| //===- HexagonStoreWidening.cpp -------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // Replace sequences of "narrow" stores to adjacent memory locations with |
| // a fewer "wide" stores that have the same effect. |
| // For example, replace: |
| // S4_storeirb_io %100, 0, 0 ; store-immediate-byte |
| // S4_storeirb_io %100, 1, 0 ; store-immediate-byte |
| // with |
| // S4_storeirh_io %100, 0, 0 ; store-immediate-halfword |
| // The above is the general idea. The actual cases handled by the code |
| // may be a bit more complex. |
| // The purpose of this pass is to reduce the number of outstanding stores, |
| // or as one could say, "reduce store queue pressure". Also, wide stores |
| // mean fewer stores, and since there are only two memory instructions allowed |
| // per packet, it also means fewer packets, and ultimately fewer cycles. |
| //===---------------------------------------------------------------------===// |
| |
| #include "HexagonInstrInfo.h" |
| #include "HexagonRegisterInfo.h" |
| #include "HexagonSubtarget.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <vector> |
| |
| #define DEBUG_TYPE "hexagon-widen-stores" |
| |
| using namespace llvm; |
| |
| namespace llvm { |
| |
| FunctionPass *createHexagonStoreWidening(); |
| void initializeHexagonStoreWideningPass(PassRegistry&); |
| |
| } // end namespace llvm |
| |
| namespace { |
| |
| struct HexagonStoreWidening : public MachineFunctionPass { |
| const HexagonInstrInfo *TII; |
| const HexagonRegisterInfo *TRI; |
| const MachineRegisterInfo *MRI; |
| AliasAnalysis *AA; |
| MachineFunction *MF; |
| |
| public: |
| static char ID; |
| |
| HexagonStoreWidening() : MachineFunctionPass(ID) { |
| initializeHexagonStoreWideningPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| StringRef getPassName() const override { return "Hexagon Store Widening"; } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.addPreserved<AAResultsWrapperPass>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| static bool handledStoreType(const MachineInstr *MI); |
| |
| private: |
| static const int MaxWideSize = 4; |
| |
| using InstrGroup = std::vector<MachineInstr *>; |
| using InstrGroupList = std::vector<InstrGroup>; |
| |
| bool instrAliased(InstrGroup &Stores, const MachineMemOperand &MMO); |
| bool instrAliased(InstrGroup &Stores, const MachineInstr *MI); |
| void createStoreGroup(MachineInstr *BaseStore, InstrGroup::iterator Begin, |
| InstrGroup::iterator End, InstrGroup &Group); |
| void createStoreGroups(MachineBasicBlock &MBB, |
| InstrGroupList &StoreGroups); |
| bool processBasicBlock(MachineBasicBlock &MBB); |
| bool processStoreGroup(InstrGroup &Group); |
| bool selectStores(InstrGroup::iterator Begin, InstrGroup::iterator End, |
| InstrGroup &OG, unsigned &TotalSize, unsigned MaxSize); |
| bool createWideStores(InstrGroup &OG, InstrGroup &NG, unsigned TotalSize); |
| bool replaceStores(InstrGroup &OG, InstrGroup &NG); |
| bool storesAreAdjacent(const MachineInstr *S1, const MachineInstr *S2); |
| }; |
| |
| } // end anonymous namespace |
| |
| char HexagonStoreWidening::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(HexagonStoreWidening, "hexagon-widen-stores", |
| "Hexason Store Widening", false, false) |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| INITIALIZE_PASS_END(HexagonStoreWidening, "hexagon-widen-stores", |
| "Hexagon Store Widening", false, false) |
| |
| // Some local helper functions... |
| static unsigned getBaseAddressRegister(const MachineInstr *MI) { |
| const MachineOperand &MO = MI->getOperand(0); |
| assert(MO.isReg() && "Expecting register operand"); |
| return MO.getReg(); |
| } |
| |
| static int64_t getStoreOffset(const MachineInstr *MI) { |
| unsigned OpC = MI->getOpcode(); |
| assert(HexagonStoreWidening::handledStoreType(MI) && "Unhandled opcode"); |
| |
| switch (OpC) { |
| case Hexagon::S4_storeirb_io: |
| case Hexagon::S4_storeirh_io: |
| case Hexagon::S4_storeiri_io: { |
| const MachineOperand &MO = MI->getOperand(1); |
| assert(MO.isImm() && "Expecting immediate offset"); |
| return MO.getImm(); |
| } |
| } |
| dbgs() << *MI; |
| llvm_unreachable("Store offset calculation missing for a handled opcode"); |
| return 0; |
| } |
| |
| static const MachineMemOperand &getStoreTarget(const MachineInstr *MI) { |
| assert(!MI->memoperands_empty() && "Expecting memory operands"); |
| return **MI->memoperands_begin(); |
| } |
| |
| // Filtering function: any stores whose opcodes are not "approved" of by |
| // this function will not be subjected to widening. |
| inline bool HexagonStoreWidening::handledStoreType(const MachineInstr *MI) { |
| // For now, only handle stores of immediate values. |
| // Also, reject stores to stack slots. |
| unsigned Opc = MI->getOpcode(); |
| switch (Opc) { |
| case Hexagon::S4_storeirb_io: |
| case Hexagon::S4_storeirh_io: |
| case Hexagon::S4_storeiri_io: |
| // Base address must be a register. (Implement FI later.) |
| return MI->getOperand(0).isReg(); |
| default: |
| return false; |
| } |
| } |
| |
| // Check if the machine memory operand MMO is aliased with any of the |
| // stores in the store group Stores. |
| bool HexagonStoreWidening::instrAliased(InstrGroup &Stores, |
| const MachineMemOperand &MMO) { |
| if (!MMO.getValue()) |
| return true; |
| |
| MemoryLocation L(MMO.getValue(), MMO.getSize(), MMO.getAAInfo()); |
| |
| for (auto SI : Stores) { |
| const MachineMemOperand &SMO = getStoreTarget(SI); |
| if (!SMO.getValue()) |
| return true; |
| |
| MemoryLocation SL(SMO.getValue(), SMO.getSize(), SMO.getAAInfo()); |
| if (AA->alias(L, SL)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Check if the machine instruction MI accesses any storage aliased with |
| // any store in the group Stores. |
| bool HexagonStoreWidening::instrAliased(InstrGroup &Stores, |
| const MachineInstr *MI) { |
| for (auto &I : MI->memoperands()) |
| if (instrAliased(Stores, *I)) |
| return true; |
| return false; |
| } |
| |
| // Inspect a machine basic block, and generate store groups out of stores |
| // encountered in the block. |
| // |
| // A store group is a group of stores that use the same base register, |
| // and which can be reordered within that group without altering the |
| // semantics of the program. A single store group could be widened as |
| // a whole, if there existed a single store instruction with the same |
| // semantics as the entire group. In many cases, a single store group |
| // may need more than one wide store. |
| void HexagonStoreWidening::createStoreGroups(MachineBasicBlock &MBB, |
| InstrGroupList &StoreGroups) { |
| InstrGroup AllInsns; |
| |
| // Copy all instruction pointers from the basic block to a temporary |
| // list. This will allow operating on the list, and modifying its |
| // elements without affecting the basic block. |
| for (auto &I : MBB) |
| AllInsns.push_back(&I); |
| |
| // Traverse all instructions in the AllInsns list, and if we encounter |
| // a store, then try to create a store group starting at that instruction |
| // i.e. a sequence of independent stores that can be widened. |
| for (auto I = AllInsns.begin(), E = AllInsns.end(); I != E; ++I) { |
| MachineInstr *MI = *I; |
| // Skip null pointers (processed instructions). |
| if (!MI || !handledStoreType(MI)) |
| continue; |
| |
| // Found a store. Try to create a store group. |
| InstrGroup G; |
| createStoreGroup(MI, I+1, E, G); |
| if (G.size() > 1) |
| StoreGroups.push_back(G); |
| } |
| } |
| |
| // Create a single store group. The stores need to be independent between |
| // themselves, and also there cannot be other instructions between them |
| // that could read or modify storage being stored into. |
| void HexagonStoreWidening::createStoreGroup(MachineInstr *BaseStore, |
| InstrGroup::iterator Begin, InstrGroup::iterator End, InstrGroup &Group) { |
| assert(handledStoreType(BaseStore) && "Unexpected instruction"); |
| unsigned BaseReg = getBaseAddressRegister(BaseStore); |
| InstrGroup Other; |
| |
| Group.push_back(BaseStore); |
| |
| for (auto I = Begin; I != End; ++I) { |
| MachineInstr *MI = *I; |
| if (!MI) |
| continue; |
| |
| if (handledStoreType(MI)) { |
| // If this store instruction is aliased with anything already in the |
| // group, terminate the group now. |
| if (instrAliased(Group, getStoreTarget(MI))) |
| return; |
| // If this store is aliased to any of the memory instructions we have |
| // seen so far (that are not a part of this group), terminate the group. |
| if (instrAliased(Other, getStoreTarget(MI))) |
| return; |
| |
| unsigned BR = getBaseAddressRegister(MI); |
| if (BR == BaseReg) { |
| Group.push_back(MI); |
| *I = nullptr; |
| continue; |
| } |
| } |
| |
| // Assume calls are aliased to everything. |
| if (MI->isCall() || MI->hasUnmodeledSideEffects()) |
| return; |
| |
| if (MI->mayLoadOrStore()) { |
| if (MI->hasOrderedMemoryRef() || instrAliased(Group, MI)) |
| return; |
| Other.push_back(MI); |
| } |
| } // for |
| } |
| |
| // Check if store instructions S1 and S2 are adjacent. More precisely, |
| // S2 has to access memory immediately following that accessed by S1. |
| bool HexagonStoreWidening::storesAreAdjacent(const MachineInstr *S1, |
| const MachineInstr *S2) { |
| if (!handledStoreType(S1) || !handledStoreType(S2)) |
| return false; |
| |
| const MachineMemOperand &S1MO = getStoreTarget(S1); |
| |
| // Currently only handling immediate stores. |
| int Off1 = S1->getOperand(1).getImm(); |
| int Off2 = S2->getOperand(1).getImm(); |
| |
| return (Off1 >= 0) ? Off1+S1MO.getSize() == unsigned(Off2) |
| : int(Off1+S1MO.getSize()) == Off2; |
| } |
| |
| /// Given a sequence of adjacent stores, and a maximum size of a single wide |
| /// store, pick a group of stores that can be replaced by a single store |
| /// of size not exceeding MaxSize. The selected sequence will be recorded |
| /// in OG ("old group" of instructions). |
| /// OG should be empty on entry, and should be left empty if the function |
| /// fails. |
| bool HexagonStoreWidening::selectStores(InstrGroup::iterator Begin, |
| InstrGroup::iterator End, InstrGroup &OG, unsigned &TotalSize, |
| unsigned MaxSize) { |
| assert(Begin != End && "No instructions to analyze"); |
| assert(OG.empty() && "Old group not empty on entry"); |
| |
| if (std::distance(Begin, End) <= 1) |
| return false; |
| |
| MachineInstr *FirstMI = *Begin; |
| assert(!FirstMI->memoperands_empty() && "Expecting some memory operands"); |
| const MachineMemOperand &FirstMMO = getStoreTarget(FirstMI); |
| unsigned Alignment = FirstMMO.getAlignment(); |
| unsigned SizeAccum = FirstMMO.getSize(); |
| unsigned FirstOffset = getStoreOffset(FirstMI); |
| |
| // The initial value of SizeAccum should always be a power of 2. |
| assert(isPowerOf2_32(SizeAccum) && "First store size not a power of 2"); |
| |
| // If the size of the first store equals to or exceeds the limit, do nothing. |
| if (SizeAccum >= MaxSize) |
| return false; |
| |
| // If the size of the first store is greater than or equal to the address |
| // stored to, then the store cannot be made any wider. |
| if (SizeAccum >= Alignment) |
| return false; |
| |
| // The offset of a store will put restrictions on how wide the store can be. |
| // Offsets in stores of size 2^n bytes need to have the n lowest bits be 0. |
| // If the first store already exhausts the offset limits, quit. Test this |
| // by checking if the next wider size would exceed the limit. |
| if ((2*SizeAccum-1) & FirstOffset) |
| return false; |
| |
| OG.push_back(FirstMI); |
| MachineInstr *S1 = FirstMI; |
| |
| // Pow2Num will be the largest number of elements in OG such that the sum |
| // of sizes of stores 0...Pow2Num-1 will be a power of 2. |
| unsigned Pow2Num = 1; |
| unsigned Pow2Size = SizeAccum; |
| |
| // Be greedy: keep accumulating stores as long as they are to adjacent |
| // memory locations, and as long as the total number of bytes stored |
| // does not exceed the limit (MaxSize). |
| // Keep track of when the total size covered is a power of 2, since |
| // this is a size a single store can cover. |
| for (InstrGroup::iterator I = Begin + 1; I != End; ++I) { |
| MachineInstr *S2 = *I; |
| // Stores are sorted, so if S1 and S2 are not adjacent, there won't be |
| // any other store to fill the "hole". |
| if (!storesAreAdjacent(S1, S2)) |
| break; |
| |
| unsigned S2Size = getStoreTarget(S2).getSize(); |
| if (SizeAccum + S2Size > std::min(MaxSize, Alignment)) |
| break; |
| |
| OG.push_back(S2); |
| SizeAccum += S2Size; |
| if (isPowerOf2_32(SizeAccum)) { |
| Pow2Num = OG.size(); |
| Pow2Size = SizeAccum; |
| } |
| if ((2*Pow2Size-1) & FirstOffset) |
| break; |
| |
| S1 = S2; |
| } |
| |
| // The stores don't add up to anything that can be widened. Clean up. |
| if (Pow2Num <= 1) { |
| OG.clear(); |
| return false; |
| } |
| |
| // Only leave the stored being widened. |
| OG.resize(Pow2Num); |
| TotalSize = Pow2Size; |
| return true; |
| } |
| |
| /// Given an "old group" OG of stores, create a "new group" NG of instructions |
| /// to replace them. Ideally, NG would only have a single instruction in it, |
| /// but that may only be possible for store-immediate. |
| bool HexagonStoreWidening::createWideStores(InstrGroup &OG, InstrGroup &NG, |
| unsigned TotalSize) { |
| // XXX Current limitations: |
| // - only expect stores of immediate values in OG, |
| // - only handle a TotalSize of up to 4. |
| |
| if (TotalSize > 4) |
| return false; |
| |
| unsigned Acc = 0; // Value accumulator. |
| unsigned Shift = 0; |
| |
| for (InstrGroup::iterator I = OG.begin(), E = OG.end(); I != E; ++I) { |
| MachineInstr *MI = *I; |
| const MachineMemOperand &MMO = getStoreTarget(MI); |
| MachineOperand &SO = MI->getOperand(2); // Source. |
| assert(SO.isImm() && "Expecting an immediate operand"); |
| |
| unsigned NBits = MMO.getSize()*8; |
| unsigned Mask = (0xFFFFFFFFU >> (32-NBits)); |
| unsigned Val = (SO.getImm() & Mask) << Shift; |
| Acc |= Val; |
| Shift += NBits; |
| } |
| |
| MachineInstr *FirstSt = OG.front(); |
| DebugLoc DL = OG.back()->getDebugLoc(); |
| const MachineMemOperand &OldM = getStoreTarget(FirstSt); |
| MachineMemOperand *NewM = |
| MF->getMachineMemOperand(OldM.getPointerInfo(), OldM.getFlags(), |
| TotalSize, OldM.getAlignment(), |
| OldM.getAAInfo()); |
| |
| if (Acc < 0x10000) { |
| // Create mem[hw] = #Acc |
| unsigned WOpc = (TotalSize == 2) ? Hexagon::S4_storeirh_io : |
| (TotalSize == 4) ? Hexagon::S4_storeiri_io : 0; |
| assert(WOpc && "Unexpected size"); |
| |
| int Val = (TotalSize == 2) ? int16_t(Acc) : int(Acc); |
| const MCInstrDesc &StD = TII->get(WOpc); |
| MachineOperand &MR = FirstSt->getOperand(0); |
| int64_t Off = FirstSt->getOperand(1).getImm(); |
| MachineInstr *StI = |
| BuildMI(*MF, DL, StD) |
| .addReg(MR.getReg(), getKillRegState(MR.isKill()), MR.getSubReg()) |
| .addImm(Off) |
| .addImm(Val); |
| StI->addMemOperand(*MF, NewM); |
| NG.push_back(StI); |
| } else { |
| // Create vreg = A2_tfrsi #Acc; mem[hw] = vreg |
| const MCInstrDesc &TfrD = TII->get(Hexagon::A2_tfrsi); |
| const TargetRegisterClass *RC = TII->getRegClass(TfrD, 0, TRI, *MF); |
| Register VReg = MF->getRegInfo().createVirtualRegister(RC); |
| MachineInstr *TfrI = BuildMI(*MF, DL, TfrD, VReg) |
| .addImm(int(Acc)); |
| NG.push_back(TfrI); |
| |
| unsigned WOpc = (TotalSize == 2) ? Hexagon::S2_storerh_io : |
| (TotalSize == 4) ? Hexagon::S2_storeri_io : 0; |
| assert(WOpc && "Unexpected size"); |
| |
| const MCInstrDesc &StD = TII->get(WOpc); |
| MachineOperand &MR = FirstSt->getOperand(0); |
| int64_t Off = FirstSt->getOperand(1).getImm(); |
| MachineInstr *StI = |
| BuildMI(*MF, DL, StD) |
| .addReg(MR.getReg(), getKillRegState(MR.isKill()), MR.getSubReg()) |
| .addImm(Off) |
| .addReg(VReg, RegState::Kill); |
| StI->addMemOperand(*MF, NewM); |
| NG.push_back(StI); |
| } |
| |
| return true; |
| } |
| |
| // Replace instructions from the old group OG with instructions from the |
| // new group NG. Conceptually, remove all instructions in OG, and then |
| // insert all instructions in NG, starting at where the first instruction |
| // from OG was (in the order in which they appeared in the basic block). |
| // (The ordering in OG does not have to match the order in the basic block.) |
| bool HexagonStoreWidening::replaceStores(InstrGroup &OG, InstrGroup &NG) { |
| LLVM_DEBUG({ |
| dbgs() << "Replacing:\n"; |
| for (auto I : OG) |
| dbgs() << " " << *I; |
| dbgs() << "with\n"; |
| for (auto I : NG) |
| dbgs() << " " << *I; |
| }); |
| |
| MachineBasicBlock *MBB = OG.back()->getParent(); |
| MachineBasicBlock::iterator InsertAt = MBB->end(); |
| |
| // Need to establish the insertion point. The best one is right before |
| // the first store in the OG, but in the order in which the stores occur |
| // in the program list. Since the ordering in OG does not correspond |
| // to the order in the program list, we need to do some work to find |
| // the insertion point. |
| |
| // Create a set of all instructions in OG (for quick lookup). |
| SmallPtrSet<MachineInstr*, 4> InstrSet; |
| for (auto I : OG) |
| InstrSet.insert(I); |
| |
| // Traverse the block, until we hit an instruction from OG. |
| for (auto &I : *MBB) { |
| if (InstrSet.count(&I)) { |
| InsertAt = I; |
| break; |
| } |
| } |
| |
| assert((InsertAt != MBB->end()) && "Cannot locate any store from the group"); |
| |
| bool AtBBStart = false; |
| |
| // InsertAt points at the first instruction that will be removed. We need |
| // to move it out of the way, so it remains valid after removing all the |
| // old stores, and so we are able to recover it back to the proper insertion |
| // position. |
| if (InsertAt != MBB->begin()) |
| --InsertAt; |
| else |
| AtBBStart = true; |
| |
| for (auto I : OG) |
| I->eraseFromParent(); |
| |
| if (!AtBBStart) |
| ++InsertAt; |
| else |
| InsertAt = MBB->begin(); |
| |
| for (auto I : NG) |
| MBB->insert(InsertAt, I); |
| |
| return true; |
| } |
| |
| // Break up the group into smaller groups, each of which can be replaced by |
| // a single wide store. Widen each such smaller group and replace the old |
| // instructions with the widened ones. |
| bool HexagonStoreWidening::processStoreGroup(InstrGroup &Group) { |
| bool Changed = false; |
| InstrGroup::iterator I = Group.begin(), E = Group.end(); |
| InstrGroup OG, NG; // Old and new groups. |
| unsigned CollectedSize; |
| |
| while (I != E) { |
| OG.clear(); |
| NG.clear(); |
| |
| bool Succ = selectStores(I++, E, OG, CollectedSize, MaxWideSize) && |
| createWideStores(OG, NG, CollectedSize) && |
| replaceStores(OG, NG); |
| if (!Succ) |
| continue; |
| |
| assert(OG.size() > 1 && "Created invalid group"); |
| assert(distance(I, E)+1 >= int(OG.size()) && "Too many elements"); |
| I += OG.size()-1; |
| |
| Changed = true; |
| } |
| |
| return Changed; |
| } |
| |
| // Process a single basic block: create the store groups, and replace them |
| // with the widened stores, if possible. Processing of each basic block |
| // is independent from processing of any other basic block. This transfor- |
| // mation could be stopped after having processed any basic block without |
| // any ill effects (other than not having performed widening in the unpro- |
| // cessed blocks). Also, the basic blocks can be processed in any order. |
| bool HexagonStoreWidening::processBasicBlock(MachineBasicBlock &MBB) { |
| InstrGroupList SGs; |
| bool Changed = false; |
| |
| createStoreGroups(MBB, SGs); |
| |
| auto Less = [] (const MachineInstr *A, const MachineInstr *B) -> bool { |
| return getStoreOffset(A) < getStoreOffset(B); |
| }; |
| for (auto &G : SGs) { |
| assert(G.size() > 1 && "Store group with fewer than 2 elements"); |
| llvm::sort(G, Less); |
| |
| Changed |= processStoreGroup(G); |
| } |
| |
| return Changed; |
| } |
| |
| bool HexagonStoreWidening::runOnMachineFunction(MachineFunction &MFn) { |
| if (skipFunction(MFn.getFunction())) |
| return false; |
| |
| MF = &MFn; |
| auto &ST = MFn.getSubtarget<HexagonSubtarget>(); |
| TII = ST.getInstrInfo(); |
| TRI = ST.getRegisterInfo(); |
| MRI = &MFn.getRegInfo(); |
| AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| |
| bool Changed = false; |
| |
| for (auto &B : MFn) |
| Changed |= processBasicBlock(B); |
| |
| return Changed; |
| } |
| |
| FunctionPass *llvm::createHexagonStoreWidening() { |
| return new HexagonStoreWidening(); |
| } |