| //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that PPC uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H |
| #define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H |
| |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "PPC.h" |
| #include "PPCSubtarget.h" |
| |
| namespace llvm { |
| namespace PPCISD { |
| enum NodeType { |
| // Start the numbering where the builtin ops and target ops leave off. |
| FIRST_NUMBER = ISD::BUILTIN_OP_END, |
| |
| /// FSEL - Traditional three-operand fsel node. |
| /// |
| FSEL, |
| |
| /// FCFID - The FCFID instruction, taking an f64 operand and producing |
| /// and f64 value containing the FP representation of the integer that |
| /// was temporarily in the f64 operand. |
| FCFID, |
| |
| /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64 |
| /// operand, producing an f64 value containing the integer representation |
| /// of that FP value. |
| FCTIDZ, FCTIWZ, |
| |
| /// STFIWX - The STFIWX instruction. The first operand is an input token |
| /// chain, then an f64 value to store, then an address to store it to. |
| STFIWX, |
| |
| // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking |
| // three v4f32 operands and producing a v4f32 result. |
| VMADDFP, VNMSUBFP, |
| |
| /// VPERM - The PPC VPERM Instruction. |
| /// |
| VPERM, |
| |
| /// Hi/Lo - These represent the high and low 16-bit parts of a global |
| /// address respectively. These nodes have two operands, the first of |
| /// which must be a TargetGlobalAddress, and the second of which must be a |
| /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C', |
| /// though these are usually folded into other nodes. |
| Hi, Lo, |
| |
| TOC_ENTRY, |
| |
| /// The following three target-specific nodes are used for calls through |
| /// function pointers in the 64-bit SVR4 ABI. |
| |
| /// Restore the TOC from the TOC save area of the current stack frame. |
| /// This is basically a hard coded load instruction which additionally |
| /// takes/produces a flag. |
| TOC_RESTORE, |
| |
| /// Like a regular LOAD but additionally taking/producing a flag. |
| LOAD, |
| |
| /// LOAD into r2 (also taking/producing a flag). Like TOC_RESTORE, this is |
| /// a hard coded load instruction. |
| LOAD_TOC, |
| |
| /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX) |
| /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to |
| /// compute an allocation on the stack. |
| DYNALLOC, |
| |
| /// GlobalBaseReg - On Darwin, this node represents the result of the mflr |
| /// at function entry, used for PIC code. |
| GlobalBaseReg, |
| |
| /// These nodes represent the 32-bit PPC shifts that operate on 6-bit |
| /// shift amounts. These nodes are generated by the multi-precision shift |
| /// code. |
| SRL, SRA, SHL, |
| |
| /// EXTSW_32 - This is the EXTSW instruction for use with "32-bit" |
| /// registers. |
| EXTSW_32, |
| |
| /// CALL - A direct function call. |
| CALL_Darwin, CALL_SVR4, |
| |
| /// NOP - Special NOP which follows 64-bit SVR4 calls. |
| NOP, |
| |
| /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a |
| /// MTCTR instruction. |
| MTCTR, |
| |
| /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a |
| /// BCTRL instruction. |
| BCTRL_Darwin, BCTRL_SVR4, |
| |
| /// Return with a flag operand, matched by 'blr' |
| RET_FLAG, |
| |
| /// R32 = MFCR(CRREG, INFLAG) - Represents the MFCRpseud/MFOCRF |
| /// instructions. This copies the bits corresponding to the specified |
| /// CRREG into the resultant GPR. Bits corresponding to other CR regs |
| /// are undefined. |
| MFCR, |
| |
| /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP* |
| /// instructions. For lack of better number, we use the opcode number |
| /// encoding for the OPC field to identify the compare. For example, 838 |
| /// is VCMPGTSH. |
| VCMP, |
| |
| /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the |
| /// altivec VCMP*o instructions. For lack of better number, we use the |
| /// opcode number encoding for the OPC field to identify the compare. For |
| /// example, 838 is VCMPGTSH. |
| VCMPo, |
| |
| /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This |
| /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the |
| /// condition register to branch on, OPC is the branch opcode to use (e.g. |
| /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is |
| /// an optional input flag argument. |
| COND_BRANCH, |
| |
| // The following 5 instructions are used only as part of the |
| // long double-to-int conversion sequence. |
| |
| /// OUTFLAG = MFFS F8RC - This moves the FPSCR (not modelled) into the |
| /// register. |
| MFFS, |
| |
| /// OUTFLAG = MTFSB0 INFLAG - This clears a bit in the FPSCR. |
| MTFSB0, |
| |
| /// OUTFLAG = MTFSB1 INFLAG - This sets a bit in the FPSCR. |
| MTFSB1, |
| |
| /// F8RC, OUTFLAG = FADDRTZ F8RC, F8RC, INFLAG - This is an FADD done with |
| /// rounding towards zero. It has flags added so it won't move past the |
| /// FPSCR-setting instructions. |
| FADDRTZ, |
| |
| /// MTFSF = F8RC, INFLAG - This moves the register into the FPSCR. |
| MTFSF, |
| |
| /// LARX = This corresponds to PPC l{w|d}arx instrcution: load and |
| /// reserve indexed. This is used to implement atomic operations. |
| LARX, |
| |
| /// STCX = This corresponds to PPC stcx. instrcution: store conditional |
| /// indexed. This is used to implement atomic operations. |
| STCX, |
| |
| /// TC_RETURN - A tail call return. |
| /// operand #0 chain |
| /// operand #1 callee (register or absolute) |
| /// operand #2 stack adjustment |
| /// operand #3 optional in flag |
| TC_RETURN, |
| |
| /// STD_32 - This is the STD instruction for use with "32-bit" registers. |
| STD_32 = ISD::FIRST_TARGET_MEMORY_OPCODE, |
| |
| /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a |
| /// byte-swapping store instruction. It byte-swaps the low "Type" bits of |
| /// the GPRC input, then stores it through Ptr. Type can be either i16 or |
| /// i32. |
| STBRX, |
| |
| /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a |
| /// byte-swapping load instruction. It loads "Type" bits, byte swaps it, |
| /// then puts it in the bottom bits of the GPRC. TYPE can be either i16 |
| /// or i32. |
| LBRX |
| }; |
| } |
| |
| /// Define some predicates that are used for node matching. |
| namespace PPC { |
| /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a |
| /// VPKUHUM instruction. |
| bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary); |
| |
| /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a |
| /// VPKUWUM instruction. |
| bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary); |
| |
| /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for |
| /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). |
| bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, |
| bool isUnary); |
| |
| /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for |
| /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). |
| bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, |
| bool isUnary); |
| |
| /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift |
| /// amount, otherwise return -1. |
| int isVSLDOIShuffleMask(SDNode *N, bool isUnary); |
| |
| /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a splat of a single element that is suitable for input to |
| /// VSPLTB/VSPLTH/VSPLTW. |
| bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize); |
| |
| /// isAllNegativeZeroVector - Returns true if all elements of build_vector |
| /// are -0.0. |
| bool isAllNegativeZeroVector(SDNode *N); |
| |
| /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the |
| /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. |
| unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize); |
| |
| /// get_VSPLTI_elt - If this is a build_vector of constants which can be |
| /// formed by using a vspltis[bhw] instruction of the specified element |
| /// size, return the constant being splatted. The ByteSize field indicates |
| /// the number of bytes of each element [124] -> [bhw]. |
| SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG); |
| } |
| |
| class PPCTargetLowering : public TargetLowering { |
| const PPCSubtarget &PPCSubTarget; |
| |
| public: |
| explicit PPCTargetLowering(PPCTargetMachine &TM); |
| |
| /// getTargetNodeName() - This method returns the name of a target specific |
| /// DAG node. |
| virtual const char *getTargetNodeName(unsigned Opcode) const; |
| |
| virtual MVT getShiftAmountTy(EVT LHSTy) const { return MVT::i32; } |
| |
| /// getSetCCResultType - Return the ISD::SETCC ValueType |
| virtual EVT getSetCCResultType(EVT VT) const; |
| |
| /// getPreIndexedAddressParts - returns true by value, base pointer and |
| /// offset pointer and addressing mode by reference if the node's address |
| /// can be legally represented as pre-indexed load / store address. |
| virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, |
| SDValue &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG) const; |
| |
| /// SelectAddressRegReg - Given the specified addressed, check to see if it |
| /// can be represented as an indexed [r+r] operation. Returns false if it |
| /// can be more efficiently represented with [r+imm]. |
| bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index, |
| SelectionDAG &DAG) const; |
| |
| /// SelectAddressRegImm - Returns true if the address N can be represented |
| /// by a base register plus a signed 16-bit displacement [r+imm], and if it |
| /// is not better represented as reg+reg. |
| bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base, |
| SelectionDAG &DAG) const; |
| |
| /// SelectAddressRegRegOnly - Given the specified addressed, force it to be |
| /// represented as an indexed [r+r] operation. |
| bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index, |
| SelectionDAG &DAG) const; |
| |
| /// SelectAddressRegImmShift - Returns true if the address N can be |
| /// represented by a base register plus a signed 14-bit displacement |
| /// [r+imm*4]. Suitable for use by STD and friends. |
| bool SelectAddressRegImmShift(SDValue N, SDValue &Disp, SDValue &Base, |
| SelectionDAG &DAG) const; |
| |
| |
| /// LowerOperation - Provide custom lowering hooks for some operations. |
| /// |
| virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const; |
| |
| /// ReplaceNodeResults - Replace the results of node with an illegal result |
| /// type with new values built out of custom code. |
| /// |
| virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results, |
| SelectionDAG &DAG) const; |
| |
| virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const; |
| |
| virtual void computeMaskedBitsForTargetNode(const SDValue Op, |
| const APInt &Mask, |
| APInt &KnownZero, |
| APInt &KnownOne, |
| const SelectionDAG &DAG, |
| unsigned Depth = 0) const; |
| |
| virtual MachineBasicBlock * |
| EmitInstrWithCustomInserter(MachineInstr *MI, |
| MachineBasicBlock *MBB) const; |
| MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI, |
| MachineBasicBlock *MBB, bool is64Bit, |
| unsigned BinOpcode) const; |
| MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI, |
| MachineBasicBlock *MBB, |
| bool is8bit, unsigned Opcode) const; |
| |
| ConstraintType getConstraintType(const std::string &Constraint) const; |
| |
| /// Examine constraint string and operand type and determine a weight value. |
| /// The operand object must already have been set up with the operand type. |
| ConstraintWeight getSingleConstraintMatchWeight( |
| AsmOperandInfo &info, const char *constraint) const; |
| |
| std::pair<unsigned, const TargetRegisterClass*> |
| getRegForInlineAsmConstraint(const std::string &Constraint, |
| EVT VT) const; |
| |
| /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate |
| /// function arguments in the caller parameter area. This is the actual |
| /// alignment, not its logarithm. |
| unsigned getByValTypeAlignment(Type *Ty) const; |
| |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops |
| /// vector. If it is invalid, don't add anything to Ops. |
| virtual void LowerAsmOperandForConstraint(SDValue Op, |
| std::string &Constraint, |
| std::vector<SDValue> &Ops, |
| SelectionDAG &DAG) const; |
| |
| /// isLegalAddressingMode - Return true if the addressing mode represented |
| /// by AM is legal for this target, for a load/store of the specified type. |
| virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const; |
| |
| /// isLegalAddressImmediate - Return true if the integer value can be used |
| /// as the offset of the target addressing mode for load / store of the |
| /// given type. |
| virtual bool isLegalAddressImmediate(int64_t V, Type *Ty) const; |
| |
| /// isLegalAddressImmediate - Return true if the GlobalValue can be used as |
| /// the offset of the target addressing mode. |
| virtual bool isLegalAddressImmediate(GlobalValue *GV) const; |
| |
| virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const; |
| |
| /// getOptimalMemOpType - Returns the target specific optimal type for load |
| /// and store operations as a result of memset, memcpy, and memmove |
| /// lowering. If DstAlign is zero that means it's safe to destination |
| /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it |
| /// means there isn't a need to check it against alignment requirement, |
| /// probably because the source does not need to be loaded. If |
| /// 'NonScalarIntSafe' is true, that means it's safe to return a |
| /// non-scalar-integer type, e.g. empty string source, constant, or loaded |
| /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is |
| /// constant so it does not need to be loaded. |
| /// It returns EVT::Other if the type should be determined using generic |
| /// target-independent logic. |
| virtual EVT |
| getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, |
| bool NonScalarIntSafe, bool MemcpyStrSrc, |
| MachineFunction &MF) const; |
| |
| private: |
| SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const; |
| SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const; |
| |
| bool |
| IsEligibleForTailCallOptimization(SDValue Callee, |
| CallingConv::ID CalleeCC, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| SelectionDAG& DAG) const; |
| |
| SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, |
| int SPDiff, |
| SDValue Chain, |
| SDValue &LROpOut, |
| SDValue &FPOpOut, |
| bool isDarwinABI, |
| DebugLoc dl) const; |
| |
| SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG, |
| const PPCSubtarget &Subtarget) const; |
| SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG, |
| const PPCSubtarget &Subtarget) const; |
| SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, |
| const PPCSubtarget &Subtarget) const; |
| SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG, |
| const PPCSubtarget &Subtarget) const; |
| SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, DebugLoc dl) const; |
| SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const; |
| |
| SDValue LowerCallResult(SDValue Chain, SDValue InFlag, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const; |
| SDValue FinishCall(CallingConv::ID CallConv, DebugLoc dl, bool isTailCall, |
| bool isVarArg, |
| SelectionDAG &DAG, |
| SmallVector<std::pair<unsigned, SDValue>, 8> |
| &RegsToPass, |
| SDValue InFlag, SDValue Chain, |
| SDValue &Callee, |
| int SPDiff, unsigned NumBytes, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| SmallVectorImpl<SDValue> &InVals) const; |
| |
| virtual SDValue |
| LowerFormalArguments(SDValue Chain, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const; |
| |
| virtual SDValue |
| LowerCall(SDValue Chain, SDValue Callee, |
| CallingConv::ID CallConv, bool isVarArg, bool &isTailCall, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const; |
| |
| virtual bool |
| CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| LLVMContext &Context) const; |
| |
| virtual SDValue |
| LowerReturn(SDValue Chain, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| DebugLoc dl, SelectionDAG &DAG) const; |
| |
| SDValue |
| LowerFormalArguments_Darwin(SDValue Chain, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const; |
| SDValue |
| LowerFormalArguments_SVR4(SDValue Chain, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const; |
| |
| SDValue |
| LowerCall_Darwin(SDValue Chain, SDValue Callee, |
| CallingConv::ID CallConv, bool isVarArg, bool isTailCall, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const; |
| SDValue |
| LowerCall_SVR4(SDValue Chain, SDValue Callee, |
| CallingConv::ID CallConv, bool isVarArg, bool isTailCall, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const; |
| }; |
| } |
| |
| #endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H |