lifetime instruction. |
| 630 | BB->getTerminator()->eraseFromParent(); |
| 631 | Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList()); |
| 632 | } else { |
| 633 | while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 634 | // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. |
| 635 | assert(PN->use_empty() && "There shouldn't be any uses here!"); |
| 636 | PN->eraseFromParent(); |
| 637 | } |
| 638 | } |
| 639 | |
| 640 | // Everything that jumped to BB now goes to Succ. |
| 641 | BB->replaceAllUsesWith(Succ); |
| 642 | if (!Succ->hasName()) Succ->takeName(BB); |
| 643 | BB->eraseFromParent(); // Delete the old basic block. |
| 644 | return true; |
| 645 | } |
| 646 | |
| 647 | /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI |
| 648 | /// nodes in this block. This doesn't try to be clever about PHI nodes |
| 649 | /// which differ only in the order of the incoming values, but instcombine |
| 650 | /// orders them so it usually won't matter. |
| 651 | /// |
| 652 | bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { |
| 653 | bool Changed = false; |
| 654 | |
| 655 | // This implementation doesn't currently consider undef operands |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 656 | // specially. Theoretically, two phis which are identical except for |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 657 | // one having an undef where the other doesn't could be collapsed. |
| 658 | |
| 659 | // Map from PHI hash values to PHI nodes. If multiple PHIs have |
| 660 | // the same hash value, the element is the first PHI in the |
| 661 | // linked list in CollisionMap. |
| 662 | DenseMap<uintptr_t, PHINode *> HashMap; |
| 663 | |
| 664 | // Maintain linked lists of PHI nodes with common hash values. |
| 665 | DenseMap<PHINode *, PHINode *> CollisionMap; |
| 666 | |
| 667 | // Examine each PHI. |
| 668 | for (BasicBlock::iterator I = BB->begin(); |
| 669 | PHINode *PN = dyn_cast<PHINode>(I++); ) { |
| 670 | // Compute a hash value on the operands. Instcombine will likely have sorted |
| 671 | // them, which helps expose duplicates, but we have to check all the |
| 672 | // operands to be safe in case instcombine hasn't run. |
| 673 | uintptr_t Hash = 0; |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 674 | // This hash algorithm is quite weak as hash functions go, but it seems |
| 675 | // to do a good enough job for this particular purpose, and is very quick. |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 676 | for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) { |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 677 | Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I)); |
| 678 | Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); |
| 679 | } |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 680 | for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end(); |
| 681 | I != E; ++I) { |
| 682 | Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I)); |
| 683 | Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); |
| 684 | } |
| 685 | // Avoid colliding with the DenseMap sentinels ~0 and ~0-1. |
| 686 | Hash >>= 1; |
John Bauman | 8940182 | 2014-05-06 15:04:28 -0400 | [diff] [blame] | 687 | // If we've never seen this hash value before, it's a unique PHI. |
| 688 | std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair = |
| 689 | HashMap.insert(std::make_pair(Hash, PN)); |
| 690 | if (Pair.second) continue; |
| 691 | // Otherwise it's either a duplicate or a hash collision. |
| 692 | for (PHINode *OtherPN = Pair.first->second; ; ) { |
| 693 | if (OtherPN->isIdenticalTo(PN)) { |
| 694 | // A duplicate. Replace this PHI with its duplicate. |
| 695 | PN->replaceAllUsesWith(OtherPN); |
| 696 | PN->eraseFromParent(); |
| 697 | Changed = true; |
| 698 | break; |
| 699 | } |
| 700 | // A non-duplicate hash collision. |
| 701 | DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN); |
| 702 | if (I == CollisionMap.end()) { |
| 703 | // Set this PHI to be the head of the linked list of colliding PHIs. |
| 704 | PHINode *Old = Pair.first->second; |
| 705 | Pair.first->second = PN; |
| 706 | CollisionMap[PN] = Old; |
| 707 | break; |
| 708 | } |
| 709 | // Procede to the next PHI in the list. |
| 710 | OtherPN = I->second; |
| 711 | } |
| 712 | } |
| 713 | |
| 714 | return Changed; |
| 715 | } |
John Bauman | 19bac1e | 2014-05-06 15:23:49 -0400 | [diff] [blame^] | 716 | |
| 717 | /// enforceKnownAlignment - If the specified pointer points to an object that |
| 718 | /// we control, modify the object's alignment to PrefAlign. This isn't |
| 719 | /// often possible though. If alignment is important, a more reliable approach |
| 720 | /// is to simply align all global variables and allocation instructions to |
| 721 | /// their preferred alignment from the beginning. |
| 722 | /// |
| 723 | static unsigned enforceKnownAlignment(Value *V, unsigned Align, |
| 724 | unsigned PrefAlign, const TargetData *TD) { |
| 725 | V = V->stripPointerCasts(); |
| 726 | |
| 727 | if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { |
| 728 | // If the preferred alignment is greater than the natural stack alignment |
| 729 | // then don't round up. This avoids dynamic stack realignment. |
| 730 | if (TD && TD->exceedsNaturalStackAlignment(PrefAlign)) |
| 731 | return Align; |
| 732 | // If there is a requested alignment and if this is an alloca, round up. |
| 733 | if (AI->getAlignment() >= PrefAlign) |
| 734 | return AI->getAlignment(); |
| 735 | AI->setAlignment(PrefAlign); |
| 736 | return PrefAlign; |
| 737 | } |
| 738 | |
| 739 | if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| 740 | // If there is a large requested alignment and we can, bump up the alignment |
| 741 | // of the global. |
| 742 | if (GV->isDeclaration()) return Align; |
| 743 | |
| 744 | if (GV->getAlignment() >= PrefAlign) |
| 745 | return GV->getAlignment(); |
| 746 | // We can only increase the alignment of the global if it has no alignment |
| 747 | // specified or if it is not assigned a section. If it is assigned a |
| 748 | // section, the global could be densely packed with other objects in the |
| 749 | // section, increasing the alignment could cause padding issues. |
| 750 | if (!GV->hasSection() || GV->getAlignment() == 0) |
| 751 | GV->setAlignment(PrefAlign); |
| 752 | return GV->getAlignment(); |
| 753 | } |
| 754 | |
| 755 | return Align; |
| 756 | } |
| 757 | |
| 758 | /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that |
| 759 | /// we can determine, return it, otherwise return 0. If PrefAlign is specified, |
| 760 | /// and it is more than the alignment of the ultimate object, see if we can |
| 761 | /// increase the alignment of the ultimate object, making this check succeed. |
| 762 | unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, |
| 763 | const TargetData *TD) { |
| 764 | assert(V->getType()->isPointerTy() && |
| 765 | "getOrEnforceKnownAlignment expects a pointer!"); |
| 766 | unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64; |
| 767 | APInt Mask = APInt::getAllOnesValue(BitWidth); |
| 768 | APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); |
| 769 | ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD); |
| 770 | unsigned TrailZ = KnownZero.countTrailingOnes(); |
| 771 | |
| 772 | // Avoid trouble with rediculously large TrailZ values, such as |
| 773 | // those computed from a null pointer. |
| 774 | TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); |
| 775 | |
| 776 | unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); |
| 777 | |
| 778 | // LLVM doesn't support alignments larger than this currently. |
| 779 | Align = std::min(Align, +Value::MaximumAlignment); |
| 780 | |
| 781 | if (PrefAlign > Align) |
| 782 | Align = enforceKnownAlignment(V, Align, PrefAlign, TD); |
| 783 | |
| 784 | // We don't need to make any adjustment. |
| 785 | return Align; |
| 786 | } |
| 787 | |
| 788 | ///===---------------------------------------------------------------------===// |
| 789 | /// Dbg Intrinsic utilities |
| 790 | /// |
| 791 | |
| 792 | /// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value |
| 793 | /// that has an associated llvm.dbg.decl intrinsic. |
| 794 | bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, |
| 795 | StoreInst *SI, DIBuilder &Builder) { |
| 796 | DIVariable DIVar(DDI->getVariable()); |
| 797 | if (!DIVar.Verify()) |
| 798 | return false; |
| 799 | |
| 800 | Instruction *DbgVal = NULL; |
| 801 | // If an argument is zero extended then use argument directly. The ZExt |
| 802 | // may be zapped by an optimization pass in future. |
| 803 | Argument *ExtendedArg = NULL; |
| 804 | if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) |
| 805 | ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); |
| 806 | if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) |
| 807 | ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); |
| 808 | if (ExtendedArg) |
| 809 | DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI); |
| 810 | else |
| 811 | DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI); |
| 812 | |
| 813 | // Propagate any debug metadata from the store onto the dbg.value. |
| 814 | DebugLoc SIDL = SI->getDebugLoc(); |
| 815 | if (!SIDL.isUnknown()) |
| 816 | DbgVal->setDebugLoc(SIDL); |
| 817 | // Otherwise propagate debug metadata from dbg.declare. |
| 818 | else |
| 819 | DbgVal->setDebugLoc(DDI->getDebugLoc()); |
| 820 | return true; |
| 821 | } |
| 822 | |
| 823 | /// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value |
| 824 | /// that has an associated llvm.dbg.decl intrinsic. |
| 825 | bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, |
| 826 | LoadInst *LI, DIBuilder &Builder) { |
| 827 | DIVariable DIVar(DDI->getVariable()); |
| 828 | if (!DIVar.Verify()) |
| 829 | return false; |
| 830 | |
| 831 | Instruction *DbgVal = |
| 832 | Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, |
| 833 | DIVar, LI); |
| 834 | |
| 835 | // Propagate any debug metadata from the store onto the dbg.value. |
| 836 | DebugLoc LIDL = LI->getDebugLoc(); |
| 837 | if (!LIDL.isUnknown()) |
| 838 | DbgVal->setDebugLoc(LIDL); |
| 839 | // Otherwise propagate debug metadata from dbg.declare. |
| 840 | else |
| 841 | DbgVal->setDebugLoc(DDI->getDebugLoc()); |
| 842 | return true; |
| 843 | } |
| 844 | |
| 845 | /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set |
| 846 | /// of llvm.dbg.value intrinsics. |
| 847 | bool llvm::LowerDbgDeclare(Function &F) { |
| 848 | DIBuilder DIB(*F.getParent()); |
| 849 | SmallVector<DbgDeclareInst *, 4> Dbgs; |
| 850 | for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) |
| 851 | for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) { |
| 852 | if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI)) |
| 853 | Dbgs.push_back(DDI); |
| 854 | } |
| 855 | if (Dbgs.empty()) |
| 856 | return false; |
| 857 | |
| 858 | for (SmallVector<DbgDeclareInst *, 4>::iterator I = Dbgs.begin(), |
| 859 | E = Dbgs.end(); I != E; ++I) { |
| 860 | DbgDeclareInst *DDI = *I; |
| 861 | if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) { |
| 862 | bool RemoveDDI = true; |
| 863 | for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); |
| 864 | UI != E; ++UI) |
| 865 | if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) |
| 866 | ConvertDebugDeclareToDebugValue(DDI, SI, DIB); |
| 867 | else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) |
| 868 | ConvertDebugDeclareToDebugValue(DDI, LI, DIB); |
| 869 | else |
| 870 | RemoveDDI = false; |
| 871 | if (RemoveDDI) |
| 872 | DDI->eraseFromParent(); |
| 873 | } |
| 874 | } |
| 875 | return true; |
| 876 | } |
| 877 | |
| 878 | /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the |
| 879 | /// alloca 'V', if any. |
| 880 | DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { |
| 881 | if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V)) |
| 882 | for (Value::use_iterator UI = DebugNode->use_begin(), |
| 883 | E = DebugNode->use_end(); UI != E; ++UI) |
| 884 | if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI)) |
| 885 | return DDI; |
| 886 | |
| 887 | return 0; |
| 888 | } |