| //==- HexagonPatterns.td - Target Description for Hexagon -*- tablegen -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| // Table of contents: |
| // (0) Definitions |
| // (1) Immediates |
| // (2) Type casts |
| // (3) Extend/truncate |
| // (4) Logical |
| // (5) Compare |
| // (6) Select |
| // (7) Insert/extract |
| // (8) Shift/permute |
| // (9) Arithmetic/bitwise |
| // (10) Bit |
| // (11) PIC |
| // (12) Load |
| // (13) Store |
| // (14) Memop |
| // (15) Call |
| // (16) Branch |
| // (17) Misc |
| |
| // Guidelines (in no particular order): |
| // 1. Avoid relying on pattern ordering to give preference to one pattern |
| // over another, prefer using AddedComplexity instead. The reason for |
| // this is to avoid unintended conseqeuences (caused by altering the |
| // order) when making changes. The current order of patterns in this |
| // file obviously does play some role, but none of the ordering was |
| // deliberately chosen (other than to create a logical structure of |
| // this file). When making changes, adding AddedComplexity to existing |
| // patterns may be needed. |
| // 2. Maintain the logical structure of the file, try to put new patterns |
| // in designated sections. |
| // 3. Do not use A2_combinew instruction directly, use Combinew fragment |
| // instead. It uses REG_SEQUENCE, which is more amenable to optimizations. |
| // 4. Most selection macros are based on PatFrags. For DAGs that involve |
| // SDNodes, use pf1/pf2 to convert them to PatFrags. Use common frags |
| // whenever possible (see the Definitions section). When adding new |
| // macro, try to make is general to enable reuse across sections. |
| // 5. Compound instructions (e.g. Rx+Rs*Rt) are generated under the condition |
| // that the nested operation has only one use. Having it separated in case |
| // of multiple uses avoids duplication of (processor) work. |
| // 6. The v4 vector instructions (64-bit) are treated as core instructions, |
| // for example, A2_vaddh is in the "arithmetic" section with A2_add. |
| // 7. When adding a pattern for an instruction with a constant-extendable |
| // operand, allow all possible kinds of inputs for the immediate value |
| // (see AnyImm/anyimm and their variants in the Definitions section). |
| |
| |
| // --(0) Definitions ----------------------------------------------------- |
| // |
| |
| // This complex pattern exists only to create a machine instruction operand |
| // of type "frame index". There doesn't seem to be a way to do that directly |
| // in the patterns. |
| def AddrFI: ComplexPattern<i32, 1, "SelectAddrFI", [frameindex], []>; |
| |
| // These complex patterns are not strictly necessary, since global address |
| // folding will happen during DAG combining. For distinguishing between GA |
| // and GP, pat frags with HexagonCONST32 and HexagonCONST32_GP can be used. |
| def AddrGA: ComplexPattern<i32, 1, "SelectAddrGA", [], []>; |
| def AddrGP: ComplexPattern<i32, 1, "SelectAddrGP", [], []>; |
| def AnyImm: ComplexPattern<i32, 1, "SelectAnyImm", [], []>; |
| def AnyInt: ComplexPattern<i32, 1, "SelectAnyInt", [], []>; |
| |
| // Global address or a constant being a multiple of 2^n. |
| def AnyImm0: ComplexPattern<i32, 1, "SelectAnyImm0", [], []>; |
| def AnyImm1: ComplexPattern<i32, 1, "SelectAnyImm1", [], []>; |
| def AnyImm2: ComplexPattern<i32, 1, "SelectAnyImm2", [], []>; |
| def AnyImm3: ComplexPattern<i32, 1, "SelectAnyImm3", [], []>; |
| |
| |
| // Type helper frags. |
| def V2I1: PatLeaf<(v2i1 PredRegs:$R)>; |
| def V4I1: PatLeaf<(v4i1 PredRegs:$R)>; |
| def V8I1: PatLeaf<(v8i1 PredRegs:$R)>; |
| def V4I8: PatLeaf<(v4i8 IntRegs:$R)>; |
| def V2I16: PatLeaf<(v2i16 IntRegs:$R)>; |
| |
| def V8I8: PatLeaf<(v8i8 DoubleRegs:$R)>; |
| def V4I16: PatLeaf<(v4i16 DoubleRegs:$R)>; |
| def V2I32: PatLeaf<(v2i32 DoubleRegs:$R)>; |
| |
| def HQ8: PatLeaf<(VecQ8 HvxQR:$R)>; |
| def HQ16: PatLeaf<(VecQ16 HvxQR:$R)>; |
| def HQ32: PatLeaf<(VecQ32 HvxQR:$R)>; |
| |
| def HVI8: PatLeaf<(VecI8 HvxVR:$R)>; |
| def HVI16: PatLeaf<(VecI16 HvxVR:$R)>; |
| def HVI32: PatLeaf<(VecI32 HvxVR:$R)>; |
| |
| def HWI8: PatLeaf<(VecPI8 HvxWR:$R)>; |
| def HWI16: PatLeaf<(VecPI16 HvxWR:$R)>; |
| def HWI32: PatLeaf<(VecPI32 HvxWR:$R)>; |
| |
| def SDTVecLeaf: |
| SDTypeProfile<1, 0, [SDTCisVec<0>]>; |
| def SDTVecVecIntOp: |
| SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisVec<1>, SDTCisSameAs<1,2>, |
| SDTCisVT<3,i32>]>; |
| |
| def HexagonPTRUE: SDNode<"HexagonISD::PTRUE", SDTVecLeaf>; |
| def HexagonPFALSE: SDNode<"HexagonISD::PFALSE", SDTVecLeaf>; |
| def HexagonVALIGN: SDNode<"HexagonISD::VALIGN", SDTVecVecIntOp>; |
| def HexagonVALIGNADDR: SDNode<"HexagonISD::VALIGNADDR", SDTIntUnaryOp>; |
| |
| def ptrue: PatFrag<(ops), (HexagonPTRUE)>; |
| def pfalse: PatFrag<(ops), (HexagonPFALSE)>; |
| def pnot: PatFrag<(ops node:$Pu), (xor node:$Pu, ptrue)>; |
| |
| def valign: PatFrag<(ops node:$Vt, node:$Vs, node:$Ru), |
| (HexagonVALIGN node:$Vt, node:$Vs, node:$Ru)>; |
| def valignaddr: PatFrag<(ops node:$Addr), (HexagonVALIGNADDR node:$Addr)>; |
| |
| // Pattern fragments to extract the low and high subregisters from a |
| // 64-bit value. |
| def LoReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_lo)>; |
| def HiReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_hi)>; |
| |
| def IsOrAdd: PatFrag<(ops node:$A, node:$B), (or node:$A, node:$B), [{ |
| return isOrEquivalentToAdd(N); |
| }]>; |
| |
| def IsPow2_32: PatLeaf<(i32 imm), [{ |
| uint32_t V = N->getZExtValue(); |
| return isPowerOf2_32(V); |
| }]>; |
| |
| def IsPow2_64: PatLeaf<(i64 imm), [{ |
| uint64_t V = N->getZExtValue(); |
| return isPowerOf2_64(V); |
| }]>; |
| |
| def IsNPow2_32: PatLeaf<(i32 imm), [{ |
| uint32_t NV = ~N->getZExtValue(); |
| return isPowerOf2_32(NV); |
| }]>; |
| |
| def IsPow2_64L: PatLeaf<(i64 imm), [{ |
| uint64_t V = N->getZExtValue(); |
| return isPowerOf2_64(V) && Log2_64(V) < 32; |
| }]>; |
| |
| def IsPow2_64H: PatLeaf<(i64 imm), [{ |
| uint64_t V = N->getZExtValue(); |
| return isPowerOf2_64(V) && Log2_64(V) >= 32; |
| }]>; |
| |
| def IsNPow2_64L: PatLeaf<(i64 imm), [{ |
| uint64_t NV = ~N->getZExtValue(); |
| return isPowerOf2_64(NV) && Log2_64(NV) < 32; |
| }]>; |
| |
| def IsNPow2_64H: PatLeaf<(i64 imm), [{ |
| uint64_t NV = ~N->getZExtValue(); |
| return isPowerOf2_64(NV) && Log2_64(NV) >= 32; |
| }]>; |
| |
| class IsULE<int Width, int Arg>: PatLeaf<(i32 imm), |
| "uint64_t V = N->getZExtValue();" # |
| "return isUInt<" # Width # ">(V) && V <= " # Arg # ";" |
| >; |
| |
| class IsUGT<int Width, int Arg>: PatLeaf<(i32 imm), |
| "uint64_t V = N->getZExtValue();" # |
| "return isUInt<" # Width # ">(V) && V > " # Arg # ";" |
| >; |
| |
| def SDEC1: SDNodeXForm<imm, [{ |
| int32_t V = N->getSExtValue(); |
| return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32); |
| }]>; |
| |
| def UDEC1: SDNodeXForm<imm, [{ |
| uint32_t V = N->getZExtValue(); |
| assert(V >= 1); |
| return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32); |
| }]>; |
| |
| def UDEC32: SDNodeXForm<imm, [{ |
| uint32_t V = N->getZExtValue(); |
| assert(V >= 32); |
| return CurDAG->getTargetConstant(V-32, SDLoc(N), MVT::i32); |
| }]>; |
| |
| class Subi<int From>: SDNodeXForm<imm, |
| "int32_t V = " # From # " - N->getSExtValue();" # |
| "return CurDAG->getTargetConstant(V, SDLoc(N), MVT::i32);" |
| >; |
| |
| def Log2_32: SDNodeXForm<imm, [{ |
| uint32_t V = N->getZExtValue(); |
| return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32); |
| }]>; |
| |
| def Log2_64: SDNodeXForm<imm, [{ |
| uint64_t V = N->getZExtValue(); |
| return CurDAG->getTargetConstant(Log2_64(V), SDLoc(N), MVT::i32); |
| }]>; |
| |
| def LogN2_32: SDNodeXForm<imm, [{ |
| uint32_t NV = ~N->getZExtValue(); |
| return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32); |
| }]>; |
| |
| def LogN2_64: SDNodeXForm<imm, [{ |
| uint64_t NV = ~N->getZExtValue(); |
| return CurDAG->getTargetConstant(Log2_64(NV), SDLoc(N), MVT::i32); |
| }]>; |
| |
| def NegImm8: SDNodeXForm<imm, [{ |
| int8_t NV = -N->getSExtValue(); |
| return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32); |
| }]>; |
| |
| def NegImm16: SDNodeXForm<imm, [{ |
| int16_t NV = -N->getSExtValue(); |
| return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32); |
| }]>; |
| |
| def NegImm32: SDNodeXForm<imm, [{ |
| int32_t NV = -N->getSExtValue(); |
| return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32); |
| }]>; |
| |
| |
| // Helpers for type promotions/contractions. |
| def I1toI32: OutPatFrag<(ops node:$Rs), (C2_muxii (i1 $Rs), 1, 0)>; |
| def I32toI1: OutPatFrag<(ops node:$Rs), (i1 (C2_cmpgtui (i32 $Rs), (i32 0)))>; |
| def ToZext64: OutPatFrag<(ops node:$Rs), (i64 (A4_combineir 0, (i32 $Rs)))>; |
| def ToSext64: OutPatFrag<(ops node:$Rs), (i64 (A2_sxtw (i32 $Rs)))>; |
| def ToAext64: OutPatFrag<(ops node:$Rs), |
| (REG_SEQUENCE DoubleRegs, (i32 (IMPLICIT_DEF)), isub_hi, (i32 $Rs), isub_lo)>; |
| |
| def Combinew: OutPatFrag<(ops node:$Rs, node:$Rt), |
| (REG_SEQUENCE DoubleRegs, $Rs, isub_hi, $Rt, isub_lo)>; |
| |
| def addrga: PatLeaf<(i32 AddrGA:$Addr)>; |
| def addrgp: PatLeaf<(i32 AddrGP:$Addr)>; |
| def anyimm: PatLeaf<(i32 AnyImm:$Imm)>; |
| def anyint: PatLeaf<(i32 AnyInt:$Imm)>; |
| |
| // Global address or an aligned constant. |
| def anyimm0: PatLeaf<(i32 AnyImm0:$Addr)>; |
| def anyimm1: PatLeaf<(i32 AnyImm1:$Addr)>; |
| def anyimm2: PatLeaf<(i32 AnyImm2:$Addr)>; |
| def anyimm3: PatLeaf<(i32 AnyImm3:$Addr)>; |
| |
| def f32ImmPred : PatLeaf<(f32 fpimm:$F)>; |
| def f64ImmPred : PatLeaf<(f64 fpimm:$F)>; |
| |
| // This complex pattern is really only to detect various forms of |
| // sign-extension i32->i64. The selected value will be of type i64 |
| // whose low word is the value being extended. The high word is |
| // unspecified. |
| def Usxtw: ComplexPattern<i64, 1, "DetectUseSxtw", [], []>; |
| |
| def Aext64: PatFrag<(ops node:$Rs), (i64 (anyext node:$Rs))>; |
| def Zext64: PatFrag<(ops node:$Rs), (i64 (zext node:$Rs))>; |
| def Sext64: PatLeaf<(i64 Usxtw:$Rs)>; |
| |
| def azext: PatFrags<(ops node:$Rs), [(zext node:$Rs), (anyext node:$Rs)]>; |
| def asext: PatFrags<(ops node:$Rs), [(sext node:$Rs), (anyext node:$Rs)]>; |
| |
| def: Pat<(IsOrAdd (i32 AddrFI:$Rs), s32_0ImmPred:$off), |
| (PS_fi (i32 AddrFI:$Rs), imm:$off)>; |
| |
| |
| // Converters from unary/binary SDNode to PatFrag. |
| class pf1<SDNode Op> : PatFrag<(ops node:$a), (Op node:$a)>; |
| class pf2<SDNode Op> : PatFrag<(ops node:$a, node:$b), (Op node:$a, node:$b)>; |
| |
| class Not2<PatFrag P> |
| : PatFrag<(ops node:$A, node:$B), (P node:$A, (not node:$B))>; |
| |
| // If there is a constant operand that feeds the and/or instruction, |
| // do not generate the compound instructions. |
| // It is not always profitable, as some times we end up with a transfer. |
| // Check the below example. |
| // ra = #65820; rb = lsr(rb, #8); rc ^= and (rb, ra) |
| // Instead this is preferable. |
| // ra = and (#65820, lsr(ra, #8)); rb = xor(rb, ra) |
| class Su_ni1<PatFrag Op> |
| : PatFrag<Op.Operands, !head(Op.Fragments), [{ |
| if (hasOneUse(N)){ |
| // Check if Op1 is an immediate operand. |
| SDValue Op1 = N->getOperand(1); |
| return !isa<ConstantSDNode>(Op1); |
| } |
| return false;}], |
| Op.OperandTransform>; |
| |
| class Su<PatFrag Op> |
| : PatFrag<Op.Operands, !head(Op.Fragments), [{ return hasOneUse(N); }], |
| Op.OperandTransform>; |
| |
| // Main selection macros. |
| |
| class OpR_R_pat<InstHexagon MI, PatFrag Op, ValueType ResVT, PatFrag RegPred> |
| : Pat<(ResVT (Op RegPred:$Rs)), (MI RegPred:$Rs)>; |
| |
| class OpR_RI_pat<InstHexagon MI, PatFrag Op, ValueType ResType, |
| PatFrag RegPred, PatFrag ImmPred> |
| : Pat<(ResType (Op RegPred:$Rs, ImmPred:$I)), |
| (MI RegPred:$Rs, imm:$I)>; |
| |
| class OpR_RR_pat<InstHexagon MI, PatFrag Op, ValueType ResType, |
| PatFrag RsPred, PatFrag RtPred = RsPred> |
| : Pat<(ResType (Op RsPred:$Rs, RtPred:$Rt)), |
| (MI RsPred:$Rs, RtPred:$Rt)>; |
| |
| class AccRRI_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op, |
| PatFrag RegPred, PatFrag ImmPred> |
| : Pat<(AccOp RegPred:$Rx, (Op RegPred:$Rs, ImmPred:$I)), |
| (MI RegPred:$Rx, RegPred:$Rs, imm:$I)>; |
| |
| class AccRRR_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op, |
| PatFrag RxPred, PatFrag RsPred, PatFrag RtPred> |
| : Pat<(AccOp RxPred:$Rx, (Op RsPred:$Rs, RtPred:$Rt)), |
| (MI RxPred:$Rx, RsPred:$Rs, RtPred:$Rt)>; |
| |
| multiclass SelMinMax_pats<PatFrag CmpOp, PatFrag Val, |
| InstHexagon InstA, InstHexagon InstB> { |
| def: Pat<(select (i1 (CmpOp Val:$A, Val:$B)), Val:$A, Val:$B), |
| (InstA Val:$A, Val:$B)>; |
| def: Pat<(select (i1 (CmpOp Val:$A, Val:$B)), Val:$B, Val:$A), |
| (InstB Val:$A, Val:$B)>; |
| } |
| |
| multiclass MinMax_pats<InstHexagon PickT, InstHexagon PickS, |
| PatFrag Sel, PatFrag CmpOp, |
| ValueType CmpType, PatFrag CmpPred> { |
| def: Pat<(Sel (CmpType (CmpOp CmpPred:$Vs, CmpPred:$Vt)), |
| CmpPred:$Vt, CmpPred:$Vs), |
| (PickT CmpPred:$Vs, CmpPred:$Vt)>; |
| def: Pat<(Sel (CmpType (CmpOp CmpPred:$Vs, CmpPred:$Vt)), |
| CmpPred:$Vs, CmpPred:$Vt), |
| (PickS CmpPred:$Vs, CmpPred:$Vt)>; |
| } |
| |
| // Bitcasts between same-size vector types are no-ops, except for the |
| // actual type change. |
| multiclass NopCast_pat<ValueType Ty1, ValueType Ty2, RegisterClass RC> { |
| def: Pat<(Ty1 (bitconvert (Ty2 RC:$Val))), (Ty1 RC:$Val)>; |
| def: Pat<(Ty2 (bitconvert (Ty1 RC:$Val))), (Ty2 RC:$Val)>; |
| } |
| |
| |
| // Frags for commonly used SDNodes. |
| def Add: pf2<add>; def And: pf2<and>; def Sra: pf2<sra>; |
| def Sub: pf2<sub>; def Or: pf2<or>; def Srl: pf2<srl>; |
| def Mul: pf2<mul>; def Xor: pf2<xor>; def Shl: pf2<shl>; |
| |
| def Rol: pf2<rotl>; |
| |
| // --(1) Immediate ------------------------------------------------------- |
| // |
| |
| def SDTHexagonCONST32 |
| : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisPtrTy<0>]>; |
| |
| def HexagonJT: SDNode<"HexagonISD::JT", SDTIntUnaryOp>; |
| def HexagonCP: SDNode<"HexagonISD::CP", SDTIntUnaryOp>; |
| def HexagonCONST32: SDNode<"HexagonISD::CONST32", SDTHexagonCONST32>; |
| def HexagonCONST32_GP: SDNode<"HexagonISD::CONST32_GP", SDTHexagonCONST32>; |
| |
| def TruncI64ToI32: SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i32); |
| }]>; |
| |
| def: Pat<(s32_0ImmPred:$s16), (A2_tfrsi imm:$s16)>; |
| def: Pat<(s8_0Imm64Pred:$s8), (A2_tfrpi (TruncI64ToI32 $s8))>; |
| |
| def: Pat<(HexagonCONST32 tglobaltlsaddr:$A), (A2_tfrsi imm:$A)>; |
| def: Pat<(HexagonCONST32 bbl:$A), (A2_tfrsi imm:$A)>; |
| def: Pat<(HexagonCONST32 tglobaladdr:$A), (A2_tfrsi imm:$A)>; |
| def: Pat<(HexagonCONST32_GP tblockaddress:$A), (A2_tfrsi imm:$A)>; |
| def: Pat<(HexagonCONST32_GP tglobaladdr:$A), (A2_tfrsi imm:$A)>; |
| def: Pat<(HexagonJT tjumptable:$A), (A2_tfrsi imm:$A)>; |
| def: Pat<(HexagonCP tconstpool:$A), (A2_tfrsi imm:$A)>; |
| // The HVX load patterns also match CP directly. Make sure that if |
| // the selection of this opcode changes, it's updated in all places. |
| |
| def: Pat<(i1 0), (PS_false)>; |
| def: Pat<(i1 1), (PS_true)>; |
| def: Pat<(i64 imm:$v), (CONST64 imm:$v)>; |
| |
| def ftoi : SDNodeXForm<fpimm, [{ |
| APInt I = N->getValueAPF().bitcastToAPInt(); |
| return CurDAG->getTargetConstant(I.getZExtValue(), SDLoc(N), |
| MVT::getIntegerVT(I.getBitWidth())); |
| }]>; |
| |
| def: Pat<(f32ImmPred:$f), (A2_tfrsi (ftoi $f))>; |
| def: Pat<(f64ImmPred:$f), (CONST64 (ftoi $f))>; |
| |
| def ToI32: OutPatFrag<(ops node:$V), (A2_tfrsi $V)>; |
| |
| // --(2) Type cast ------------------------------------------------------- |
| // |
| |
| def: OpR_R_pat<F2_conv_sf2df, pf1<fpextend>, f64, F32>; |
| def: OpR_R_pat<F2_conv_df2sf, pf1<fpround>, f32, F64>; |
| |
| def: OpR_R_pat<F2_conv_w2sf, pf1<sint_to_fp>, f32, I32>; |
| def: OpR_R_pat<F2_conv_d2sf, pf1<sint_to_fp>, f32, I64>; |
| def: OpR_R_pat<F2_conv_w2df, pf1<sint_to_fp>, f64, I32>; |
| def: OpR_R_pat<F2_conv_d2df, pf1<sint_to_fp>, f64, I64>; |
| |
| def: OpR_R_pat<F2_conv_uw2sf, pf1<uint_to_fp>, f32, I32>; |
| def: OpR_R_pat<F2_conv_ud2sf, pf1<uint_to_fp>, f32, I64>; |
| def: OpR_R_pat<F2_conv_uw2df, pf1<uint_to_fp>, f64, I32>; |
| def: OpR_R_pat<F2_conv_ud2df, pf1<uint_to_fp>, f64, I64>; |
| |
| def: OpR_R_pat<F2_conv_sf2w_chop, pf1<fp_to_sint>, i32, F32>; |
| def: OpR_R_pat<F2_conv_df2w_chop, pf1<fp_to_sint>, i32, F64>; |
| def: OpR_R_pat<F2_conv_sf2d_chop, pf1<fp_to_sint>, i64, F32>; |
| def: OpR_R_pat<F2_conv_df2d_chop, pf1<fp_to_sint>, i64, F64>; |
| |
| def: OpR_R_pat<F2_conv_sf2uw_chop, pf1<fp_to_uint>, i32, F32>; |
| def: OpR_R_pat<F2_conv_df2uw_chop, pf1<fp_to_uint>, i32, F64>; |
| def: OpR_R_pat<F2_conv_sf2ud_chop, pf1<fp_to_uint>, i64, F32>; |
| def: OpR_R_pat<F2_conv_df2ud_chop, pf1<fp_to_uint>, i64, F64>; |
| |
| // Bitcast is different than [fp|sint|uint]_to_[sint|uint|fp]. |
| def: Pat<(i32 (bitconvert F32:$v)), (I32:$v)>; |
| def: Pat<(f32 (bitconvert I32:$v)), (F32:$v)>; |
| def: Pat<(i64 (bitconvert F64:$v)), (I64:$v)>; |
| def: Pat<(f64 (bitconvert I64:$v)), (F64:$v)>; |
| |
| // Bit convert 32- and 64-bit types. |
| // All of these are bitcastable to one another: i32, v2i16, v4i8. |
| defm: NopCast_pat<i32, v2i16, IntRegs>; |
| defm: NopCast_pat<i32, v4i8, IntRegs>; |
| defm: NopCast_pat<v2i16, v4i8, IntRegs>; |
| // All of these are bitcastable to one another: i64, v2i32, v4i16, v8i8. |
| defm: NopCast_pat<i64, v2i32, DoubleRegs>; |
| defm: NopCast_pat<i64, v4i16, DoubleRegs>; |
| defm: NopCast_pat<i64, v8i8, DoubleRegs>; |
| defm: NopCast_pat<v2i32, v4i16, DoubleRegs>; |
| defm: NopCast_pat<v2i32, v8i8, DoubleRegs>; |
| defm: NopCast_pat<v4i16, v8i8, DoubleRegs>; |
| |
| |
| // --(3) Extend/truncate ------------------------------------------------- |
| // |
| |
| def: Pat<(sext_inreg I32:$Rs, i8), (A2_sxtb I32:$Rs)>; |
| def: Pat<(sext_inreg I32:$Rs, i16), (A2_sxth I32:$Rs)>; |
| def: Pat<(sext_inreg I64:$Rs, i32), (A2_sxtw (LoReg $Rs))>; |
| def: Pat<(sext_inreg I64:$Rs, i16), (A2_sxtw (A2_sxth (LoReg $Rs)))>; |
| def: Pat<(sext_inreg I64:$Rs, i8), (A2_sxtw (A2_sxtb (LoReg $Rs)))>; |
| |
| def: Pat<(i64 (sext I32:$Rs)), (A2_sxtw I32:$Rs)>; |
| def: Pat<(Zext64 I32:$Rs), (ToZext64 $Rs)>; |
| def: Pat<(Aext64 I32:$Rs), (ToZext64 $Rs)>; |
| |
| def: Pat<(i32 (trunc I64:$Rs)), (LoReg $Rs)>; |
| def: Pat<(i1 (trunc I32:$Rs)), (S2_tstbit_i I32:$Rs, 0)>; |
| def: Pat<(i1 (trunc I64:$Rs)), (S2_tstbit_i (LoReg $Rs), 0)>; |
| |
| let AddedComplexity = 20 in { |
| def: Pat<(and I32:$Rs, 255), (A2_zxtb I32:$Rs)>; |
| def: Pat<(and I32:$Rs, 65535), (A2_zxth I32:$Rs)>; |
| } |
| |
| // Extensions from i1 or vectors of i1. |
| def: Pat<(i32 (azext I1:$Pu)), (C2_muxii I1:$Pu, 1, 0)>; |
| def: Pat<(i64 (azext I1:$Pu)), (ToZext64 (C2_muxii I1:$Pu, 1, 0))>; |
| def: Pat<(i32 (sext I1:$Pu)), (C2_muxii I1:$Pu, -1, 0)>; |
| def: Pat<(i64 (sext I1:$Pu)), (Combinew (C2_muxii PredRegs:$Pu, -1, 0), |
| (C2_muxii PredRegs:$Pu, -1, 0))>; |
| |
| def: Pat<(v2i16 (sext V2I1:$Pu)), (S2_vtrunehb (C2_mask V2I1:$Pu))>; |
| def: Pat<(v2i32 (sext V2I1:$Pu)), (C2_mask V2I1:$Pu)>; |
| def: Pat<(v4i8 (sext V4I1:$Pu)), (S2_vtrunehb (C2_mask V4I1:$Pu))>; |
| def: Pat<(v4i16 (sext V4I1:$Pu)), (C2_mask V4I1:$Pu)>; |
| def: Pat<(v8i8 (sext V8I1:$Pu)), (C2_mask V8I1:$Pu)>; |
| |
| def Vsplatpi: OutPatFrag<(ops node:$V), |
| (Combinew (A2_tfrsi $V), (A2_tfrsi $V))>; |
| |
| def: Pat<(v2i16 (azext V2I1:$Pu)), |
| (A2_andir (LoReg (C2_mask V2I1:$Pu)), (i32 0x00010001))>; |
| def: Pat<(v2i32 (azext V2I1:$Pu)), |
| (A2_andp (C2_mask V2I1:$Pu), (A2_combineii (i32 1), (i32 1)))>; |
| def: Pat<(v4i8 (azext V4I1:$Pu)), |
| (A2_andir (LoReg (C2_mask V4I1:$Pu)), (i32 0x01010101))>; |
| def: Pat<(v4i16 (azext V4I1:$Pu)), |
| (A2_andp (C2_mask V4I1:$Pu), (Vsplatpi (i32 0x00010001)))>; |
| def: Pat<(v8i8 (azext V8I1:$Pu)), |
| (A2_andp (C2_mask V8I1:$Pu), (Vsplatpi (i32 0x01010101)))>; |
| |
| def: Pat<(v4i16 (azext V4I8:$Rs)), (S2_vzxtbh V4I8:$Rs)>; |
| def: Pat<(v2i32 (azext V2I16:$Rs)), (S2_vzxthw V2I16:$Rs)>; |
| def: Pat<(v4i16 (sext V4I8:$Rs)), (S2_vsxtbh V4I8:$Rs)>; |
| def: Pat<(v2i32 (sext V2I16:$Rs)), (S2_vsxthw V2I16:$Rs)>; |
| |
| def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i8)), |
| (Combinew (A2_sxtb (HiReg $Rs)), (A2_sxtb (LoReg $Rs)))>; |
| |
| def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i16)), |
| (Combinew (A2_sxth (HiReg $Rs)), (A2_sxth (LoReg $Rs)))>; |
| |
| // Truncate: from vector B copy all 'E'ven 'B'yte elements: |
| // A[0] = B[0]; A[1] = B[2]; A[2] = B[4]; A[3] = B[6]; |
| def: Pat<(v4i8 (trunc V4I16:$Rs)), |
| (S2_vtrunehb V4I16:$Rs)>; |
| |
| // Truncate: from vector B copy all 'O'dd 'B'yte elements: |
| // A[0] = B[1]; A[1] = B[3]; A[2] = B[5]; A[3] = B[7]; |
| // S2_vtrunohb |
| |
| // Truncate: from vectors B and C copy all 'E'ven 'H'alf-word elements: |
| // A[0] = B[0]; A[1] = B[2]; A[2] = C[0]; A[3] = C[2]; |
| // S2_vtruneh |
| |
| def: Pat<(v2i16 (trunc V2I32:$Rs)), |
| (A2_combine_ll (HiReg $Rs), (LoReg $Rs))>; |
| |
| |
| // --(4) Logical --------------------------------------------------------- |
| // |
| |
| def: Pat<(not I1:$Ps), (C2_not I1:$Ps)>; |
| def: Pat<(pnot V2I1:$Ps), (C2_not V2I1:$Ps)>; |
| def: Pat<(pnot V4I1:$Ps), (C2_not V4I1:$Ps)>; |
| def: Pat<(pnot V8I1:$Ps), (C2_not V8I1:$Ps)>; |
| def: Pat<(add I1:$Ps, -1), (C2_not I1:$Ps)>; |
| |
| multiclass BoolOpR_RR_pat<InstHexagon MI, PatFrag Op> { |
| def: OpR_RR_pat<MI, Op, i1, I1>; |
| def: OpR_RR_pat<MI, Op, v2i1, V2I1>; |
| def: OpR_RR_pat<MI, Op, v4i1, V4I1>; |
| def: OpR_RR_pat<MI, Op, v8i1, V8I1>; |
| } |
| |
| multiclass BoolAccRRR_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op> { |
| def: AccRRR_pat<MI, AccOp, Op, I1, I1, I1>; |
| def: AccRRR_pat<MI, AccOp, Op, V2I1, V2I1, V2I1>; |
| def: AccRRR_pat<MI, AccOp, Op, V4I1, V4I1, V4I1>; |
| def: AccRRR_pat<MI, AccOp, Op, V8I1, V8I1, V8I1>; |
| } |
| |
| defm: BoolOpR_RR_pat<C2_and, And>; |
| defm: BoolOpR_RR_pat<C2_or, Or>; |
| defm: BoolOpR_RR_pat<C2_xor, Xor>; |
| defm: BoolOpR_RR_pat<C2_andn, Not2<And>>; |
| defm: BoolOpR_RR_pat<C2_orn, Not2<Or>>; |
| |
| // op(Ps, op(Pt, Pu)) |
| defm: BoolAccRRR_pat<C4_and_and, And, Su<And>>; |
| defm: BoolAccRRR_pat<C4_and_or, And, Su<Or>>; |
| defm: BoolAccRRR_pat<C4_or_and, Or, Su<And>>; |
| defm: BoolAccRRR_pat<C4_or_or, Or, Su<Or>>; |
| |
| // op(Ps, op(Pt, ~Pu)) |
| defm: BoolAccRRR_pat<C4_and_andn, And, Su<Not2<And>>>; |
| defm: BoolAccRRR_pat<C4_and_orn, And, Su<Not2<Or>>>; |
| defm: BoolAccRRR_pat<C4_or_andn, Or, Su<Not2<And>>>; |
| defm: BoolAccRRR_pat<C4_or_orn, Or, Su<Not2<Or>>>; |
| |
| |
| // --(5) Compare --------------------------------------------------------- |
| // |
| |
| // Avoid negated comparisons, i.e. those of form "Pd = !cmp(...)". |
| // These cannot form compounds (e.g. J4_cmpeqi_tp0_jump_nt). |
| |
| def: OpR_RI_pat<C2_cmpeqi, seteq, i1, I32, anyimm>; |
| def: OpR_RI_pat<C2_cmpgti, setgt, i1, I32, anyimm>; |
| def: OpR_RI_pat<C2_cmpgtui, setugt, i1, I32, anyimm>; |
| |
| def: Pat<(i1 (setge I32:$Rs, s32_0ImmPred:$s10)), |
| (C2_cmpgti I32:$Rs, (SDEC1 imm:$s10))>; |
| def: Pat<(i1 (setuge I32:$Rs, u32_0ImmPred:$u9)), |
| (C2_cmpgtui I32:$Rs, (UDEC1 imm:$u9))>; |
| |
| def: Pat<(i1 (setlt I32:$Rs, s32_0ImmPred:$s10)), |
| (C2_not (C2_cmpgti I32:$Rs, (SDEC1 imm:$s10)))>; |
| def: Pat<(i1 (setult I32:$Rs, u32_0ImmPred:$u9)), |
| (C2_not (C2_cmpgtui I32:$Rs, (UDEC1 imm:$u9)))>; |
| |
| // Patfrag to convert the usual comparison patfrags (e.g. setlt) to ones |
| // that reverse the order of the operands. |
| class RevCmp<PatFrag F> |
| : PatFrag<(ops node:$rhs, node:$lhs), !head(F.Fragments), F.PredicateCode, |
| F.OperandTransform>; |
| |
| def: OpR_RR_pat<C2_cmpeq, seteq, i1, I32>; |
| def: OpR_RR_pat<C2_cmpgt, setgt, i1, I32>; |
| def: OpR_RR_pat<C2_cmpgtu, setugt, i1, I32>; |
| def: OpR_RR_pat<C2_cmpgt, RevCmp<setlt>, i1, I32>; |
| def: OpR_RR_pat<C2_cmpgtu, RevCmp<setult>, i1, I32>; |
| def: OpR_RR_pat<C2_cmpeqp, seteq, i1, I64>; |
| def: OpR_RR_pat<C2_cmpgtp, setgt, i1, I64>; |
| def: OpR_RR_pat<C2_cmpgtup, setugt, i1, I64>; |
| def: OpR_RR_pat<C2_cmpgtp, RevCmp<setlt>, i1, I64>; |
| def: OpR_RR_pat<C2_cmpgtup, RevCmp<setult>, i1, I64>; |
| def: OpR_RR_pat<A2_vcmpbeq, seteq, i1, V8I8>; |
| def: OpR_RR_pat<A2_vcmpbeq, seteq, v8i1, V8I8>; |
| def: OpR_RR_pat<A4_vcmpbgt, RevCmp<setlt>, i1, V8I8>; |
| def: OpR_RR_pat<A4_vcmpbgt, RevCmp<setlt>, v8i1, V8I8>; |
| def: OpR_RR_pat<A4_vcmpbgt, setgt, i1, V8I8>; |
| def: OpR_RR_pat<A4_vcmpbgt, setgt, v8i1, V8I8>; |
| def: OpR_RR_pat<A2_vcmpbgtu, RevCmp<setult>, i1, V8I8>; |
| def: OpR_RR_pat<A2_vcmpbgtu, RevCmp<setult>, v8i1, V8I8>; |
| def: OpR_RR_pat<A2_vcmpbgtu, setugt, i1, V8I8>; |
| def: OpR_RR_pat<A2_vcmpbgtu, setugt, v8i1, V8I8>; |
| def: OpR_RR_pat<A2_vcmpheq, seteq, i1, V4I16>; |
| def: OpR_RR_pat<A2_vcmpheq, seteq, v4i1, V4I16>; |
| def: OpR_RR_pat<A2_vcmphgt, RevCmp<setlt>, i1, V4I16>; |
| def: OpR_RR_pat<A2_vcmphgt, RevCmp<setlt>, v4i1, V4I16>; |
| def: OpR_RR_pat<A2_vcmphgt, setgt, i1, V4I16>; |
| def: OpR_RR_pat<A2_vcmphgt, setgt, v4i1, V4I16>; |
| def: OpR_RR_pat<A2_vcmphgtu, RevCmp<setult>, i1, V4I16>; |
| def: OpR_RR_pat<A2_vcmphgtu, RevCmp<setult>, v4i1, V4I16>; |
| def: OpR_RR_pat<A2_vcmphgtu, setugt, i1, V4I16>; |
| def: OpR_RR_pat<A2_vcmphgtu, setugt, v4i1, V4I16>; |
| def: OpR_RR_pat<A2_vcmpweq, seteq, i1, V2I32>; |
| def: OpR_RR_pat<A2_vcmpweq, seteq, v2i1, V2I32>; |
| def: OpR_RR_pat<A2_vcmpwgt, RevCmp<setlt>, i1, V2I32>; |
| def: OpR_RR_pat<A2_vcmpwgt, RevCmp<setlt>, v2i1, V2I32>; |
| def: OpR_RR_pat<A2_vcmpwgt, setgt, i1, V2I32>; |
| def: OpR_RR_pat<A2_vcmpwgt, setgt, v2i1, V2I32>; |
| def: OpR_RR_pat<A2_vcmpwgtu, RevCmp<setult>, i1, V2I32>; |
| def: OpR_RR_pat<A2_vcmpwgtu, RevCmp<setult>, v2i1, V2I32>; |
| def: OpR_RR_pat<A2_vcmpwgtu, setugt, i1, V2I32>; |
| def: OpR_RR_pat<A2_vcmpwgtu, setugt, v2i1, V2I32>; |
| |
| def: OpR_RR_pat<F2_sfcmpeq, seteq, i1, F32>; |
| def: OpR_RR_pat<F2_sfcmpgt, setgt, i1, F32>; |
| def: OpR_RR_pat<F2_sfcmpge, setge, i1, F32>; |
| def: OpR_RR_pat<F2_sfcmpeq, setoeq, i1, F32>; |
| def: OpR_RR_pat<F2_sfcmpgt, setogt, i1, F32>; |
| def: OpR_RR_pat<F2_sfcmpge, setoge, i1, F32>; |
| def: OpR_RR_pat<F2_sfcmpgt, RevCmp<setolt>, i1, F32>; |
| def: OpR_RR_pat<F2_sfcmpge, RevCmp<setole>, i1, F32>; |
| def: OpR_RR_pat<F2_sfcmpgt, RevCmp<setlt>, i1, F32>; |
| def: OpR_RR_pat<F2_sfcmpge, RevCmp<setle>, i1, F32>; |
| def: OpR_RR_pat<F2_sfcmpuo, setuo, i1, F32>; |
| |
| def: OpR_RR_pat<F2_dfcmpeq, seteq, i1, F64>; |
| def: OpR_RR_pat<F2_dfcmpgt, setgt, i1, F64>; |
| def: OpR_RR_pat<F2_dfcmpge, setge, i1, F64>; |
| def: OpR_RR_pat<F2_dfcmpeq, setoeq, i1, F64>; |
| def: OpR_RR_pat<F2_dfcmpgt, setogt, i1, F64>; |
| def: OpR_RR_pat<F2_dfcmpge, setoge, i1, F64>; |
| def: OpR_RR_pat<F2_dfcmpgt, RevCmp<setolt>, i1, F64>; |
| def: OpR_RR_pat<F2_dfcmpge, RevCmp<setole>, i1, F64>; |
| def: OpR_RR_pat<F2_dfcmpgt, RevCmp<setlt>, i1, F64>; |
| def: OpR_RR_pat<F2_dfcmpge, RevCmp<setle>, i1, F64>; |
| def: OpR_RR_pat<F2_dfcmpuo, setuo, i1, F64>; |
| |
| // Avoid C4_cmpneqi, C4_cmpltei, C4_cmplteui, since they cannot form compounds. |
| |
| def: Pat<(i1 (setne I32:$Rs, anyimm:$u5)), |
| (C2_not (C2_cmpeqi I32:$Rs, imm:$u5))>; |
| def: Pat<(i1 (setle I32:$Rs, anyimm:$u5)), |
| (C2_not (C2_cmpgti I32:$Rs, imm:$u5))>; |
| def: Pat<(i1 (setule I32:$Rs, anyimm:$u5)), |
| (C2_not (C2_cmpgtui I32:$Rs, imm:$u5))>; |
| |
| class OpmR_RR_pat<PatFrag Output, PatFrag Op, ValueType ResType, |
| PatFrag RsPred, PatFrag RtPred = RsPred> |
| : Pat<(ResType (Op RsPred:$Rs, RtPred:$Rt)), |
| (Output RsPred:$Rs, RtPred:$Rt)>; |
| |
| class Outn<InstHexagon MI> |
| : OutPatFrag<(ops node:$Rs, node:$Rt), |
| (C2_not (MI $Rs, $Rt))>; |
| |
| def: OpmR_RR_pat<Outn<C2_cmpeq>, setne, i1, I32>; |
| def: OpmR_RR_pat<Outn<C2_cmpgt>, setle, i1, I32>; |
| def: OpmR_RR_pat<Outn<C2_cmpgtu>, setule, i1, I32>; |
| def: OpmR_RR_pat<Outn<C2_cmpgt>, RevCmp<setge>, i1, I32>; |
| def: OpmR_RR_pat<Outn<C2_cmpgtu>, RevCmp<setuge>, i1, I32>; |
| def: OpmR_RR_pat<Outn<C2_cmpeqp>, setne, i1, I64>; |
| def: OpmR_RR_pat<Outn<C2_cmpgtp>, setle, i1, I64>; |
| def: OpmR_RR_pat<Outn<C2_cmpgtup>, setule, i1, I64>; |
| def: OpmR_RR_pat<Outn<C2_cmpgtp>, RevCmp<setge>, i1, I64>; |
| def: OpmR_RR_pat<Outn<C2_cmpgtup>, RevCmp<setuge>, i1, I64>; |
| def: OpmR_RR_pat<Outn<A2_vcmpbeq>, setne, v8i1, V8I8>; |
| def: OpmR_RR_pat<Outn<A4_vcmpbgt>, setle, v8i1, V8I8>; |
| def: OpmR_RR_pat<Outn<A2_vcmpbgtu>, setule, v8i1, V8I8>; |
| def: OpmR_RR_pat<Outn<A4_vcmpbgt>, RevCmp<setge>, v8i1, V8I8>; |
| def: OpmR_RR_pat<Outn<A2_vcmpbgtu>, RevCmp<setuge>, v8i1, V8I8>; |
| def: OpmR_RR_pat<Outn<A2_vcmpheq>, setne, v4i1, V4I16>; |
| def: OpmR_RR_pat<Outn<A2_vcmphgt>, setle, v4i1, V4I16>; |
| def: OpmR_RR_pat<Outn<A2_vcmphgtu>, setule, v4i1, V4I16>; |
| def: OpmR_RR_pat<Outn<A2_vcmphgt>, RevCmp<setge>, v4i1, V4I16>; |
| def: OpmR_RR_pat<Outn<A2_vcmphgtu>, RevCmp<setuge>, v4i1, V4I16>; |
| def: OpmR_RR_pat<Outn<A2_vcmpweq>, setne, v2i1, V2I32>; |
| def: OpmR_RR_pat<Outn<A2_vcmpwgt>, setle, v2i1, V2I32>; |
| def: OpmR_RR_pat<Outn<A2_vcmpwgtu>, setule, v2i1, V2I32>; |
| def: OpmR_RR_pat<Outn<A2_vcmpwgt>, RevCmp<setge>, v2i1, V2I32>; |
| def: OpmR_RR_pat<Outn<A2_vcmpwgtu>, RevCmp<setuge>, v2i1, V2I32>; |
| |
| let AddedComplexity = 100 in { |
| def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt), 255), 0)), |
| (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt)>; |
| def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt), 255), 0)), |
| (C2_not (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt))>; |
| def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt), 65535), 0)), |
| (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt)>; |
| def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt), 65535), 0)), |
| (C2_not (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt))>; |
| } |
| |
| // PatFrag for AsserZext which takes the original type as a parameter. |
| def SDTAssertZext: SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0,1>]>; |
| def AssertZextSD: SDNode<"ISD::AssertZext", SDTAssertZext>; |
| class AssertZext<ValueType T>: PatFrag<(ops node:$A), (AssertZextSD $A, T)>; |
| |
| multiclass Cmpb_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt, |
| PatLeaf ImmPred, int Mask> { |
| def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)), |
| (MI I32:$Rs, imm:$I)>; |
| def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)), |
| (MI I32:$Rs, imm:$I)>; |
| } |
| |
| multiclass CmpbN_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt, |
| PatLeaf ImmPred, int Mask> { |
| def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)), |
| (C2_not (MI I32:$Rs, imm:$I))>; |
| def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)), |
| (C2_not (MI I32:$Rs, imm:$I))>; |
| } |
| |
| multiclass CmpbND_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt, |
| PatLeaf ImmPred, int Mask> { |
| def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)), |
| (C2_not (MI I32:$Rs, (UDEC1 imm:$I)))>; |
| def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)), |
| (C2_not (MI I32:$Rs, (UDEC1 imm:$I)))>; |
| } |
| |
| let AddedComplexity = 200 in { |
| defm: Cmpb_pat <A4_cmpbeqi, seteq, AssertZext<i8>, IsUGT<8,31>, 255>; |
| defm: CmpbN_pat <A4_cmpbeqi, setne, AssertZext<i8>, IsUGT<8,31>, 255>; |
| defm: Cmpb_pat <A4_cmpbgtui, setugt, AssertZext<i8>, IsUGT<32,31>, 255>; |
| defm: CmpbN_pat <A4_cmpbgtui, setule, AssertZext<i8>, IsUGT<32,31>, 255>; |
| defm: Cmpb_pat <A4_cmphgtui, setugt, AssertZext<i16>, IsUGT<32,31>, 65535>; |
| defm: CmpbN_pat <A4_cmphgtui, setule, AssertZext<i16>, IsUGT<32,31>, 65535>; |
| defm: CmpbND_pat<A4_cmpbgtui, setult, AssertZext<i8>, IsUGT<32,32>, 255>; |
| defm: CmpbND_pat<A4_cmphgtui, setult, AssertZext<i16>, IsUGT<32,32>, 65535>; |
| } |
| |
| def: Pat<(i32 (zext (i1 (seteq I32:$Rs, I32:$Rt)))), |
| (A4_rcmpeq I32:$Rs, I32:$Rt)>; |
| def: Pat<(i32 (zext (i1 (setne I32:$Rs, I32:$Rt)))), |
| (A4_rcmpneq I32:$Rs, I32:$Rt)>; |
| def: Pat<(i32 (zext (i1 (seteq I32:$Rs, anyimm:$s8)))), |
| (A4_rcmpeqi I32:$Rs, imm:$s8)>; |
| def: Pat<(i32 (zext (i1 (setne I32:$Rs, anyimm:$s8)))), |
| (A4_rcmpneqi I32:$Rs, imm:$s8)>; |
| |
| def: Pat<(i1 (seteq I1:$Ps, (i1 -1))), (I1:$Ps)>; |
| def: Pat<(i1 (setne I1:$Ps, (i1 -1))), (C2_not I1:$Ps)>; |
| def: Pat<(i1 (seteq I1:$Ps, I1:$Pt)), (C2_xor I1:$Ps, (C2_not I1:$Pt))>; |
| def: Pat<(i1 (setne I1:$Ps, I1:$Pt)), (C2_xor I1:$Ps, I1:$Pt)>; |
| |
| // Floating-point comparisons with checks for ordered/unordered status. |
| |
| class T3<InstHexagon MI1, InstHexagon MI2, InstHexagon MI3> |
| : OutPatFrag<(ops node:$Rs, node:$Rt), |
| (MI1 (MI2 $Rs, $Rt), (MI3 $Rs, $Rt))>; |
| |
| class Cmpuf<InstHexagon MI>: T3<C2_or, F2_sfcmpuo, MI>; |
| class Cmpud<InstHexagon MI>: T3<C2_or, F2_dfcmpuo, MI>; |
| |
| class Cmpufn<InstHexagon MI>: T3<C2_orn, F2_sfcmpuo, MI>; |
| class Cmpudn<InstHexagon MI>: T3<C2_orn, F2_dfcmpuo, MI>; |
| |
| def: OpmR_RR_pat<Cmpuf<F2_sfcmpeq>, setueq, i1, F32>; |
| def: OpmR_RR_pat<Cmpuf<F2_sfcmpge>, setuge, i1, F32>; |
| def: OpmR_RR_pat<Cmpuf<F2_sfcmpgt>, setugt, i1, F32>; |
| def: OpmR_RR_pat<Cmpuf<F2_sfcmpge>, RevCmp<setule>, i1, F32>; |
| def: OpmR_RR_pat<Cmpuf<F2_sfcmpgt>, RevCmp<setult>, i1, F32>; |
| def: OpmR_RR_pat<Cmpufn<F2_sfcmpeq>, setune, i1, F32>; |
| |
| def: OpmR_RR_pat<Cmpud<F2_dfcmpeq>, setueq, i1, F64>; |
| def: OpmR_RR_pat<Cmpud<F2_dfcmpge>, setuge, i1, F64>; |
| def: OpmR_RR_pat<Cmpud<F2_dfcmpgt>, setugt, i1, F64>; |
| def: OpmR_RR_pat<Cmpud<F2_dfcmpge>, RevCmp<setule>, i1, F64>; |
| def: OpmR_RR_pat<Cmpud<F2_dfcmpgt>, RevCmp<setult>, i1, F64>; |
| def: OpmR_RR_pat<Cmpudn<F2_dfcmpeq>, setune, i1, F64>; |
| |
| def: OpmR_RR_pat<Outn<F2_sfcmpeq>, setone, i1, F32>; |
| def: OpmR_RR_pat<Outn<F2_sfcmpeq>, setne, i1, F32>; |
| |
| def: OpmR_RR_pat<Outn<F2_dfcmpeq>, setone, i1, F64>; |
| def: OpmR_RR_pat<Outn<F2_dfcmpeq>, setne, i1, F64>; |
| |
| def: OpmR_RR_pat<Outn<F2_sfcmpuo>, seto, i1, F32>; |
| def: OpmR_RR_pat<Outn<F2_dfcmpuo>, seto, i1, F64>; |
| |
| |
| // --(6) Select ---------------------------------------------------------- |
| // |
| |
| def: Pat<(select I1:$Pu, I32:$Rs, I32:$Rt), |
| (C2_mux I1:$Pu, I32:$Rs, I32:$Rt)>; |
| def: Pat<(select I1:$Pu, anyimm:$s8, I32:$Rs), |
| (C2_muxri I1:$Pu, imm:$s8, I32:$Rs)>; |
| def: Pat<(select I1:$Pu, I32:$Rs, anyimm:$s8), |
| (C2_muxir I1:$Pu, I32:$Rs, imm:$s8)>; |
| def: Pat<(select I1:$Pu, anyimm:$s8, s8_0ImmPred:$S8), |
| (C2_muxii I1:$Pu, imm:$s8, imm:$S8)>; |
| |
| def: Pat<(select (not I1:$Pu), I32:$Rs, I32:$Rt), |
| (C2_mux I1:$Pu, I32:$Rt, I32:$Rs)>; |
| def: Pat<(select (not I1:$Pu), s8_0ImmPred:$S8, anyimm:$s8), |
| (C2_muxii I1:$Pu, imm:$s8, imm:$S8)>; |
| def: Pat<(select (not I1:$Pu), anyimm:$s8, I32:$Rs), |
| (C2_muxir I1:$Pu, I32:$Rs, imm:$s8)>; |
| def: Pat<(select (not I1:$Pu), I32:$Rs, anyimm:$s8), |
| (C2_muxri I1:$Pu, imm:$s8, I32:$Rs)>; |
| |
| // Map from a 64-bit select to an emulated 64-bit mux. |
| // Hexagon does not support 64-bit MUXes; so emulate with combines. |
| def: Pat<(select I1:$Pu, I64:$Rs, I64:$Rt), |
| (Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)), |
| (C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>; |
| |
| def: Pat<(select I1:$Pu, F32:$Rs, f32ImmPred:$I), |
| (C2_muxir I1:$Pu, F32:$Rs, (ftoi $I))>; |
| def: Pat<(select I1:$Pu, f32ImmPred:$I, F32:$Rt), |
| (C2_muxri I1:$Pu, (ftoi $I), F32:$Rt)>; |
| def: Pat<(select I1:$Pu, F32:$Rs, F32:$Rt), |
| (C2_mux I1:$Pu, F32:$Rs, F32:$Rt)>; |
| def: Pat<(select I1:$Pu, F64:$Rs, F64:$Rt), |
| (Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)), |
| (C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>; |
| |
| def: Pat<(select (i1 (setult F32:$Ra, F32:$Rb)), F32:$Rs, F32:$Rt), |
| (C2_mux (F2_sfcmpgt F32:$Rb, F32:$Ra), F32:$Rs, F32:$Rt)>; |
| def: Pat<(select (i1 (setult F64:$Ra, F64:$Rb)), F64:$Rs, F64:$Rt), |
| (C2_vmux (F2_dfcmpgt F64:$Rb, F64:$Ra), F64:$Rs, F64:$Rt)>; |
| |
| def: Pat<(select (not I1:$Pu), f32ImmPred:$I, F32:$Rs), |
| (C2_muxir I1:$Pu, F32:$Rs, (ftoi $I))>; |
| def: Pat<(select (not I1:$Pu), F32:$Rt, f32ImmPred:$I), |
| (C2_muxri I1:$Pu, (ftoi $I), F32:$Rt)>; |
| |
| def: Pat<(vselect V8I1:$Pu, V8I8:$Rs, V8I8:$Rt), |
| (C2_vmux V8I1:$Pu, V8I8:$Rs, V8I8:$Rt)>; |
| def: Pat<(vselect V4I1:$Pu, V4I16:$Rs, V4I16:$Rt), |
| (C2_vmux V4I1:$Pu, V4I16:$Rs, V4I16:$Rt)>; |
| def: Pat<(vselect V2I1:$Pu, V2I32:$Rs, V2I32:$Rt), |
| (C2_vmux V2I1:$Pu, V2I32:$Rs, V2I32:$Rt)>; |
| |
| def: Pat<(vselect (pnot V8I1:$Pu), V8I8:$Rs, V8I8:$Rt), |
| (C2_vmux V8I1:$Pu, V8I8:$Rt, V8I8:$Rs)>; |
| def: Pat<(vselect (pnot V4I1:$Pu), V4I16:$Rs, V4I16:$Rt), |
| (C2_vmux V4I1:$Pu, V4I16:$Rt, V4I16:$Rs)>; |
| def: Pat<(vselect (pnot V2I1:$Pu), V2I32:$Rs, V2I32:$Rt), |
| (C2_vmux V2I1:$Pu, V2I32:$Rt, V2I32:$Rs)>; |
| |
| |
| // From LegalizeDAG.cpp: (Pu ? Pv : Pw) <=> (Pu & Pv) | (!Pu & Pw). |
| def: Pat<(select I1:$Pu, I1:$Pv, I1:$Pw), |
| (C2_or (C2_and I1:$Pu, I1:$Pv), |
| (C2_andn I1:$Pw, I1:$Pu))>; |
| |
| |
| def IsPosHalf : PatLeaf<(i32 IntRegs:$a), [{ |
| return isPositiveHalfWord(N); |
| }]>; |
| |
| multiclass SelMinMax16_pats<PatFrag CmpOp, InstHexagon InstA, |
| InstHexagon InstB> { |
| def: Pat<(sext_inreg (select (i1 (CmpOp IsPosHalf:$Rs, IsPosHalf:$Rt)), |
| IsPosHalf:$Rs, IsPosHalf:$Rt), i16), |
| (InstA IntRegs:$Rs, IntRegs:$Rt)>; |
| def: Pat<(sext_inreg (select (i1 (CmpOp IsPosHalf:$Rs, IsPosHalf:$Rt)), |
| IsPosHalf:$Rt, IsPosHalf:$Rs), i16), |
| (InstB IntRegs:$Rs, IntRegs:$Rt)>; |
| } |
| |
| let AddedComplexity = 200 in { |
| defm: SelMinMax16_pats<setge, A2_max, A2_min>; |
| defm: SelMinMax16_pats<setgt, A2_max, A2_min>; |
| defm: SelMinMax16_pats<setle, A2_min, A2_max>; |
| defm: SelMinMax16_pats<setlt, A2_min, A2_max>; |
| defm: SelMinMax16_pats<setuge, A2_maxu, A2_minu>; |
| defm: SelMinMax16_pats<setugt, A2_maxu, A2_minu>; |
| defm: SelMinMax16_pats<setule, A2_minu, A2_maxu>; |
| defm: SelMinMax16_pats<setult, A2_minu, A2_maxu>; |
| } |
| |
| let AddedComplexity = 200 in { |
| defm: MinMax_pats<A2_min, A2_max, select, setgt, i1, I32>; |
| defm: MinMax_pats<A2_min, A2_max, select, setge, i1, I32>; |
| defm: MinMax_pats<A2_max, A2_min, select, setlt, i1, I32>; |
| defm: MinMax_pats<A2_max, A2_min, select, setle, i1, I32>; |
| defm: MinMax_pats<A2_minu, A2_maxu, select, setugt, i1, I32>; |
| defm: MinMax_pats<A2_minu, A2_maxu, select, setuge, i1, I32>; |
| defm: MinMax_pats<A2_maxu, A2_minu, select, setult, i1, I32>; |
| defm: MinMax_pats<A2_maxu, A2_minu, select, setule, i1, I32>; |
| |
| defm: MinMax_pats<A2_minp, A2_maxp, select, setgt, i1, I64>; |
| defm: MinMax_pats<A2_minp, A2_maxp, select, setge, i1, I64>; |
| defm: MinMax_pats<A2_maxp, A2_minp, select, setlt, i1, I64>; |
| defm: MinMax_pats<A2_maxp, A2_minp, select, setle, i1, I64>; |
| defm: MinMax_pats<A2_minup, A2_maxup, select, setugt, i1, I64>; |
| defm: MinMax_pats<A2_minup, A2_maxup, select, setuge, i1, I64>; |
| defm: MinMax_pats<A2_maxup, A2_minup, select, setult, i1, I64>; |
| defm: MinMax_pats<A2_maxup, A2_minup, select, setule, i1, I64>; |
| } |
| |
| let AddedComplexity = 100 in { |
| defm: MinMax_pats<F2_sfmin, F2_sfmax, select, setogt, i1, F32>; |
| defm: MinMax_pats<F2_sfmin, F2_sfmax, select, setoge, i1, F32>; |
| defm: MinMax_pats<F2_sfmax, F2_sfmin, select, setolt, i1, F32>; |
| defm: MinMax_pats<F2_sfmax, F2_sfmin, select, setole, i1, F32>; |
| } |
| |
| defm: MinMax_pats<A2_vminb, A2_vmaxb, vselect, setgt, v8i1, V8I8>; |
| defm: MinMax_pats<A2_vminb, A2_vmaxb, vselect, setge, v8i1, V8I8>; |
| defm: MinMax_pats<A2_vminh, A2_vmaxh, vselect, setgt, v4i1, V4I16>; |
| defm: MinMax_pats<A2_vminh, A2_vmaxh, vselect, setge, v4i1, V4I16>; |
| defm: MinMax_pats<A2_vminw, A2_vmaxw, vselect, setgt, v2i1, V2I32>; |
| defm: MinMax_pats<A2_vminw, A2_vmaxw, vselect, setge, v2i1, V2I32>; |
| defm: MinMax_pats<A2_vminub, A2_vmaxub, vselect, setugt, v8i1, V8I8>; |
| defm: MinMax_pats<A2_vminub, A2_vmaxub, vselect, setuge, v8i1, V8I8>; |
| defm: MinMax_pats<A2_vminuh, A2_vmaxuh, vselect, setugt, v4i1, V4I16>; |
| defm: MinMax_pats<A2_vminuh, A2_vmaxuh, vselect, setuge, v4i1, V4I16>; |
| defm: MinMax_pats<A2_vminuw, A2_vmaxuw, vselect, setugt, v2i1, V2I32>; |
| defm: MinMax_pats<A2_vminuw, A2_vmaxuw, vselect, setuge, v2i1, V2I32>; |
| |
| // --(7) Insert/extract -------------------------------------------------- |
| // |
| |
| def SDTHexagonINSERT: |
| SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, |
| SDTCisInt<0>, SDTCisVT<3, i32>, SDTCisVT<4, i32>]>; |
| def HexagonINSERT: SDNode<"HexagonISD::INSERT", SDTHexagonINSERT>; |
| |
| let AddedComplexity = 10 in { |
| def: Pat<(HexagonINSERT I32:$Rs, I32:$Rt, u5_0ImmPred:$u1, u5_0ImmPred:$u2), |
| (S2_insert I32:$Rs, I32:$Rt, imm:$u1, imm:$u2)>; |
| def: Pat<(HexagonINSERT I64:$Rs, I64:$Rt, u6_0ImmPred:$u1, u6_0ImmPred:$u2), |
| (S2_insertp I64:$Rs, I64:$Rt, imm:$u1, imm:$u2)>; |
| } |
| def: Pat<(HexagonINSERT I32:$Rs, I32:$Rt, I32:$Width, I32:$Off), |
| (S2_insert_rp I32:$Rs, I32:$Rt, (Combinew $Width, $Off))>; |
| def: Pat<(HexagonINSERT I64:$Rs, I64:$Rt, I32:$Width, I32:$Off), |
| (S2_insertp_rp I64:$Rs, I64:$Rt, (Combinew $Width, $Off))>; |
| |
| def SDTHexagonEXTRACTU |
| : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<1>, |
| SDTCisVT<2, i32>, SDTCisVT<3, i32>]>; |
| def HexagonEXTRACTU: SDNode<"HexagonISD::EXTRACTU", SDTHexagonEXTRACTU>; |
| |
| let AddedComplexity = 10 in { |
| def: Pat<(HexagonEXTRACTU I32:$Rs, u5_0ImmPred:$u5, u5_0ImmPred:$U5), |
| (S2_extractu I32:$Rs, imm:$u5, imm:$U5)>; |
| def: Pat<(HexagonEXTRACTU I64:$Rs, u6_0ImmPred:$u6, u6_0ImmPred:$U6), |
| (S2_extractup I64:$Rs, imm:$u6, imm:$U6)>; |
| } |
| def: Pat<(HexagonEXTRACTU I32:$Rs, I32:$Width, I32:$Off), |
| (S2_extractu_rp I32:$Rs, (Combinew $Width, $Off))>; |
| def: Pat<(HexagonEXTRACTU I64:$Rs, I32:$Width, I32:$Off), |
| (S2_extractup_rp I64:$Rs, (Combinew $Width, $Off))>; |
| |
| def SDTHexagonVSPLAT: |
| SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVT<1, i32>]>; |
| |
| def HexagonVSPLAT: SDNode<"HexagonISD::VSPLAT", SDTHexagonVSPLAT>; |
| |
| def: Pat<(v4i8 (HexagonVSPLAT I32:$Rs)), (S2_vsplatrb I32:$Rs)>; |
| def: Pat<(v4i16 (HexagonVSPLAT I32:$Rs)), (S2_vsplatrh I32:$Rs)>; |
| def: Pat<(v2i32 (HexagonVSPLAT s8_0ImmPred:$s8)), |
| (A2_combineii imm:$s8, imm:$s8)>; |
| def: Pat<(v2i32 (HexagonVSPLAT I32:$Rs)), (Combinew I32:$Rs, I32:$Rs)>; |
| |
| let AddedComplexity = 10 in |
| def: Pat<(v8i8 (HexagonVSPLAT I32:$Rs)), (S6_vsplatrbp I32:$Rs)>, |
| Requires<[HasV62]>; |
| def: Pat<(v8i8 (HexagonVSPLAT I32:$Rs)), |
| (Combinew (S2_vsplatrb I32:$Rs), (S2_vsplatrb I32:$Rs))>; |
| |
| |
| // --(8) Shift/permute --------------------------------------------------- |
| // |
| |
| def SDTHexagonI64I32I32: SDTypeProfile<1, 2, |
| [SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>; |
| |
| def HexagonCOMBINE: SDNode<"HexagonISD::COMBINE", SDTHexagonI64I32I32>; |
| |
| def: Pat<(HexagonCOMBINE I32:$Rs, I32:$Rt), (Combinew $Rs, $Rt)>; |
| |
| // The complexity of the combines involving immediates should be greater |
| // than the complexity of the combine with two registers. |
| let AddedComplexity = 50 in { |
| def: Pat<(HexagonCOMBINE I32:$Rs, anyimm:$s8), |
| (A4_combineri IntRegs:$Rs, imm:$s8)>; |
| def: Pat<(HexagonCOMBINE anyimm:$s8, I32:$Rs), |
| (A4_combineir imm:$s8, IntRegs:$Rs)>; |
| } |
| |
| // The complexity of the combine with two immediates should be greater than |
| // the complexity of a combine involving a register. |
| let AddedComplexity = 75 in { |
| def: Pat<(HexagonCOMBINE s8_0ImmPred:$s8, anyimm:$u6), |
| (A4_combineii imm:$s8, imm:$u6)>; |
| def: Pat<(HexagonCOMBINE anyimm:$s8, s8_0ImmPred:$S8), |
| (A2_combineii imm:$s8, imm:$S8)>; |
| } |
| |
| def: Pat<(bswap I32:$Rs), (A2_swiz I32:$Rs)>; |
| def: Pat<(bswap I64:$Rss), (Combinew (A2_swiz (LoReg $Rss)), |
| (A2_swiz (HiReg $Rss)))>; |
| |
| def: Pat<(shl s6_0ImmPred:$s6, I32:$Rt), (S4_lsli imm:$s6, I32:$Rt)>; |
| def: Pat<(shl I32:$Rs, (i32 16)), (A2_aslh I32:$Rs)>; |
| def: Pat<(sra I32:$Rs, (i32 16)), (A2_asrh I32:$Rs)>; |
| |
| def: OpR_RI_pat<S2_asr_i_r, Sra, i32, I32, u5_0ImmPred>; |
| def: OpR_RI_pat<S2_lsr_i_r, Srl, i32, I32, u5_0ImmPred>; |
| def: OpR_RI_pat<S2_asl_i_r, Shl, i32, I32, u5_0ImmPred>; |
| def: OpR_RI_pat<S2_asr_i_p, Sra, i64, I64, u6_0ImmPred>; |
| def: OpR_RI_pat<S2_lsr_i_p, Srl, i64, I64, u6_0ImmPred>; |
| def: OpR_RI_pat<S2_asl_i_p, Shl, i64, I64, u6_0ImmPred>; |
| def: OpR_RI_pat<S2_asr_i_vh, Sra, v4i16, V4I16, u4_0ImmPred>; |
| def: OpR_RI_pat<S2_lsr_i_vh, Srl, v4i16, V4I16, u4_0ImmPred>; |
| def: OpR_RI_pat<S2_asl_i_vh, Shl, v4i16, V4I16, u4_0ImmPred>; |
| def: OpR_RI_pat<S2_asr_i_vh, Sra, v2i32, V2I32, u5_0ImmPred>; |
| def: OpR_RI_pat<S2_lsr_i_vh, Srl, v2i32, V2I32, u5_0ImmPred>; |
| def: OpR_RI_pat<S2_asl_i_vh, Shl, v2i32, V2I32, u5_0ImmPred>; |
| |
| def: OpR_RR_pat<S2_asr_r_r, Sra, i32, I32, I32>; |
| def: OpR_RR_pat<S2_lsr_r_r, Srl, i32, I32, I32>; |
| def: OpR_RR_pat<S2_asl_r_r, Shl, i32, I32, I32>; |
| def: OpR_RR_pat<S2_asr_r_p, Sra, i64, I64, I32>; |
| def: OpR_RR_pat<S2_lsr_r_p, Srl, i64, I64, I32>; |
| def: OpR_RR_pat<S2_asl_r_p, Shl, i64, I64, I32>; |
| |
| // Funnel shifts. |
| def IsMul8_U3: PatLeaf<(i32 imm), [{ |
| uint64_t V = N->getZExtValue(); |
| return V % 8 == 0 && isUInt<3>(V / 8); |
| }]>; |
| |
| def Divu8: SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(N->getZExtValue() / 8, SDLoc(N), MVT::i32); |
| }]>; |
| |
| // Funnel shift-left. |
| def FShl32i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S), |
| (HiReg (S2_asl_i_p (Combinew $Rs, $Rt), $S))>; |
| def FShl32r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru), |
| (HiReg (S2_asl_r_p (Combinew $Rs, $Rt), $Ru))>; |
| |
| def FShl64i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S), |
| (S2_lsr_i_p_or (S2_asl_i_p $Rt, $S), $Rs, (Subi<64> $S))>; |
| def FShl64r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru), |
| (S2_lsr_r_p_or (S2_asl_r_p $Rt, $Ru), $Rs, (A2_subri 64, $Ru))>; |
| |
| // Combined SDNodeXForm: (Divu8 (Subi<64> $S)) |
| def Divu64_8: SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant((64 - N->getSExtValue()) / 8, |
| SDLoc(N), MVT::i32); |
| }]>; |
| |
| // Special cases: |
| let AddedComplexity = 100 in { |
| def: Pat<(fshl I32:$Rs, I32:$Rt, (i32 16)), |
| (A2_combine_hl I32:$Rs, I32:$Rt)>; |
| def: Pat<(fshl I64:$Rs, I64:$Rt, IsMul8_U3:$S), |
| (S2_valignib I64:$Rs, I64:$Rt, (Divu64_8 $S))>; |
| } |
| |
| let Predicates = [HasV60], AddedComplexity = 50 in { |
| def: OpR_RI_pat<S6_rol_i_r, Rol, i32, I32, u5_0ImmPred>; |
| def: OpR_RI_pat<S6_rol_i_p, Rol, i64, I64, u6_0ImmPred>; |
| } |
| let AddedComplexity = 30 in { |
| def: Pat<(rotl I32:$Rs, u5_0ImmPred:$S), (FShl32i $Rs, $Rs, imm:$S)>; |
| def: Pat<(rotl I64:$Rs, u6_0ImmPred:$S), (FShl64i $Rs, $Rs, imm:$S)>; |
| def: Pat<(fshl I32:$Rs, I32:$Rt, u5_0ImmPred:$S), (FShl32i $Rs, $Rt, imm:$S)>; |
| def: Pat<(fshl I64:$Rs, I64:$Rt, u6_0ImmPred:$S), (FShl64i $Rs, $Rt, imm:$S)>; |
| } |
| def: Pat<(rotl I32:$Rs, I32:$Rt), (FShl32r $Rs, $Rs, $Rt)>; |
| def: Pat<(rotl I64:$Rs, I32:$Rt), (FShl64r $Rs, $Rs, $Rt)>; |
| def: Pat<(fshl I32:$Rs, I32:$Rt, I32:$Ru), (FShl32r $Rs, $Rt, $Ru)>; |
| def: Pat<(fshl I64:$Rs, I64:$Rt, I32:$Ru), (FShl64r $Rs, $Rt, $Ru)>; |
| |
| // Funnel shift-right. |
| def FShr32i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S), |
| (LoReg (S2_lsr_i_p (Combinew $Rs, $Rt), $S))>; |
| def FShr32r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru), |
| (LoReg (S2_lsr_r_p (Combinew $Rs, $Rt), $Ru))>; |
| |
| def FShr64i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S), |
| (S2_asl_i_p_or (S2_lsr_i_p $Rt, $S), $Rs, (Subi<64> $S))>; |
| def FShr64r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru), |
| (S2_asl_r_p_or (S2_lsr_r_p $Rt, $Ru), $Rs, (A2_subri 64, $Ru))>; |
| |
| // Special cases: |
| let AddedComplexity = 100 in { |
| def: Pat<(fshr I32:$Rs, I32:$Rt, (i32 16)), |
| (A2_combine_hl I32:$Rs, I32:$Rt)>; |
| def: Pat<(fshr I64:$Rs, I64:$Rt, IsMul8_U3:$S), |
| (S2_valignib I64:$Rs, I64:$Rt, (Divu8 $S))>; |
| } |
| |
| let Predicates = [HasV60], AddedComplexity = 50 in { |
| def: Pat<(rotr I32:$Rs, u5_0ImmPred:$S), (S6_rol_i_r I32:$Rs, (Subi<32> $S))>; |
| def: Pat<(rotr I64:$Rs, u6_0ImmPred:$S), (S6_rol_i_p I64:$Rs, (Subi<64> $S))>; |
| } |
| let AddedComplexity = 30 in { |
| def: Pat<(rotr I32:$Rs, u5_0ImmPred:$S), (FShr32i $Rs, $Rs, imm:$S)>; |
| def: Pat<(rotr I64:$Rs, u6_0ImmPred:$S), (FShr64i $Rs, $Rs, imm:$S)>; |
| def: Pat<(fshr I32:$Rs, I32:$Rt, u5_0ImmPred:$S), (FShr32i $Rs, $Rt, imm:$S)>; |
| def: Pat<(fshr I64:$Rs, I64:$Rt, u6_0ImmPred:$S), (FShr64i $Rs, $Rt, imm:$S)>; |
| } |
| def: Pat<(rotr I32:$Rs, I32:$Rt), (FShr32r $Rs, $Rs, $Rt)>; |
| def: Pat<(rotr I64:$Rs, I32:$Rt), (FShr64r $Rs, $Rs, $Rt)>; |
| def: Pat<(fshr I32:$Rs, I32:$Rt, I32:$Ru), (FShr32r $Rs, $Rt, $Ru)>; |
| def: Pat<(fshr I64:$Rs, I64:$Rt, I32:$Ru), (FShr64r $Rs, $Rt, $Ru)>; |
| |
| |
| def: Pat<(sra (add (sra I32:$Rs, u5_0ImmPred:$u5), 1), (i32 1)), |
| (S2_asr_i_r_rnd I32:$Rs, imm:$u5)>; |
| def: Pat<(sra (add (sra I64:$Rs, u6_0ImmPred:$u6), 1), (i32 1)), |
| (S2_asr_i_p_rnd I64:$Rs, imm:$u6)>; |
| |
| // Prefer S2_addasl_rrri over S2_asl_i_r_acc. |
| let AddedComplexity = 120 in |
| def: Pat<(add I32:$Rt, (shl I32:$Rs, u3_0ImmPred:$u3)), |
| (S2_addasl_rrri IntRegs:$Rt, IntRegs:$Rs, imm:$u3)>; |
| |
| let AddedComplexity = 100 in { |
| def: AccRRI_pat<S2_asr_i_r_acc, Add, Su<Sra>, I32, u5_0ImmPred>; |
| def: AccRRI_pat<S2_asr_i_r_nac, Sub, Su<Sra>, I32, u5_0ImmPred>; |
| def: AccRRI_pat<S2_asr_i_r_and, And, Su<Sra>, I32, u5_0ImmPred>; |
| def: AccRRI_pat<S2_asr_i_r_or, Or, Su<Sra>, I32, u5_0ImmPred>; |
| |
| def: AccRRI_pat<S2_asr_i_p_acc, Add, Su<Sra>, I64, u6_0ImmPred>; |
| def: AccRRI_pat<S2_asr_i_p_nac, Sub, Su<Sra>, I64, u6_0ImmPred>; |
| def: AccRRI_pat<S2_asr_i_p_and, And, Su<Sra>, I64, u6_0ImmPred>; |
| def: AccRRI_pat<S2_asr_i_p_or, Or, Su<Sra>, I64, u6_0ImmPred>; |
| |
| def: AccRRI_pat<S2_lsr_i_r_acc, Add, Su<Srl>, I32, u5_0ImmPred>; |
| def: AccRRI_pat<S2_lsr_i_r_nac, Sub, Su<Srl>, I32, u5_0ImmPred>; |
| def: AccRRI_pat<S2_lsr_i_r_and, And, Su<Srl>, I32, u5_0ImmPred>; |
| def: AccRRI_pat<S2_lsr_i_r_or, Or, Su<Srl>, I32, u5_0ImmPred>; |
| def: AccRRI_pat<S2_lsr_i_r_xacc, Xor, Su<Srl>, I32, u5_0ImmPred>; |
| |
| def: AccRRI_pat<S2_lsr_i_p_acc, Add, Su<Srl>, I64, u6_0ImmPred>; |
| def: AccRRI_pat<S2_lsr_i_p_nac, Sub, Su<Srl>, I64, u6_0ImmPred>; |
| def: AccRRI_pat<S2_lsr_i_p_and, And, Su<Srl>, I64, u6_0ImmPred>; |
| def: AccRRI_pat<S2_lsr_i_p_or, Or, Su<Srl>, I64, u6_0ImmPred>; |
| def: AccRRI_pat<S2_lsr_i_p_xacc, Xor, Su<Srl>, I64, u6_0ImmPred>; |
| |
| def: AccRRI_pat<S2_asl_i_r_acc, Add, Su<Shl>, I32, u5_0ImmPred>; |
| def: AccRRI_pat<S2_asl_i_r_nac, Sub, Su<Shl>, I32, u5_0ImmPred>; |
| def: AccRRI_pat<S2_asl_i_r_and, And, Su<Shl>, I32, u5_0ImmPred>; |
| def: AccRRI_pat<S2_asl_i_r_or, Or, Su<Shl>, I32, u5_0ImmPred>; |
| def: AccRRI_pat<S2_asl_i_r_xacc, Xor, Su<Shl>, I32, u5_0ImmPred>; |
| |
| def: AccRRI_pat<S2_asl_i_p_acc, Add, Su<Shl>, I64, u6_0ImmPred>; |
| def: AccRRI_pat<S2_asl_i_p_nac, Sub, Su<Shl>, I64, u6_0ImmPred>; |
| def: AccRRI_pat<S2_asl_i_p_and, And, Su<Shl>, I64, u6_0ImmPred>; |
| def: AccRRI_pat<S2_asl_i_p_or, Or, Su<Shl>, I64, u6_0ImmPred>; |
| def: AccRRI_pat<S2_asl_i_p_xacc, Xor, Su<Shl>, I64, u6_0ImmPred>; |
| |
| let Predicates = [HasV60] in { |
| def: AccRRI_pat<S6_rol_i_r_acc, Add, Su<Rol>, I32, u5_0ImmPred>; |
| def: AccRRI_pat<S6_rol_i_r_nac, Sub, Su<Rol>, I32, u5_0ImmPred>; |
| def: AccRRI_pat<S6_rol_i_r_and, And, Su<Rol>, I32, u5_0ImmPred>; |
| def: AccRRI_pat<S6_rol_i_r_or, Or, Su<Rol>, I32, u5_0ImmPred>; |
| def: AccRRI_pat<S6_rol_i_r_xacc, Xor, Su<Rol>, I32, u5_0ImmPred>; |
| |
| def: AccRRI_pat<S6_rol_i_p_acc, Add, Su<Rol>, I64, u6_0ImmPred>; |
| def: AccRRI_pat<S6_rol_i_p_nac, Sub, Su<Rol>, I64, u6_0ImmPred>; |
| def: AccRRI_pat<S6_rol_i_p_and, And, Su<Rol>, I64, u6_0ImmPred>; |
| def: AccRRI_pat<S6_rol_i_p_or, Or, Su<Rol>, I64, u6_0ImmPred>; |
| def: AccRRI_pat<S6_rol_i_p_xacc, Xor, Su<Rol>, I64, u6_0ImmPred>; |
| } |
| } |
| |
| let AddedComplexity = 100 in { |
| def: AccRRR_pat<S2_asr_r_r_acc, Add, Su<Sra>, I32, I32, I32>; |
| def: AccRRR_pat<S2_asr_r_r_nac, Sub, Su<Sra>, I32, I32, I32>; |
| def: AccRRR_pat<S2_asr_r_r_and, And, Su<Sra>, I32, I32, I32>; |
| def: AccRRR_pat<S2_asr_r_r_or, Or, Su<Sra>, I32, I32, I32>; |
| |
| def: AccRRR_pat<S2_asr_r_p_acc, Add, Su<Sra>, I64, I64, I32>; |
| def: AccRRR_pat<S2_asr_r_p_nac, Sub, Su<Sra>, I64, I64, I32>; |
| def: AccRRR_pat<S2_asr_r_p_and, And, Su<Sra>, I64, I64, I32>; |
| def: AccRRR_pat<S2_asr_r_p_or, Or, Su<Sra>, I64, I64, I32>; |
| def: AccRRR_pat<S2_asr_r_p_xor, Xor, Su<Sra>, I64, I64, I32>; |
| |
| def: AccRRR_pat<S2_lsr_r_r_acc, Add, Su<Srl>, I32, I32, I32>; |
| def: AccRRR_pat<S2_lsr_r_r_nac, Sub, Su<Srl>, I32, I32, I32>; |
| def: AccRRR_pat<S2_lsr_r_r_and, And, Su<Srl>, I32, I32, I32>; |
| def: AccRRR_pat<S2_lsr_r_r_or, Or, Su<Srl>, I32, I32, I32>; |
| |
| def: AccRRR_pat<S2_lsr_r_p_acc, Add, Su<Srl>, I64, I64, I32>; |
| def: AccRRR_pat<S2_lsr_r_p_nac, Sub, Su<Srl>, I64, I64, I32>; |
| def: AccRRR_pat<S2_lsr_r_p_and, And, Su<Srl>, I64, I64, I32>; |
| def: AccRRR_pat<S2_lsr_r_p_or, Or, Su<Srl>, I64, I64, I32>; |
| def: AccRRR_pat<S2_lsr_r_p_xor, Xor, Su<Srl>, I64, I64, I32>; |
| |
| def: AccRRR_pat<S2_asl_r_r_acc, Add, Su<Shl>, I32, I32, I32>; |
| def: AccRRR_pat<S2_asl_r_r_nac, Sub, Su<Shl>, I32, I32, I32>; |
| def: AccRRR_pat<S2_asl_r_r_and, And, Su<Shl>, I32, I32, I32>; |
| def: AccRRR_pat<S2_asl_r_r_or, Or, Su<Shl>, I32, I32, I32>; |
| |
| def: AccRRR_pat<S2_asl_r_p_acc, Add, Su<Shl>, I64, I64, I32>; |
| def: AccRRR_pat<S2_asl_r_p_nac, Sub, Su<Shl>, I64, I64, I32>; |
| def: AccRRR_pat<S2_asl_r_p_and, And, Su<Shl>, I64, I64, I32>; |
| def: AccRRR_pat<S2_asl_r_p_or, Or, Su<Shl>, I64, I64, I32>; |
| def: AccRRR_pat<S2_asl_r_p_xor, Xor, Su<Shl>, I64, I64, I32>; |
| } |
| |
| |
| class OpshIRI_pat<InstHexagon MI, PatFrag Op, PatFrag ShOp, |
| PatFrag RegPred, PatFrag ImmPred> |
| : Pat<(Op anyimm:$u8, (ShOp RegPred:$Rs, ImmPred:$U5)), |
| (MI anyimm:$u8, RegPred:$Rs, imm:$U5)>; |
| |
| let AddedComplexity = 200 in { |
| def: OpshIRI_pat<S4_addi_asl_ri, Add, Su<Shl>, I32, u5_0ImmPred>; |
| def: OpshIRI_pat<S4_addi_lsr_ri, Add, Su<Srl>, I32, u5_0ImmPred>; |
| def: OpshIRI_pat<S4_subi_asl_ri, Sub, Su<Shl>, I32, u5_0ImmPred>; |
| def: OpshIRI_pat<S4_subi_lsr_ri, Sub, Su<Srl>, I32, u5_0ImmPred>; |
| def: OpshIRI_pat<S4_andi_asl_ri, And, Su<Shl>, I32, u5_0ImmPred>; |
| def: OpshIRI_pat<S4_andi_lsr_ri, And, Su<Srl>, I32, u5_0ImmPred>; |
| def: OpshIRI_pat<S4_ori_asl_ri, Or, Su<Shl>, I32, u5_0ImmPred>; |
| def: OpshIRI_pat<S4_ori_lsr_ri, Or, Su<Srl>, I32, u5_0ImmPred>; |
| } |
| |
| // Prefer this pattern to S2_asl_i_p_or for the special case of joining |
| // two 32-bit words into a 64-bit word. |
| let AddedComplexity = 200 in |
| def: Pat<(or (shl (Aext64 I32:$a), (i32 32)), (Zext64 I32:$b)), |
| (Combinew I32:$a, I32:$b)>; |
| |
| def: Pat<(or (or (or (shl (Zext64 (and I32:$b, (i32 65535))), (i32 16)), |
| (Zext64 (and I32:$a, (i32 65535)))), |
| (shl (Aext64 (and I32:$c, (i32 65535))), (i32 32))), |
| (shl (Aext64 I32:$d), (i32 48))), |
| (Combinew (A2_combine_ll I32:$d, I32:$c), |
| (A2_combine_ll I32:$b, I32:$a))>; |
| |
| let AddedComplexity = 200 in { |
| def: Pat<(or (shl I32:$Rt, (i32 16)), (and I32:$Rs, (i32 65535))), |
| (A2_combine_ll I32:$Rt, I32:$Rs)>; |
| def: Pat<(or (shl I32:$Rt, (i32 16)), (srl I32:$Rs, (i32 16))), |
| (A2_combine_lh I32:$Rt, I32:$Rs)>; |
| def: Pat<(or (and I32:$Rt, (i32 268431360)), (and I32:$Rs, (i32 65535))), |
| (A2_combine_hl I32:$Rt, I32:$Rs)>; |
| def: Pat<(or (and I32:$Rt, (i32 268431360)), (srl I32:$Rs, (i32 16))), |
| (A2_combine_hh I32:$Rt, I32:$Rs)>; |
| } |
| |
| def SDTHexagonVShift |
| : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, SDTCisVec<0>, SDTCisVT<2, i32>]>; |
| |
| def HexagonVASL: SDNode<"HexagonISD::VASL", SDTHexagonVShift>; |
| def HexagonVASR: SDNode<"HexagonISD::VASR", SDTHexagonVShift>; |
| def HexagonVLSR: SDNode<"HexagonISD::VLSR", SDTHexagonVShift>; |
| |
| def: OpR_RI_pat<S2_asl_i_vw, pf2<HexagonVASL>, v2i32, V2I32, u5_0ImmPred>; |
| def: OpR_RI_pat<S2_asl_i_vh, pf2<HexagonVASL>, v4i16, V4I16, u4_0ImmPred>; |
| def: OpR_RI_pat<S2_asr_i_vw, pf2<HexagonVASR>, v2i32, V2I32, u5_0ImmPred>; |
| def: OpR_RI_pat<S2_asr_i_vh, pf2<HexagonVASR>, v4i16, V4I16, u4_0ImmPred>; |
| def: OpR_RI_pat<S2_lsr_i_vw, pf2<HexagonVLSR>, v2i32, V2I32, u5_0ImmPred>; |
| def: OpR_RI_pat<S2_lsr_i_vh, pf2<HexagonVLSR>, v4i16, V4I16, u4_0ImmPred>; |
| |
| def: OpR_RR_pat<S2_asl_r_vw, pf2<HexagonVASL>, v2i32, V2I32, I32>; |
| def: OpR_RR_pat<S2_asl_r_vh, pf2<HexagonVASL>, v4i16, V4I16, I32>; |
| def: OpR_RR_pat<S2_asr_r_vw, pf2<HexagonVASR>, v2i32, V2I32, I32>; |
| def: OpR_RR_pat<S2_asr_r_vh, pf2<HexagonVASR>, v4i16, V4I16, I32>; |
| def: OpR_RR_pat<S2_lsr_r_vw, pf2<HexagonVLSR>, v2i32, V2I32, I32>; |
| def: OpR_RR_pat<S2_lsr_r_vh, pf2<HexagonVLSR>, v4i16, V4I16, I32>; |
| |
| def: Pat<(sra V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))), |
| (S2_asr_i_vw V2I32:$b, imm:$c)>; |
| def: Pat<(srl V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))), |
| (S2_lsr_i_vw V2I32:$b, imm:$c)>; |
| def: Pat<(shl V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))), |
| (S2_asl_i_vw V2I32:$b, imm:$c)>; |
| def: Pat<(sra V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))), |
| (S2_asr_i_vh V4I16:$b, imm:$c)>; |
| def: Pat<(srl V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))), |
| (S2_lsr_i_vh V4I16:$b, imm:$c)>; |
| def: Pat<(shl V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))), |
| (S2_asl_i_vh V4I16:$b, imm:$c)>; |
| |
| def: Pat<(HexagonVASR V2I16:$Rs, u4_0ImmPred:$S), |
| (LoReg (S2_asr_i_vh (ToAext64 $Rs), imm:$S))>; |
| def: Pat<(HexagonVASL V2I16:$Rs, u4_0ImmPred:$S), |
| (LoReg (S2_asl_i_vh (ToAext64 $Rs), imm:$S))>; |
| def: Pat<(HexagonVLSR V2I16:$Rs, u4_0ImmPred:$S), |
| (LoReg (S2_lsr_i_vh (ToAext64 $Rs), imm:$S))>; |
| def: Pat<(HexagonVASR V2I16:$Rs, I32:$Rt), |
| (LoReg (S2_asr_i_vh (ToAext64 $Rs), I32:$Rt))>; |
| def: Pat<(HexagonVASL V2I16:$Rs, I32:$Rt), |
| (LoReg (S2_asl_i_vh (ToAext64 $Rs), I32:$Rt))>; |
| def: Pat<(HexagonVLSR V2I16:$Rs, I32:$Rt), |
| (LoReg (S2_lsr_i_vh (ToAext64 $Rs), I32:$Rt))>; |
| |
| |
| // --(9) Arithmetic/bitwise ---------------------------------------------- |
| // |
| |
| def: Pat<(abs I32:$Rs), (A2_abs I32:$Rs)>; |
| def: Pat<(abs I64:$Rs), (A2_absp I64:$Rs)>; |
| def: Pat<(not I32:$Rs), (A2_subri -1, I32:$Rs)>; |
| def: Pat<(not I64:$Rs), (A2_notp I64:$Rs)>; |
| def: Pat<(ineg I64:$Rs), (A2_negp I64:$Rs)>; |
| |
| def: Pat<(fabs F32:$Rs), (S2_clrbit_i F32:$Rs, 31)>; |
| def: Pat<(fneg F32:$Rs), (S2_togglebit_i F32:$Rs, 31)>; |
| |
| def: Pat<(fabs F64:$Rs), |
| (Combinew (S2_clrbit_i (HiReg $Rs), 31), |
| (i32 (LoReg $Rs)))>; |
| def: Pat<(fneg F64:$Rs), |
| (Combinew (S2_togglebit_i (HiReg $Rs), 31), |
| (i32 (LoReg $Rs)))>; |
| |
| def: Pat<(add I32:$Rs, anyimm:$s16), (A2_addi I32:$Rs, imm:$s16)>; |
| def: Pat<(or I32:$Rs, anyimm:$s10), (A2_orir I32:$Rs, imm:$s10)>; |
| def: Pat<(and I32:$Rs, anyimm:$s10), (A2_andir I32:$Rs, imm:$s10)>; |
| def: Pat<(sub anyimm:$s10, I32:$Rs), (A2_subri imm:$s10, I32:$Rs)>; |
| |
| def: OpR_RR_pat<A2_add, Add, i32, I32>; |
| def: OpR_RR_pat<A2_sub, Sub, i32, I32>; |
| def: OpR_RR_pat<A2_and, And, i32, I32>; |
| def: OpR_RR_pat<A2_or, Or, i32, I32>; |
| def: OpR_RR_pat<A2_xor, Xor, i32, I32>; |
| def: OpR_RR_pat<A2_addp, Add, i64, I64>; |
| def: OpR_RR_pat<A2_subp, Sub, i64, I64>; |
| def: OpR_RR_pat<A2_andp, And, i64, I64>; |
| def: OpR_RR_pat<A2_orp, Or, i64, I64>; |
| def: OpR_RR_pat<A2_xorp, Xor, i64, I64>; |
| def: OpR_RR_pat<A4_andnp, Not2<And>, i64, I64>; |
| def: OpR_RR_pat<A4_ornp, Not2<Or>, i64, I64>; |
| |
| def: OpR_RR_pat<A2_svaddh, Add, v2i16, V2I16>; |
| def: OpR_RR_pat<A2_svsubh, Sub, v2i16, V2I16>; |
| |
| def: OpR_RR_pat<A2_vaddub, Add, v8i8, V8I8>; |
| def: OpR_RR_pat<A2_vaddh, Add, v4i16, V4I16>; |
| def: OpR_RR_pat<A2_vaddw, Add, v2i32, V2I32>; |
| def: OpR_RR_pat<A2_vsubub, Sub, v8i8, V8I8>; |
| def: OpR_RR_pat<A2_vsubh, Sub, v4i16, V4I16>; |
| def: OpR_RR_pat<A2_vsubw, Sub, v2i32, V2I32>; |
| |
| def: OpR_RR_pat<A2_and, And, v4i8, V4I8>; |
| def: OpR_RR_pat<A2_xor, Xor, v4i8, V4I8>; |
| def: OpR_RR_pat<A2_or, Or, v4i8, V4I8>; |
| def: OpR_RR_pat<A2_and, And, v2i16, V2I16>; |
| def: OpR_RR_pat<A2_xor, Xor, v2i16, V2I16>; |
| def: OpR_RR_pat<A2_or, Or, v2i16, V2I16>; |
| def: OpR_RR_pat<A2_andp, And, v8i8, V8I8>; |
| def: OpR_RR_pat<A2_orp, Or, v8i8, V8I8>; |
| def: OpR_RR_pat<A2_xorp, Xor, v8i8, V8I8>; |
| def: OpR_RR_pat<A2_andp, And, v4i16, V4I16>; |
| def: OpR_RR_pat<A2_orp, Or, v4i16, V4I16>; |
| def: OpR_RR_pat<A2_xorp, Xor, v4i16, V4I16>; |
| def: OpR_RR_pat<A2_andp, And, v2i32, V2I32>; |
| def: OpR_RR_pat<A2_orp, Or, v2i32, V2I32>; |
| def: OpR_RR_pat<A2_xorp, Xor, v2i32, V2I32>; |
| |
| def: OpR_RR_pat<M2_mpyi, Mul, i32, I32>; |
| def: OpR_RR_pat<M2_mpy_up, pf2<mulhs>, i32, I32>; |
| def: OpR_RR_pat<M2_mpyu_up, pf2<mulhu>, i32, I32>; |
| def: OpR_RI_pat<M2_mpysip, Mul, i32, I32, u32_0ImmPred>; |
| def: OpR_RI_pat<M2_mpysmi, Mul, i32, I32, s32_0ImmPred>; |
| |
| // Arithmetic on predicates. |
| def: OpR_RR_pat<C2_xor, Add, i1, I1>; |
| def: OpR_RR_pat<C2_xor, Add, v2i1, V2I1>; |
| def: OpR_RR_pat<C2_xor, Add, v4i1, V4I1>; |
| def: OpR_RR_pat<C2_xor, Add, v8i1, V8I1>; |
| def: OpR_RR_pat<C2_xor, Sub, i1, I1>; |
| def: OpR_RR_pat<C2_xor, Sub, v2i1, V2I1>; |
| def: OpR_RR_pat<C2_xor, Sub, v4i1, V4I1>; |
| def: OpR_RR_pat<C2_xor, Sub, v8i1, V8I1>; |
| def: OpR_RR_pat<C2_and, Mul, i1, I1>; |
| def: OpR_RR_pat<C2_and, Mul, v2i1, V2I1>; |
| def: OpR_RR_pat<C2_and, Mul, v4i1, V4I1>; |
| def: OpR_RR_pat<C2_and, Mul, v8i1, V8I1>; |
| |
| def: OpR_RR_pat<F2_sfadd, pf2<fadd>, f32, F32>; |
| def: OpR_RR_pat<F2_sfsub, pf2<fsub>, f32, F32>; |
| def: OpR_RR_pat<F2_sfmpy, pf2<fmul>, f32, F32>; |
| def: OpR_RR_pat<F2_sfmin, pf2<fminnum>, f32, F32>; |
| def: OpR_RR_pat<F2_sfmax, pf2<fmaxnum>, f32, F32>; |
| |
| let Predicates = [HasV66] in { |
| def: OpR_RR_pat<F2_dfadd, pf2<fadd>, f64, F64>; |
| def: OpR_RR_pat<F2_dfsub, pf2<fsub>, f64, F64>; |
| } |
| |
| // In expressions like a0*b0 + a1*b1 + ..., prefer to generate multiply-add, |
| // over add-add with individual multiplies as inputs. |
| let AddedComplexity = 10 in { |
| def: AccRRI_pat<M2_macsip, Add, Su<Mul>, I32, u32_0ImmPred>; |
| def: AccRRI_pat<M2_macsin, Sub, Su<Mul>, I32, u32_0ImmPred>; |
| def: AccRRR_pat<M2_maci, Add, Su<Mul>, I32, I32, I32>; |
| let Predicates = [HasV66] in |
| def: AccRRR_pat<M2_mnaci, Sub, Su<Mul>, I32, I32, I32>; |
| } |
| |
| def: AccRRI_pat<M2_naccii, Sub, Su<Add>, I32, s32_0ImmPred>; |
| def: AccRRI_pat<M2_accii, Add, Su<Add>, I32, s32_0ImmPred>; |
| def: AccRRR_pat<M2_acci, Add, Su<Add>, I32, I32, I32>; |
| |
| // Mulh for vectors |
| // |
| def: Pat<(v2i32 (mulhu V2I32:$Rss, V2I32:$Rtt)), |
| (Combinew (M2_mpyu_up (HiReg $Rss), (HiReg $Rtt)), |
| (M2_mpyu_up (LoReg $Rss), (LoReg $Rtt)))>; |
| |
| def: Pat<(v2i32 (mulhs V2I32:$Rs, V2I32:$Rt)), |
| (Combinew (M2_mpy_up (HiReg $Rs), (HiReg $Rt)), |
| (M2_mpy_up (LoReg $Rt), (LoReg $Rt)))>; |
| |
| def Mulhub: |
| OutPatFrag<(ops node:$Rss, node:$Rtt), |
| (Combinew (S2_vtrunohb (M5_vmpybuu (HiReg $Rss), (HiReg $Rtt))), |
| (S2_vtrunohb (M5_vmpybuu (LoReg $Rss), (LoReg $Rtt))))>; |
| |
| // Equivalent of byte-wise arithmetic shift right by 7 in v8i8. |
| def Asr7: |
| OutPatFrag<(ops node:$Rss), (C2_mask (C2_not (A4_vcmpbgti $Rss, 0)))>; |
| |
| def: Pat<(v8i8 (mulhu V8I8:$Rss, V8I8:$Rtt)), |
| (Mulhub $Rss, $Rtt)>; |
| |
| def: Pat<(v8i8 (mulhs V8I8:$Rss, V8I8:$Rtt)), |
| (A2_vsubub |
| (Mulhub $Rss, $Rtt), |
| (A2_vaddub (A2_andp V8I8:$Rss, (Asr7 $Rtt)), |
| (A2_andp V8I8:$Rtt, (Asr7 $Rss))))>; |
| |
| def Mpysh: |
| OutPatFrag<(ops node:$Rs, node:$Rt), (M2_vmpy2s_s0 $Rs, $Rt)>; |
| def Mpyshh: |
| OutPatFrag<(ops node:$Rss, node:$Rtt), (Mpysh (HiReg $Rss), (HiReg $Rtt))>; |
| def Mpyshl: |
| OutPatFrag<(ops node:$Rss, node:$Rtt), (Mpysh (LoReg $Rss), (LoReg $Rtt))>; |
| |
| def Mulhsh: |
| OutPatFrag<(ops node:$Rss, node:$Rtt), |
| (Combinew (A2_combine_hh (HiReg (Mpyshh $Rss, $Rtt)), |
| (LoReg (Mpyshh $Rss, $Rtt))), |
| (A2_combine_hh (HiReg (Mpyshl $Rss, $Rtt)), |
| (LoReg (Mpyshl $Rss, $Rtt))))>; |
| |
| def: Pat<(v4i16 (mulhs V4I16:$Rss, V4I16:$Rtt)), (Mulhsh $Rss, $Rtt)>; |
| |
| def: Pat<(v4i16 (mulhu V4I16:$Rss, V4I16:$Rtt)), |
| (A2_vaddh |
| (Mulhsh $Rss, $Rtt), |
| (A2_vaddh (A2_andp V4I16:$Rss, (S2_asr_i_vh $Rtt, 15)), |
| (A2_andp V4I16:$Rtt, (S2_asr_i_vh $Rss, 15))))>; |
| |
| |
| def: Pat<(ineg (mul I32:$Rs, u8_0ImmPred:$u8)), |
| (M2_mpysin IntRegs:$Rs, imm:$u8)>; |
| |
| def n8_0ImmPred: PatLeaf<(i32 imm), [{ |
| int64_t V = N->getSExtValue(); |
| return -255 <= V && V <= 0; |
| }]>; |
| |
| // Change the sign of the immediate for Rd=-mpyi(Rs,#u8) |
| def: Pat<(mul I32:$Rs, n8_0ImmPred:$n8), |
| (M2_mpysin I32:$Rs, (NegImm8 imm:$n8))>; |
| |
| def: Pat<(add Sext64:$Rs, I64:$Rt), |
| (A2_addsp (LoReg Sext64:$Rs), I64:$Rt)>; |
| |
| def: AccRRR_pat<M4_and_and, And, Su_ni1<And>, I32, I32, I32>; |
| def: AccRRR_pat<M4_and_or, And, Su_ni1<Or>, I32, I32, I32>; |
| def: AccRRR_pat<M4_and_xor, And, Su<Xor>, I32, I32, I32>; |
| def: AccRRR_pat<M4_or_and, Or, Su_ni1<And>, I32, I32, I32>; |
| def: AccRRR_pat<M4_or_or, Or, Su_ni1<Or>, I32, I32, I32>; |
| def: AccRRR_pat<M4_or_xor, Or, Su<Xor>, I32, I32, I32>; |
| def: AccRRR_pat<M4_xor_and, Xor, Su_ni1<And>, I32, I32, I32>; |
| def: AccRRR_pat<M4_xor_or, Xor, Su_ni1<Or>, I32, I32, I32>; |
| def: AccRRR_pat<M2_xor_xacc, Xor, Su<Xor>, I32, I32, I32>; |
| def: AccRRR_pat<M4_xor_xacc, Xor, Su<Xor>, I64, I64, I64>; |
| |
| // For dags like (or (and (not _), _), (shl _, _)) where the "or" with |
| // one argument matches the patterns below, and with the other argument |
| // matches S2_asl_r_r_or, etc, prefer the patterns below. |
| let AddedComplexity = 110 in { // greater than S2_asl_r_r_and/or/xor. |
| def: AccRRR_pat<M4_and_andn, And, Su<Not2<And>>, I32, I32, I32>; |
| def: AccRRR_pat<M4_or_andn, Or, Su<Not2<And>>, I32, I32, I32>; |
| def: AccRRR_pat<M4_xor_andn, Xor, Su<Not2<And>>, I32, I32, I32>; |
| } |
| |
| // S4_addaddi and S4_subaddi don't have tied operands, so give them |
| // a bit of preference. |
| let AddedComplexity = 30 in { |
| def: Pat<(add I32:$Rs, (Su<Add> I32:$Ru, anyimm:$s6)), |
| (S4_addaddi IntRegs:$Rs, IntRegs:$Ru, imm:$s6)>; |
| def: Pat<(add anyimm:$s6, (Su<Add> I32:$Rs, I32:$Ru)), |
| (S4_addaddi IntRegs:$Rs, IntRegs:$Ru, imm:$s6)>; |
| def: Pat<(add I32:$Rs, (Su<Sub> anyimm:$s6, I32:$Ru)), |
| (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>; |
| def: Pat<(sub (Su<Add> I32:$Rs, anyimm:$s6), I32:$Ru), |
| (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>; |
| def: Pat<(add (Su<Sub> I32:$Rs, I32:$Ru), anyimm:$s6), |
| (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>; |
| } |
| |
| def: Pat<(or I32:$Ru, (Su<And> I32:$Rx, anyimm:$s10)), |
| (S4_or_andix IntRegs:$Ru, IntRegs:$Rx, imm:$s10)>; |
| def: Pat<(or I32:$Rx, (Su<And> I32:$Rs, anyimm:$s10)), |
| (S4_or_andi IntRegs:$Rx, IntRegs:$Rs, imm:$s10)>; |
| def: Pat<(or I32:$Rx, (Su<Or> I32:$Rs, anyimm:$s10)), |
| (S4_or_ori IntRegs:$Rx, IntRegs:$Rs, imm:$s10)>; |
| |
| |
| def: Pat<(i32 (trunc (sra (Su<Mul> Sext64:$Rs, Sext64:$Rt), (i32 32)))), |
| (M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>; |
| def: Pat<(i32 (trunc (srl (Su<Mul> Sext64:$Rs, Sext64:$Rt), (i32 32)))), |
| (M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>; |
| |
| def: Pat<(mul (Zext64 I32:$Rs), (Zext64 I32:$Rt)), |
| (M2_dpmpyuu_s0 I32:$Rs, I32:$Rt)>; |
| def: Pat<(mul (Aext64 I32:$Rs), (Aext64 I32:$Rt)), |
| (M2_dpmpyuu_s0 I32:$Rs, I32:$Rt)>; |
| def: Pat<(mul Sext64:$Rs, Sext64:$Rt), |
| (M2_dpmpyss_s0 (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>; |
| |
| def: Pat<(add I64:$Rx, (Su<Mul> Sext64:$Rs, Sext64:$Rt)), |
| (M2_dpmpyss_acc_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>; |
| def: Pat<(sub I64:$Rx, (Su<Mul> Sext64:$Rs, Sext64:$Rt)), |
| (M2_dpmpyss_nac_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>; |
| def: Pat<(add I64:$Rx, (Su<Mul> (Aext64 I32:$Rs), (Aext64 I32:$Rt))), |
| (M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>; |
| def: Pat<(add I64:$Rx, (Su<Mul> (Zext64 I32:$Rs), (Zext64 I32:$Rt))), |
| (M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>; |
| def: Pat<(sub I64:$Rx, (Su<Mul> (Aext64 I32:$Rs), (Aext64 I32:$Rt))), |
| (M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>; |
| def: Pat<(sub I64:$Rx, (Su<Mul> (Zext64 I32:$Rs), (Zext64 I32:$Rt))), |
| (M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>; |
| |
| // Add halfword. |
| def: Pat<(sext_inreg (add I32:$Rt, I32:$Rs), i16), |
| (A2_addh_l16_ll I32:$Rt, I32:$Rs)>; |
| def: Pat<(sra (add (shl I32:$Rt, (i32 16)), I32:$Rs), (i32 16)), |
| (A2_addh_l16_hl I32:$Rt, I32:$Rs)>; |
| def: Pat<(shl (add I32:$Rt, I32:$Rs), (i32 16)), |
| (A2_addh_h16_ll I32:$Rt, I32:$Rs)>; |
| |
| // Subtract halfword. |
| def: Pat<(sext_inreg (sub I32:$Rt, I32:$Rs), i16), |
| (A2_subh_l16_ll I32:$Rt, I32:$Rs)>; |
| def: Pat<(sra (add (shl I32:$Rt, (i32 16)), I32:$Rs), (i32 16)), |
| (A2_addh_l16_hl I32:$Rt, I32:$Rs)>; |
| def: Pat<(shl (sub I32:$Rt, I32:$Rs), (i32 16)), |
| (A2_subh_h16_ll I32:$Rt, I32:$Rs)>; |
| |
| def: Pat<(mul I64:$Rss, I64:$Rtt), |
| (Combinew |
| (M2_maci (M2_maci (HiReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt))), |
| (LoReg $Rss), |
| (HiReg $Rtt)), |
| (LoReg $Rtt), |
| (HiReg $Rss)), |
| (i32 (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt)))))>; |
| |
| def MulHU : OutPatFrag<(ops node:$Rss, node:$Rtt), |
| (A2_addp |
| (M2_dpmpyuu_acc_s0 |
| (S2_lsr_i_p |
| (A2_addp |
| (M2_dpmpyuu_acc_s0 |
| (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt)), 32), |
| (HiReg $Rss), |
| (LoReg $Rtt)), |
| (A4_combineir 0, (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt))))), |
| 32), |
| (HiReg $Rss), |
| (HiReg $Rtt)), |
| (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt)), 32))>; |
| |
| // Multiply 64-bit unsigned and use upper result. |
| def : Pat <(mulhu I64:$Rss, I64:$Rtt), (MulHU $Rss, $Rtt)>; |
| |
| // Multiply 64-bit signed and use upper result. |
| // |
| // For two signed 64-bit integers A and B, let A' and B' denote A and B |
| // with the sign bit cleared. Then A = -2^63*s(A) + A', where s(A) is the |
| // sign bit of A (and identically for B). With this notation, the signed |
| // product A*B can be written as: |
| // AB = (-2^63 s(A) + A') * (-2^63 s(B) + B') |
| // = 2^126 s(A)s(B) - 2^63 [s(A)B'+s(B)A'] + A'B' |
| // = 2^126 s(A)s(B) + 2^63 [s(A)B'+s(B)A'] + A'B' - 2*2^63 [s(A)B'+s(B)A'] |
| // = (unsigned product AB) - 2^64 [s(A)B'+s(B)A'] |
| |
| // Clear the sign bit in a 64-bit register. |
| def ClearSign : OutPatFrag<(ops node:$Rss), |
| (Combinew (S2_clrbit_i (HiReg $Rss), 31), (i32 (LoReg $Rss)))>; |
| |
| def : Pat <(mulhs I64:$Rss, I64:$Rtt), |
| (A2_subp |
| (MulHU $Rss, $Rtt), |
| (A2_addp |
| (A2_andp (S2_asr_i_p $Rss, 63), (ClearSign $Rtt)), |
| (A2_andp (S2_asr_i_p $Rtt, 63), (ClearSign $Rss))))>; |
| |
| // Prefer these instructions over M2_macsip/M2_macsin: the macsi* instructions |
| // will put the immediate addend into a register, while these instructions will |
| // use it directly. Such a construct does not appear in the middle of a gep, |
| // where M2_macsip would be preferable. |
| let AddedComplexity = 20 in { |
| def: Pat<(add (Su<Mul> I32:$Rs, u6_0ImmPred:$U6), anyimm:$u6), |
| (M4_mpyri_addi imm:$u6, IntRegs:$Rs, imm:$U6)>; |
| def: Pat<(add (Su<Mul> I32:$Rs, I32:$Rt), anyimm:$u6), |
| (M4_mpyrr_addi imm:$u6, IntRegs:$Rs, IntRegs:$Rt)>; |
| } |
| |
| // Keep these instructions less preferable to M2_macsip/M2_macsin. |
| def: Pat<(add I32:$Ru, (Su<Mul> I32:$Rs, u6_2ImmPred:$u6_2)), |
| (M4_mpyri_addr_u2 IntRegs:$Ru, imm:$u6_2, IntRegs:$Rs)>; |
| def: Pat<(add I32:$Ru, (Su<Mul> I32:$Rs, anyimm:$u6)), |
| (M4_mpyri_addr IntRegs:$Ru, IntRegs:$Rs, imm:$u6)>; |
| def: Pat<(add I32:$Ru, (Su<Mul> I32:$Ry, I32:$Rs)), |
| (M4_mpyrr_addr IntRegs:$Ru, IntRegs:$Ry, IntRegs:$Rs)>; |
| |
| |
| def: Pat<(fma F32:$Rs, F32:$Rt, F32:$Rx), |
| (F2_sffma F32:$Rx, F32:$Rs, F32:$Rt)>; |
| def: Pat<(fma (fneg F32:$Rs), F32:$Rt, F32:$Rx), |
| (F2_sffms F32:$Rx, F32:$Rs, F32:$Rt)>; |
| def: Pat<(fma F32:$Rs, (fneg F32:$Rt), F32:$Rx), |
| (F2_sffms F32:$Rx, F32:$Rs, F32:$Rt)>; |
| |
| |
| def: Pat<(mul V2I32:$Rs, V2I32:$Rt), |
| (PS_vmulw V2I32:$Rs, V2I32:$Rt)>; |
| def: Pat<(add V2I32:$Rx, (mul V2I32:$Rs, V2I32:$Rt)), |
| (PS_vmulw_acc V2I32:$Rx, V2I32:$Rs, V2I32:$Rt)>; |
| |
| // Add/subtract two v4i8: Hexagon does not have an insn for this one, so |
| // we use the double add v8i8, and use only the low part of the result. |
| def: Pat<(add V4I8:$Rs, V4I8:$Rt), |
| (LoReg (A2_vaddub (ToAext64 $Rs), (ToAext64 $Rt)))>; |
| def: Pat<(sub V4I8:$Rs, V4I8:$Rt), |
| (LoReg (A2_vsubub (ToAext64 $Rs), (ToAext64 $Rt)))>; |
| |
| // Use M2_vmpy2s_s0 for half-word vector multiply. It multiplies two |
| // half-words, and saturates the result to a 32-bit value, except the |
| // saturation never happens (it can only occur with scaling). |
| def: Pat<(v2i16 (mul V2I16:$Rs, V2I16:$Rt)), |
| (LoReg (S2_vtrunewh (A2_combineii 0, 0), |
| (M2_vmpy2s_s0 V2I16:$Rs, V2I16:$Rt)))>; |
| def: Pat<(v4i16 (mul V4I16:$Rs, V4I16:$Rt)), |
| (S2_vtrunewh (M2_vmpy2s_s0 (HiReg $Rs), (HiReg $Rt)), |
| (M2_vmpy2s_s0 (LoReg $Rs), (LoReg $Rt)))>; |
| |
| // Multiplies two v4i8 vectors. |
| def: Pat<(v4i8 (mul V4I8:$Rs, V4I8:$Rt)), |
| (S2_vtrunehb (M5_vmpybuu V4I8:$Rs, V4I8:$Rt))>; |
| |
| // Multiplies two v8i8 vectors. |
| def: Pat<(v8i8 (mul V8I8:$Rs, V8I8:$Rt)), |
| (Combinew (S2_vtrunehb (M5_vmpybuu (HiReg $Rs), (HiReg $Rt))), |
| (S2_vtrunehb (M5_vmpybuu (LoReg $Rs), (LoReg $Rt))))>; |
| |
| |
| // --(10) Bit ------------------------------------------------------------ |
| // |
| |
| // Count leading zeros. |
| def: Pat<(i32 (ctlz I32:$Rs)), (S2_cl0 I32:$Rs)>; |
| def: Pat<(i32 (trunc (ctlz I64:$Rss))), (S2_cl0p I64:$Rss)>; |
| |
| // Count trailing zeros. |
| def: Pat<(i32 (cttz I32:$Rs)), (S2_ct0 I32:$Rs)>; |
| def: Pat<(i32 (trunc (cttz I64:$Rss))), (S2_ct0p I64:$Rss)>; |
| |
| // Count leading ones. |
| def: Pat<(i32 (ctlz (not I32:$Rs))), (S2_cl1 I32:$Rs)>; |
| def: Pat<(i32 (trunc (ctlz (not I64:$Rss)))), (S2_cl1p I64:$Rss)>; |
| |
| // Count trailing ones. |
| def: Pat<(i32 (cttz (not I32:$Rs))), (S2_ct1 I32:$Rs)>; |
| def: Pat<(i32 (trunc (cttz (not I64:$Rss)))), (S2_ct1p I64:$Rss)>; |
| |
| // Define leading/trailing patterns that require zero-extensions to 64 bits. |
| def: Pat<(i64 (ctlz I64:$Rss)), (ToZext64 (S2_cl0p I64:$Rss))>; |
| def: Pat<(i64 (cttz I64:$Rss)), (ToZext64 (S2_ct0p I64:$Rss))>; |
| def: Pat<(i64 (ctlz (not I64:$Rss))), (ToZext64 (S2_cl1p I64:$Rss))>; |
| def: Pat<(i64 (cttz (not I64:$Rss))), (ToZext64 (S2_ct1p I64:$Rss))>; |
| |
| def: Pat<(i64 (ctpop I64:$Rss)), (ToZext64 (S5_popcountp I64:$Rss))>; |
| def: Pat<(i32 (ctpop I32:$Rs)), (S5_popcountp (A4_combineir 0, I32:$Rs))>; |
| |
| def: Pat<(bitreverse I32:$Rs), (S2_brev I32:$Rs)>; |
| def: Pat<(bitreverse I64:$Rss), (S2_brevp I64:$Rss)>; |
| |
| let AddedComplexity = 20 in { // Complexity greater than and/or/xor |
| def: Pat<(and I32:$Rs, IsNPow2_32:$V), |
| (S2_clrbit_i IntRegs:$Rs, (LogN2_32 $V))>; |
| def: Pat<(or I32:$Rs, IsPow2_32:$V), |
| (S2_setbit_i IntRegs:$Rs, (Log2_32 $V))>; |
| def: Pat<(xor I32:$Rs, IsPow2_32:$V), |
| (S2_togglebit_i IntRegs:$Rs, (Log2_32 $V))>; |
| |
| def: Pat<(and I32:$Rs, (not (shl 1, I32:$Rt))), |
| (S2_clrbit_r IntRegs:$Rs, IntRegs:$Rt)>; |
| def: Pat<(or I32:$Rs, (shl 1, I32:$Rt)), |
| (S2_setbit_r IntRegs:$Rs, IntRegs:$Rt)>; |
| def: Pat<(xor I32:$Rs, (shl 1, I32:$Rt)), |
| (S2_togglebit_r IntRegs:$Rs, IntRegs:$Rt)>; |
| } |
| |
| // Clr/set/toggle bit for 64-bit values with immediate bit index. |
| let AddedComplexity = 20 in { // Complexity greater than and/or/xor |
| def: Pat<(and I64:$Rss, IsNPow2_64L:$V), |
| (Combinew (i32 (HiReg $Rss)), |
| (S2_clrbit_i (LoReg $Rss), (LogN2_64 $V)))>; |
| def: Pat<(and I64:$Rss, IsNPow2_64H:$V), |
| (Combinew (S2_clrbit_i (HiReg $Rss), (UDEC32 (i32 (LogN2_64 $V)))), |
| (i32 (LoReg $Rss)))>; |
| |
| def: Pat<(or I64:$Rss, IsPow2_64L:$V), |
| (Combinew (i32 (HiReg $Rss)), |
| (S2_setbit_i (LoReg $Rss), (Log2_64 $V)))>; |
| def: Pat<(or I64:$Rss, IsPow2_64H:$V), |
| (Combinew (S2_setbit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))), |
| (i32 (LoReg $Rss)))>; |
| |
| def: Pat<(xor I64:$Rss, IsPow2_64L:$V), |
| (Combinew (i32 (HiReg $Rss)), |
| (S2_togglebit_i (LoReg $Rss), (Log2_64 $V)))>; |
| def: Pat<(xor I64:$Rss, IsPow2_64H:$V), |
| (Combinew (S2_togglebit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))), |
| (i32 (LoReg $Rss)))>; |
| } |
| |
| |
| let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm. |
| def: Pat<(i1 (setne (and (shl 1, u5_0ImmPred:$u5), I32:$Rs), 0)), |
| (S2_tstbit_i IntRegs:$Rs, imm:$u5)>; |
| def: Pat<(i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)), |
| (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt)>; |
| def: Pat<(i1 (trunc I32:$Rs)), |
| (S2_tstbit_i IntRegs:$Rs, 0)>; |
| def: Pat<(i1 (trunc I64:$Rs)), |
| (S2_tstbit_i (LoReg DoubleRegs:$Rs), 0)>; |
| } |
| |
| def: Pat<(and (srl I32:$Rs, u5_0ImmPred:$u5), 1), |
| (I1toI32 (S2_tstbit_i I32:$Rs, imm:$u5))>; |
| def: Pat<(and (srl I64:$Rss, IsULE<32,31>:$u6), 1), |
| (ToZext64 (I1toI32 (S2_tstbit_i (LoReg $Rss), imm:$u6)))>; |
| def: Pat<(and (srl I64:$Rss, IsUGT<32,31>:$u6), 1), |
| (ToZext64 (I1toI32 (S2_tstbit_i (HiReg $Rss), (UDEC32 $u6))))>; |
| |
| def: Pat<(and (not (srl I32:$Rs, u5_0ImmPred:$u5)), 1), |
| (I1toI32 (S4_ntstbit_i I32:$Rs, imm:$u5))>; |
| def: Pat<(and (not (srl I64:$Rss, IsULE<32,31>:$u6)), 1), |
| (ToZext64 (I1toI32 (S4_ntstbit_i (LoReg $Rss), imm:$u6)))>; |
| def: Pat<(and (not (srl I64:$Rss, IsUGT<32,31>:$u6)), 1), |
| (ToZext64 (I1toI32 (S4_ntstbit_i (HiReg $Rss), (UDEC32 $u6))))>; |
| |
| let AddedComplexity = 20 in { // Complexity greater than compare reg-imm. |
| def: Pat<(i1 (seteq (and I32:$Rs, u6_0ImmPred:$u6), 0)), |
| (C2_bitsclri IntRegs:$Rs, imm:$u6)>; |
| def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), 0)), |
| (C2_bitsclr IntRegs:$Rs, IntRegs:$Rt)>; |
| } |
| |
| let AddedComplexity = 10 in // Complexity greater than compare reg-reg. |
| def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), IntRegs:$Rt)), |
| (C2_bitsset IntRegs:$Rs, IntRegs:$Rt)>; |
| |
| def SDTTestBit: |
| SDTypeProfile<1, 2, [SDTCisVT<0, i1>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>; |
| def HexagonTSTBIT: SDNode<"HexagonISD::TSTBIT", SDTTestBit>; |
| |
| def: Pat<(HexagonTSTBIT I32:$Rs, u5_0ImmPred:$u5), |
| (S2_tstbit_i I32:$Rs, imm:$u5)>; |
| def: Pat<(HexagonTSTBIT I32:$Rs, I32:$Rt), |
| (S2_tstbit_r I32:$Rs, I32:$Rt)>; |
| |
| // Add extra complexity to prefer these instructions over bitsset/bitsclr. |
| // The reason is that tstbit/ntstbit can be folded into a compound instruction: |
| // if ([!]tstbit(...)) jump ... |
| let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm. |
| def: Pat<(i1 (seteq (and I32:$Rs, IsPow2_32:$u5), 0)), |
| (S4_ntstbit_i I32:$Rs, (Log2_32 imm:$u5))>; |
| def: Pat<(i1 (setne (and I32:$Rs, IsPow2_32:$u5), 0)), |
| (S2_tstbit_i I32:$Rs, (Log2_32 imm:$u5))>; |
| def: Pat<(i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)), |
| (S4_ntstbit_r I32:$Rs, I32:$Rt)>; |
| def: Pat<(i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)), |
| (S2_tstbit_r I32:$Rs, I32:$Rt)>; |
| } |
| |
| def: Pat<(i1 (seteq (and I64:$Rs, IsPow2_64L:$u6), 0)), |
| (S4_ntstbit_i (LoReg $Rs), (Log2_64 $u6))>; |
| def: Pat<(i1 (seteq (and I64:$Rs, IsPow2_64H:$u6), 0)), |
| (S4_ntstbit_i (HiReg $Rs), (UDEC32 (i32 (Log2_64 $u6))))>; |
| def: Pat<(i1 (setne (and I64:$Rs, IsPow2_64L:$u6), 0)), |
| (S2_tstbit_i (LoReg $Rs), (Log2_64 imm:$u6))>; |
| def: Pat<(i1 (setne (and I64:$Rs, IsPow2_64H:$u6), 0)), |
| (S2_tstbit_i (HiReg $Rs), (UDEC32 (i32 (Log2_64 imm:$u6))))>; |
| |
| // Do not increase complexity of these patterns. In the DAG, "cmp i8" may be |
| // represented as a compare against "value & 0xFF", which is an exact match |
| // for cmpb (same for cmph). The patterns below do not contain any additional |
| // complexity that would make them preferable, and if they were actually used |
| // instead of cmpb/cmph, they would result in a compare against register that |
| // is loaded with the byte/half mask (i.e. 0xFF or 0xFFFF). |
| def: Pat<(i1 (setne (and I32:$Rs, u6_0ImmPred:$u6), 0)), |
| (C4_nbitsclri I32:$Rs, imm:$u6)>; |
| def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), 0)), |
| (C4_nbitsclr I32:$Rs, I32:$Rt)>; |
| def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), I32:$Rt)), |
| (C4_nbitsset I32:$Rs, I32:$Rt)>; |
| |
| // Special patterns to address certain cases where the "top-down" matching |
| // algorithm would cause suboptimal selection. |
| |
| let AddedComplexity = 100 in { |
| // Avoid A4_rcmp[n]eqi in these cases: |
| def: Pat<(i32 (zext (i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)))), |
| (I1toI32 (S4_ntstbit_r IntRegs:$Rs, IntRegs:$Rt))>; |
| def: Pat<(i32 (zext (i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)))), |
| (I1toI32 (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt))>; |
| def: Pat<(i32 (zext (i1 (seteq (and I32:$Rs, IsPow2_32:$u5), 0)))), |
| (I1toI32 (S4_ntstbit_i I32:$Rs, (Log2_32 imm:$u5)))>; |
| def: Pat<(i32 (zext (i1 (setne (and I32:$Rs, IsPow2_32:$u5), 0)))), |
| (I1toI32 (S2_tstbit_i I32:$Rs, (Log2_32 imm:$u5)))>; |
| def: Pat<(i32 (zext (i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)))), |
| (I1toI32 (S4_ntstbit_r I32:$Rs, I32:$Rt))>; |
| def: Pat<(i32 (zext (i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)))), |
| (I1toI32 (S2_tstbit_r I32:$Rs, I32:$Rt))>; |
| } |
| |
| // --(11) PIC ------------------------------------------------------------ |
| // |
| |
| def SDT_HexagonAtGot |
| : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>; |
| def SDT_HexagonAtPcrel |
| : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; |
| |
| // AT_GOT address-of-GOT, address-of-global, offset-in-global |
| def HexagonAtGot : SDNode<"HexagonISD::AT_GOT", SDT_HexagonAtGot>; |
| // AT_PCREL address-of-global |
| def HexagonAtPcrel : SDNode<"HexagonISD::AT_PCREL", SDT_HexagonAtPcrel>; |
| |
| def: Pat<(HexagonAtGot I32:$got, I32:$addr, (i32 0)), |
| (L2_loadri_io I32:$got, imm:$addr)>; |
| def: Pat<(HexagonAtGot I32:$got, I32:$addr, s30_2ImmPred:$off), |
| (A2_addi (L2_loadri_io I32:$got, imm:$addr), imm:$off)>; |
| def: Pat<(HexagonAtPcrel I32:$addr), |
| (C4_addipc imm:$addr)>; |
| |
| // The HVX load patterns also match AT_PCREL directly. Make sure that |
| // if the selection of this opcode changes, it's updated in all places. |
| |
| |
| // --(12) Load ----------------------------------------------------------- |
| // |
| |
| def extloadv2i8: PatFrag<(ops node:$ptr), (extload node:$ptr), [{ |
| return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8; |
| }]>; |
| def extloadv4i8: PatFrag<(ops node:$ptr), (extload node:$ptr), [{ |
| return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8; |
| }]>; |
| |
| def zextloadv2i8: PatFrag<(ops node:$ptr), (zextload node:$ptr), [{ |
| return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8; |
| }]>; |
| def zextloadv4i8: PatFrag<(ops node:$ptr), (zextload node:$ptr), [{ |
| return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8; |
| }]>; |
| |
| def sextloadv2i8: PatFrag<(ops node:$ptr), (sextload node:$ptr), [{ |
| return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8; |
| }]>; |
| def sextloadv4i8: PatFrag<(ops node:$ptr), (sextload node:$ptr), [{ |
| return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8; |
| }]>; |
| |
| // Patterns to select load-indexed: Rs + Off. |
| // - frameindex [+ imm], |
| multiclass Loadxfi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred, |
| InstHexagon MI> { |
| def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))), |
| (VT (MI AddrFI:$fi, imm:$Off))>; |
| def: Pat<(VT (Load (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off))), |
| (VT (MI AddrFI:$fi, imm:$Off))>; |
| def: Pat<(VT (Load AddrFI:$fi)), (VT (MI AddrFI:$fi, 0))>; |
| } |
| |
| // Patterns to select load-indexed: Rs + Off. |
| // - base reg [+ imm] |
| multiclass Loadxgi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred, |
| InstHexagon MI> { |
| def: Pat<(VT (Load (add I32:$Rs, ImmPred:$Off))), |
| (VT (MI IntRegs:$Rs, imm:$Off))>; |
| def: Pat<(VT (Load (IsOrAdd I32:$Rs, ImmPred:$Off))), |
| (VT (MI IntRegs:$Rs, imm:$Off))>; |
| def: Pat<(VT (Load I32:$Rs)), (VT (MI IntRegs:$Rs, 0))>; |
| } |
| |
| // Patterns to select load-indexed: Rs + Off. Combines Loadxfi + Loadxgi. |
| multiclass Loadxi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred, |
| InstHexagon MI> { |
| defm: Loadxfi_pat<Load, VT, ImmPred, MI>; |
| defm: Loadxgi_pat<Load, VT, ImmPred, MI>; |
| } |
| |
| // Patterns to select load reg indexed: Rs + Off with a value modifier. |
| // - frameindex [+ imm] |
| multiclass Loadxfim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod, |
| PatLeaf ImmPred, InstHexagon MI> { |
| def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))), |
| (VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>; |
| def: Pat<(VT (Load (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off))), |
| (VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>; |
| def: Pat<(VT (Load AddrFI:$fi)), (VT (ValueMod (MI AddrFI:$fi, 0)))>; |
| } |
| |
| // Patterns to select load reg indexed: Rs + Off with a value modifier. |
| // - base reg [+ imm] |
| multiclass Loadxgim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod, |
| PatLeaf ImmPred, InstHexagon MI> { |
| def: Pat<(VT (Load (add I32:$Rs, ImmPred:$Off))), |
| (VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>; |
| def: Pat<(VT (Load (IsOrAdd I32:$Rs, ImmPred:$Off))), |
| (VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>; |
| def: Pat<(VT (Load I32:$Rs)), (VT (ValueMod (MI IntRegs:$Rs, 0)))>; |
| } |
| |
| // Patterns to select load reg indexed: Rs + Off with a value modifier. |
| // Combines Loadxfim + Loadxgim. |
| multiclass Loadxim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod, |
| PatLeaf ImmPred, InstHexagon MI> { |
| defm: Loadxfim_pat<Load, VT, ValueMod, ImmPred, MI>; |
| defm: Loadxgim_pat<Load, VT, ValueMod, ImmPred, MI>; |
| } |
| |
| // Pattern to select load reg reg-indexed: Rs + Rt<<u2. |
| class Loadxr_shl_pat<PatFrag Load, ValueType VT, InstHexagon MI> |
| : Pat<(VT (Load (add I32:$Rs, (i32 (shl I32:$Rt, u2_0ImmPred:$u2))))), |
| (VT (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2))>; |
| |
| // Pattern to select load reg reg-indexed: Rs + Rt<<0. |
| class Loadxr_add_pat<PatFrag Load, ValueType VT, InstHexagon MI> |
| : Pat<(VT (Load (add I32:$Rs, I32:$Rt))), |
| (VT (MI IntRegs:$Rs, IntRegs:$Rt, 0))>; |
| |
| // Pattern to select load reg reg-indexed: Rs + Rt<<u2 with value modifier. |
| class Loadxrm_shl_pat<PatFrag Load, ValueType VT, PatFrag ValueMod, |
| InstHexagon MI> |
| : Pat<(VT (Load (add I32:$Rs, (i32 (shl I32:$Rt, u2_0ImmPred:$u2))))), |
| (VT (ValueMod (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2)))>; |
| |
| // Pattern to select load reg reg-indexed: Rs + Rt<<0 with value modifier. |
| class Loadxrm_add_pat<PatFrag Load, ValueType VT, PatFrag ValueMod, |
| InstHexagon MI> |
| : Pat<(VT (Load (add I32:$Rs, I32:$Rt))), |
| (VT (ValueMod (MI IntRegs:$Rs, IntRegs:$Rt, 0)))>; |
| |
| // Pattern to select load long-offset reg-indexed: Addr + Rt<<u2. |
| // Don't match for u2==0, instead use reg+imm for those cases. |
| class Loadxu_pat<PatFrag Load, ValueType VT, PatFrag ImmPred, InstHexagon MI> |
| : Pat<(VT (Load (add (shl IntRegs:$Rt, u2_0ImmPred:$u2), ImmPred:$Addr))), |
| (VT (MI IntRegs:$Rt, imm:$u2, ImmPred:$Addr))>; |
| |
| class Loadxum_pat<PatFrag Load, ValueType VT, PatFrag ImmPred, PatFrag ValueMod, |
| InstHexagon MI> |
| : Pat<(VT (Load (add (shl IntRegs:$Rt, u2_0ImmPred:$u2), ImmPred:$Addr))), |
| (VT (ValueMod (MI IntRegs:$Rt, imm:$u2, ImmPred:$Addr)))>; |
| |
| // Pattern to select load absolute. |
| class Loada_pat<PatFrag Load, ValueType VT, PatFrag Addr, InstHexagon MI> |
| : Pat<(VT (Load Addr:$addr)), (MI Addr:$addr)>; |
| |
| // Pattern to select load absolute with value modifier. |
| class Loadam_pat<PatFrag Load, ValueType VT, PatFrag Addr, PatFrag ValueMod, |
| InstHexagon MI> |
| : Pat<(VT (Load Addr:$addr)), (ValueMod (MI Addr:$addr))>; |
| |
| |
| let AddedComplexity = 20 in { |
| defm: Loadxi_pat<extloadi1, i32, anyimm0, L2_loadrub_io>; |
| defm: Loadxi_pat<extloadi8, i32, anyimm0, L2_loadrub_io>; |
| defm: Loadxi_pat<extloadi16, i32, anyimm1, L2_loadruh_io>; |
| defm: Loadxi_pat<extloadv2i8, v2i16, anyimm1, L2_loadbzw2_io>; |
| defm: Loadxi_pat<extloadv4i8, v4i16, anyimm2, L2_loadbzw4_io>; |
| defm: Loadxi_pat<sextloadi8, i32, anyimm0, L2_loadrb_io>; |
| defm: Loadxi_pat<sextloadi16, i32, anyimm1, L2_loadrh_io>; |
| defm: Loadxi_pat<sextloadv2i8, v2i16, anyimm1, L2_loadbsw2_io>; |
| defm: Loadxi_pat<sextloadv4i8, v4i16, anyimm2, L2_loadbzw4_io>; |
| defm: Loadxi_pat<zextloadi1, i32, anyimm0, L2_loadrub_io>; |
| defm: Loadxi_pat<zextloadi8, i32, anyimm0, L2_loadrub_io>; |
| defm: Loadxi_pat<zextloadi16, i32, anyimm1, L2_loadruh_io>; |
| defm: Loadxi_pat<zextloadv2i8, v2i16, anyimm1, L2_loadbzw2_io>; |
| defm: Loadxi_pat<zextloadv4i8, v4i16, anyimm2, L2_loadbzw4_io>; |
| defm: Loadxi_pat<load, i32, anyimm2, L2_loadri_io>; |
| defm: Loadxi_pat<load, v2i16, anyimm2, L2_loadri_io>; |
| defm: Loadxi_pat<load, v4i8, anyimm2, L2_loadri_io>; |
| defm: Loadxi_pat<load, i64, anyimm3, L2_loadrd_io>; |
| defm: Loadxi_pat<load, v2i32, anyimm3, L2_loadrd_io>; |
| defm: Loadxi_pat<load, v4i16, anyimm3, L2_loadrd_io>; |
| defm: Loadxi_pat<load, v8i8, anyimm3, L2_loadrd_io>; |
| defm: Loadxi_pat<load, f32, anyimm2, L2_loadri_io>; |
| defm: Loadxi_pat<load, f64, anyimm3, L2_loadrd_io>; |
| // No sextloadi1. |
| |
| defm: Loadxi_pat<atomic_load_8 , i32, anyimm0, L2_loadrub_io>; |
| defm: Loadxi_pat<atomic_load_16, i32, anyimm1, L2_loadruh_io>; |
| defm: Loadxi_pat<atomic_load_32, i32, anyimm2, L2_loadri_io>; |
| defm: Loadxi_pat<atomic_load_64, i64, anyimm3, L2_loadrd_io>; |
| } |
| |
| let AddedComplexity = 30 in { |
| defm: Loadxim_pat<extloadi1, i64, ToAext64, anyimm0, L2_loadrub_io>; |
| defm: Loadxim_pat<extloadi8, i64, ToAext64, anyimm0, L2_loadrub_io>; |
| defm: Loadxim_pat<extloadi16, i64, ToAext64, anyimm1, L2_loadruh_io>; |
| defm: Loadxim_pat<extloadi32, i64, ToAext64, anyimm2, L2_loadri_io>; |
| defm: Loadxim_pat<zextloadi1, i64, ToZext64, anyimm0, L2_loadrub_io>; |
| defm: Loadxim_pat<zextloadi8, i64, ToZext64, anyimm0, L2_loadrub_io>; |
| defm: Loadxim_pat<zextloadi16, i64, ToZext64, anyimm1, L2_loadruh_io>; |
| defm: Loadxim_pat<zextloadi32, i64, ToZext64, anyimm2, L2_loadri_io>; |
| defm: Loadxim_pat<sextloadi8, i64, ToSext64, anyimm0, L2_loadrb_io>; |
| defm: Loadxim_pat<sextloadi16, i64, ToSext64, anyimm1, L2_loadrh_io>; |
| defm: Loadxim_pat<sextloadi32, i64, ToSext64, anyimm2, L2_loadri_io>; |
| } |
| |
| let AddedComplexity = |