|  | //===- subzero/src/IceOperand.h - High-level operands -----------*- C++ -*-===// | 
|  | // | 
|  | //                        The Subzero Code Generator | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | /// | 
|  | /// \file | 
|  | /// \brief Declares the Operand class and its target-independent subclasses. | 
|  | /// | 
|  | /// The main classes are Variable, which represents an LLVM variable that is | 
|  | /// either register- or stack-allocated, and the Constant hierarchy, which | 
|  | /// represents integer, floating-point, and/or symbolic constants. | 
|  | /// | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef SUBZERO_SRC_ICEOPERAND_H | 
|  | #define SUBZERO_SRC_ICEOPERAND_H | 
|  |  | 
|  | #include "IceDefs.h" | 
|  | #include "IceCfg.h" | 
|  | #include "IceGlobalContext.h" | 
|  | #include "IceStringPool.h" | 
|  | #include "IceTypes.h" | 
|  |  | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/Format.h" | 
|  |  | 
|  | #include <limits> | 
|  | #include <type_traits> | 
|  |  | 
|  | namespace Ice { | 
|  |  | 
|  | class Operand { | 
|  | Operand() = delete; | 
|  | Operand(const Operand &) = delete; | 
|  | Operand &operator=(const Operand &) = delete; | 
|  |  | 
|  | public: | 
|  | static constexpr size_t MaxTargetKinds = 10; | 
|  | enum OperandKind { | 
|  | kConst_Base, | 
|  | kConstInteger32, | 
|  | kConstInteger64, | 
|  | kConstFloat, | 
|  | kConstDouble, | 
|  | kConstRelocatable, | 
|  | kConstUndef, | 
|  | kConst_Target, // leave space for target-specific constant kinds | 
|  | kConst_Max = kConst_Target + MaxTargetKinds, | 
|  | kVariable, | 
|  | kVariable64On32, | 
|  | kVariableVecOn32, | 
|  | kVariableBoolean, | 
|  | kVariable_Target, // leave space for target-specific variable kinds | 
|  | kVariable_Max = kVariable_Target + MaxTargetKinds, | 
|  | // Target-specific operand classes use kTarget as the starting point for | 
|  | // their Kind enum space. Note that the value-spaces are shared across | 
|  | // targets. To avoid confusion over the definition of shared values, an | 
|  | // object specific to one target should never be passed to a different | 
|  | // target. | 
|  | kTarget, | 
|  | kTarget_Max = std::numeric_limits<uint8_t>::max(), | 
|  | }; | 
|  | static_assert(kTarget <= kTarget_Max, "Must not be above max."); | 
|  | OperandKind getKind() const { return Kind; } | 
|  | Type getType() const { return Ty; } | 
|  |  | 
|  | /// Every Operand keeps an array of the Variables referenced in the operand. | 
|  | /// This is so that the liveness operations can get quick access to the | 
|  | /// variables of interest, without having to dig so far into the operand. | 
|  | SizeT getNumVars() const { return NumVars; } | 
|  | Variable *getVar(SizeT I) const { | 
|  | assert(I < getNumVars()); | 
|  | return Vars[I]; | 
|  | } | 
|  | virtual void emit(const Cfg *Func) const = 0; | 
|  |  | 
|  | /// \name Dumping functions. | 
|  | /// @{ | 
|  |  | 
|  | /// The dump(Func,Str) implementation must be sure to handle the situation | 
|  | /// where Func==nullptr. | 
|  | virtual void dump(const Cfg *Func, Ostream &Str) const = 0; | 
|  | void dump(const Cfg *Func) const { | 
|  | if (!BuildDefs::dump()) | 
|  | return; | 
|  | assert(Func); | 
|  | dump(Func, Func->getContext()->getStrDump()); | 
|  | } | 
|  | void dump(Ostream &Str) const { | 
|  | if (BuildDefs::dump()) | 
|  | dump(nullptr, Str); | 
|  | } | 
|  | /// @} | 
|  |  | 
|  | virtual ~Operand() = default; | 
|  |  | 
|  | virtual Variable *asBoolean() { return nullptr; } | 
|  |  | 
|  | virtual SizeT hashValue() const { | 
|  | llvm::report_fatal_error("Tried to hash unsupported operand type : " + | 
|  | std::to_string(Kind)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | inline void* getExternalData() const { return externalData; } | 
|  | inline void setExternalData(void* data) { externalData = data; } | 
|  |  | 
|  | protected: | 
|  | Operand(OperandKind Kind, Type Ty) : Ty(Ty), Kind(Kind) { | 
|  | // It is undefined behavior to have a larger value in the enum | 
|  | assert(Kind <= kTarget_Max); | 
|  | } | 
|  |  | 
|  | const Type Ty; | 
|  | const OperandKind Kind; | 
|  | /// Vars and NumVars are initialized by the derived class. | 
|  | SizeT NumVars = 0; | 
|  | Variable **Vars = nullptr; | 
|  |  | 
|  | /// External data can be set by an optimizer to compute and retain any | 
|  | /// information related to the current operand. All the memory used to | 
|  | /// store this information must be managed by the optimizer. | 
|  | void* externalData = nullptr; | 
|  | }; | 
|  |  | 
|  | template <class StreamType> | 
|  | inline StreamType &operator<<(StreamType &Str, const Operand &Op) { | 
|  | Op.dump(Str); | 
|  | return Str; | 
|  | } | 
|  |  | 
|  | /// Constant is the abstract base class for constants. All constants are | 
|  | /// allocated from a global arena and are pooled. | 
|  | class Constant : public Operand { | 
|  | Constant() = delete; | 
|  | Constant(const Constant &) = delete; | 
|  | Constant &operator=(const Constant &) = delete; | 
|  |  | 
|  | public: | 
|  | // Declare the lookup counter to take minimal space in a non-DUMP build. | 
|  | using CounterType = | 
|  | std::conditional<BuildDefs::dump(), uint64_t, uint8_t>::type; | 
|  | void emit(const Cfg *Func) const override { emit(Func->getTarget()); } | 
|  | virtual void emit(TargetLowering *Target) const = 0; | 
|  |  | 
|  | static bool classof(const Operand *Operand) { | 
|  | OperandKind Kind = Operand->getKind(); | 
|  | return Kind >= kConst_Base && Kind <= kConst_Max; | 
|  | } | 
|  |  | 
|  | const GlobalString getLabelName() const { return LabelName; } | 
|  |  | 
|  | /// Judge if this given immediate should be randomized or pooled By default | 
|  | /// should return false, only constant integers should truly go through this | 
|  | /// method. | 
|  | virtual bool shouldBeRandomizedOrPooled() const { return false; } | 
|  |  | 
|  | bool getShouldBePooled() const { return ShouldBePooled; } | 
|  |  | 
|  | // This should be thread-safe because the constant pool lock is acquired | 
|  | // before the method is invoked. | 
|  | void updateLookupCount() { | 
|  | if (!BuildDefs::dump()) | 
|  | return; | 
|  | ++LookupCount; | 
|  | } | 
|  | CounterType getLookupCount() const { return LookupCount; } | 
|  | SizeT hashValue() const override { return 0; } | 
|  |  | 
|  | protected: | 
|  | Constant(OperandKind Kind, Type Ty) : Operand(Kind, Ty) { | 
|  | Vars = nullptr; | 
|  | NumVars = 0; | 
|  | } | 
|  | /// Set the ShouldBePooled field to the proper value after the object is fully | 
|  | /// initialized. | 
|  | void initShouldBePooled(); | 
|  | GlobalString LabelName; | 
|  | /// Whether we should pool this constant. Usually Float/Double and pooled | 
|  | /// Integers should be flagged true.  Ideally this field would be const, but | 
|  | /// it needs to be initialized only after the subclass is fully constructed. | 
|  | bool ShouldBePooled = false; | 
|  | /// Note: If ShouldBePooled is ever removed from the base class, we will want | 
|  | /// to completely disable LookupCount in a non-DUMP build to save space. | 
|  | CounterType LookupCount = 0; | 
|  | }; | 
|  |  | 
|  | /// ConstantPrimitive<> wraps a primitive type. | 
|  | template <typename T, Operand::OperandKind K> | 
|  | class ConstantPrimitive : public Constant { | 
|  | ConstantPrimitive() = delete; | 
|  | ConstantPrimitive(const ConstantPrimitive &) = delete; | 
|  | ConstantPrimitive &operator=(const ConstantPrimitive &) = delete; | 
|  |  | 
|  | public: | 
|  | using PrimType = T; | 
|  |  | 
|  | static ConstantPrimitive *create(GlobalContext *Ctx, Type Ty, | 
|  | PrimType Value) { | 
|  | auto *Const = | 
|  | new (Ctx->allocate<ConstantPrimitive>()) ConstantPrimitive(Ty, Value); | 
|  | Const->initShouldBePooled(); | 
|  | if (Const->getShouldBePooled()) | 
|  | Const->initName(Ctx); | 
|  | return Const; | 
|  | } | 
|  | PrimType getValue() const { return Value; } | 
|  | using Constant::emit; | 
|  | void emit(TargetLowering *Target) const final; | 
|  | using Constant::dump; | 
|  | void dump(const Cfg *, Ostream &Str) const override { | 
|  | if (BuildDefs::dump()) | 
|  | Str << getValue(); | 
|  | } | 
|  |  | 
|  | static bool classof(const Operand *Operand) { | 
|  | return Operand->getKind() == K; | 
|  | } | 
|  |  | 
|  | SizeT hashValue() const override { return std::hash<PrimType>()(Value); } | 
|  |  | 
|  | virtual bool shouldBeRandomizedOrPooled() const override { return false; } | 
|  |  | 
|  | private: | 
|  | ConstantPrimitive(Type Ty, PrimType Value) : Constant(K, Ty), Value(Value) {} | 
|  |  | 
|  | void initName(GlobalContext *Ctx) { | 
|  | std::string Buffer; | 
|  | llvm::raw_string_ostream Str(Buffer); | 
|  | constexpr bool IsCompact = !BuildDefs::dump(); | 
|  | if (IsCompact) { | 
|  | switch (getType()) { | 
|  | case IceType_f32: | 
|  | Str << "$F"; | 
|  | break; | 
|  | case IceType_f64: | 
|  | Str << "$D"; | 
|  | break; | 
|  | default: | 
|  | // For constant pooling diversification | 
|  | Str << ".L$" << getType() << "$"; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | Str << ".L$" << getType() << "$"; | 
|  | } | 
|  | // Print hex characters byte by byte, starting from the most significant | 
|  | // byte.  NOTE: This ordering assumes Subzero runs on a little-endian | 
|  | // platform.  That means the possibility of different label names depending | 
|  | // on the endian-ness of the platform where Subzero runs. | 
|  | for (unsigned i = 0; i < sizeof(Value); ++i) { | 
|  | constexpr unsigned HexWidthChars = 2; | 
|  | unsigned Offset = sizeof(Value) - 1 - i; | 
|  | Str << llvm::format_hex_no_prefix( | 
|  | *(Offset + (const unsigned char *)&Value), HexWidthChars); | 
|  | } | 
|  | // For a floating-point value in DecorateAsm mode, also append the value in | 
|  | // human-readable sprintf form, changing '+' to 'p' and '-' to 'm' to | 
|  | // maintain valid asm labels. | 
|  | if (BuildDefs::dump() && std::is_floating_point<PrimType>::value && | 
|  | getFlags().getDecorateAsm()) { | 
|  | char Buf[30]; | 
|  | snprintf(Buf, llvm::array_lengthof(Buf), "$%g", (double)Value); | 
|  | for (unsigned i = 0; i < llvm::array_lengthof(Buf) && Buf[i]; ++i) { | 
|  | if (Buf[i] == '-') | 
|  | Buf[i] = 'm'; | 
|  | else if (Buf[i] == '+') | 
|  | Buf[i] = 'p'; | 
|  | } | 
|  | Str << Buf; | 
|  | } | 
|  | LabelName = GlobalString::createWithString(Ctx, Str.str()); | 
|  | } | 
|  |  | 
|  | const PrimType Value; | 
|  | }; | 
|  |  | 
|  | using ConstantInteger32 = ConstantPrimitive<int32_t, Operand::kConstInteger32>; | 
|  | using ConstantInteger64 = ConstantPrimitive<int64_t, Operand::kConstInteger64>; | 
|  | using ConstantFloat = ConstantPrimitive<float, Operand::kConstFloat>; | 
|  | using ConstantDouble = ConstantPrimitive<double, Operand::kConstDouble>; | 
|  |  | 
|  | template <> | 
|  | inline void ConstantInteger32::dump(const Cfg *, Ostream &Str) const { | 
|  | if (!BuildDefs::dump()) | 
|  | return; | 
|  | if (getType() == IceType_i1) | 
|  | Str << (getValue() ? "true" : "false"); | 
|  | else | 
|  | Str << static_cast<int32_t>(getValue()); | 
|  | } | 
|  |  | 
|  | // =========== Immediate Randomization and Pooling routines ============== | 
|  | // Specialization of the template member function for ConstantInteger32 | 
|  | // TODO(stichnot): try to move this specialization into a target-specific file. | 
|  | template <> inline bool ConstantInteger32::shouldBeRandomizedOrPooled() const { | 
|  | uint32_t Threshold = getFlags().getRandomizeAndPoolImmediatesThreshold(); | 
|  | if (getFlags().getRandomizeAndPoolImmediatesOption() == RPI_None) | 
|  | return false; | 
|  | if (getType() != IceType_i32 && getType() != IceType_i16 && | 
|  | getType() != IceType_i8) | 
|  | return false; | 
|  | // The Following checks if the signed representation of Value is between | 
|  | // -Threshold/2 and +Threshold/2 | 
|  | bool largerThanThreshold = Threshold / 2 + Value >= Threshold; | 
|  | return largerThanThreshold; | 
|  | } | 
|  |  | 
|  | template <> | 
|  | inline void ConstantInteger64::dump(const Cfg *, Ostream &Str) const { | 
|  | if (!BuildDefs::dump()) | 
|  | return; | 
|  | assert(getType() == IceType_i64); | 
|  | Str << static_cast<int64_t>(getValue()); | 
|  | } | 
|  |  | 
|  | /// RelocOffset allows symbolic references in ConstantRelocatables' offsets, | 
|  | /// e.g., 8 + LabelOffset, where label offset is the location (code or data) | 
|  | /// of a Label that is only determinable during ELF emission. | 
|  | class RelocOffset final { | 
|  | RelocOffset(const RelocOffset &) = delete; | 
|  | RelocOffset &operator=(const RelocOffset &) = delete; | 
|  |  | 
|  | public: | 
|  | template <typename T> static RelocOffset *create(T *AllocOwner) { | 
|  | return new (AllocOwner->template allocate<RelocOffset>()) RelocOffset(); | 
|  | } | 
|  |  | 
|  | static RelocOffset *create(GlobalContext *Ctx, RelocOffsetT Value) { | 
|  | return new (Ctx->allocate<RelocOffset>()) RelocOffset(Value); | 
|  | } | 
|  |  | 
|  | void setSubtract(bool Value) { Subtract = Value; } | 
|  | bool hasOffset() const { return HasOffset; } | 
|  |  | 
|  | RelocOffsetT getOffset() const { | 
|  | assert(HasOffset); | 
|  | return Offset; | 
|  | } | 
|  |  | 
|  | void setOffset(const RelocOffsetT Value) { | 
|  | assert(!HasOffset); | 
|  | if (Subtract) { | 
|  | assert(Value != std::numeric_limits<RelocOffsetT>::lowest()); | 
|  | Offset = -Value; | 
|  | } else { | 
|  | Offset = Value; | 
|  | } | 
|  | HasOffset = true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | RelocOffset() = default; | 
|  | explicit RelocOffset(RelocOffsetT Offset) { setOffset(Offset); } | 
|  |  | 
|  | bool Subtract = false; | 
|  | bool HasOffset = false; | 
|  | RelocOffsetT Offset; | 
|  | }; | 
|  |  | 
|  | /// RelocatableTuple bundles the parameters that are used to construct an | 
|  | /// ConstantRelocatable. It is done this way so that ConstantRelocatable can fit | 
|  | /// into the global constant pool template mechanism. | 
|  | class RelocatableTuple { | 
|  | RelocatableTuple() = delete; | 
|  | RelocatableTuple &operator=(const RelocatableTuple &) = delete; | 
|  |  | 
|  | public: | 
|  | RelocatableTuple(const RelocOffsetT Offset, | 
|  | const RelocOffsetArray &OffsetExpr, GlobalString Name) | 
|  | : Offset(Offset), OffsetExpr(OffsetExpr), Name(Name) {} | 
|  |  | 
|  | RelocatableTuple(const RelocOffsetT Offset, | 
|  | const RelocOffsetArray &OffsetExpr, GlobalString Name, | 
|  | const std::string &EmitString) | 
|  | : Offset(Offset), OffsetExpr(OffsetExpr), Name(Name), | 
|  | EmitString(EmitString) {} | 
|  |  | 
|  | RelocatableTuple(const RelocatableTuple &) = default; | 
|  |  | 
|  | const RelocOffsetT Offset; | 
|  | const RelocOffsetArray OffsetExpr; | 
|  | const GlobalString Name; | 
|  | const std::string EmitString; | 
|  | }; | 
|  |  | 
|  | bool operator==(const RelocatableTuple &A, const RelocatableTuple &B); | 
|  |  | 
|  | /// ConstantRelocatable represents a symbolic constant combined with a fixed | 
|  | /// offset. | 
|  | class ConstantRelocatable : public Constant { | 
|  | ConstantRelocatable() = delete; | 
|  | ConstantRelocatable(const ConstantRelocatable &) = delete; | 
|  | ConstantRelocatable &operator=(const ConstantRelocatable &) = delete; | 
|  |  | 
|  | public: | 
|  | template <typename T> | 
|  | static ConstantRelocatable *create(T *AllocOwner, Type Ty, | 
|  | const RelocatableTuple &Tuple) { | 
|  | return new (AllocOwner->template allocate<ConstantRelocatable>()) | 
|  | ConstantRelocatable(Ty, Tuple.Offset, Tuple.OffsetExpr, Tuple.Name, | 
|  | Tuple.EmitString); | 
|  | } | 
|  |  | 
|  | RelocOffsetT getOffset() const { | 
|  | RelocOffsetT Ret = Offset; | 
|  | for (const auto *const OffsetReloc : OffsetExpr) { | 
|  | Ret += OffsetReloc->getOffset(); | 
|  | } | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | const std::string &getEmitString() const { return EmitString; } | 
|  |  | 
|  | GlobalString getName() const { return Name; } | 
|  | using Constant::emit; | 
|  | void emit(TargetLowering *Target) const final; | 
|  | void emitWithoutPrefix(const TargetLowering *Target, | 
|  | const char *Suffix = "") const; | 
|  | using Constant::dump; | 
|  | void dump(const Cfg *Func, Ostream &Str) const override; | 
|  |  | 
|  | static bool classof(const Operand *Operand) { | 
|  | OperandKind Kind = Operand->getKind(); | 
|  | return Kind == kConstRelocatable; | 
|  | } | 
|  |  | 
|  | private: | 
|  | ConstantRelocatable(Type Ty, const RelocOffsetT Offset, | 
|  | const RelocOffsetArray &OffsetExpr, GlobalString Name, | 
|  | const std::string &EmitString) | 
|  | : Constant(kConstRelocatable, Ty), Offset(Offset), OffsetExpr(OffsetExpr), | 
|  | Name(Name), EmitString(EmitString) {} | 
|  |  | 
|  | const RelocOffsetT Offset;         /// fixed, known offset to add | 
|  | const RelocOffsetArray OffsetExpr; /// fixed, unknown offset to add | 
|  | const GlobalString Name;           /// optional for debug/dump | 
|  | const std::string EmitString;      /// optional for textual emission | 
|  | }; | 
|  |  | 
|  | /// ConstantUndef represents an unspecified bit pattern. Although it is legal to | 
|  | /// lower ConstantUndef to any value, backends should try to make code | 
|  | /// generation deterministic by lowering ConstantUndefs to 0. | 
|  | class ConstantUndef : public Constant { | 
|  | ConstantUndef() = delete; | 
|  | ConstantUndef(const ConstantUndef &) = delete; | 
|  | ConstantUndef &operator=(const ConstantUndef &) = delete; | 
|  |  | 
|  | public: | 
|  | static ConstantUndef *create(GlobalContext *Ctx, Type Ty) { | 
|  | return new (Ctx->allocate<ConstantUndef>()) ConstantUndef(Ty); | 
|  | } | 
|  |  | 
|  | using Constant::emit; | 
|  | void emit(TargetLowering *Target) const final; | 
|  | using Constant::dump; | 
|  | void dump(const Cfg *, Ostream &Str) const override { | 
|  | if (BuildDefs::dump()) | 
|  | Str << "undef"; | 
|  | } | 
|  |  | 
|  | static bool classof(const Operand *Operand) { | 
|  | return Operand->getKind() == kConstUndef; | 
|  | } | 
|  |  | 
|  | private: | 
|  | ConstantUndef(Type Ty) : Constant(kConstUndef, Ty) {} | 
|  | }; | 
|  |  | 
|  | /// RegNumT is for holding target-specific register numbers, plus the sentinel | 
|  | /// value if no register is assigned. Its public ctor allows direct use of enum | 
|  | /// values, such as RegNumT(Reg_eax), but not things like RegNumT(Reg_eax+1). | 
|  | /// This is to try to prevent inappropriate assumptions about enum ordering. If | 
|  | /// needed, the fromInt() method can be used, such as when a RegNumT is based | 
|  | /// on a bitvector index. | 
|  | class RegNumT { | 
|  | public: | 
|  | using BaseType = uint32_t; | 
|  | RegNumT() = default; | 
|  | RegNumT(const RegNumT &) = default; | 
|  | template <typename AnyEnum> | 
|  | RegNumT(AnyEnum Value, | 
|  | typename std::enable_if<std::is_enum<AnyEnum>::value, int>::type = 0) | 
|  | : Value(Value) { | 
|  | validate(Value); | 
|  | } | 
|  | RegNumT &operator=(const RegNumT &) = default; | 
|  | operator unsigned() const { return Value; } | 
|  | /// Asserts that the register is valid, i.e. not NoRegisterValue.  Note that | 
|  | /// the ctor already does the target-specific limit check. | 
|  | void assertIsValid() const { assert(Value != NoRegisterValue); } | 
|  | static RegNumT fromInt(BaseType Value) { return RegNumT(Value); } | 
|  | /// Marks cases that inappropriately add/subtract RegNumT values, and | 
|  | /// therefore need to be fixed because they make assumptions about register | 
|  | /// enum value ordering.  TODO(stichnot): Remove fixme() as soon as all | 
|  | /// current uses are fixed/removed. | 
|  | static RegNumT fixme(BaseType Value) { return RegNumT(Value); } | 
|  | /// The target's staticInit() method should call setLimit() to register the | 
|  | /// upper bound of allowable values. | 
|  | static void setLimit(BaseType Value) { | 
|  | // Make sure it's only called once. | 
|  | assert(Limit == 0); | 
|  | assert(Value != 0); | 
|  | Limit = Value; | 
|  | } | 
|  | // Define NoRegisterValue as an enum value so that it can be used as an | 
|  | // argument for the public ctor if desired. | 
|  | enum : BaseType { NoRegisterValue = std::numeric_limits<BaseType>::max() }; | 
|  |  | 
|  | bool hasValue() const { return Value != NoRegisterValue; } | 
|  | bool hasNoValue() const { return !hasValue(); } | 
|  |  | 
|  | private: | 
|  | BaseType Value = NoRegisterValue; | 
|  | static BaseType Limit; | 
|  | /// Private ctor called only by fromInt() and fixme(). | 
|  | RegNumT(BaseType Value) : Value(Value) { validate(Value); } | 
|  | /// The ctor calls this to validate against the target-supplied limit. | 
|  | static void validate(BaseType Value) { | 
|  | (void)Value; | 
|  | assert(Value == NoRegisterValue || Value < Limit); | 
|  | } | 
|  | /// Disallow operators that inappropriately make assumptions about register | 
|  | /// enum value ordering. | 
|  | bool operator<(const RegNumT &) = delete; | 
|  | bool operator<=(const RegNumT &) = delete; | 
|  | bool operator>(const RegNumT &) = delete; | 
|  | bool operator>=(const RegNumT &) = delete; | 
|  | }; | 
|  |  | 
|  | /// RegNumBVIter wraps SmallBitVector so that instead of this pattern: | 
|  | /// | 
|  | ///   for (int i = V.find_first(); i != -1; i = V.find_next(i)) { | 
|  | ///     RegNumT RegNum = RegNumT::fromInt(i); | 
|  | ///     ... | 
|  | ///   } | 
|  | /// | 
|  | /// this cleaner pattern can be used: | 
|  | /// | 
|  | ///   for (RegNumT RegNum : RegNumBVIter(V)) { | 
|  | ///     ... | 
|  | ///   } | 
|  | template <class B> class RegNumBVIterImpl { | 
|  | using T = B; | 
|  | static constexpr int Sentinel = -1; | 
|  | RegNumBVIterImpl() = delete; | 
|  |  | 
|  | public: | 
|  | class Iterator { | 
|  | Iterator() = delete; | 
|  | Iterator &operator=(const Iterator &) = delete; | 
|  |  | 
|  | public: | 
|  | explicit Iterator(const T &V) : V(V), Current(V.find_first()) {} | 
|  | Iterator(const T &V, int Value) : V(V), Current(Value) {} | 
|  | Iterator(const Iterator &) = default; | 
|  | RegNumT operator*() { | 
|  | assert(Current != Sentinel); | 
|  | return RegNumT::fromInt(Current); | 
|  | } | 
|  | Iterator &operator++() { | 
|  | assert(Current != Sentinel); | 
|  | Current = V.find_next(Current); | 
|  | return *this; | 
|  | } | 
|  | bool operator!=(Iterator &Other) { return Current != Other.Current; } | 
|  |  | 
|  | private: | 
|  | const T &V; | 
|  | int Current; | 
|  | }; | 
|  |  | 
|  | RegNumBVIterImpl(const RegNumBVIterImpl &) = default; | 
|  | RegNumBVIterImpl &operator=(const RegNumBVIterImpl &) = delete; | 
|  | explicit RegNumBVIterImpl(const T &V) : V(V) {} | 
|  | Iterator begin() { return Iterator(V); } | 
|  | Iterator end() { return Iterator(V, Sentinel); } | 
|  |  | 
|  | private: | 
|  | const T &V; | 
|  | }; | 
|  |  | 
|  | template <class B> RegNumBVIterImpl<B> RegNumBVIter(const B &BV) { | 
|  | return RegNumBVIterImpl<B>(BV); | 
|  | } | 
|  |  | 
|  | /// RegWeight is a wrapper for a uint32_t weight value, with a special value | 
|  | /// that represents infinite weight, and an addWeight() method that ensures that | 
|  | /// W+infinity=infinity. | 
|  | class RegWeight { | 
|  | public: | 
|  | using BaseType = uint32_t; | 
|  | RegWeight() = default; | 
|  | explicit RegWeight(BaseType Weight) : Weight(Weight) {} | 
|  | RegWeight(const RegWeight &) = default; | 
|  | RegWeight &operator=(const RegWeight &) = default; | 
|  | constexpr static BaseType Inf = ~0; /// Force regalloc to give a register | 
|  | constexpr static BaseType Zero = 0; /// Force regalloc NOT to give a register | 
|  | constexpr static BaseType Max = Inf - 1; /// Max natural weight. | 
|  | void addWeight(BaseType Delta) { | 
|  | if (Delta == Inf) | 
|  | Weight = Inf; | 
|  | else if (Weight != Inf) | 
|  | if (Utils::add_overflow(Weight, Delta, &Weight) || Weight == Inf) | 
|  | Weight = Max; | 
|  | } | 
|  | void addWeight(const RegWeight &Other) { addWeight(Other.Weight); } | 
|  | void setWeight(BaseType Val) { Weight = Val; } | 
|  | BaseType getWeight() const { return Weight; } | 
|  |  | 
|  | private: | 
|  | BaseType Weight = 0; | 
|  | }; | 
|  | Ostream &operator<<(Ostream &Str, const RegWeight &W); | 
|  | bool operator<(const RegWeight &A, const RegWeight &B); | 
|  | bool operator<=(const RegWeight &A, const RegWeight &B); | 
|  | bool operator==(const RegWeight &A, const RegWeight &B); | 
|  |  | 
|  | /// LiveRange is a set of instruction number intervals representing a variable's | 
|  | /// live range. Generally there is one interval per basic block where the | 
|  | /// variable is live, but adjacent intervals get coalesced into a single | 
|  | /// interval. | 
|  | class LiveRange { | 
|  | public: | 
|  | using RangeElementType = std::pair<InstNumberT, InstNumberT>; | 
|  | /// RangeType is arena-allocated from the Cfg's allocator. | 
|  | using RangeType = CfgVector<RangeElementType>; | 
|  | LiveRange() = default; | 
|  | /// Special constructor for building a kill set. The advantage is that we can | 
|  | /// reserve the right amount of space in advance. | 
|  | explicit LiveRange(const CfgVector<InstNumberT> &Kills) { | 
|  | Range.reserve(Kills.size()); | 
|  | for (InstNumberT I : Kills) | 
|  | addSegment(I, I); | 
|  | } | 
|  | LiveRange(const LiveRange &) = default; | 
|  | LiveRange &operator=(const LiveRange &) = default; | 
|  |  | 
|  | void reset() { | 
|  | Range.clear(); | 
|  | untrim(); | 
|  | } | 
|  | void addSegment(InstNumberT Start, InstNumberT End, CfgNode *Node = nullptr); | 
|  | void addSegment(RangeElementType Segment, CfgNode *Node = nullptr) { | 
|  | addSegment(Segment.first, Segment.second, Node); | 
|  | } | 
|  |  | 
|  | bool endsBefore(const LiveRange &Other) const; | 
|  | bool overlaps(const LiveRange &Other, bool UseTrimmed = false) const; | 
|  | bool overlapsInst(InstNumberT OtherBegin, bool UseTrimmed = false) const; | 
|  | bool containsValue(InstNumberT Value, bool IsDest) const; | 
|  | bool isEmpty() const { return Range.empty(); } | 
|  | InstNumberT getStart() const { | 
|  | return Range.empty() ? -1 : Range.begin()->first; | 
|  | } | 
|  | InstNumberT getEnd() const { | 
|  | return Range.empty() ? -1 : Range.rbegin()->second; | 
|  | } | 
|  |  | 
|  | void untrim() { TrimmedBegin = Range.begin(); } | 
|  | void trim(InstNumberT Lower); | 
|  |  | 
|  | void dump(Ostream &Str) const; | 
|  |  | 
|  | SizeT getNumSegments() const { return Range.size(); } | 
|  |  | 
|  | const RangeType &getSegments() const { return Range; } | 
|  | CfgNode *getNodeForSegment(InstNumberT Begin) { | 
|  | auto Iter = NodeMap.find(Begin); | 
|  | assert(Iter != NodeMap.end()); | 
|  | return Iter->second; | 
|  | } | 
|  |  | 
|  | private: | 
|  | RangeType Range; | 
|  | CfgUnorderedMap<InstNumberT, CfgNode *> NodeMap; | 
|  | /// TrimmedBegin is an optimization for the overlaps() computation. Since the | 
|  | /// linear-scan algorithm always calls it as overlaps(Cur) and Cur advances | 
|  | /// monotonically according to live range start, we can optimize overlaps() by | 
|  | /// ignoring all segments that end before the start of Cur's range. The | 
|  | /// linear-scan code enables this by calling trim() on the ranges of interest | 
|  | /// as Cur advances. Note that linear-scan also has to initialize TrimmedBegin | 
|  | /// at the beginning by calling untrim(). | 
|  | RangeType::const_iterator TrimmedBegin; | 
|  | }; | 
|  |  | 
|  | Ostream &operator<<(Ostream &Str, const LiveRange &L); | 
|  |  | 
|  | /// Variable represents an operand that is register-allocated or | 
|  | /// stack-allocated. If it is register-allocated, it will ultimately have a | 
|  | /// valid RegNum field. | 
|  | class Variable : public Operand { | 
|  | Variable() = delete; | 
|  | Variable(const Variable &) = delete; | 
|  | Variable &operator=(const Variable &) = delete; | 
|  |  | 
|  | enum RegRequirement : uint8_t { | 
|  | RR_MayHaveRegister, | 
|  | RR_MustHaveRegister, | 
|  | RR_MustNotHaveRegister, | 
|  | }; | 
|  |  | 
|  | public: | 
|  | static Variable *create(Cfg *Func, Type Ty, SizeT Index) { | 
|  | return new (Func->allocate<Variable>()) | 
|  | Variable(Func, kVariable, Ty, Index); | 
|  | } | 
|  |  | 
|  | SizeT getIndex() const { return Number; } | 
|  | std::string getName() const { | 
|  | if (Name.hasStdString()) | 
|  | return Name.toString(); | 
|  | return "__" + std::to_string(getIndex()); | 
|  | } | 
|  | virtual void setName(const Cfg *Func, const std::string &NewName) { | 
|  | if (NewName.empty()) | 
|  | return; | 
|  | Name = VariableString::createWithString(Func, NewName); | 
|  | } | 
|  |  | 
|  | bool getIsArg() const { return IsArgument; } | 
|  | virtual void setIsArg(bool Val = true) { IsArgument = Val; } | 
|  | bool getIsImplicitArg() const { return IsImplicitArgument; } | 
|  | void setIsImplicitArg(bool Val = true) { IsImplicitArgument = Val; } | 
|  |  | 
|  | void setIgnoreLiveness() { IgnoreLiveness = true; } | 
|  | bool getIgnoreLiveness() const { | 
|  | return IgnoreLiveness || IsRematerializable; | 
|  | } | 
|  |  | 
|  | /// Returns true if the variable either has a definite stack offset, or has | 
|  | /// the UndeterminedStackOffset such that it is guaranteed to have a definite | 
|  | /// stack offset at emission time. | 
|  | bool hasStackOffset() const { return StackOffset != InvalidStackOffset; } | 
|  | /// Returns true if the variable has a stack offset that is known at this | 
|  | /// time. | 
|  | bool hasKnownStackOffset() const { | 
|  | return StackOffset != InvalidStackOffset && | 
|  | StackOffset != UndeterminedStackOffset; | 
|  | } | 
|  | int32_t getStackOffset() const { | 
|  | assert(hasKnownStackOffset()); | 
|  | return StackOffset; | 
|  | } | 
|  | void setStackOffset(int32_t Offset) { StackOffset = Offset; } | 
|  | /// Set a "placeholder" stack offset before its actual offset has been | 
|  | /// determined. | 
|  | void setHasStackOffset() { | 
|  | if (!hasStackOffset()) | 
|  | StackOffset = UndeterminedStackOffset; | 
|  | } | 
|  | /// Returns the variable's stack offset in symbolic form, to improve | 
|  | /// readability in DecorateAsm mode. | 
|  | std::string getSymbolicStackOffset() const { | 
|  | if (!BuildDefs::dump()) | 
|  | return ""; | 
|  | return ".L$lv$" + getName(); | 
|  | } | 
|  |  | 
|  | bool hasReg() const { return getRegNum().hasValue(); } | 
|  | RegNumT getRegNum() const { return RegNum; } | 
|  | void setRegNum(RegNumT NewRegNum) { | 
|  | // Regnum shouldn't be set more than once. | 
|  | assert(!hasReg() || RegNum == NewRegNum); | 
|  | RegNum = NewRegNum; | 
|  | } | 
|  | bool hasRegTmp() const { return getRegNumTmp().hasValue(); } | 
|  | RegNumT getRegNumTmp() const { return RegNumTmp; } | 
|  | void setRegNumTmp(RegNumT NewRegNum) { RegNumTmp = NewRegNum; } | 
|  |  | 
|  | RegWeight getWeight(const Cfg *Func) const; | 
|  |  | 
|  | void setMustHaveReg() { RegRequirement = RR_MustHaveRegister; } | 
|  | bool mustHaveReg() const { return RegRequirement == RR_MustHaveRegister; } | 
|  | void setMustNotHaveReg() { RegRequirement = RR_MustNotHaveRegister; } | 
|  | bool mustNotHaveReg() const { | 
|  | return RegRequirement == RR_MustNotHaveRegister; | 
|  | } | 
|  | bool mayHaveReg() const { return RegRequirement == RR_MayHaveRegister; } | 
|  | void setRematerializable(RegNumT NewRegNum, int32_t NewOffset) { | 
|  | IsRematerializable = true; | 
|  | setRegNum(NewRegNum); | 
|  | setStackOffset(NewOffset); | 
|  | setMustHaveReg(); | 
|  | } | 
|  | bool isRematerializable() const { return IsRematerializable; } | 
|  |  | 
|  | void setRegClass(uint8_t RC) { RegisterClass = static_cast<RegClass>(RC); } | 
|  | RegClass getRegClass() const { return RegisterClass; } | 
|  |  | 
|  | LiveRange &getLiveRange() { return Live; } | 
|  | const LiveRange &getLiveRange() const { return Live; } | 
|  | void setLiveRange(const LiveRange &Range) { Live = Range; } | 
|  | void resetLiveRange() { Live.reset(); } | 
|  | void addLiveRange(InstNumberT Start, InstNumberT End, | 
|  | CfgNode *Node = nullptr) { | 
|  | assert(!getIgnoreLiveness()); | 
|  | Live.addSegment(Start, End, Node); | 
|  | } | 
|  | void trimLiveRange(InstNumberT Start) { Live.trim(Start); } | 
|  | void untrimLiveRange() { Live.untrim(); } | 
|  | bool rangeEndsBefore(const Variable *Other) const { | 
|  | return Live.endsBefore(Other->Live); | 
|  | } | 
|  | bool rangeOverlaps(const Variable *Other) const { | 
|  | constexpr bool UseTrimmed = true; | 
|  | return Live.overlaps(Other->Live, UseTrimmed); | 
|  | } | 
|  | bool rangeOverlapsStart(const Variable *Other) const { | 
|  | constexpr bool UseTrimmed = true; | 
|  | return Live.overlapsInst(Other->Live.getStart(), UseTrimmed); | 
|  | } | 
|  |  | 
|  | /// Creates a temporary copy of the variable with a different type. Used | 
|  | /// primarily for syntactic correctness of textual assembly emission. Note | 
|  | /// that only basic information is copied, in particular not IsArgument, | 
|  | /// IsImplicitArgument, IgnoreLiveness, RegNumTmp, Live, LoVar, HiVar, | 
|  | /// VarsReal. If NewRegNum.hasValue(), then that register assignment is made | 
|  | /// instead of copying the existing assignment. | 
|  | const Variable *asType(const Cfg *Func, Type Ty, RegNumT NewRegNum) const; | 
|  |  | 
|  | void emit(const Cfg *Func) const override; | 
|  | using Operand::dump; | 
|  | void dump(const Cfg *Func, Ostream &Str) const override; | 
|  |  | 
|  | /// Return reg num of base register, if different from stack/frame register. | 
|  | virtual RegNumT getBaseRegNum() const { return RegNumT(); } | 
|  |  | 
|  | /// Access the LinkedTo field. | 
|  | void setLinkedTo(Variable *Var) { LinkedTo = Var; } | 
|  | Variable *getLinkedTo() const { return LinkedTo; } | 
|  | /// Follow the LinkedTo chain up to the furthest ancestor. | 
|  | Variable *getLinkedToRoot() const { | 
|  | Variable *Root = LinkedTo; | 
|  | if (Root == nullptr) | 
|  | return nullptr; | 
|  | while (Root->LinkedTo != nullptr) | 
|  | Root = Root->LinkedTo; | 
|  | return Root; | 
|  | } | 
|  | /// Follow the LinkedTo chain up to the furthest stack-allocated ancestor. | 
|  | /// This is only certain to be accurate after register allocation and stack | 
|  | /// slot assignment have completed. | 
|  | Variable *getLinkedToStackRoot() const { | 
|  | Variable *FurthestStackVar = nullptr; | 
|  | for (Variable *Root = LinkedTo; Root != nullptr; Root = Root->LinkedTo) { | 
|  | if (!Root->hasReg() && Root->hasStackOffset()) { | 
|  | FurthestStackVar = Root; | 
|  | } | 
|  | } | 
|  | return FurthestStackVar; | 
|  | } | 
|  |  | 
|  | static bool classof(const Operand *Operand) { | 
|  | OperandKind Kind = Operand->getKind(); | 
|  | return Kind >= kVariable && Kind <= kVariable_Max; | 
|  | } | 
|  |  | 
|  | SizeT hashValue() const override { return std::hash<SizeT>()(getIndex()); } | 
|  |  | 
|  | inline void* getExternalData() const { return externalData; } | 
|  | inline void setExternalData(void* data) { externalData = data; } | 
|  |  | 
|  | protected: | 
|  | Variable(const Cfg *Func, OperandKind K, Type Ty, SizeT Index) | 
|  | : Operand(K, Ty), Number(Index), | 
|  | Name(VariableString::createWithoutString(Func)), | 
|  | RegisterClass(static_cast<RegClass>(Ty)) { | 
|  | Vars = VarsReal; | 
|  | Vars[0] = this; | 
|  | NumVars = 1; | 
|  | } | 
|  | /// Number is unique across all variables, and is used as a (bit)vector index | 
|  | /// for liveness analysis. | 
|  | const SizeT Number; | 
|  | VariableString Name; | 
|  | bool IsArgument = false; | 
|  | bool IsImplicitArgument = false; | 
|  | /// IgnoreLiveness means that the variable should be ignored when constructing | 
|  | /// and validating live ranges. This is usually reserved for the stack | 
|  | /// pointer and other physical registers specifically referenced by name. | 
|  | bool IgnoreLiveness = false; | 
|  | // If IsRematerializable, RegNum keeps track of which register (stack or frame | 
|  | // pointer), and StackOffset is the known offset from that register. | 
|  | bool IsRematerializable = false; | 
|  | RegRequirement RegRequirement = RR_MayHaveRegister; | 
|  | RegClass RegisterClass; | 
|  | /// RegNum is the allocated register, (as long as RegNum.hasValue() is true). | 
|  | RegNumT RegNum; | 
|  | /// RegNumTmp is the tentative assignment during register allocation. | 
|  | RegNumT RegNumTmp; | 
|  | static constexpr int32_t InvalidStackOffset = | 
|  | std::numeric_limits<int32_t>::min(); | 
|  | static constexpr int32_t UndeterminedStackOffset = | 
|  | 1 + std::numeric_limits<int32_t>::min(); | 
|  | /// StackOffset is the canonical location on stack (only if | 
|  | /// RegNum.hasNoValue() || IsArgument). | 
|  | int32_t StackOffset = InvalidStackOffset; | 
|  | LiveRange Live; | 
|  | /// VarsReal (and Operand::Vars) are set up such that Vars[0] == this. | 
|  | Variable *VarsReal[1]; | 
|  | /// This Variable may be "linked" to another Variable, such that if neither | 
|  | /// Variable gets a register, they are guaranteed to share a stack location. | 
|  | Variable *LinkedTo = nullptr; | 
|  | /// External data can be set by an optimizer to compute and retain any | 
|  | /// information related to the current variable. All the memory used to | 
|  | /// store this information must be managed by the optimizer. | 
|  | void* externalData = nullptr; | 
|  | }; | 
|  |  | 
|  | // Variable64On32 represents a 64-bit variable on a 32-bit architecture. In | 
|  | // this situation the variable must be split into a low and a high word. | 
|  | class Variable64On32 : public Variable { | 
|  | Variable64On32() = delete; | 
|  | Variable64On32(const Variable64On32 &) = delete; | 
|  | Variable64On32 &operator=(const Variable64On32 &) = delete; | 
|  |  | 
|  | public: | 
|  | static Variable64On32 *create(Cfg *Func, Type Ty, SizeT Index) { | 
|  | return new (Func->allocate<Variable64On32>()) | 
|  | Variable64On32(Func, kVariable64On32, Ty, Index); | 
|  | } | 
|  |  | 
|  | void setName(const Cfg *Func, const std::string &NewName) override { | 
|  | Variable::setName(Func, NewName); | 
|  | if (LoVar && HiVar) { | 
|  | LoVar->setName(Func, getName() + "__lo"); | 
|  | HiVar->setName(Func, getName() + "__hi"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void setIsArg(bool Val = true) override { | 
|  | Variable::setIsArg(Val); | 
|  | if (LoVar && HiVar) { | 
|  | LoVar->setIsArg(Val); | 
|  | HiVar->setIsArg(Val); | 
|  | } | 
|  | } | 
|  |  | 
|  | Variable *getLo() const { | 
|  | assert(LoVar != nullptr); | 
|  | return LoVar; | 
|  | } | 
|  | Variable *getHi() const { | 
|  | assert(HiVar != nullptr); | 
|  | return HiVar; | 
|  | } | 
|  |  | 
|  | void initHiLo(Cfg *Func) { | 
|  | assert(LoVar == nullptr); | 
|  | assert(HiVar == nullptr); | 
|  | LoVar = Func->makeVariable(IceType_i32); | 
|  | HiVar = Func->makeVariable(IceType_i32); | 
|  | LoVar->setIsArg(getIsArg()); | 
|  | HiVar->setIsArg(getIsArg()); | 
|  | if (BuildDefs::dump()) { | 
|  | LoVar->setName(Func, getName() + "__lo"); | 
|  | HiVar->setName(Func, getName() + "__hi"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool classof(const Operand *Operand) { | 
|  | OperandKind Kind = Operand->getKind(); | 
|  | return Kind == kVariable64On32; | 
|  | } | 
|  |  | 
|  | protected: | 
|  | Variable64On32(const Cfg *Func, OperandKind K, Type Ty, SizeT Index) | 
|  | : Variable(Func, K, Ty, Index) { | 
|  | assert(typeWidthInBytes(Ty) == 8); | 
|  | } | 
|  |  | 
|  | Variable *LoVar = nullptr; | 
|  | Variable *HiVar = nullptr; | 
|  | }; | 
|  |  | 
|  | // VariableVecOn32 represents a 128-bit vector variable on a 32-bit | 
|  | // architecture. In this case the variable must be split into 4 containers. | 
|  | class VariableVecOn32 : public Variable { | 
|  | VariableVecOn32() = delete; | 
|  | VariableVecOn32(const VariableVecOn32 &) = delete; | 
|  | VariableVecOn32 &operator=(const VariableVecOn32 &) = delete; | 
|  |  | 
|  | public: | 
|  | static VariableVecOn32 *create(Cfg *Func, Type Ty, SizeT Index) { | 
|  | return new (Func->allocate<VariableVecOn32>()) | 
|  | VariableVecOn32(Func, kVariableVecOn32, Ty, Index); | 
|  | } | 
|  |  | 
|  | void setName(const Cfg *Func, const std::string &NewName) override { | 
|  | Variable::setName(Func, NewName); | 
|  | if (!Containers.empty()) { | 
|  | for (SizeT i = 0; i < ContainersPerVector; ++i) { | 
|  | Containers[i]->setName(Func, getName() + "__cont" + std::to_string(i)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void setIsArg(bool Val = true) override { | 
|  | Variable::setIsArg(Val); | 
|  | for (Variable *Var : Containers) { | 
|  | Var->setIsArg(getIsArg()); | 
|  | } | 
|  | } | 
|  |  | 
|  | const VarList &getContainers() const { return Containers; } | 
|  |  | 
|  | void initVecElement(Cfg *Func) { | 
|  | for (SizeT i = 0; i < ContainersPerVector; ++i) { | 
|  | Variable *Var = Func->makeVariable(IceType_i32); | 
|  | Var->setIsArg(getIsArg()); | 
|  | if (BuildDefs::dump()) { | 
|  | Var->setName(Func, getName() + "__cont" + std::to_string(i)); | 
|  | } | 
|  | Containers.push_back(Var); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool classof(const Operand *Operand) { | 
|  | OperandKind Kind = Operand->getKind(); | 
|  | return Kind == kVariableVecOn32; | 
|  | } | 
|  |  | 
|  | // A 128-bit vector value is mapped onto 4 32-bit register values. | 
|  | static constexpr SizeT ContainersPerVector = 4; | 
|  |  | 
|  | protected: | 
|  | VariableVecOn32(const Cfg *Func, OperandKind K, Type Ty, SizeT Index) | 
|  | : Variable(Func, K, Ty, Index) { | 
|  | assert(typeWidthInBytes(Ty) == | 
|  | ContainersPerVector * typeWidthInBytes(IceType_i32)); | 
|  | } | 
|  |  | 
|  | VarList Containers; | 
|  | }; | 
|  |  | 
|  | enum MetadataKind { | 
|  | VMK_Uses,       /// Track only uses, not defs | 
|  | VMK_SingleDefs, /// Track uses+defs, but only record single def | 
|  | VMK_All         /// Track uses+defs, including full def list | 
|  | }; | 
|  | using InstDefList = CfgVector<const Inst *>; | 
|  |  | 
|  | /// VariableTracking tracks the metadata for a single variable.  It is | 
|  | /// only meant to be used internally by VariablesMetadata. | 
|  | class VariableTracking { | 
|  | public: | 
|  | enum MultiDefState { | 
|  | // TODO(stichnot): Consider using just a simple counter. | 
|  | MDS_Unknown, | 
|  | MDS_SingleDef, | 
|  | MDS_MultiDefSingleBlock, | 
|  | MDS_MultiDefMultiBlock | 
|  | }; | 
|  | enum MultiBlockState { | 
|  | MBS_Unknown,     // Not yet initialized, so be conservative | 
|  | MBS_NoUses,      // Known to have no uses | 
|  | MBS_SingleBlock, // All uses in are in a single block | 
|  | MBS_MultiBlock   // Several uses across several blocks | 
|  | }; | 
|  | VariableTracking() = default; | 
|  | VariableTracking(const VariableTracking &) = default; | 
|  | VariableTracking &operator=(const VariableTracking &) = default; | 
|  | VariableTracking(MultiBlockState MultiBlock) : MultiBlock(MultiBlock) {} | 
|  | MultiDefState getMultiDef() const { return MultiDef; } | 
|  | MultiBlockState getMultiBlock() const { return MultiBlock; } | 
|  | const Inst *getFirstDefinitionSingleBlock() const; | 
|  | const Inst *getSingleDefinition() const; | 
|  | const Inst *getFirstDefinition() const; | 
|  | const InstDefList &getLatterDefinitions() const { return Definitions; } | 
|  | CfgNode *getNode() const { return SingleUseNode; } | 
|  | RegWeight getUseWeight() const { return UseWeight; } | 
|  | void markUse(MetadataKind TrackingKind, const Inst *Instr, CfgNode *Node, | 
|  | bool IsImplicit); | 
|  | void markDef(MetadataKind TrackingKind, const Inst *Instr, CfgNode *Node); | 
|  |  | 
|  | private: | 
|  | MultiDefState MultiDef = MDS_Unknown; | 
|  | MultiBlockState MultiBlock = MBS_Unknown; | 
|  | CfgNode *SingleUseNode = nullptr; | 
|  | CfgNode *SingleDefNode = nullptr; | 
|  | /// All definitions of the variable are collected in Definitions[] (except for | 
|  | /// the earliest definition), in increasing order of instruction number. | 
|  | InstDefList Definitions; /// Only used if Kind==VMK_All | 
|  | const Inst *FirstOrSingleDefinition = nullptr; | 
|  | RegWeight UseWeight; | 
|  | }; | 
|  |  | 
|  | /// VariablesMetadata analyzes and summarizes the metadata for the complete set | 
|  | /// of Variables. | 
|  | class VariablesMetadata { | 
|  | VariablesMetadata() = delete; | 
|  | VariablesMetadata(const VariablesMetadata &) = delete; | 
|  | VariablesMetadata &operator=(const VariablesMetadata &) = delete; | 
|  |  | 
|  | public: | 
|  | explicit VariablesMetadata(const Cfg *Func) : Func(Func) {} | 
|  | /// Initialize the state by traversing all instructions/variables in the CFG. | 
|  | void init(MetadataKind TrackingKind); | 
|  | /// Add a single node. This is called by init(), and can be called | 
|  | /// incrementally from elsewhere, e.g. after edge-splitting. | 
|  | void addNode(CfgNode *Node); | 
|  | MetadataKind getKind() const { return Kind; } | 
|  | /// Returns whether the given Variable is tracked in this object. It should | 
|  | /// only return false if changes were made to the CFG after running init(), in | 
|  | /// which case the state is stale and the results shouldn't be trusted (but it | 
|  | /// may be OK e.g. for dumping). | 
|  | bool isTracked(const Variable *Var) const { | 
|  | return Var->getIndex() < Metadata.size(); | 
|  | } | 
|  |  | 
|  | /// Returns whether the given Variable has multiple definitions. | 
|  | bool isMultiDef(const Variable *Var) const; | 
|  | /// Returns the first definition instruction of the given Variable. This is | 
|  | /// only valid for variables whose definitions are all within the same block, | 
|  | /// e.g. T after the lowered sequence "T=B; T+=C; A=T", for which | 
|  | /// getFirstDefinitionSingleBlock(T) would return the "T=B" instruction. For | 
|  | /// variables with definitions span multiple blocks, nullptr is returned. | 
|  | const Inst *getFirstDefinitionSingleBlock(const Variable *Var) const; | 
|  | /// Returns the definition instruction of the given Variable, when the | 
|  | /// variable has exactly one definition. Otherwise, nullptr is returned. | 
|  | const Inst *getSingleDefinition(const Variable *Var) const; | 
|  | /// getFirstDefinition() and getLatterDefinitions() are used together to | 
|  | /// return the complete set of instructions that define the given Variable, | 
|  | /// regardless of whether the definitions are within the same block (in | 
|  | /// contrast to getFirstDefinitionSingleBlock). | 
|  | const Inst *getFirstDefinition(const Variable *Var) const; | 
|  | const InstDefList &getLatterDefinitions(const Variable *Var) const; | 
|  |  | 
|  | /// Returns whether the given Variable is live across multiple blocks. Mainly, | 
|  | /// this is used to partition Variables into single-block versus multi-block | 
|  | /// sets for leveraging sparsity in liveness analysis, and for implementing | 
|  | /// simple stack slot coalescing. As a special case, function arguments are | 
|  | /// always considered multi-block because they are live coming into the entry | 
|  | /// block. | 
|  | bool isMultiBlock(const Variable *Var) const; | 
|  | bool isSingleBlock(const Variable *Var) const; | 
|  | /// Returns the node that the given Variable is used in, assuming | 
|  | /// isMultiBlock() returns false. Otherwise, nullptr is returned. | 
|  | CfgNode *getLocalUseNode(const Variable *Var) const; | 
|  |  | 
|  | /// Returns the total use weight computed as the sum of uses multiplied by a | 
|  | /// loop nest depth factor for each use. | 
|  | RegWeight getUseWeight(const Variable *Var) const; | 
|  |  | 
|  | private: | 
|  | const Cfg *Func; | 
|  | MetadataKind Kind; | 
|  | CfgVector<VariableTracking> Metadata; | 
|  | static const InstDefList *NoDefinitions; | 
|  | }; | 
|  |  | 
|  | /// BooleanVariable represents a variable that was the zero-extended result of a | 
|  | /// comparison. It maintains a pointer to its original i1 source so that the | 
|  | /// WASM frontend can avoid adding needless comparisons. | 
|  | class BooleanVariable : public Variable { | 
|  | BooleanVariable() = delete; | 
|  | BooleanVariable(const BooleanVariable &) = delete; | 
|  | BooleanVariable &operator=(const BooleanVariable &) = delete; | 
|  |  | 
|  | BooleanVariable(const Cfg *Func, OperandKind K, Type Ty, SizeT Index) | 
|  | : Variable(Func, K, Ty, Index) {} | 
|  |  | 
|  | public: | 
|  | static BooleanVariable *create(Cfg *Func, Type Ty, SizeT Index) { | 
|  | return new (Func->allocate<BooleanVariable>()) | 
|  | BooleanVariable(Func, kVariable, Ty, Index); | 
|  | } | 
|  |  | 
|  | virtual Variable *asBoolean() { return BoolSource; } | 
|  |  | 
|  | void setBoolSource(Variable *Src) { BoolSource = Src; } | 
|  |  | 
|  | static bool classof(const Operand *Operand) { | 
|  | return Operand->getKind() == kVariableBoolean; | 
|  | } | 
|  |  | 
|  | private: | 
|  | Variable *BoolSource = nullptr; | 
|  | }; | 
|  |  | 
|  | } // end of namespace Ice | 
|  |  | 
|  | #endif // SUBZERO_SRC_ICEOPERAND_H |