blob: 7034feb227ad94c21c222e84515219b8a23edcc8 [file] [log] [blame]
John Bauman89401822014-05-06 15:04:28 -04001//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/GlobalAlias.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Instructions.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/IntrinsicInst.h"
John Bauman19bac1e2014-05-06 15:23:49 -040023#include "llvm/Metadata.h"
24#include "llvm/Operator.h"
John Bauman89401822014-05-06 15:04:28 -040025#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/SmallPtrSet.h"
John Bauman19bac1e2014-05-06 15:23:49 -040027#include "llvm/Analysis/DebugInfo.h"
28#include "llvm/Analysis/DIBuilder.h"
29#include "llvm/Analysis/Dominators.h"
John Bauman89401822014-05-06 15:04:28 -040030#include "llvm/Analysis/InstructionSimplify.h"
31#include "llvm/Analysis/ProfileInfo.h"
John Bauman19bac1e2014-05-06 15:23:49 -040032#include "llvm/Analysis/ValueTracking.h"
John Bauman89401822014-05-06 15:04:28 -040033#include "llvm/Target/TargetData.h"
34#include "llvm/Support/CFG.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/GetElementPtrTypeIterator.h"
John Bauman19bac1e2014-05-06 15:23:49 -040037#include "llvm/Support/IRBuilder.h"
John Bauman89401822014-05-06 15:04:28 -040038#include "llvm/Support/MathExtras.h"
39#include "llvm/Support/ValueHandle.h"
40#include "llvm/Support/raw_ostream.h"
41using namespace llvm;
42
43//===----------------------------------------------------------------------===//
44// Local constant propagation.
45//
46
John Bauman19bac1e2014-05-06 15:23:49 -040047/// ConstantFoldTerminator - If a terminator instruction is predicated on a
48/// constant value, convert it into an unconditional branch to the constant
49/// destination. This is a nontrivial operation because the successors of this
50/// basic block must have their PHI nodes updated.
51/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
52/// conditions and indirectbr addresses this might make dead if
53/// DeleteDeadConditions is true.
54bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions) {
John Bauman89401822014-05-06 15:04:28 -040055 TerminatorInst *T = BB->getTerminator();
John Bauman19bac1e2014-05-06 15:23:49 -040056 IRBuilder<> Builder(T);
John Bauman89401822014-05-06 15:04:28 -040057
58 // Branch - See if we are conditional jumping on constant
59 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
60 if (BI->isUnconditional()) return false; // Can't optimize uncond branch
61 BasicBlock *Dest1 = BI->getSuccessor(0);
62 BasicBlock *Dest2 = BI->getSuccessor(1);
63
64 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
65 // Are we branching on constant?
66 // YES. Change to unconditional branch...
67 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
68 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
69
70 //cerr << "Function: " << T->getParent()->getParent()
71 // << "\nRemoving branch from " << T->getParent()
72 // << "\n\nTo: " << OldDest << endl;
73
74 // Let the basic block know that we are letting go of it. Based on this,
75 // it will adjust it's PHI nodes.
John Bauman19bac1e2014-05-06 15:23:49 -040076 OldDest->removePredecessor(BB);
John Bauman89401822014-05-06 15:04:28 -040077
John Bauman19bac1e2014-05-06 15:23:49 -040078 // Replace the conditional branch with an unconditional one.
79 Builder.CreateBr(Destination);
80 BI->eraseFromParent();
John Bauman89401822014-05-06 15:04:28 -040081 return true;
82 }
83
84 if (Dest2 == Dest1) { // Conditional branch to same location?
85 // This branch matches something like this:
86 // br bool %cond, label %Dest, label %Dest
87 // and changes it into: br label %Dest
88
89 // Let the basic block know that we are letting go of one copy of it.
90 assert(BI->getParent() && "Terminator not inserted in block!");
91 Dest1->removePredecessor(BI->getParent());
92
John Bauman19bac1e2014-05-06 15:23:49 -040093 // Replace the conditional branch with an unconditional one.
94 Builder.CreateBr(Dest1);
95 Value *Cond = BI->getCondition();
96 BI->eraseFromParent();
97 if (DeleteDeadConditions)
98 RecursivelyDeleteTriviallyDeadInstructions(Cond);
John Bauman89401822014-05-06 15:04:28 -040099 return true;
100 }
101 return false;
102 }
103
104 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
105 // If we are switching on a constant, we can convert the switch into a
106 // single branch instruction!
107 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
108 BasicBlock *TheOnlyDest = SI->getSuccessor(0); // The default dest
109 BasicBlock *DefaultDest = TheOnlyDest;
110 assert(TheOnlyDest == SI->getDefaultDest() &&
111 "Default destination is not successor #0?");
112
113 // Figure out which case it goes to.
114 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
115 // Found case matching a constant operand?
116 if (SI->getSuccessorValue(i) == CI) {
117 TheOnlyDest = SI->getSuccessor(i);
118 break;
119 }
120
121 // Check to see if this branch is going to the same place as the default
122 // dest. If so, eliminate it as an explicit compare.
123 if (SI->getSuccessor(i) == DefaultDest) {
124 // Remove this entry.
125 DefaultDest->removePredecessor(SI->getParent());
126 SI->removeCase(i);
127 --i; --e; // Don't skip an entry...
128 continue;
129 }
130
131 // Otherwise, check to see if the switch only branches to one destination.
132 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
133 // destinations.
134 if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
135 }
136
137 if (CI && !TheOnlyDest) {
138 // Branching on a constant, but not any of the cases, go to the default
139 // successor.
140 TheOnlyDest = SI->getDefaultDest();
141 }
142
143 // If we found a single destination that we can fold the switch into, do so
144 // now.
145 if (TheOnlyDest) {
146 // Insert the new branch.
John Bauman19bac1e2014-05-06 15:23:49 -0400147 Builder.CreateBr(TheOnlyDest);
John Bauman89401822014-05-06 15:04:28 -0400148 BasicBlock *BB = SI->getParent();
149
150 // Remove entries from PHI nodes which we no longer branch to...
151 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
152 // Found case matching a constant operand?
153 BasicBlock *Succ = SI->getSuccessor(i);
154 if (Succ == TheOnlyDest)
155 TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest
156 else
157 Succ->removePredecessor(BB);
158 }
159
160 // Delete the old switch.
John Bauman19bac1e2014-05-06 15:23:49 -0400161 Value *Cond = SI->getCondition();
162 SI->eraseFromParent();
163 if (DeleteDeadConditions)
164 RecursivelyDeleteTriviallyDeadInstructions(Cond);
John Bauman89401822014-05-06 15:04:28 -0400165 return true;
166 }
167
168 if (SI->getNumSuccessors() == 2) {
169 // Otherwise, we can fold this switch into a conditional branch
170 // instruction if it has only one non-default destination.
John Bauman19bac1e2014-05-06 15:23:49 -0400171 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
172 SI->getSuccessorValue(1), "cond");
173
John Bauman89401822014-05-06 15:04:28 -0400174 // Insert the new branch.
John Bauman19bac1e2014-05-06 15:23:49 -0400175 Builder.CreateCondBr(Cond, SI->getSuccessor(1), SI->getSuccessor(0));
John Bauman89401822014-05-06 15:04:28 -0400176
177 // Delete the old switch.
178 SI->eraseFromParent();
179 return true;
180 }
181 return false;
182 }
183
184 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
185 // indirectbr blockaddress(@F, @BB) -> br label @BB
186 if (BlockAddress *BA =
187 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
188 BasicBlock *TheOnlyDest = BA->getBasicBlock();
189 // Insert the new branch.
John Bauman19bac1e2014-05-06 15:23:49 -0400190 Builder.CreateBr(TheOnlyDest);
John Bauman89401822014-05-06 15:04:28 -0400191
192 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
193 if (IBI->getDestination(i) == TheOnlyDest)
194 TheOnlyDest = 0;
195 else
196 IBI->getDestination(i)->removePredecessor(IBI->getParent());
197 }
John Bauman19bac1e2014-05-06 15:23:49 -0400198 Value *Address = IBI->getAddress();
John Bauman89401822014-05-06 15:04:28 -0400199 IBI->eraseFromParent();
John Bauman19bac1e2014-05-06 15:23:49 -0400200 if (DeleteDeadConditions)
201 RecursivelyDeleteTriviallyDeadInstructions(Address);
John Bauman89401822014-05-06 15:04:28 -0400202
203 // If we didn't find our destination in the IBI successor list, then we
204 // have undefined behavior. Replace the unconditional branch with an
205 // 'unreachable' instruction.
206 if (TheOnlyDest) {
207 BB->getTerminator()->eraseFromParent();
208 new UnreachableInst(BB->getContext(), BB);
209 }
210
211 return true;
212 }
213 }
214
215 return false;
216}
217
218
219//===----------------------------------------------------------------------===//
220// Local dead code elimination.
221//
222
223/// isInstructionTriviallyDead - Return true if the result produced by the
224/// instruction is not used, and the instruction has no side effects.
225///
226bool llvm::isInstructionTriviallyDead(Instruction *I) {
227 if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
228
John Bauman19bac1e2014-05-06 15:23:49 -0400229 // We don't want the landingpad instruction removed by anything this general.
230 if (isa<LandingPadInst>(I))
231 return false;
John Bauman89401822014-05-06 15:04:28 -0400232
John Bauman19bac1e2014-05-06 15:23:49 -0400233 // We don't want debug info removed by anything this general, unless
234 // debug info is empty.
235 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
236 if (DDI->getAddress())
237 return false;
238 return true;
239 }
240 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
241 if (DVI->getValue())
242 return false;
243 return true;
244 }
John Bauman89401822014-05-06 15:04:28 -0400245
246 if (!I->mayHaveSideEffects()) return true;
247
248 // Special case intrinsics that "may have side effects" but can be deleted
249 // when dead.
John Bauman19bac1e2014-05-06 15:23:49 -0400250 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
John Bauman89401822014-05-06 15:04:28 -0400251 // Safe to delete llvm.stacksave if dead.
252 if (II->getIntrinsicID() == Intrinsic::stacksave)
253 return true;
John Bauman19bac1e2014-05-06 15:23:49 -0400254
255 // Lifetime intrinsics are dead when their right-hand is undef.
256 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
257 II->getIntrinsicID() == Intrinsic::lifetime_end)
258 return isa<UndefValue>(II->getArgOperand(1));
259 }
John Bauman89401822014-05-06 15:04:28 -0400260 return false;
261}
262
263/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
264/// trivially dead instruction, delete it. If that makes any of its operands
265/// trivially dead, delete them too, recursively. Return true if any
266/// instructions were deleted.
267bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
268 Instruction *I = dyn_cast<Instruction>(V);
269 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
270 return false;
271
272 SmallVector<Instruction*, 16> DeadInsts;
273 DeadInsts.push_back(I);
274
275 do {
276 I = DeadInsts.pop_back_val();
277
278 // Null out all of the instruction's operands to see if any operand becomes
279 // dead as we go.
280 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
281 Value *OpV = I->getOperand(i);
282 I->setOperand(i, 0);
283
284 if (!OpV->use_empty()) continue;
285
286 // If the operand is an instruction that became dead as we nulled out the
287 // operand, and if it is 'trivially' dead, delete it in a future loop
288 // iteration.
289 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
290 if (isInstructionTriviallyDead(OpI))
291 DeadInsts.push_back(OpI);
292 }
293
294 I->eraseFromParent();
295 } while (!DeadInsts.empty());
296
297 return true;
298}
299
John Bauman19bac1e2014-05-06 15:23:49 -0400300/// areAllUsesEqual - Check whether the uses of a value are all the same.
301/// This is similar to Instruction::hasOneUse() except this will also return
302/// true when there are no uses or multiple uses that all refer to the same
303/// value.
304static bool areAllUsesEqual(Instruction *I) {
305 Value::use_iterator UI = I->use_begin();
306 Value::use_iterator UE = I->use_end();
307 if (UI == UE)
308 return true;
309
310 User *TheUse = *UI;
311 for (++UI; UI != UE; ++UI) {
312 if (*UI != TheUse)
313 return false;
314 }
315 return true;
316}
317
John Bauman89401822014-05-06 15:04:28 -0400318/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
319/// dead PHI node, due to being a def-use chain of single-use nodes that
320/// either forms a cycle or is terminated by a trivially dead instruction,
321/// delete it. If that makes any of its operands trivially dead, delete them
John Bauman19bac1e2014-05-06 15:23:49 -0400322/// too, recursively. Return true if a change was made.
323bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
324 SmallPtrSet<Instruction*, 4> Visited;
325 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
326 I = cast<Instruction>(*I->use_begin())) {
327 if (I->use_empty())
328 return RecursivelyDeleteTriviallyDeadInstructions(I);
John Bauman89401822014-05-06 15:04:28 -0400329
John Bauman19bac1e2014-05-06 15:23:49 -0400330 // If we find an instruction more than once, we're on a cycle that
John Bauman89401822014-05-06 15:04:28 -0400331 // won't prove fruitful.
John Bauman19bac1e2014-05-06 15:23:49 -0400332 if (!Visited.insert(I)) {
333 // Break the cycle and delete the instruction and its operands.
334 I->replaceAllUsesWith(UndefValue::get(I->getType()));
335 (void)RecursivelyDeleteTriviallyDeadInstructions(I);
336 return true;
337 }
338 }
339 return false;
John Bauman89401822014-05-06 15:04:28 -0400340}
341
342/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
343/// simplify any instructions in it and recursively delete dead instructions.
344///
345/// This returns true if it changed the code, note that it can delete
346/// instructions in other blocks as well in this block.
347bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) {
348 bool MadeChange = false;
349 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
350 Instruction *Inst = BI++;
351
352 if (Value *V = SimplifyInstruction(Inst, TD)) {
353 WeakVH BIHandle(BI);
354 ReplaceAndSimplifyAllUses(Inst, V, TD);
355 MadeChange = true;
356 if (BIHandle != BI)
357 BI = BB->begin();
358 continue;
359 }
John Bauman19bac1e2014-05-06 15:23:49 -0400360
361 if (Inst->isTerminator())
362 break;
363
364 WeakVH BIHandle(BI);
John Bauman89401822014-05-06 15:04:28 -0400365 MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst);
John Bauman19bac1e2014-05-06 15:23:49 -0400366 if (BIHandle != BI)
367 BI = BB->begin();
John Bauman89401822014-05-06 15:04:28 -0400368 }
369 return MadeChange;
370}
371
372//===----------------------------------------------------------------------===//
373// Control Flow Graph Restructuring.
374//
375
376
377/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
378/// method is called when we're about to delete Pred as a predecessor of BB. If
379/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
380///
381/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
382/// nodes that collapse into identity values. For example, if we have:
383/// x = phi(1, 0, 0, 0)
384/// y = and x, z
385///
386/// .. and delete the predecessor corresponding to the '1', this will attempt to
387/// recursively fold the and to 0.
388void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
389 TargetData *TD) {
390 // This only adjusts blocks with PHI nodes.
391 if (!isa<PHINode>(BB->begin()))
392 return;
393
394 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
395 // them down. This will leave us with single entry phi nodes and other phis
396 // that can be removed.
397 BB->removePredecessor(Pred, true);
398
399 WeakVH PhiIt = &BB->front();
400 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
401 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
John Bauman19bac1e2014-05-06 15:23:49 -0400402
403 Value *PNV = SimplifyInstruction(PN, TD);
John Bauman89401822014-05-06 15:04:28 -0400404 if (PNV == 0) continue;
John Bauman19bac1e2014-05-06 15:23:49 -0400405
John Bauman89401822014-05-06 15:04:28 -0400406 // If we're able to simplify the phi to a single value, substitute the new
407 // value into all of its uses.
John Bauman19bac1e2014-05-06 15:23:49 -0400408 assert(PNV != PN && "SimplifyInstruction broken!");
John Bauman89401822014-05-06 15:04:28 -0400409
410 Value *OldPhiIt = PhiIt;
411 ReplaceAndSimplifyAllUses(PN, PNV, TD);
412
413 // If recursive simplification ended up deleting the next PHI node we would
414 // iterate to, then our iterator is invalid, restart scanning from the top
415 // of the block.
416 if (PhiIt != OldPhiIt) PhiIt = &BB->front();
417 }
418}
419
420
421/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
422/// predecessor is known to have one successor (DestBB!). Eliminate the edge
423/// between them, moving the instructions in the predecessor into DestBB and
424/// deleting the predecessor block.
425///
426void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
427 // If BB has single-entry PHI nodes, fold them.
428 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
429 Value *NewVal = PN->getIncomingValue(0);
430 // Replace self referencing PHI with undef, it must be dead.
431 if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
432 PN->replaceAllUsesWith(NewVal);
433 PN->eraseFromParent();
434 }
435
436 BasicBlock *PredBB = DestBB->getSinglePredecessor();
437 assert(PredBB && "Block doesn't have a single predecessor!");
438
John Bauman89401822014-05-06 15:04:28 -0400439 // Zap anything that took the address of DestBB. Not doing this will give the
440 // address an invalid value.
441 if (DestBB->hasAddressTaken()) {
442 BlockAddress *BA = BlockAddress::get(DestBB);
443 Constant *Replacement =
444 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
445 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
446 BA->getType()));
447 BA->destroyConstant();
448 }
449
450 // Anything that branched to PredBB now branches to DestBB.
451 PredBB->replaceAllUsesWith(DestBB);
452
John Bauman19bac1e2014-05-06 15:23:49 -0400453 // Splice all the instructions from PredBB to DestBB.
454 PredBB->getTerminator()->eraseFromParent();
455 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
456
John Bauman89401822014-05-06 15:04:28 -0400457 if (P) {
John Bauman19bac1e2014-05-06 15:23:49 -0400458 DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
459 if (DT) {
460 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
461 DT->changeImmediateDominator(DestBB, PredBBIDom);
462 DT->eraseNode(PredBB);
463 }
John Bauman89401822014-05-06 15:04:28 -0400464 ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
465 if (PI) {
466 PI->replaceAllUses(PredBB, DestBB);
467 PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
468 }
469 }
470 // Nuke BB.
471 PredBB->eraseFromParent();
472}
473
474/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
475/// almost-empty BB ending in an unconditional branch to Succ, into succ.
476///
477/// Assumption: Succ is the single successor for BB.
478///
479static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
480 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
481
482 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
483 << Succ->getName() << "\n");
484 // Shortcut, if there is only a single predecessor it must be BB and merging
485 // is always safe
486 if (Succ->getSinglePredecessor()) return true;
487
488 // Make a list of the predecessors of BB
489 typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
490 BlockSet BBPreds(pred_begin(BB), pred_end(BB));
491
492 // Use that list to make another list of common predecessors of BB and Succ
493 BlockSet CommonPreds;
494 for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
495 PI != PE; ++PI) {
496 BasicBlock *P = *PI;
497 if (BBPreds.count(P))
498 CommonPreds.insert(P);
499 }
500
501 // Shortcut, if there are no common predecessors, merging is always safe
502 if (CommonPreds.empty())
503 return true;
504
505 // Look at all the phi nodes in Succ, to see if they present a conflict when
506 // merging these blocks
507 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
508 PHINode *PN = cast<PHINode>(I);
509
510 // If the incoming value from BB is again a PHINode in
511 // BB which has the same incoming value for *PI as PN does, we can
512 // merge the phi nodes and then the blocks can still be merged
513 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
514 if (BBPN && BBPN->getParent() == BB) {
515 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
516 PI != PE; PI++) {
517 if (BBPN->getIncomingValueForBlock(*PI)
518 != PN->getIncomingValueForBlock(*PI)) {
519 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
520 << Succ->getName() << " is conflicting with "
521 << BBPN->getName() << " with regard to common predecessor "
522 << (*PI)->getName() << "\n");
523 return false;
524 }
525 }
526 } else {
527 Value* Val = PN->getIncomingValueForBlock(BB);
528 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
529 PI != PE; PI++) {
530 // See if the incoming value for the common predecessor is equal to the
531 // one for BB, in which case this phi node will not prevent the merging
532 // of the block.
533 if (Val != PN->getIncomingValueForBlock(*PI)) {
534 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
535 << Succ->getName() << " is conflicting with regard to common "
536 << "predecessor " << (*PI)->getName() << "\n");
537 return false;
538 }
539 }
540 }
541 }
542
543 return true;
544}
545
546/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
547/// unconditional branch, and contains no instructions other than PHI nodes,
John Bauman19bac1e2014-05-06 15:23:49 -0400548/// potential side-effect free intrinsics and the branch. If possible,
549/// eliminate BB by rewriting all the predecessors to branch to the successor
550/// block and return true. If we can't transform, return false.
John Bauman89401822014-05-06 15:04:28 -0400551bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
John Bauman19bac1e2014-05-06 15:23:49 -0400552 assert(BB != &BB->getParent()->getEntryBlock() &&
553 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
554
John Bauman89401822014-05-06 15:04:28 -0400555 // We can't eliminate infinite loops.
556 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
557 if (BB == Succ) return false;
558
559 // Check to see if merging these blocks would cause conflicts for any of the
560 // phi nodes in BB or Succ. If not, we can safely merge.
561 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
562
563 // Check for cases where Succ has multiple predecessors and a PHI node in BB
564 // has uses which will not disappear when the PHI nodes are merged. It is
565 // possible to handle such cases, but difficult: it requires checking whether
566 // BB dominates Succ, which is non-trivial to calculate in the case where
567 // Succ has multiple predecessors. Also, it requires checking whether
568 // constructing the necessary self-referential PHI node doesn't intoduce any
569 // conflicts; this isn't too difficult, but the previous code for doing this
570 // was incorrect.
571 //
572 // Note that if this check finds a live use, BB dominates Succ, so BB is
573 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
574 // folding the branch isn't profitable in that case anyway.
575 if (!Succ->getSinglePredecessor()) {
576 BasicBlock::iterator BBI = BB->begin();
577 while (isa<PHINode>(*BBI)) {
578 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
579 UI != E; ++UI) {
580 if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
581 if (PN->getIncomingBlock(UI) != BB)
582 return false;
583 } else {
584 return false;
585 }
586 }
587 ++BBI;
588 }
589 }
590
591 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
592
593 if (isa<PHINode>(Succ->begin())) {
594 // If there is more than one pred of succ, and there are PHI nodes in
595 // the successor, then we need to add incoming edges for the PHI nodes
596 //
597 const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
598
599 // Loop over all of the PHI nodes in the successor of BB.
600 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
601 PHINode *PN = cast<PHINode>(I);
602 Value *OldVal = PN->removeIncomingValue(BB, false);
603 assert(OldVal && "No entry in PHI for Pred BB!");
604
605 // If this incoming value is one of the PHI nodes in BB, the new entries
606 // in the PHI node are the entries from the old PHI.
607 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
608 PHINode *OldValPN = cast<PHINode>(OldVal);
609 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
610 // Note that, since we are merging phi nodes and BB and Succ might
611 // have common predecessors, we could end up with a phi node with
612 // identical incoming branches. This will be cleaned up later (and
613 // will trigger asserts if we try to clean it up now, without also
614 // simplifying the corresponding conditional branch).
615 PN->addIncoming(OldValPN->getIncomingValue(i),
616 OldValPN->getIncomingBlock(i));
617 } else {
618 // Add an incoming value for each of the new incoming values.
619 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
620 PN->addIncoming(OldVal, BBPreds[i]);
621 }
622 }
623 }
624
John Bauman19bac1e2014-05-06 15:23:49 -0400625 if (Succ->getSinglePredecessor()) {
626 // BB is the only predecessor of Succ, so Succ will end up with exactly
627 // the same predecessors BB had.
628
629 // Copy over any phi, debug or lifetime instruction.
630 BB->getTerminator()->eraseFromParent();
631 Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
632 } else {
633 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
John Bauman89401822014-05-06 15:04:28 -0400634 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
635 assert(PN->use_empty() && "There shouldn't be any uses here!");
636 PN->eraseFromParent();
637 }
638 }
639
640 // Everything that jumped to BB now goes to Succ.
641 BB->replaceAllUsesWith(Succ);
642 if (!Succ->hasName()) Succ->takeName(BB);
643 BB->eraseFromParent(); // Delete the old basic block.
644 return true;
645}
646
647/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
648/// nodes in this block. This doesn't try to be clever about PHI nodes
649/// which differ only in the order of the incoming values, but instcombine
650/// orders them so it usually won't matter.
651///
652bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
653 bool Changed = false;
654
655 // This implementation doesn't currently consider undef operands
John Bauman19bac1e2014-05-06 15:23:49 -0400656 // specially. Theoretically, two phis which are identical except for
John Bauman89401822014-05-06 15:04:28 -0400657 // one having an undef where the other doesn't could be collapsed.
658
659 // Map from PHI hash values to PHI nodes. If multiple PHIs have
660 // the same hash value, the element is the first PHI in the
661 // linked list in CollisionMap.
662 DenseMap<uintptr_t, PHINode *> HashMap;
663
664 // Maintain linked lists of PHI nodes with common hash values.
665 DenseMap<PHINode *, PHINode *> CollisionMap;
666
667 // Examine each PHI.
668 for (BasicBlock::iterator I = BB->begin();
669 PHINode *PN = dyn_cast<PHINode>(I++); ) {
670 // Compute a hash value on the operands. Instcombine will likely have sorted
671 // them, which helps expose duplicates, but we have to check all the
672 // operands to be safe in case instcombine hasn't run.
673 uintptr_t Hash = 0;
John Bauman19bac1e2014-05-06 15:23:49 -0400674 // This hash algorithm is quite weak as hash functions go, but it seems
675 // to do a good enough job for this particular purpose, and is very quick.
John Bauman89401822014-05-06 15:04:28 -0400676 for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
John Bauman89401822014-05-06 15:04:28 -0400677 Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
678 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
679 }
John Bauman19bac1e2014-05-06 15:23:49 -0400680 for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
681 I != E; ++I) {
682 Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
683 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
684 }
685 // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
686 Hash >>= 1;
John Bauman89401822014-05-06 15:04:28 -0400687 // If we've never seen this hash value before, it's a unique PHI.
688 std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
689 HashMap.insert(std::make_pair(Hash, PN));
690 if (Pair.second) continue;
691 // Otherwise it's either a duplicate or a hash collision.
692 for (PHINode *OtherPN = Pair.first->second; ; ) {
693 if (OtherPN->isIdenticalTo(PN)) {
694 // A duplicate. Replace this PHI with its duplicate.
695 PN->replaceAllUsesWith(OtherPN);
696 PN->eraseFromParent();
697 Changed = true;
698 break;
699 }
700 // A non-duplicate hash collision.
701 DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
702 if (I == CollisionMap.end()) {
703 // Set this PHI to be the head of the linked list of colliding PHIs.
704 PHINode *Old = Pair.first->second;
705 Pair.first->second = PN;
706 CollisionMap[PN] = Old;
707 break;
708 }
709 // Procede to the next PHI in the list.
710 OtherPN = I->second;
711 }
712 }
713
714 return Changed;
715}
John Bauman19bac1e2014-05-06 15:23:49 -0400716
717/// enforceKnownAlignment - If the specified pointer points to an object that
718/// we control, modify the object's alignment to PrefAlign. This isn't
719/// often possible though. If alignment is important, a more reliable approach
720/// is to simply align all global variables and allocation instructions to
721/// their preferred alignment from the beginning.
722///
723static unsigned enforceKnownAlignment(Value *V, unsigned Align,
724 unsigned PrefAlign, const TargetData *TD) {
725 V = V->stripPointerCasts();
726
727 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
728 // If the preferred alignment is greater than the natural stack alignment
729 // then don't round up. This avoids dynamic stack realignment.
730 if (TD && TD->exceedsNaturalStackAlignment(PrefAlign))
731 return Align;
732 // If there is a requested alignment and if this is an alloca, round up.
733 if (AI->getAlignment() >= PrefAlign)
734 return AI->getAlignment();
735 AI->setAlignment(PrefAlign);
736 return PrefAlign;
737 }
738
739 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
740 // If there is a large requested alignment and we can, bump up the alignment
741 // of the global.
742 if (GV->isDeclaration()) return Align;
743
744 if (GV->getAlignment() >= PrefAlign)
745 return GV->getAlignment();
746 // We can only increase the alignment of the global if it has no alignment
747 // specified or if it is not assigned a section. If it is assigned a
748 // section, the global could be densely packed with other objects in the
749 // section, increasing the alignment could cause padding issues.
750 if (!GV->hasSection() || GV->getAlignment() == 0)
751 GV->setAlignment(PrefAlign);
752 return GV->getAlignment();
753 }
754
755 return Align;
756}
757
758/// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
759/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
760/// and it is more than the alignment of the ultimate object, see if we can
761/// increase the alignment of the ultimate object, making this check succeed.
762unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
763 const TargetData *TD) {
764 assert(V->getType()->isPointerTy() &&
765 "getOrEnforceKnownAlignment expects a pointer!");
766 unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
767 APInt Mask = APInt::getAllOnesValue(BitWidth);
768 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
769 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD);
770 unsigned TrailZ = KnownZero.countTrailingOnes();
771
772 // Avoid trouble with rediculously large TrailZ values, such as
773 // those computed from a null pointer.
774 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
775
776 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
777
778 // LLVM doesn't support alignments larger than this currently.
779 Align = std::min(Align, +Value::MaximumAlignment);
780
781 if (PrefAlign > Align)
782 Align = enforceKnownAlignment(V, Align, PrefAlign, TD);
783
784 // We don't need to make any adjustment.
785 return Align;
786}
787
788///===---------------------------------------------------------------------===//
789/// Dbg Intrinsic utilities
790///
791
792/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
793/// that has an associated llvm.dbg.decl intrinsic.
794bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
795 StoreInst *SI, DIBuilder &Builder) {
796 DIVariable DIVar(DDI->getVariable());
797 if (!DIVar.Verify())
798 return false;
799
800 Instruction *DbgVal = NULL;
801 // If an argument is zero extended then use argument directly. The ZExt
802 // may be zapped by an optimization pass in future.
803 Argument *ExtendedArg = NULL;
804 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
805 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
806 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
807 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
808 if (ExtendedArg)
809 DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI);
810 else
811 DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI);
812
813 // Propagate any debug metadata from the store onto the dbg.value.
814 DebugLoc SIDL = SI->getDebugLoc();
815 if (!SIDL.isUnknown())
816 DbgVal->setDebugLoc(SIDL);
817 // Otherwise propagate debug metadata from dbg.declare.
818 else
819 DbgVal->setDebugLoc(DDI->getDebugLoc());
820 return true;
821}
822
823/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
824/// that has an associated llvm.dbg.decl intrinsic.
825bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
826 LoadInst *LI, DIBuilder &Builder) {
827 DIVariable DIVar(DDI->getVariable());
828 if (!DIVar.Verify())
829 return false;
830
831 Instruction *DbgVal =
832 Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
833 DIVar, LI);
834
835 // Propagate any debug metadata from the store onto the dbg.value.
836 DebugLoc LIDL = LI->getDebugLoc();
837 if (!LIDL.isUnknown())
838 DbgVal->setDebugLoc(LIDL);
839 // Otherwise propagate debug metadata from dbg.declare.
840 else
841 DbgVal->setDebugLoc(DDI->getDebugLoc());
842 return true;
843}
844
845/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
846/// of llvm.dbg.value intrinsics.
847bool llvm::LowerDbgDeclare(Function &F) {
848 DIBuilder DIB(*F.getParent());
849 SmallVector<DbgDeclareInst *, 4> Dbgs;
850 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
851 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) {
852 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
853 Dbgs.push_back(DDI);
854 }
855 if (Dbgs.empty())
856 return false;
857
858 for (SmallVector<DbgDeclareInst *, 4>::iterator I = Dbgs.begin(),
859 E = Dbgs.end(); I != E; ++I) {
860 DbgDeclareInst *DDI = *I;
861 if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) {
862 bool RemoveDDI = true;
863 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
864 UI != E; ++UI)
865 if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
866 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
867 else if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
868 ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
869 else
870 RemoveDDI = false;
871 if (RemoveDDI)
872 DDI->eraseFromParent();
873 }
874 }
875 return true;
876}
877
878/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
879/// alloca 'V', if any.
880DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
881 if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V))
882 for (Value::use_iterator UI = DebugNode->use_begin(),
883 E = DebugNode->use_end(); UI != E; ++UI)
884 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
885 return DDI;
886
887 return 0;
888}