| //===- HexagonConstPropagation.cpp ----------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "hcp" |
| |
| #include "HexagonInstrInfo.h" |
| #include "HexagonRegisterInfo.h" |
| #include "HexagonSubtarget.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <cstring> |
| #include <iterator> |
| #include <map> |
| #include <queue> |
| #include <set> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| namespace { |
| |
| // Properties of a value that are tracked by the propagation. |
| // A property that is marked as present (i.e. bit is set) dentes that the |
| // value is known (proven) to have this property. Not all combinations |
| // of bits make sense, for example Zero and NonZero are mutually exclusive, |
| // but on the other hand, Zero implies Finite. In this case, whenever |
| // the Zero property is present, Finite should also be present. |
| class ConstantProperties { |
| public: |
| enum { |
| Unknown = 0x0000, |
| Zero = 0x0001, |
| NonZero = 0x0002, |
| Finite = 0x0004, |
| Infinity = 0x0008, |
| NaN = 0x0010, |
| SignedZero = 0x0020, |
| NumericProperties = (Zero|NonZero|Finite|Infinity|NaN|SignedZero), |
| PosOrZero = 0x0100, |
| NegOrZero = 0x0200, |
| SignProperties = (PosOrZero|NegOrZero), |
| Everything = (NumericProperties|SignProperties) |
| }; |
| |
| // For a given constant, deduce the set of trackable properties that this |
| // constant has. |
| static uint32_t deduce(const Constant *C); |
| }; |
| |
| // A representation of a register as it can appear in a MachineOperand, |
| // i.e. a pair register:subregister. |
| |
| // FIXME: Use TargetInstrInfo::RegSubRegPair. Also duplicated in |
| // HexagonGenPredicate |
| struct RegisterSubReg { |
| unsigned Reg, SubReg; |
| |
| explicit RegisterSubReg(unsigned R, unsigned SR = 0) : Reg(R), SubReg(SR) {} |
| explicit RegisterSubReg(const MachineOperand &MO) |
| : Reg(MO.getReg()), SubReg(MO.getSubReg()) {} |
| |
| void print(const TargetRegisterInfo *TRI = nullptr) const { |
| dbgs() << printReg(Reg, TRI, SubReg); |
| } |
| |
| bool operator== (const RegisterSubReg &R) const { |
| return (Reg == R.Reg) && (SubReg == R.SubReg); |
| } |
| }; |
| |
| // Lattice cell, based on that was described in the W-Z paper on constant |
| // propagation. |
| // Latice cell will be allowed to hold multiple constant values. While |
| // multiple values would normally indicate "bottom", we can still derive |
| // some useful information from them. For example, comparison X > 0 |
| // could be folded if all the values in the cell associated with X are |
| // positive. |
| class LatticeCell { |
| private: |
| enum { Normal, Top, Bottom }; |
| |
| static const unsigned MaxCellSize = 4; |
| |
| unsigned Kind:2; |
| unsigned Size:3; |
| unsigned IsSpecial:1; |
| unsigned :0; |
| |
| public: |
| union { |
| uint32_t Properties; |
| const Constant *Value; |
| const Constant *Values[MaxCellSize]; |
| }; |
| |
| LatticeCell() : Kind(Top), Size(0), IsSpecial(false) { |
| for (unsigned i = 0; i < MaxCellSize; ++i) |
| Values[i] = nullptr; |
| } |
| |
| bool meet(const LatticeCell &L); |
| bool add(const Constant *C); |
| bool add(uint32_t Property); |
| uint32_t properties() const; |
| unsigned size() const { return Size; } |
| |
| LatticeCell(const LatticeCell &L) { |
| // This memcpy also copies Properties (when L.Size == 0). |
| uint32_t N = |
| L.IsSpecial ? sizeof L.Properties : L.Size * sizeof(const Constant *); |
| memcpy(Values, L.Values, N); |
| Kind = L.Kind; |
| Size = L.Size; |
| IsSpecial = L.IsSpecial; |
| } |
| |
| LatticeCell &operator=(const LatticeCell &L) { |
| if (this != &L) { |
| // This memcpy also copies Properties (when L.Size == 0). |
| uint32_t N = L.IsSpecial ? sizeof L.Properties |
| : L.Size * sizeof(const Constant *); |
| memcpy(Values, L.Values, N); |
| Kind = L.Kind; |
| Size = L.Size; |
| IsSpecial = L.IsSpecial; |
| } |
| return *this; |
| } |
| |
| bool isSingle() const { return size() == 1; } |
| bool isProperty() const { return IsSpecial; } |
| bool isTop() const { return Kind == Top; } |
| bool isBottom() const { return Kind == Bottom; } |
| |
| bool setBottom() { |
| bool Changed = (Kind != Bottom); |
| Kind = Bottom; |
| Size = 0; |
| IsSpecial = false; |
| return Changed; |
| } |
| |
| void print(raw_ostream &os) const; |
| |
| private: |
| void setProperty() { |
| IsSpecial = true; |
| Size = 0; |
| Kind = Normal; |
| } |
| |
| bool convertToProperty(); |
| }; |
| |
| #ifndef NDEBUG |
| raw_ostream &operator<< (raw_ostream &os, const LatticeCell &L) { |
| L.print(os); |
| return os; |
| } |
| #endif |
| |
| class MachineConstEvaluator; |
| |
| class MachineConstPropagator { |
| public: |
| MachineConstPropagator(MachineConstEvaluator &E) : MCE(E) { |
| Bottom.setBottom(); |
| } |
| |
| // Mapping: vreg -> cell |
| // The keys are registers _without_ subregisters. This won't allow |
| // definitions in the form of "vreg:subreg = ...". Such definitions |
| // would be questionable from the point of view of SSA, since the "vreg" |
| // could not be initialized in its entirety (specifically, an instruction |
| // defining the "other part" of "vreg" would also count as a definition |
| // of "vreg", which would violate the SSA). |
| // If a value of a pair vreg:subreg needs to be obtained, the cell for |
| // "vreg" needs to be looked up, and then the value of subregister "subreg" |
| // needs to be evaluated. |
| class CellMap { |
| public: |
| CellMap() { |
| assert(Top.isTop()); |
| Bottom.setBottom(); |
| } |
| |
| void clear() { Map.clear(); } |
| |
| bool has(unsigned R) const { |
| // All non-virtual registers are considered "bottom". |
| if (!Register::isVirtualRegister(R)) |
| return true; |
| MapType::const_iterator F = Map.find(R); |
| return F != Map.end(); |
| } |
| |
| const LatticeCell &get(unsigned R) const { |
| if (!Register::isVirtualRegister(R)) |
| return Bottom; |
| MapType::const_iterator F = Map.find(R); |
| if (F != Map.end()) |
| return F->second; |
| return Top; |
| } |
| |
| // Invalidates any const references. |
| void update(unsigned R, const LatticeCell &L) { |
| Map[R] = L; |
| } |
| |
| void print(raw_ostream &os, const TargetRegisterInfo &TRI) const; |
| |
| private: |
| using MapType = std::map<unsigned, LatticeCell>; |
| |
| MapType Map; |
| // To avoid creating "top" entries, return a const reference to |
| // this cell in "get". Also, have a "Bottom" cell to return from |
| // get when a value of a physical register is requested. |
| LatticeCell Top, Bottom; |
| |
| public: |
| using const_iterator = MapType::const_iterator; |
| |
| const_iterator begin() const { return Map.begin(); } |
| const_iterator end() const { return Map.end(); } |
| }; |
| |
| bool run(MachineFunction &MF); |
| |
| private: |
| void visitPHI(const MachineInstr &PN); |
| void visitNonBranch(const MachineInstr &MI); |
| void visitBranchesFrom(const MachineInstr &BrI); |
| void visitUsesOf(unsigned R); |
| bool computeBlockSuccessors(const MachineBasicBlock *MB, |
| SetVector<const MachineBasicBlock*> &Targets); |
| void removeCFGEdge(MachineBasicBlock *From, MachineBasicBlock *To); |
| |
| void propagate(MachineFunction &MF); |
| bool rewrite(MachineFunction &MF); |
| |
| MachineRegisterInfo *MRI = nullptr; |
| MachineConstEvaluator &MCE; |
| |
| using CFGEdge = std::pair<unsigned, unsigned>; |
| using SetOfCFGEdge = std::set<CFGEdge>; |
| using SetOfInstr = std::set<const MachineInstr *>; |
| using QueueOfCFGEdge = std::queue<CFGEdge>; |
| |
| LatticeCell Bottom; |
| CellMap Cells; |
| SetOfCFGEdge EdgeExec; |
| SetOfInstr InstrExec; |
| QueueOfCFGEdge FlowQ; |
| }; |
| |
| // The "evaluator/rewriter" of machine instructions. This is an abstract |
| // base class that provides the interface that the propagator will use, |
| // as well as some helper functions that are target-independent. |
| class MachineConstEvaluator { |
| public: |
| MachineConstEvaluator(MachineFunction &Fn) |
| : TRI(*Fn.getSubtarget().getRegisterInfo()), |
| MF(Fn), CX(Fn.getFunction().getContext()) {} |
| virtual ~MachineConstEvaluator() = default; |
| |
| // The required interface: |
| // - A set of three "evaluate" functions. Each returns "true" if the |
| // computation succeeded, "false" otherwise. |
| // (1) Given an instruction MI, and the map with input values "Inputs", |
| // compute the set of output values "Outputs". An example of when |
| // the computation can "fail" is if MI is not an instruction that |
| // is recognized by the evaluator. |
| // (2) Given a register R (as reg:subreg), compute the cell that |
| // corresponds to the "subreg" part of the given register. |
| // (3) Given a branch instruction BrI, compute the set of target blocks. |
| // If the branch can fall-through, add null (0) to the list of |
| // possible targets. |
| // - A function "rewrite", that given the cell map after propagation, |
| // could rewrite instruction MI in a more beneficial form. Return |
| // "true" if a change has been made, "false" otherwise. |
| using CellMap = MachineConstPropagator::CellMap; |
| virtual bool evaluate(const MachineInstr &MI, const CellMap &Inputs, |
| CellMap &Outputs) = 0; |
| virtual bool evaluate(const RegisterSubReg &R, const LatticeCell &SrcC, |
| LatticeCell &Result) = 0; |
| virtual bool evaluate(const MachineInstr &BrI, const CellMap &Inputs, |
| SetVector<const MachineBasicBlock*> &Targets, |
| bool &CanFallThru) = 0; |
| virtual bool rewrite(MachineInstr &MI, const CellMap &Inputs) = 0; |
| |
| const TargetRegisterInfo &TRI; |
| |
| protected: |
| MachineFunction &MF; |
| LLVMContext &CX; |
| |
| struct Comparison { |
| enum { |
| Unk = 0x00, |
| EQ = 0x01, |
| NE = 0x02, |
| L = 0x04, // Less-than property. |
| G = 0x08, // Greater-than property. |
| U = 0x40, // Unsigned property. |
| LTs = L, |
| LEs = L | EQ, |
| GTs = G, |
| GEs = G | EQ, |
| LTu = L | U, |
| LEu = L | EQ | U, |
| GTu = G | U, |
| GEu = G | EQ | U |
| }; |
| |
| static uint32_t negate(uint32_t Cmp) { |
| if (Cmp == EQ) |
| return NE; |
| if (Cmp == NE) |
| return EQ; |
| assert((Cmp & (L|G)) != (L|G)); |
| return Cmp ^ (L|G); |
| } |
| }; |
| |
| // Helper functions. |
| |
| bool getCell(const RegisterSubReg &R, const CellMap &Inputs, LatticeCell &RC); |
| bool constToInt(const Constant *C, APInt &Val) const; |
| bool constToFloat(const Constant *C, APFloat &Val) const; |
| const ConstantInt *intToConst(const APInt &Val) const; |
| |
| // Compares. |
| bool evaluateCMPrr(uint32_t Cmp, const RegisterSubReg &R1, const RegisterSubReg &R2, |
| const CellMap &Inputs, bool &Result); |
| bool evaluateCMPri(uint32_t Cmp, const RegisterSubReg &R1, const APInt &A2, |
| const CellMap &Inputs, bool &Result); |
| bool evaluateCMPrp(uint32_t Cmp, const RegisterSubReg &R1, uint64_t Props2, |
| const CellMap &Inputs, bool &Result); |
| bool evaluateCMPii(uint32_t Cmp, const APInt &A1, const APInt &A2, |
| bool &Result); |
| bool evaluateCMPpi(uint32_t Cmp, uint32_t Props, const APInt &A2, |
| bool &Result); |
| bool evaluateCMPpp(uint32_t Cmp, uint32_t Props1, uint32_t Props2, |
| bool &Result); |
| |
| bool evaluateCOPY(const RegisterSubReg &R1, const CellMap &Inputs, |
| LatticeCell &Result); |
| |
| // Logical operations. |
| bool evaluateANDrr(const RegisterSubReg &R1, const RegisterSubReg &R2, |
| const CellMap &Inputs, LatticeCell &Result); |
| bool evaluateANDri(const RegisterSubReg &R1, const APInt &A2, |
| const CellMap &Inputs, LatticeCell &Result); |
| bool evaluateANDii(const APInt &A1, const APInt &A2, APInt &Result); |
| bool evaluateORrr(const RegisterSubReg &R1, const RegisterSubReg &R2, |
| const CellMap &Inputs, LatticeCell &Result); |
| bool evaluateORri(const RegisterSubReg &R1, const APInt &A2, |
| const CellMap &Inputs, LatticeCell &Result); |
| bool evaluateORii(const APInt &A1, const APInt &A2, APInt &Result); |
| bool evaluateXORrr(const RegisterSubReg &R1, const RegisterSubReg &R2, |
| const CellMap &Inputs, LatticeCell &Result); |
| bool evaluateXORri(const RegisterSubReg &R1, const APInt &A2, |
| const CellMap &Inputs, LatticeCell &Result); |
| bool evaluateXORii(const APInt &A1, const APInt &A2, APInt &Result); |
| |
| // Extensions. |
| bool evaluateZEXTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits, |
| const CellMap &Inputs, LatticeCell &Result); |
| bool evaluateZEXTi(const APInt &A1, unsigned Width, unsigned Bits, |
| APInt &Result); |
| bool evaluateSEXTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits, |
| const CellMap &Inputs, LatticeCell &Result); |
| bool evaluateSEXTi(const APInt &A1, unsigned Width, unsigned Bits, |
| APInt &Result); |
| |
| // Leading/trailing bits. |
| bool evaluateCLBr(const RegisterSubReg &R1, bool Zeros, bool Ones, |
| const CellMap &Inputs, LatticeCell &Result); |
| bool evaluateCLBi(const APInt &A1, bool Zeros, bool Ones, APInt &Result); |
| bool evaluateCTBr(const RegisterSubReg &R1, bool Zeros, bool Ones, |
| const CellMap &Inputs, LatticeCell &Result); |
| bool evaluateCTBi(const APInt &A1, bool Zeros, bool Ones, APInt &Result); |
| |
| // Bitfield extract. |
| bool evaluateEXTRACTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits, |
| unsigned Offset, bool Signed, const CellMap &Inputs, |
| LatticeCell &Result); |
| bool evaluateEXTRACTi(const APInt &A1, unsigned Bits, unsigned Offset, |
| bool Signed, APInt &Result); |
| // Vector operations. |
| bool evaluateSplatr(const RegisterSubReg &R1, unsigned Bits, unsigned Count, |
| const CellMap &Inputs, LatticeCell &Result); |
| bool evaluateSplati(const APInt &A1, unsigned Bits, unsigned Count, |
| APInt &Result); |
| }; |
| |
| } // end anonymous namespace |
| |
| uint32_t ConstantProperties::deduce(const Constant *C) { |
| if (isa<ConstantInt>(C)) { |
| const ConstantInt *CI = cast<ConstantInt>(C); |
| if (CI->isZero()) |
| return Zero | PosOrZero | NegOrZero | Finite; |
| uint32_t Props = (NonZero | Finite); |
| if (CI->isNegative()) |
| return Props | NegOrZero; |
| return Props | PosOrZero; |
| } |
| |
| if (isa<ConstantFP>(C)) { |
| const ConstantFP *CF = cast<ConstantFP>(C); |
| uint32_t Props = CF->isNegative() ? (NegOrZero|NonZero) |
| : PosOrZero; |
| if (CF->isZero()) |
| return (Props & ~NumericProperties) | (Zero|Finite); |
| Props = (Props & ~NumericProperties) | NonZero; |
| if (CF->isNaN()) |
| return (Props & ~NumericProperties) | NaN; |
| const APFloat &Val = CF->getValueAPF(); |
| if (Val.isInfinity()) |
| return (Props & ~NumericProperties) | Infinity; |
| Props |= Finite; |
| return Props; |
| } |
| |
| return Unknown; |
| } |
| |
| // Convert a cell from a set of specific values to a cell that tracks |
| // properties. |
| bool LatticeCell::convertToProperty() { |
| if (isProperty()) |
| return false; |
| // Corner case: converting a fresh (top) cell to "special". |
| // This can happen, when adding a property to a top cell. |
| uint32_t Everything = ConstantProperties::Everything; |
| uint32_t Ps = !isTop() ? properties() |
| : Everything; |
| if (Ps != ConstantProperties::Unknown) { |
| Properties = Ps; |
| setProperty(); |
| } else { |
| setBottom(); |
| } |
| return true; |
| } |
| |
| #ifndef NDEBUG |
| void LatticeCell::print(raw_ostream &os) const { |
| if (isProperty()) { |
| os << "{ "; |
| uint32_t Ps = properties(); |
| if (Ps & ConstantProperties::Zero) |
| os << "zero "; |
| if (Ps & ConstantProperties::NonZero) |
| os << "nonzero "; |
| if (Ps & ConstantProperties::Finite) |
| os << "finite "; |
| if (Ps & ConstantProperties::Infinity) |
| os << "infinity "; |
| if (Ps & ConstantProperties::NaN) |
| os << "nan "; |
| if (Ps & ConstantProperties::PosOrZero) |
| os << "poz "; |
| if (Ps & ConstantProperties::NegOrZero) |
| os << "nez "; |
| os << '}'; |
| return; |
| } |
| |
| os << "{ "; |
| if (isBottom()) { |
| os << "bottom"; |
| } else if (isTop()) { |
| os << "top"; |
| } else { |
| for (unsigned i = 0; i < size(); ++i) { |
| const Constant *C = Values[i]; |
| if (i != 0) |
| os << ", "; |
| C->print(os); |
| } |
| } |
| os << " }"; |
| } |
| #endif |
| |
| // "Meet" operation on two cells. This is the key of the propagation |
| // algorithm. |
| bool LatticeCell::meet(const LatticeCell &L) { |
| bool Changed = false; |
| if (L.isBottom()) |
| Changed = setBottom(); |
| if (isBottom() || L.isTop()) |
| return Changed; |
| if (isTop()) { |
| *this = L; |
| // L can be neither Top nor Bottom, so *this must have changed. |
| return true; |
| } |
| |
| // Top/bottom cases covered. Need to integrate L's set into ours. |
| if (L.isProperty()) |
| return add(L.properties()); |
| for (unsigned i = 0; i < L.size(); ++i) { |
| const Constant *LC = L.Values[i]; |
| Changed |= add(LC); |
| } |
| return Changed; |
| } |
| |
| // Add a new constant to the cell. This is actually where the cell update |
| // happens. If a cell has room for more constants, the new constant is added. |
| // Otherwise, the cell is converted to a "property" cell (i.e. a cell that |
| // will track properties of the associated values, and not the values |
| // themselves. Care is taken to handle special cases, like "bottom", etc. |
| bool LatticeCell::add(const Constant *LC) { |
| assert(LC); |
| if (isBottom()) |
| return false; |
| |
| if (!isProperty()) { |
| // Cell is not special. Try to add the constant here first, |
| // if there is room. |
| unsigned Index = 0; |
| while (Index < Size) { |
| const Constant *C = Values[Index]; |
| // If the constant is already here, no change is needed. |
| if (C == LC) |
| return false; |
| Index++; |
| } |
| if (Index < MaxCellSize) { |
| Values[Index] = LC; |
| Kind = Normal; |
| Size++; |
| return true; |
| } |
| } |
| |
| bool Changed = false; |
| |
| // This cell is special, or is not special, but is full. After this |
| // it will be special. |
| Changed = convertToProperty(); |
| uint32_t Ps = properties(); |
| uint32_t NewPs = Ps & ConstantProperties::deduce(LC); |
| if (NewPs == ConstantProperties::Unknown) { |
| setBottom(); |
| return true; |
| } |
| if (Ps != NewPs) { |
| Properties = NewPs; |
| Changed = true; |
| } |
| return Changed; |
| } |
| |
| // Add a property to the cell. This will force the cell to become a property- |
| // tracking cell. |
| bool LatticeCell::add(uint32_t Property) { |
| bool Changed = convertToProperty(); |
| uint32_t Ps = properties(); |
| if (Ps == (Ps & Property)) |
| return Changed; |
| Properties = Property & Ps; |
| return true; |
| } |
| |
| // Return the properties of the values in the cell. This is valid for any |
| // cell, and does not alter the cell itself. |
| uint32_t LatticeCell::properties() const { |
| if (isProperty()) |
| return Properties; |
| assert(!isTop() && "Should not call this for a top cell"); |
| if (isBottom()) |
| return ConstantProperties::Unknown; |
| |
| assert(size() > 0 && "Empty cell"); |
| uint32_t Ps = ConstantProperties::deduce(Values[0]); |
| for (unsigned i = 1; i < size(); ++i) { |
| if (Ps == ConstantProperties::Unknown) |
| break; |
| Ps &= ConstantProperties::deduce(Values[i]); |
| } |
| return Ps; |
| } |
| |
| #ifndef NDEBUG |
| void MachineConstPropagator::CellMap::print(raw_ostream &os, |
| const TargetRegisterInfo &TRI) const { |
| for (auto &I : Map) |
| dbgs() << " " << printReg(I.first, &TRI) << " -> " << I.second << '\n'; |
| } |
| #endif |
| |
| void MachineConstPropagator::visitPHI(const MachineInstr &PN) { |
| const MachineBasicBlock *MB = PN.getParent(); |
| unsigned MBN = MB->getNumber(); |
| LLVM_DEBUG(dbgs() << "Visiting FI(" << printMBBReference(*MB) << "): " << PN); |
| |
| const MachineOperand &MD = PN.getOperand(0); |
| RegisterSubReg DefR(MD); |
| assert(Register::isVirtualRegister(DefR.Reg)); |
| |
| bool Changed = false; |
| |
| // If the def has a sub-register, set the corresponding cell to "bottom". |
| if (DefR.SubReg) { |
| Bottomize: |
| const LatticeCell &T = Cells.get(DefR.Reg); |
| Changed = !T.isBottom(); |
| Cells.update(DefR.Reg, Bottom); |
| if (Changed) |
| visitUsesOf(DefR.Reg); |
| return; |
| } |
| |
| LatticeCell DefC = Cells.get(DefR.Reg); |
| |
| for (unsigned i = 1, n = PN.getNumOperands(); i < n; i += 2) { |
| const MachineBasicBlock *PB = PN.getOperand(i+1).getMBB(); |
| unsigned PBN = PB->getNumber(); |
| if (!EdgeExec.count(CFGEdge(PBN, MBN))) { |
| LLVM_DEBUG(dbgs() << " edge " << printMBBReference(*PB) << "->" |
| << printMBBReference(*MB) << " not executable\n"); |
| continue; |
| } |
| const MachineOperand &SO = PN.getOperand(i); |
| RegisterSubReg UseR(SO); |
| // If the input is not a virtual register, we don't really know what |
| // value it holds. |
| if (!Register::isVirtualRegister(UseR.Reg)) |
| goto Bottomize; |
| // If there is no cell for an input register, it means top. |
| if (!Cells.has(UseR.Reg)) |
| continue; |
| |
| LatticeCell SrcC; |
| bool Eval = MCE.evaluate(UseR, Cells.get(UseR.Reg), SrcC); |
| LLVM_DEBUG(dbgs() << " edge from " << printMBBReference(*PB) << ": " |
| << printReg(UseR.Reg, &MCE.TRI, UseR.SubReg) << SrcC |
| << '\n'); |
| Changed |= Eval ? DefC.meet(SrcC) |
| : DefC.setBottom(); |
| Cells.update(DefR.Reg, DefC); |
| if (DefC.isBottom()) |
| break; |
| } |
| if (Changed) |
| visitUsesOf(DefR.Reg); |
| } |
| |
| void MachineConstPropagator::visitNonBranch(const MachineInstr &MI) { |
| LLVM_DEBUG(dbgs() << "Visiting MI(" << printMBBReference(*MI.getParent()) |
| << "): " << MI); |
| CellMap Outputs; |
| bool Eval = MCE.evaluate(MI, Cells, Outputs); |
| LLVM_DEBUG({ |
| if (Eval) { |
| dbgs() << " outputs:"; |
| for (auto &I : Outputs) |
| dbgs() << ' ' << I.second; |
| dbgs() << '\n'; |
| } |
| }); |
| |
| // Update outputs. If the value was not computed, set all the |
| // def cells to bottom. |
| for (const MachineOperand &MO : MI.operands()) { |
| if (!MO.isReg() || !MO.isDef()) |
| continue; |
| RegisterSubReg DefR(MO); |
| // Only track virtual registers. |
| if (!Register::isVirtualRegister(DefR.Reg)) |
| continue; |
| bool Changed = false; |
| // If the evaluation failed, set cells for all output registers to bottom. |
| if (!Eval) { |
| const LatticeCell &T = Cells.get(DefR.Reg); |
| Changed = !T.isBottom(); |
| Cells.update(DefR.Reg, Bottom); |
| } else { |
| // Find the corresponding cell in the computed outputs. |
| // If it's not there, go on to the next def. |
| if (!Outputs.has(DefR.Reg)) |
| continue; |
| LatticeCell RC = Cells.get(DefR.Reg); |
| Changed = RC.meet(Outputs.get(DefR.Reg)); |
| Cells.update(DefR.Reg, RC); |
| } |
| if (Changed) |
| visitUsesOf(DefR.Reg); |
| } |
| } |
| |
| // Starting at a given branch, visit remaining branches in the block. |
| // Traverse over the subsequent branches for as long as the preceding one |
| // can fall through. Add all the possible targets to the flow work queue, |
| // including the potential fall-through to the layout-successor block. |
| void MachineConstPropagator::visitBranchesFrom(const MachineInstr &BrI) { |
| const MachineBasicBlock &B = *BrI.getParent(); |
| unsigned MBN = B.getNumber(); |
| MachineBasicBlock::const_iterator It = BrI.getIterator(); |
| MachineBasicBlock::const_iterator End = B.end(); |
| |
| SetVector<const MachineBasicBlock*> Targets; |
| bool EvalOk = true, FallsThru = true; |
| while (It != End) { |
| const MachineInstr &MI = *It; |
| InstrExec.insert(&MI); |
| LLVM_DEBUG(dbgs() << "Visiting " << (EvalOk ? "BR" : "br") << "(" |
| << printMBBReference(B) << "): " << MI); |
| // Do not evaluate subsequent branches if the evaluation of any of the |
| // previous branches failed. Keep iterating over the branches only |
| // to mark them as executable. |
| EvalOk = EvalOk && MCE.evaluate(MI, Cells, Targets, FallsThru); |
| if (!EvalOk) |
| FallsThru = true; |
| if (!FallsThru) |
| break; |
| ++It; |
| } |
| |
| if (EvalOk) { |
| // Need to add all CFG successors that lead to EH landing pads. |
| // There won't be explicit branches to these blocks, but they must |
| // be processed. |
| for (const MachineBasicBlock *SB : B.successors()) { |
| if (SB->isEHPad()) |
| Targets.insert(SB); |
| } |
| if (FallsThru) { |
| const MachineFunction &MF = *B.getParent(); |
| MachineFunction::const_iterator BI = B.getIterator(); |
| MachineFunction::const_iterator Next = std::next(BI); |
| if (Next != MF.end()) |
| Targets.insert(&*Next); |
| } |
| } else { |
| // If the evaluation of the branches failed, make "Targets" to be the |
| // set of all successors of the block from the CFG. |
| // If the evaluation succeeded for all visited branches, then if the |
| // last one set "FallsThru", then add an edge to the layout successor |
| // to the targets. |
| Targets.clear(); |
| LLVM_DEBUG(dbgs() << " failed to evaluate a branch...adding all CFG " |
| "successors\n"); |
| for (const MachineBasicBlock *SB : B.successors()) |
| Targets.insert(SB); |
| } |
| |
| for (const MachineBasicBlock *TB : Targets) { |
| unsigned TBN = TB->getNumber(); |
| LLVM_DEBUG(dbgs() << " pushing edge " << printMBBReference(B) << " -> " |
| << printMBBReference(*TB) << "\n"); |
| FlowQ.push(CFGEdge(MBN, TBN)); |
| } |
| } |
| |
| void MachineConstPropagator::visitUsesOf(unsigned Reg) { |
| LLVM_DEBUG(dbgs() << "Visiting uses of " << printReg(Reg, &MCE.TRI) |
| << Cells.get(Reg) << '\n'); |
| for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { |
| // Do not process non-executable instructions. They can become exceutable |
| // later (via a flow-edge in the work queue). In such case, the instruc- |
| // tion will be visited at that time. |
| if (!InstrExec.count(&MI)) |
| continue; |
| if (MI.isPHI()) |
| visitPHI(MI); |
| else if (!MI.isBranch()) |
| visitNonBranch(MI); |
| else |
| visitBranchesFrom(MI); |
| } |
| } |
| |
| bool MachineConstPropagator::computeBlockSuccessors(const MachineBasicBlock *MB, |
| SetVector<const MachineBasicBlock*> &Targets) { |
| MachineBasicBlock::const_iterator FirstBr = MB->end(); |
| for (const MachineInstr &MI : *MB) { |
| if (MI.isDebugInstr()) |
| continue; |
| if (MI.isBranch()) { |
| FirstBr = MI.getIterator(); |
| break; |
| } |
| } |
| |
| Targets.clear(); |
| MachineBasicBlock::const_iterator End = MB->end(); |
| |
| bool DoNext = true; |
| for (MachineBasicBlock::const_iterator I = FirstBr; I != End; ++I) { |
| const MachineInstr &MI = *I; |
| // Can there be debug instructions between branches? |
| if (MI.isDebugInstr()) |
| continue; |
| if (!InstrExec.count(&MI)) |
| continue; |
| bool Eval = MCE.evaluate(MI, Cells, Targets, DoNext); |
| if (!Eval) |
| return false; |
| if (!DoNext) |
| break; |
| } |
| // If the last branch could fall-through, add block's layout successor. |
| if (DoNext) { |
| MachineFunction::const_iterator BI = MB->getIterator(); |
| MachineFunction::const_iterator NextI = std::next(BI); |
| if (NextI != MB->getParent()->end()) |
| Targets.insert(&*NextI); |
| } |
| |
| // Add all the EH landing pads. |
| for (const MachineBasicBlock *SB : MB->successors()) |
| if (SB->isEHPad()) |
| Targets.insert(SB); |
| |
| return true; |
| } |
| |
| void MachineConstPropagator::removeCFGEdge(MachineBasicBlock *From, |
| MachineBasicBlock *To) { |
| // First, remove the CFG successor/predecessor information. |
| From->removeSuccessor(To); |
| // Remove all corresponding PHI operands in the To block. |
| for (auto I = To->begin(), E = To->getFirstNonPHI(); I != E; ++I) { |
| MachineInstr *PN = &*I; |
| // reg0 = PHI reg1, bb2, reg3, bb4, ... |
| int N = PN->getNumOperands()-2; |
| while (N > 0) { |
| if (PN->getOperand(N+1).getMBB() == From) { |
| PN->RemoveOperand(N+1); |
| PN->RemoveOperand(N); |
| } |
| N -= 2; |
| } |
| } |
| } |
| |
| void MachineConstPropagator::propagate(MachineFunction &MF) { |
| MachineBasicBlock *Entry = GraphTraits<MachineFunction*>::getEntryNode(&MF); |
| unsigned EntryNum = Entry->getNumber(); |
| |
| // Start with a fake edge, just to process the entry node. |
| FlowQ.push(CFGEdge(EntryNum, EntryNum)); |
| |
| while (!FlowQ.empty()) { |
| CFGEdge Edge = FlowQ.front(); |
| FlowQ.pop(); |
| |
| LLVM_DEBUG( |
| dbgs() << "Picked edge " |
| << printMBBReference(*MF.getBlockNumbered(Edge.first)) << "->" |
| << printMBBReference(*MF.getBlockNumbered(Edge.second)) << '\n'); |
| if (Edge.first != EntryNum) |
| if (EdgeExec.count(Edge)) |
| continue; |
| EdgeExec.insert(Edge); |
| MachineBasicBlock *SB = MF.getBlockNumbered(Edge.second); |
| |
| // Process the block in three stages: |
| // - visit all PHI nodes, |
| // - visit all non-branch instructions, |
| // - visit block branches. |
| MachineBasicBlock::const_iterator It = SB->begin(), End = SB->end(); |
| |
| // Visit PHI nodes in the successor block. |
| while (It != End && It->isPHI()) { |
| InstrExec.insert(&*It); |
| visitPHI(*It); |
| ++It; |
| } |
| |
| // If the successor block just became executable, visit all instructions. |
| // To see if this is the first time we're visiting it, check the first |
| // non-debug instruction to see if it is executable. |
| while (It != End && It->isDebugInstr()) |
| ++It; |
| assert(It == End || !It->isPHI()); |
| // If this block has been visited, go on to the next one. |
| if (It != End && InstrExec.count(&*It)) |
| continue; |
| // For now, scan all non-branch instructions. Branches require different |
| // processing. |
| while (It != End && !It->isBranch()) { |
| if (!It->isDebugInstr()) { |
| InstrExec.insert(&*It); |
| visitNonBranch(*It); |
| } |
| ++It; |
| } |
| |
| // Time to process the end of the block. This is different from |
| // processing regular (non-branch) instructions, because there can |
| // be multiple branches in a block, and they can cause the block to |
| // terminate early. |
| if (It != End) { |
| visitBranchesFrom(*It); |
| } else { |
| // If the block didn't have a branch, add all successor edges to the |
| // work queue. (There should really be only one successor in such case.) |
| unsigned SBN = SB->getNumber(); |
| for (const MachineBasicBlock *SSB : SB->successors()) |
| FlowQ.push(CFGEdge(SBN, SSB->getNumber())); |
| } |
| } // while (FlowQ) |
| |
| LLVM_DEBUG({ |
| dbgs() << "Cells after propagation:\n"; |
| Cells.print(dbgs(), MCE.TRI); |
| dbgs() << "Dead CFG edges:\n"; |
| for (const MachineBasicBlock &B : MF) { |
| unsigned BN = B.getNumber(); |
| for (const MachineBasicBlock *SB : B.successors()) { |
| unsigned SN = SB->getNumber(); |
| if (!EdgeExec.count(CFGEdge(BN, SN))) |
| dbgs() << " " << printMBBReference(B) << " -> " |
| << printMBBReference(*SB) << '\n'; |
| } |
| } |
| }); |
| } |
| |
| bool MachineConstPropagator::rewrite(MachineFunction &MF) { |
| bool Changed = false; |
| // Rewrite all instructions based on the collected cell information. |
| // |
| // Traverse the instructions in a post-order, so that rewriting an |
| // instruction can make changes "downstream" in terms of control-flow |
| // without affecting the rewriting process. (We should not change |
| // instructions that have not yet been visited by the rewriter.) |
| // The reason for this is that the rewriter can introduce new vregs, |
| // and replace uses of old vregs (which had corresponding cells |
| // computed during propagation) with these new vregs (which at this |
| // point would not have any cells, and would appear to be "top"). |
| // If an attempt was made to evaluate an instruction with a fresh |
| // "top" vreg, it would cause an error (abend) in the evaluator. |
| |
| // Collect the post-order-traversal block ordering. The subsequent |
| // traversal/rewrite will update block successors, so it's safer |
| // if the visiting order it computed ahead of time. |
| std::vector<MachineBasicBlock*> POT; |
| for (MachineBasicBlock *B : post_order(&MF)) |
| if (!B->empty()) |
| POT.push_back(B); |
| |
| for (MachineBasicBlock *B : POT) { |
| // Walk the block backwards (which usually begin with the branches). |
| // If any branch is rewritten, we may need to update the successor |
| // information for this block. Unless the block's successors can be |
| // precisely determined (which may not be the case for indirect |
| // branches), we cannot modify any branch. |
| |
| // Compute the successor information. |
| SetVector<const MachineBasicBlock*> Targets; |
| bool HaveTargets = computeBlockSuccessors(B, Targets); |
| // Rewrite the executable instructions. Skip branches if we don't |
| // have block successor information. |
| for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) { |
| MachineInstr &MI = *I; |
| if (InstrExec.count(&MI)) { |
| if (MI.isBranch() && !HaveTargets) |
| continue; |
| Changed |= MCE.rewrite(MI, Cells); |
| } |
| } |
| // The rewriting could rewrite PHI nodes to non-PHI nodes, causing |
| // regular instructions to appear in between PHI nodes. Bring all |
| // the PHI nodes to the beginning of the block. |
| for (auto I = B->begin(), E = B->end(); I != E; ++I) { |
| if (I->isPHI()) |
| continue; |
| // I is not PHI. Find the next PHI node P. |
| auto P = I; |
| while (++P != E) |
| if (P->isPHI()) |
| break; |
| // Not found. |
| if (P == E) |
| break; |
| // Splice P right before I. |
| B->splice(I, B, P); |
| // Reset I to point at the just spliced PHI node. |
| --I; |
| } |
| // Update the block successor information: remove unnecessary successors. |
| if (HaveTargets) { |
| SmallVector<MachineBasicBlock*,2> ToRemove; |
| for (MachineBasicBlock *SB : B->successors()) { |
| if (!Targets.count(SB)) |
| ToRemove.push_back(const_cast<MachineBasicBlock*>(SB)); |
| Targets.remove(SB); |
| } |
| for (unsigned i = 0, n = ToRemove.size(); i < n; ++i) |
| removeCFGEdge(B, ToRemove[i]); |
| // If there are any blocks left in the computed targets, it means that |
| // we think that the block could go somewhere, but the CFG does not. |
| // This could legitimately happen in blocks that have non-returning |
| // calls---we would think that the execution can continue, but the |
| // CFG will not have a successor edge. |
| } |
| } |
| // Need to do some final post-processing. |
| // If a branch was not executable, it will not get rewritten, but should |
| // be removed (or replaced with something equivalent to a A2_nop). We can't |
| // erase instructions during rewriting, so this needs to be delayed until |
| // now. |
| for (MachineBasicBlock &B : MF) { |
| MachineBasicBlock::iterator I = B.begin(), E = B.end(); |
| while (I != E) { |
| auto Next = std::next(I); |
| if (I->isBranch() && !InstrExec.count(&*I)) |
| B.erase(I); |
| I = Next; |
| } |
| } |
| return Changed; |
| } |
| |
| // This is the constant propagation algorithm as described by Wegman-Zadeck. |
| // Most of the terminology comes from there. |
| bool MachineConstPropagator::run(MachineFunction &MF) { |
| LLVM_DEBUG(MF.print(dbgs() << "Starting MachineConstPropagator\n", nullptr)); |
| |
| MRI = &MF.getRegInfo(); |
| |
| Cells.clear(); |
| EdgeExec.clear(); |
| InstrExec.clear(); |
| assert(FlowQ.empty()); |
| |
| propagate(MF); |
| bool Changed = rewrite(MF); |
| |
| LLVM_DEBUG({ |
| dbgs() << "End of MachineConstPropagator (Changed=" << Changed << ")\n"; |
| if (Changed) |
| MF.print(dbgs(), nullptr); |
| }); |
| return Changed; |
| } |
| |
| // -------------------------------------------------------------------- |
| // Machine const evaluator. |
| |
| bool MachineConstEvaluator::getCell(const RegisterSubReg &R, const CellMap &Inputs, |
| LatticeCell &RC) { |
| if (!Register::isVirtualRegister(R.Reg)) |
| return false; |
| const LatticeCell &L = Inputs.get(R.Reg); |
| if (!R.SubReg) { |
| RC = L; |
| return !RC.isBottom(); |
| } |
| bool Eval = evaluate(R, L, RC); |
| return Eval && !RC.isBottom(); |
| } |
| |
| bool MachineConstEvaluator::constToInt(const Constant *C, |
| APInt &Val) const { |
| const ConstantInt *CI = dyn_cast<ConstantInt>(C); |
| if (!CI) |
| return false; |
| Val = CI->getValue(); |
| return true; |
| } |
| |
| const ConstantInt *MachineConstEvaluator::intToConst(const APInt &Val) const { |
| return ConstantInt::get(CX, Val); |
| } |
| |
| bool MachineConstEvaluator::evaluateCMPrr(uint32_t Cmp, const RegisterSubReg &R1, |
| const RegisterSubReg &R2, const CellMap &Inputs, bool &Result) { |
| assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg)); |
| LatticeCell LS1, LS2; |
| if (!getCell(R1, Inputs, LS1) || !getCell(R2, Inputs, LS2)) |
| return false; |
| |
| bool IsProp1 = LS1.isProperty(); |
| bool IsProp2 = LS2.isProperty(); |
| if (IsProp1) { |
| uint32_t Prop1 = LS1.properties(); |
| if (IsProp2) |
| return evaluateCMPpp(Cmp, Prop1, LS2.properties(), Result); |
| uint32_t NegCmp = Comparison::negate(Cmp); |
| return evaluateCMPrp(NegCmp, R2, Prop1, Inputs, Result); |
| } |
| if (IsProp2) { |
| uint32_t Prop2 = LS2.properties(); |
| return evaluateCMPrp(Cmp, R1, Prop2, Inputs, Result); |
| } |
| |
| APInt A; |
| bool IsTrue = true, IsFalse = true; |
| for (unsigned i = 0; i < LS2.size(); ++i) { |
| bool Res; |
| bool Computed = constToInt(LS2.Values[i], A) && |
| evaluateCMPri(Cmp, R1, A, Inputs, Res); |
| if (!Computed) |
| return false; |
| IsTrue &= Res; |
| IsFalse &= !Res; |
| } |
| assert(!IsTrue || !IsFalse); |
| // The actual logical value of the comparison is same as IsTrue. |
| Result = IsTrue; |
| // Return true if the result was proven to be true or proven to be false. |
| return IsTrue || IsFalse; |
| } |
| |
| bool MachineConstEvaluator::evaluateCMPri(uint32_t Cmp, const RegisterSubReg &R1, |
| const APInt &A2, const CellMap &Inputs, bool &Result) { |
| assert(Inputs.has(R1.Reg)); |
| LatticeCell LS; |
| if (!getCell(R1, Inputs, LS)) |
| return false; |
| if (LS.isProperty()) |
| return evaluateCMPpi(Cmp, LS.properties(), A2, Result); |
| |
| APInt A; |
| bool IsTrue = true, IsFalse = true; |
| for (unsigned i = 0; i < LS.size(); ++i) { |
| bool Res; |
| bool Computed = constToInt(LS.Values[i], A) && |
| evaluateCMPii(Cmp, A, A2, Res); |
| if (!Computed) |
| return false; |
| IsTrue &= Res; |
| IsFalse &= !Res; |
| } |
| assert(!IsTrue || !IsFalse); |
| // The actual logical value of the comparison is same as IsTrue. |
| Result = IsTrue; |
| // Return true if the result was proven to be true or proven to be false. |
| return IsTrue || IsFalse; |
| } |
| |
| bool MachineConstEvaluator::evaluateCMPrp(uint32_t Cmp, const RegisterSubReg &R1, |
| uint64_t Props2, const CellMap &Inputs, bool &Result) { |
| assert(Inputs.has(R1.Reg)); |
| LatticeCell LS; |
| if (!getCell(R1, Inputs, LS)) |
| return false; |
| if (LS.isProperty()) |
| return evaluateCMPpp(Cmp, LS.properties(), Props2, Result); |
| |
| APInt A; |
| uint32_t NegCmp = Comparison::negate(Cmp); |
| bool IsTrue = true, IsFalse = true; |
| for (unsigned i = 0; i < LS.size(); ++i) { |
| bool Res; |
| bool Computed = constToInt(LS.Values[i], A) && |
| evaluateCMPpi(NegCmp, Props2, A, Res); |
| if (!Computed) |
| return false; |
| IsTrue &= Res; |
| IsFalse &= !Res; |
| } |
| assert(!IsTrue || !IsFalse); |
| Result = IsTrue; |
| return IsTrue || IsFalse; |
| } |
| |
| bool MachineConstEvaluator::evaluateCMPii(uint32_t Cmp, const APInt &A1, |
| const APInt &A2, bool &Result) { |
| // NE is a special kind of comparison (not composed of smaller properties). |
| if (Cmp == Comparison::NE) { |
| Result = !APInt::isSameValue(A1, A2); |
| return true; |
| } |
| if (Cmp == Comparison::EQ) { |
| Result = APInt::isSameValue(A1, A2); |
| return true; |
| } |
| if (Cmp & Comparison::EQ) { |
| if (APInt::isSameValue(A1, A2)) |
| return (Result = true); |
| } |
| assert((Cmp & (Comparison::L | Comparison::G)) && "Malformed comparison"); |
| Result = false; |
| |
| unsigned W1 = A1.getBitWidth(); |
| unsigned W2 = A2.getBitWidth(); |
| unsigned MaxW = (W1 >= W2) ? W1 : W2; |
| if (Cmp & Comparison::U) { |
| const APInt Zx1 = A1.zextOrSelf(MaxW); |
| const APInt Zx2 = A2.zextOrSelf(MaxW); |
| if (Cmp & Comparison::L) |
| Result = Zx1.ult(Zx2); |
| else if (Cmp & Comparison::G) |
| Result = Zx2.ult(Zx1); |
| return true; |
| } |
| |
| // Signed comparison. |
| const APInt Sx1 = A1.sextOrSelf(MaxW); |
| const APInt Sx2 = A2.sextOrSelf(MaxW); |
| if (Cmp & Comparison::L) |
| Result = Sx1.slt(Sx2); |
| else if (Cmp & Comparison::G) |
| Result = Sx2.slt(Sx1); |
| return true; |
| } |
| |
| bool MachineConstEvaluator::evaluateCMPpi(uint32_t Cmp, uint32_t Props, |
| const APInt &A2, bool &Result) { |
| if (Props == ConstantProperties::Unknown) |
| return false; |
| |
| // Should never see NaN here, but check for it for completeness. |
| if (Props & ConstantProperties::NaN) |
| return false; |
| // Infinity could theoretically be compared to a number, but the |
| // presence of infinity here would be very suspicious. If we don't |
| // know for sure that the number is finite, bail out. |
| if (!(Props & ConstantProperties::Finite)) |
| return false; |
| |
| // Let X be a number that has properties Props. |
| |
| if (Cmp & Comparison::U) { |
| // In case of unsigned comparisons, we can only compare against 0. |
| if (A2 == 0) { |
| // Any x!=0 will be considered >0 in an unsigned comparison. |
| if (Props & ConstantProperties::Zero) |
| Result = (Cmp & Comparison::EQ); |
| else if (Props & ConstantProperties::NonZero) |
| Result = (Cmp & Comparison::G) || (Cmp == Comparison::NE); |
| else |
| return false; |
| return true; |
| } |
| // A2 is not zero. The only handled case is if X = 0. |
| if (Props & ConstantProperties::Zero) { |
| Result = (Cmp & Comparison::L) || (Cmp == Comparison::NE); |
| return true; |
| } |
| return false; |
| } |
| |
| // Signed comparisons are different. |
| if (Props & ConstantProperties::Zero) { |
| if (A2 == 0) |
| Result = (Cmp & Comparison::EQ); |
| else |
| Result = (Cmp == Comparison::NE) || |
| ((Cmp & Comparison::L) && !A2.isNegative()) || |
| ((Cmp & Comparison::G) && A2.isNegative()); |
| return true; |
| } |
| if (Props & ConstantProperties::PosOrZero) { |
| // X >= 0 and !(A2 < 0) => cannot compare |
| if (!A2.isNegative()) |
| return false; |
| // X >= 0 and A2 < 0 |
| Result = (Cmp & Comparison::G) || (Cmp == Comparison::NE); |
| return true; |
| } |
| if (Props & ConstantProperties::NegOrZero) { |
| // X <= 0 and Src1 < 0 => cannot compare |
| if (A2 == 0 || A2.isNegative()) |
| return false; |
| // X <= 0 and A2 > 0 |
| Result = (Cmp & Comparison::L) || (Cmp == Comparison::NE); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool MachineConstEvaluator::evaluateCMPpp(uint32_t Cmp, uint32_t Props1, |
| uint32_t Props2, bool &Result) { |
| using P = ConstantProperties; |
| |
| if ((Props1 & P::NaN) && (Props2 & P::NaN)) |
| return false; |
| if (!(Props1 & P::Finite) || !(Props2 & P::Finite)) |
| return false; |
| |
| bool Zero1 = (Props1 & P::Zero), Zero2 = (Props2 & P::Zero); |
| bool NonZero1 = (Props1 & P::NonZero), NonZero2 = (Props2 & P::NonZero); |
| if (Zero1 && Zero2) { |
| Result = (Cmp & Comparison::EQ); |
| return true; |
| } |
| if (Cmp == Comparison::NE) { |
| if ((Zero1 && NonZero2) || (NonZero1 && Zero2)) |
| return (Result = true); |
| return false; |
| } |
| |
| if (Cmp & Comparison::U) { |
| // In unsigned comparisons, we can only compare against a known zero, |
| // or a known non-zero. |
| if (Zero1 && NonZero2) { |
| Result = (Cmp & Comparison::L); |
| return true; |
| } |
| if (NonZero1 && Zero2) { |
| Result = (Cmp & Comparison::G); |
| return true; |
| } |
| return false; |
| } |
| |
| // Signed comparison. The comparison is not NE. |
| bool Poz1 = (Props1 & P::PosOrZero), Poz2 = (Props2 & P::PosOrZero); |
| bool Nez1 = (Props1 & P::NegOrZero), Nez2 = (Props2 & P::NegOrZero); |
| if (Nez1 && Poz2) { |
| if (NonZero1 || NonZero2) { |
| Result = (Cmp & Comparison::L); |
| return true; |
| } |
| // Either (or both) could be zero. Can only say that X <= Y. |
| if ((Cmp & Comparison::EQ) && (Cmp & Comparison::L)) |
| return (Result = true); |
| } |
| if (Poz1 && Nez2) { |
| if (NonZero1 || NonZero2) { |
| Result = (Cmp & Comparison::G); |
| return true; |
| } |
| // Either (or both) could be zero. Can only say that X >= Y. |
| if ((Cmp & Comparison::EQ) && (Cmp & Comparison::G)) |
| return (Result = true); |
| } |
| |
| return false; |
| } |
| |
| bool MachineConstEvaluator::evaluateCOPY(const RegisterSubReg &R1, |
| const CellMap &Inputs, LatticeCell &Result) { |
| return getCell(R1, Inputs, Result); |
| } |
| |
| bool MachineConstEvaluator::evaluateANDrr(const RegisterSubReg &R1, |
| const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) { |
| assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg)); |
| const LatticeCell &L1 = Inputs.get(R2.Reg); |
| const LatticeCell &L2 = Inputs.get(R2.Reg); |
| // If both sources are bottom, exit. Otherwise try to evaluate ANDri |
| // with the non-bottom argument passed as the immediate. This is to |
| // catch cases of ANDing with 0. |
| if (L2.isBottom()) { |
| if (L1.isBottom()) |
| return false; |
| return evaluateANDrr(R2, R1, Inputs, Result); |
| } |
| LatticeCell LS2; |
| if (!evaluate(R2, L2, LS2)) |
| return false; |
| if (LS2.isBottom() || LS2.isProperty()) |
| return false; |
| |
| APInt A; |
| for (unsigned i = 0; i < LS2.size(); ++i) { |
| LatticeCell RC; |
| bool Eval = constToInt(LS2.Values[i], A) && |
| evaluateANDri(R1, A, Inputs, RC); |
| if (!Eval) |
| return false; |
| Result.meet(RC); |
| } |
| return !Result.isBottom(); |
| } |
| |
| bool MachineConstEvaluator::evaluateANDri(const RegisterSubReg &R1, |
| const APInt &A2, const CellMap &Inputs, LatticeCell &Result) { |
| assert(Inputs.has(R1.Reg)); |
| if (A2 == -1) |
| return getCell(R1, Inputs, Result); |
| if (A2 == 0) { |
| LatticeCell RC; |
| RC.add(intToConst(A2)); |
| // Overwrite Result. |
| Result = RC; |
| return true; |
| } |
| LatticeCell LS1; |
| if (!getCell(R1, Inputs, LS1)) |
| return false; |
| if (LS1.isBottom() || LS1.isProperty()) |
| return false; |
| |
| APInt A, ResA; |
| for (unsigned i = 0; i < LS1.size(); ++i) { |
| bool Eval = constToInt(LS1.Values[i], A) && |
| evaluateANDii(A, A2, ResA); |
| if (!Eval) |
| return false; |
| const Constant *C = intToConst(ResA); |
| Result.add(C); |
| } |
| return !Result.isBottom(); |
| } |
| |
| bool MachineConstEvaluator::evaluateANDii(const APInt &A1, |
| const APInt &A2, APInt &Result) { |
| Result = A1 & A2; |
| return true; |
| } |
| |
| bool MachineConstEvaluator::evaluateORrr(const RegisterSubReg &R1, |
| const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) { |
| assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg)); |
| const LatticeCell &L1 = Inputs.get(R2.Reg); |
| const LatticeCell &L2 = Inputs.get(R2.Reg); |
| // If both sources are bottom, exit. Otherwise try to evaluate ORri |
| // with the non-bottom argument passed as the immediate. This is to |
| // catch cases of ORing with -1. |
| if (L2.isBottom()) { |
| if (L1.isBottom()) |
| return false; |
| return evaluateORrr(R2, R1, Inputs, Result); |
| } |
| LatticeCell LS2; |
| if (!evaluate(R2, L2, LS2)) |
| return false; |
| if (LS2.isBottom() || LS2.isProperty()) |
| return false; |
| |
| APInt A; |
| for (unsigned i = 0; i < LS2.size(); ++i) { |
| LatticeCell RC; |
| bool Eval = constToInt(LS2.Values[i], A) && |
| evaluateORri(R1, A, Inputs, RC); |
| if (!Eval) |
| return false; |
| Result.meet(RC); |
| } |
| return !Result.isBottom(); |
| } |
| |
| bool MachineConstEvaluator::evaluateORri(const RegisterSubReg &R1, |
| const APInt &A2, const CellMap &Inputs, LatticeCell &Result) { |
| assert(Inputs.has(R1.Reg)); |
| if (A2 == 0) |
| return getCell(R1, Inputs, Result); |
| if (A2 == -1) { |
| LatticeCell RC; |
| RC.add(intToConst(A2)); |
| // Overwrite Result. |
| Result = RC; |
| return true; |
| } |
| LatticeCell LS1; |
| if (!getCell(R1, Inputs, LS1)) |
| return false; |
| if (LS1.isBottom() || LS1.isProperty()) |
| return false; |
| |
| APInt A, ResA; |
| for (unsigned i = 0; i < LS1.size(); ++i) { |
| bool Eval = constToInt(LS1.Values[i], A) && |
| evaluateORii(A, A2, ResA); |
| if (!Eval) |
| return false; |
| const Constant *C = intToConst(ResA); |
| Result.add(C); |
| } |
| return !Result.isBottom(); |
| } |
| |
| bool MachineConstEvaluator::evaluateORii(const APInt &A1, |
| const APInt &A2, APInt &Result) { |
| Result = A1 | A2; |
| return true; |
| } |
| |
| bool MachineConstEvaluator::evaluateXORrr(const RegisterSubReg &R1, |
| const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) { |
| assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg)); |
| LatticeCell LS1, LS2; |
| if (!getCell(R1, Inputs, LS1) || !getCell(R2, Inputs, LS2)) |
| return false; |
| if (LS1.isProperty()) { |
| if (LS1.properties() & ConstantProperties::Zero) |
| return !(Result = LS2).isBottom(); |
| return false; |
| } |
| if (LS2.isProperty()) { |
| if (LS2.properties() & ConstantProperties::Zero) |
| return !(Result = LS1).isBottom(); |
| return false; |
| } |
| |
| APInt A; |
| for (unsigned i = 0; i < LS2.size(); ++i) { |
| LatticeCell RC; |
| bool Eval = constToInt(LS2.Values[i], A) && |
| evaluateXORri(R1, A, Inputs, RC); |
| if (!Eval) |
| return false; |
| Result.meet(RC); |
| } |
| return !Result.isBottom(); |
| } |
| |
| bool MachineConstEvaluator::evaluateXORri(const RegisterSubReg &R1, |
| const APInt &A2, const CellMap &Inputs, LatticeCell &Result) { |
| assert(Inputs.has(R1.Reg)); |
| LatticeCell LS1; |
| if (!getCell(R1, Inputs, LS1)) |
| return false; |
| if (LS1.isProperty()) { |
| if (LS1.properties() & ConstantProperties::Zero) { |
| const Constant *C = intToConst(A2); |
| Result.add(C); |
| return !Result.isBottom(); |
| } |
| return false; |
| } |
| |
| APInt A, XA; |
| for (unsigned i = 0; i < LS1.size(); ++i) { |
| bool Eval = constToInt(LS1.Values[i], A) && |
| evaluateXORii(A, A2, XA); |
| if (!Eval) |
| return false; |
| const Constant *C = intToConst(XA); |
| Result.add(C); |
| } |
| return !Result.isBottom(); |
| } |
| |
| bool MachineConstEvaluator::evaluateXORii(const APInt &A1, |
| const APInt &A2, APInt &Result) { |
| Result = A1 ^ A2; |
| return true; |
| } |
| |
| bool MachineConstEvaluator::evaluateZEXTr(const RegisterSubReg &R1, unsigned Width, |
| unsigned Bits, const CellMap &Inputs, LatticeCell &Result) { |
| assert(Inputs.has(R1.Reg)); |
| LatticeCell LS1; |
| if (!getCell(R1, Inputs, LS1)) |
| return false; |
| if (LS1.isProperty()) |
| return false; |
| |
| APInt A, XA; |
| for (unsigned i = 0; i < LS1.size(); ++i) { |
| bool Eval = constToInt(LS1.Values[i], A) && |
| evaluateZEXTi(A, Width, Bits, XA); |
| if (!Eval) |
| return false; |
| const Constant *C = intToConst(XA); |
| Result.add(C); |
| } |
| return true; |
| } |
| |
| bool MachineConstEvaluator::evaluateZEXTi(const APInt &A1, unsigned Width, |
| unsigned Bits, APInt &Result) { |
| unsigned BW = A1.getBitWidth(); |
| (void)BW; |
| assert(Width >= Bits && BW >= Bits); |
| APInt Mask = APInt::getLowBitsSet(Width, Bits); |
| Result = A1.zextOrTrunc(Width) & Mask; |
| return true; |
| } |
| |
| bool MachineConstEvaluator::evaluateSEXTr(const RegisterSubReg &R1, unsigned Width, |
| unsigned Bits, const CellMap &Inputs, LatticeCell &Result) { |
| assert(Inputs.has(R1.Reg)); |
| LatticeCell LS1; |
| if (!getCell(R1, Inputs, LS1)) |
| return false; |
| if (LS1.isBottom() || LS1.isProperty()) |
| return false; |
| |
| APInt A, XA; |
| for (unsigned i = 0; i < LS1.size(); ++i) { |
| bool Eval = constToInt(LS1.Values[i], A) && |
| evaluateSEXTi(A, Width, Bits, XA); |
| if (!Eval) |
| return false; |
| const Constant *C = intToConst(XA); |
| Result.add(C); |
| } |
| return true; |
| } |
| |
| bool MachineConstEvaluator::evaluateSEXTi(const APInt &A1, unsigned Width, |
| unsigned Bits, APInt &Result) { |
| unsigned BW = A1.getBitWidth(); |
| assert(Width >= Bits && BW >= Bits); |
| // Special case to make things faster for smaller source widths. |
| // Sign extension of 0 bits generates 0 as a result. This is consistent |
| // with what the HW does. |
| if (Bits == 0) { |
| Result = APInt(Width, 0); |
| return true; |
| } |
| // In C, shifts by 64 invoke undefined behavior: handle that case in APInt. |
| if (BW <= 64 && Bits != 0) { |
| int64_t V = A1.getSExtValue(); |
| switch (Bits) { |
| case 8: |
| V = static_cast<int8_t>(V); |
| break; |
| case 16: |
| V = static_cast<int16_t>(V); |
| break; |
| case 32: |
| V = static_cast<int32_t>(V); |
| break; |
| default: |
| // Shift left to lose all bits except lower "Bits" bits, then shift |
| // the value back, replicating what was a sign bit after the first |
| // shift. |
| V = (V << (64-Bits)) >> (64-Bits); |
| break; |
| } |
| // V is a 64-bit sign-extended value. Convert it to APInt of desired |
| // width. |
| Result = APInt(Width, V, true); |
| return true; |
| } |
| // Slow case: the value doesn't fit in int64_t. |
| if (Bits < BW) |
| Result = A1.trunc(Bits).sext(Width); |
| else // Bits == BW |
| Result = A1.sext(Width); |
| return true; |
| } |
| |
| bool MachineConstEvaluator::evaluateCLBr(const RegisterSubReg &R1, bool Zeros, |
| bool Ones, const CellMap &Inputs, LatticeCell &Result) { |
| assert(Inputs.has(R1.Reg)); |
| LatticeCell LS1; |
| if (!getCell(R1, Inputs, LS1)) |
| return false; |
| if (LS1.isBottom() || LS1.isProperty()) |
| return false; |
| |
| APInt A, CA; |
| for (unsigned i = 0; i < LS1.size(); ++i) { |
| bool Eval = constToInt(LS1.Values[i], A) && |
| evaluateCLBi(A, Zeros, Ones, CA); |
| if (!Eval) |
| return false; |
| const Constant *C = intToConst(CA); |
| Result.add(C); |
| } |
| return true; |
| } |
| |
| bool MachineConstEvaluator::evaluateCLBi(const APInt &A1, bool Zeros, |
| bool Ones, APInt &Result) { |
| unsigned BW = A1.getBitWidth(); |
| if (!Zeros && !Ones) |
| return false; |
| unsigned Count = 0; |
| if (Zeros && (Count == 0)) |
| Count = A1.countLeadingZeros(); |
| if (Ones && (Count == 0)) |
| Count = A1.countLeadingOnes(); |
| Result = APInt(BW, static_cast<uint64_t>(Count), false); |
| return true; |
| } |
| |
| bool MachineConstEvaluator::evaluateCTBr(const RegisterSubReg &R1, bool Zeros, |
| bool Ones, const CellMap &Inputs, LatticeCell &Result) { |
| assert(Inputs.has(R1.Reg)); |
| LatticeCell LS1; |
| if (!getCell(R1, Inputs, LS1)) |
| return false; |
| if (LS1.isBottom() || LS1.isProperty()) |
| return false; |
| |
| APInt A, CA; |
| for (unsigned i = 0; i < LS1.size(); ++i) { |
| bool Eval = constToInt(LS1.Values[i], A) && |
| evaluateCTBi(A, Zeros, Ones, CA); |
| if (!Eval) |
| return false; |
| const Constant *C = intToConst(CA); |
| Result.add(C); |
| } |
| return true; |
| } |
| |
| bool MachineConstEvaluator::evaluateCTBi(const APInt &A1, bool Zeros, |
| bool Ones, APInt &Result) { |
| unsigned BW = A1.getBitWidth(); |
| if (!Zeros && !Ones) |
| return false; |
| unsigned Count = 0; |
| if (Zeros && (Count == 0)) |
| Count = A1.countTrailingZeros(); |
| if (Ones && (Count == 0)) |
| Count = A1.countTrailingOnes(); |
| Result = APInt(BW, static_cast<uint64_t>(Count), false); |
| return true; |
| } |
| |
| bool MachineConstEvaluator::evaluateEXTRACTr(const RegisterSubReg &R1, |
| unsigned Width, unsigned Bits, unsigned Offset, bool Signed, |
| const CellMap &Inputs, LatticeCell &Result) { |
| assert(Inputs.has(R1.Reg)); |
| assert(Bits+Offset <= Width); |
| LatticeCell LS1; |
| if (!getCell(R1, Inputs, LS1)) |
| return false; |
| if (LS1.isBottom()) |
| return false; |
| if (LS1.isProperty()) { |
| uint32_t Ps = LS1.properties(); |
| if (Ps & ConstantProperties::Zero) { |
| const Constant *C = intToConst(APInt(Width, 0, false)); |
| Result.add(C); |
| return true; |
| } |
| return false; |
| } |
| |
| APInt A, CA; |
| for (unsigned i = 0; i < LS1.size(); ++i) { |
| bool Eval = constToInt(LS1.Values[i], A) && |
| evaluateEXTRACTi(A, Bits, Offset, Signed, CA); |
| if (!Eval) |
| return false; |
| const Constant *C = intToConst(CA); |
| Result.add(C); |
| } |
| return true; |
| } |
| |
| bool MachineConstEvaluator::evaluateEXTRACTi(const APInt &A1, unsigned Bits, |
| unsigned Offset, bool Signed, APInt &Result) { |
| unsigned BW = A1.getBitWidth(); |
| assert(Bits+Offset <= BW); |
| // Extracting 0 bits generates 0 as a result (as indicated by the HW people). |
| if (Bits == 0) { |
| Result = APInt(BW, 0); |
| return true; |
| } |
| if (BW <= 64) { |
| int64_t V = A1.getZExtValue(); |
| V <<= (64-Bits-Offset); |
| if (Signed) |
| V >>= (64-Bits); |
| else |
| V = static_cast<uint64_t>(V) >> (64-Bits); |
| Result = APInt(BW, V, Signed); |
| return true; |
| } |
| if (Signed) |
| Result = A1.shl(BW-Bits-Offset).ashr(BW-Bits); |
| else |
| Result = A1.shl(BW-Bits-Offset).lshr(BW-Bits); |
| return true; |
| } |
| |
| bool MachineConstEvaluator::evaluateSplatr(const RegisterSubReg &R1, |
| unsigned Bits, unsigned Count, const CellMap &Inputs, |
| LatticeCell &Result) { |
| assert(Inputs.has(R1.Reg)); |
| LatticeCell LS1; |
| if (!getCell(R1, Inputs, LS1)) |
| return false; |
| if (LS1.isBottom() || LS1.isProperty()) |
| return false; |
| |
| APInt A, SA; |
| for (unsigned i = 0; i < LS1.size(); ++i) { |
| bool Eval = constToInt(LS1.Values[i], A) && |
| evaluateSplati(A, Bits, Count, SA); |
| if (!Eval) |
| return false; |
| const Constant *C = intToConst(SA); |
| Result.add(C); |
| } |
| return true; |
| } |
| |
| bool MachineConstEvaluator::evaluateSplati(const APInt &A1, unsigned Bits, |
| unsigned Count, APInt &Result) { |
| assert(Count > 0); |
| unsigned BW = A1.getBitWidth(), SW = Count*Bits; |
| APInt LoBits = (Bits < BW) ? A1.trunc(Bits) : A1.zextOrSelf(Bits); |
| if (Count > 1) |
| LoBits = LoBits.zext(SW); |
| |
| APInt Res(SW, 0, false); |
| for (unsigned i = 0; i < Count; ++i) { |
| Res <<= Bits; |
| Res |= LoBits; |
| } |
| Result = Res; |
| return true; |
| } |
| |
| // ---------------------------------------------------------------------- |
| // Hexagon-specific code. |
| |
| namespace llvm { |
| |
| FunctionPass *createHexagonConstPropagationPass(); |
| void initializeHexagonConstPropagationPass(PassRegistry &Registry); |
| |
| } // end namespace llvm |
| |
| namespace { |
| |
| class HexagonConstEvaluator : public MachineConstEvaluator { |
| public: |
| HexagonConstEvaluator(MachineFunction &Fn); |
| |
| bool evaluate(const MachineInstr &MI, const CellMap &Inputs, |
| CellMap &Outputs) override; |
| bool evaluate(const RegisterSubReg &R, const LatticeCell &SrcC, |
| LatticeCell &Result) override; |
| bool evaluate(const MachineInstr &BrI, const CellMap &Inputs, |
| SetVector<const MachineBasicBlock*> &Targets, bool &FallsThru) |
| override; |
| bool rewrite(MachineInstr &MI, const CellMap &Inputs) override; |
| |
| private: |
| unsigned getRegBitWidth(unsigned Reg) const; |
| |
| static uint32_t getCmp(unsigned Opc); |
| static APInt getCmpImm(unsigned Opc, unsigned OpX, |
| const MachineOperand &MO); |
| void replaceWithNop(MachineInstr &MI); |
| |
| bool evaluateHexRSEQ32(RegisterSubReg RL, RegisterSubReg RH, const CellMap &Inputs, |
| LatticeCell &Result); |
| bool evaluateHexCompare(const MachineInstr &MI, const CellMap &Inputs, |
| CellMap &Outputs); |
| // This is suitable to be called for compare-and-jump instructions. |
| bool evaluateHexCompare2(uint32_t Cmp, const MachineOperand &Src1, |
| const MachineOperand &Src2, const CellMap &Inputs, bool &Result); |
| bool evaluateHexLogical(const MachineInstr &MI, const CellMap &Inputs, |
| CellMap &Outputs); |
| bool evaluateHexCondMove(const MachineInstr &MI, const CellMap &Inputs, |
| CellMap &Outputs); |
| bool evaluateHexExt(const MachineInstr &MI, const CellMap &Inputs, |
| CellMap &Outputs); |
| bool evaluateHexVector1(const MachineInstr &MI, const CellMap &Inputs, |
| CellMap &Outputs); |
| bool evaluateHexVector2(const MachineInstr &MI, const CellMap &Inputs, |
| CellMap &Outputs); |
| |
| void replaceAllRegUsesWith(unsigned FromReg, unsigned ToReg); |
| bool rewriteHexBranch(MachineInstr &BrI, const CellMap &Inputs); |
| bool rewriteHexConstDefs(MachineInstr &MI, const CellMap &Inputs, |
| bool &AllDefs); |
| bool rewriteHexConstUses(MachineInstr &MI, const CellMap &Inputs); |
| |
| MachineRegisterInfo *MRI; |
| const HexagonInstrInfo &HII; |
| const HexagonRegisterInfo &HRI; |
| }; |
| |
| class HexagonConstPropagation : public MachineFunctionPass { |
| public: |
| static char ID; |
| |
| HexagonConstPropagation() : MachineFunctionPass(ID) {} |
| |
| StringRef getPassName() const override { |
| return "Hexagon Constant Propagation"; |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override { |
| const Function &F = MF.getFunction(); |
| if (skipFunction(F)) |
| return false; |
| |
| HexagonConstEvaluator HCE(MF); |
| return MachineConstPropagator(HCE).run(MF); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| char HexagonConstPropagation::ID = 0; |
| |
| INITIALIZE_PASS(HexagonConstPropagation, "hexagon-constp", |
| "Hexagon Constant Propagation", false, false) |
| |
| HexagonConstEvaluator::HexagonConstEvaluator(MachineFunction &Fn) |
| : MachineConstEvaluator(Fn), |
| HII(*Fn.getSubtarget<HexagonSubtarget>().getInstrInfo()), |
| HRI(*Fn.getSubtarget<HexagonSubtarget>().getRegisterInfo()) { |
| MRI = &Fn.getRegInfo(); |
| } |
| |
| bool HexagonConstEvaluator::evaluate(const MachineInstr &MI, |
| const CellMap &Inputs, CellMap &Outputs) { |
| if (MI.isCall()) |
| return false; |
| if (MI.getNumOperands() == 0 || !MI.getOperand(0).isReg()) |
| return false; |
| const MachineOperand &MD = MI.getOperand(0); |
| if (!MD.isDef()) |
| return false; |
| |
| unsigned Opc = MI.getOpcode(); |
| RegisterSubReg DefR(MD); |
| assert(!DefR.SubReg); |
| if (!Register::isVirtualRegister(DefR.Reg)) |
| return false; |
| |
| if (MI.isCopy()) { |
| LatticeCell RC; |
| RegisterSubReg SrcR(MI.getOperand(1)); |
| bool Eval = evaluateCOPY(SrcR, Inputs, RC); |
| if (!Eval) |
| return false; |
| Outputs.update(DefR.Reg, RC); |
| return true; |
| } |
| if (MI.isRegSequence()) { |
| unsigned Sub1 = MI.getOperand(2).getImm(); |
| unsigned Sub2 = MI.getOperand(4).getImm(); |
| const TargetRegisterClass &DefRC = *MRI->getRegClass(DefR.Reg); |
| unsigned SubLo = HRI.getHexagonSubRegIndex(DefRC, Hexagon::ps_sub_lo); |
| unsigned SubHi = HRI.getHexagonSubRegIndex(DefRC, Hexagon::ps_sub_hi); |
| if (Sub1 != SubLo && Sub1 != SubHi) |
| return false; |
| if (Sub2 != SubLo && Sub2 != SubHi) |
| return false; |
| assert(Sub1 != Sub2); |
| bool LoIs1 = (Sub1 == SubLo); |
| const MachineOperand &OpLo = LoIs1 ? MI.getOperand(1) : MI.getOperand(3); |
| const MachineOperand &OpHi = LoIs1 ? MI.getOperand(3) : MI.getOperand(1); |
| LatticeCell RC; |
| RegisterSubReg SrcRL(OpLo), SrcRH(OpHi); |
| bool Eval = evaluateHexRSEQ32(SrcRL, SrcRH, Inputs, RC); |
| if (!Eval) |
| return false; |
| Outputs.update(DefR.Reg, RC); |
| return true; |
| } |
| if (MI.isCompare()) { |
| bool Eval = evaluateHexCompare(MI, Inputs, Outputs); |
| return Eval; |
| } |
| |
| switch (Opc) { |
| default: |
| return false; |
| case Hexagon::A2_tfrsi: |
| case Hexagon::A2_tfrpi: |
| case Hexagon::CONST32: |
| case Hexagon::CONST64: |
| { |
| const MachineOperand &VO = MI.getOperand(1); |
| // The operand of CONST32 can be a blockaddress, e.g. |
| // %0 = CONST32 <blockaddress(@eat, %l)> |
| // Do this check for all instructions for safety. |
| if (!VO.isImm()) |
| return false; |
| int64_t V = MI.getOperand(1).getImm(); |
| unsigned W = getRegBitWidth(DefR.Reg); |
| if (W != 32 && W != 64) |
| return false; |
| IntegerType *Ty = (W == 32) ? Type::getInt32Ty(CX) |
| : Type::getInt64Ty(CX); |
| const ConstantInt *CI = ConstantInt::get(Ty, V, true); |
| LatticeCell RC = Outputs.get(DefR.Reg); |
| RC.add(CI); |
| Outputs.update(DefR.Reg, RC); |
| break; |
| } |
| |
| case Hexagon::PS_true: |
| case Hexagon::PS_false: |
| { |
| LatticeCell RC = Outputs.get(DefR.Reg); |
| bool NonZero = (Opc == Hexagon::PS_true); |
| uint32_t P = NonZero ? ConstantProperties::NonZero |
| : ConstantProperties::Zero; |
| RC.add(P); |
| Outputs.update(DefR.Reg, RC); |
| break; |
| } |
| |
| case Hexagon::A2_and: |
| case Hexagon::A2_andir: |
| case Hexagon::A2_andp: |
| case Hexagon::A2_or: |
| case Hexagon::A2_orir: |
| case Hexagon::A2_orp: |
| case Hexagon::A2_xor: |
| case Hexagon::A2_xorp: |
| { |
| bool Eval = evaluateHexLogical(MI, Inputs, Outputs); |
| if (!Eval) |
| return false; |
| break; |
| } |
| |
| case Hexagon::A2_combineii: // combine(#s8Ext, #s8) |
| case Hexagon::A4_combineii: // combine(#s8, #u6Ext) |
| { |
| if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isImm()) |
| return false; |
| uint64_t Hi = MI.getOperand(1).getImm(); |
| uint64_t Lo = MI.getOperand(2).getImm(); |
| uint64_t Res = (Hi << 32) | (Lo & 0xFFFFFFFF); |
| IntegerType *Ty = Type::getInt64Ty(CX); |
| const ConstantInt *CI = ConstantInt::get(Ty, Res, false); |
| LatticeCell RC = Outputs.get(DefR.Reg); |
| RC.add(CI); |
| Outputs.update(DefR.Reg, RC); |
| break; |
| } |
| |
| case Hexagon::S2_setbit_i: |
| { |
| int64_t B = MI.getOperand(2).getImm(); |
| assert(B >=0 && B < 32); |
| APInt A(32, (1ull << B), false); |
| RegisterSubReg R(MI.getOperand(1)); |
| LatticeCell RC = Outputs.get(DefR.Reg); |
| bool Eval = evaluateORri(R, A, Inputs, RC); |
| if (!Eval) |
| return false; |
| Outputs.update(DefR.Reg, RC); |
| break; |
| } |
| |
| case Hexagon::C2_mux: |
| case Hexagon::C2_muxir: |
| case Hexagon::C2_muxri: |
| case Hexagon::C2_muxii: |
| { |
| bool Eval = evaluateHexCondMove(MI, Inputs, Outputs); |
| if (!Eval) |
| return false; |
| break; |
| } |
| |
| case Hexagon::A2_sxtb: |
| case Hexagon::A2_sxth: |
| case Hexagon::A2_sxtw: |
| case Hexagon::A2_zxtb: |
| case Hexagon::A2_zxth: |
| { |
| bool Eval = evaluateHexExt(MI, Inputs, Outputs); |
| if (!Eval) |
| return false; |
| break; |
| } |
| |
| case Hexagon::S2_ct0: |
| case Hexagon::S2_ct0p: |
| case Hexagon::S2_ct1: |
| case Hexagon::S2_ct1p: |
| { |
| using namespace Hexagon; |
| |
| bool Ones = (Opc == S2_ct1) || (Opc == S2_ct1p); |
| RegisterSubReg R1(MI.getOperand(1)); |
| assert(Inputs.has(R1.Reg)); |
| LatticeCell T; |
| bool Eval = evaluateCTBr(R1, !Ones, Ones, Inputs, T); |
| if (!Eval) |
| return false; |
| // All of these instructions return a 32-bit value. The evaluate |
| // will generate the same type as the operand, so truncate the |
| // result if necessary. |
| APInt C; |
| LatticeCell RC = Outputs.get(DefR.Reg); |
| for (unsigned i = 0; i < T.size(); ++i) { |
| const Constant *CI = T.Values[i]; |
| if (constToInt(CI, C) && C.getBitWidth() > 32) |
| CI = intToConst(C.trunc(32)); |
| RC.add(CI); |
| } |
| Outputs.update(DefR.Reg, RC); |
| break; |
| } |
| |
| case Hexagon::S2_cl0: |
| case Hexagon::S2_cl0p: |
| case Hexagon::S2_cl1: |
| case Hexagon::S2_cl1p: |
| case Hexagon::S2_clb: |
| case Hexagon::S2_clbp: |
| { |
| using namespace Hexagon; |
| |
| bool OnlyZeros = (Opc == S2_cl0) || (Opc == S2_cl0p); |
| bool OnlyOnes = (Opc == S2_cl1) || (Opc == S2_cl1p); |
| RegisterSubReg R1(MI.getOperand(1)); |
| assert(Inputs.has(R1.Reg)); |
| LatticeCell T; |
| bool Eval = evaluateCLBr(R1, !OnlyOnes, !OnlyZeros, Inputs, T); |
| if (!Eval) |
| return false; |
| // All of these instructions return a 32-bit value. The evaluate |
| // will generate the same type as the operand, so truncate the |
| // result if necessary. |
| APInt C; |
| LatticeCell RC = Outputs.get(DefR.Reg); |
| for (unsigned i = 0; i < T.size(); ++i) { |
| const Constant *CI = T.Values[i]; |
| if (constToInt(CI, C) && C.getBitWidth() > 32) |
| CI = intToConst(C.trunc(32)); |
| RC.add(CI); |
| } |
| Outputs.update(DefR.Reg, RC); |
| break; |
| } |
| |
| case Hexagon::S4_extract: |
| case Hexagon::S4_extractp: |
| case Hexagon::S2_extractu: |
| case Hexagon::S2_extractup: |
| { |
| bool Signed = (Opc == Hexagon::S4_extract) || |
| (Opc == Hexagon::S4_extractp); |
| RegisterSubReg R1(MI.getOperand(1)); |
| unsigned BW = getRegBitWidth(R1.Reg); |
| unsigned Bits = MI.getOperand(2).getImm(); |
| unsigned Offset = MI.getOperand(3).getImm(); |
| LatticeCell RC = Outputs.get(DefR.Reg); |
| if (Offset >= BW) { |
| APInt Zero(BW, 0, false); |
| RC.add(intToConst(Zero)); |
| break; |
| } |
| if (Offset+Bits > BW) { |
| // If the requested bitfield extends beyond the most significant bit, |
| // the extra bits are treated as 0s. To emulate this behavior, reduce |
| // the number of requested bits, and make the extract unsigned. |
| Bits = BW-Offset; |
| Signed = false; |
| } |
| bool Eval = evaluateEXTRACTr(R1, BW, Bits, Offset, Signed, Inputs, RC); |
| if (!Eval) |
| return false; |
| Outputs.update(DefR.Reg, RC); |
| break; |
| } |
| |
| case Hexagon::S2_vsplatrb: |
| case Hexagon::S2_vsplatrh: |
| // vabsh, vabsh:sat |
| // vabsw, vabsw:sat |
| // vconj:sat |
| // vrndwh, vrndwh:sat |
| // vsathb, vsathub, vsatwuh |
| // vsxtbh, vsxthw |
| // vtrunehb, vtrunohb |
| // vzxtbh, vzxthw |
| { |
| bool Eval = evaluateHexVector1(MI, Inputs, Outputs); |
| if (!Eval) |
| return false; |
| break; |
| } |
| |
| // TODO: |
| // A2_vaddh |
| // A2_vaddhs |
| // A2_vaddw |
| // A2_vaddws |
| } |
| |
| return true; |
| } |
| |
| bool HexagonConstEvaluator::evaluate(const RegisterSubReg &R, |
| const LatticeCell &Input, LatticeCell &Result) { |
| if (!R.SubReg) { |
| Result = Input; |
| return true; |
| } |
| const TargetRegisterClass *RC = MRI->getRegClass(R.Reg); |
| if (RC != &Hexagon::DoubleRegsRegClass) |
| return false; |
| if (R.SubReg != Hexagon::isub_lo && R.SubReg != Hexagon::isub_hi) |
| return false; |
| |
| assert(!Input.isTop()); |
| if (Input.isBottom()) |
| return false; |
| |
| using P = ConstantProperties; |
| |
| if (Input.isProperty()) { |
| uint32_t Ps = Input.properties(); |
| if (Ps & (P::Zero|P::NaN)) { |
| uint32_t Ns = (Ps & (P::Zero|P::NaN|P::SignProperties)); |
| Result.add(Ns); |
| return true; |
| } |
| if (R.SubReg == Hexagon::isub_hi) { |
| uint32_t Ns = (Ps & P::SignProperties); |
| Result.add(Ns); |
| return true; |
| } |
| return false; |
| } |
| |
| // The Input cell contains some known values. Pick the word corresponding |
| // to the subregister. |
| APInt A; |
| for (unsigned i = 0; i < Input.size(); ++i) { |
| const Constant *C = Input.Values[i]; |
| if (!constToInt(C, A)) |
| return false; |
| if (!A.isIntN(64)) |
| return false; |
| uint64_t U = A.getZExtValue(); |
| if (R.SubReg == Hexagon::isub_hi) |
| U >>= 32; |
| U &= 0xFFFFFFFFULL; |
| uint32_t U32 = Lo_32(U); |
| int32_t V32; |
| memcpy(&V32, &U32, sizeof V32); |
| IntegerType *Ty = Type::getInt32Ty(CX); |
| const ConstantInt *C32 = ConstantInt::get(Ty, static_cast<int64_t>(V32)); |
| Result.add(C32); |
| } |
| return true; |
| } |
| |
| bool HexagonConstEvaluator::evaluate(const MachineInstr &BrI, |
| const CellMap &Inputs, SetVector<const MachineBasicBlock*> &Targets, |
| bool &FallsThru) { |
| // We need to evaluate one branch at a time. TII::analyzeBranch checks |
| // all the branches in a basic block at once, so we cannot use it. |
| unsigned Opc = BrI.getOpcode(); |
| bool SimpleBranch = false; |
| bool Negated = false; |
| switch (Opc) { |
| case Hexagon::J2_jumpf: |
| case Hexagon::J2_jumpfnew: |
| case Hexagon::J2_jumpfnewpt: |
| Negated = true; |
| LLVM_FALLTHROUGH; |
| case Hexagon::J2_jumpt: |
| case Hexagon::J2_jumptnew: |
| case Hexagon::J2_jumptnewpt: |
| // Simple branch: if([!]Pn) jump ... |
| // i.e. Op0 = predicate, Op1 = branch target. |
| SimpleBranch = true; |
| break; |
| case Hexagon::J2_jump: |
| Targets.insert(BrI.getOperand(0).getMBB()); |
| FallsThru = false; |
| return true; |
| default: |
| Undetermined: |
| // If the branch is of unknown type, assume that all successors are |
| // executable. |
| FallsThru = !BrI.isUnconditionalBranch(); |
| return false; |
| } |
| |
| if (SimpleBranch) { |
| const MachineOperand &MD = BrI.getOperand(0); |
| RegisterSubReg PR(MD); |
| // If the condition operand has a subregister, this is not something |
| // we currently recognize. |
| if (PR.SubReg) |
| goto Undetermined; |
| assert(Inputs.has(PR.Reg)); |
| const LatticeCell &PredC = Inputs.get(PR.Reg); |
| if (PredC.isBottom()) |
| goto Undetermined; |
| |
| uint32_t Props = PredC.properties(); |
| bool CTrue = false, CFalse = false; |
| if (Props & ConstantProperties::Zero) |
| CFalse = true; |
| else if (Props & ConstantProperties::NonZero) |
| CTrue = true; |
| // If the condition is not known to be either, bail out. |
| if (!CTrue && !CFalse) |
| goto Undetermined; |
| |
| const MachineBasicBlock *BranchTarget = BrI.getOperand(1).getMBB(); |
| |
| FallsThru = false; |
| if ((!Negated && CTrue) || (Negated && CFalse)) |
| Targets.insert(BranchTarget); |
| else if ((!Negated && CFalse) || (Negated && CTrue)) |
| FallsThru = true; |
| else |
| goto Undetermined; |
| } |
| |
| return true; |
| } |
| |
| bool HexagonConstEvaluator::rewrite(MachineInstr &MI, const CellMap &Inputs) { |
| if (MI.isBranch()) |
| return rewriteHexBranch(MI, Inputs); |
| |
| unsigned Opc = MI.getOpcode(); |
| switch (Opc) { |
| default: |
| break; |
| case Hexagon::A2_tfrsi: |
| case Hexagon::A2_tfrpi: |
| case Hexagon::CONST32: |
| case Hexagon::CONST64: |
| case Hexagon::PS_true: |
| case Hexagon::PS_false: |
| return false; |
| } |
| |
| unsigned NumOp = MI.getNumOperands(); |
| if (NumOp == 0) |
| return false; |
| |
| bool AllDefs, Changed; |
| Changed = rewriteHexConstDefs(MI, Inputs, AllDefs); |
| // If not all defs have been rewritten (i.e. the instruction defines |
| // a register that is not compile-time constant), then try to rewrite |
| // register operands that are known to be constant with immediates. |
| if (!AllDefs) |
| Changed |= rewriteHexConstUses(MI, Inputs); |
| |
| return Changed; |
| } |
| |
| unsigned HexagonConstEvaluator::getRegBitWidth(unsigned Reg) const { |
| const TargetRegisterClass *RC = MRI->getRegClass(Reg); |
| if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) |
| return 32; |
| if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) |
| return 64; |
| if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) |
| return 8; |
| llvm_unreachable("Invalid register"); |
| return 0; |
| } |
| |
| uint32_t HexagonConstEvaluator::getCmp(unsigned Opc) { |
| switch (Opc) { |
| case Hexagon::C2_cmpeq: |
| case Hexagon::C2_cmpeqp: |
| case Hexagon::A4_cmpbeq: |
| case Hexagon::A4_cmpheq: |
| case Hexagon::A4_cmpbeqi: |
| case Hexagon::A4_cmpheqi: |
| case Hexagon::C2_cmpeqi: |
| case Hexagon::J4_cmpeqn1_t_jumpnv_nt: |
| case Hexagon::J4_cmpeqn1_t_jumpnv_t: |
| case Hexagon::J4_cmpeqi_t_jumpnv_nt: |
| case Hexagon::J4_cmpeqi_t_jumpnv_t: |
| case Hexagon::J4_cmpeq_t_jumpnv_nt: |
| case Hexagon::J4_cmpeq_t_jumpnv_t: |
| return Comparison::EQ; |
| |
| case Hexagon::C4_cmpneq: |
| case Hexagon::C4_cmpneqi: |
| case Hexagon::J4_cmpeqn1_f_jumpnv_nt: |
| case Hexagon::J4_cmpeqn1_f_jumpnv_t: |
| case Hexagon::J4_cmpeqi_f_jumpnv_nt: |
| case Hexagon::J4_cmpeqi_f_jumpnv_t: |
| case Hexagon::J4_cmpeq_f_jumpnv_nt: |
| case Hexagon::J4_cmpeq_f_jumpnv_t: |
| return Comparison::NE; |
| |
| case Hexagon::C2_cmpgt: |
| case Hexagon::C2_cmpgtp: |
| case Hexagon::A4_cmpbgt: |
| case Hexagon::A4_cmphgt: |
| case Hexagon::A4_cmpbgti: |
| case Hexagon::A4_cmphgti: |
| case Hexagon::C2_cmpgti: |
| case Hexagon::J4_cmpgtn1_t_jumpnv_nt: |
| case Hexagon::J4_cmpgtn1_t_jumpnv_t: |
| case Hexagon::J4_cmpgti_t_jumpnv_nt: |
| case Hexagon::J4_cmpgti_t_jumpnv_t: |
| case Hexagon::J4_cmpgt_t_jumpnv_nt: |
| case Hexagon::J4_cmpgt_t_jumpnv_t: |
| return Comparison::GTs; |
| |
| case Hexagon::C4_cmplte: |
| case Hexagon::C4_cmpltei: |
| case Hexagon::J4_cmpgtn1_f_jumpnv_nt: |
| case Hexagon::J4_cmpgtn1_f_jumpnv_t: |
| case Hexagon::J4_cmpgti_f_jumpnv_nt: |
| case Hexagon::J4_cmpgti_f_jumpnv_t: |
| case Hexagon::J4_cmpgt_f_jumpnv_nt: |
| case Hexagon::J4_cmpgt_f_jumpnv_t: |
| return Comparison::LEs; |
| |
| case Hexagon::C2_cmpgtu: |
| case Hexagon::C2_cmpgtup: |
| case Hexagon::A4_cmpbgtu: |
| case Hexagon::A4_cmpbgtui: |
| case Hexagon::A4_cmphgtu: |
| case Hexagon::A4_cmphgtui: |
| case Hexagon::C2_cmpgtui: |
| case Hexagon::J4_cmpgtui_t_jumpnv_nt: |
| case Hexagon::J4_cmpgtui_t_jumpnv_t: |
| case Hexagon::J4_cmpgtu_t_jumpnv_nt: |
| case Hexagon::J4_cmpgtu_t_jumpnv_t: |
| return Comparison::GTu; |
| |
| case Hexagon::J4_cmpltu_f_jumpnv_nt: |
| case Hexagon::J4_cmpltu_f_jumpnv_t: |
| return Comparison::GEu; |
| |
| case Hexagon::J4_cmpltu_t_jumpnv_nt: |
| case Hexagon::J4_cmpltu_t_jumpnv_t: |
| return Comparison::LTu; |
| |
| case Hexagon::J4_cmplt_f_jumpnv_nt: |
| case Hexagon::J4_cmplt_f_jumpnv_t: |
| return Comparison::GEs; |
| |
| case Hexagon::C4_cmplteu: |
| case Hexagon::C4_cmplteui: |
| case Hexagon::J4_cmpgtui_f_jumpnv_nt: |
| case Hexagon::J4_cmpgtui_f_jumpnv_t: |
| case Hexagon::J4_cmpgtu_f_jumpnv_nt: |
| case Hexagon::J4_cmpgtu_f_jumpnv_t: |
| return Comparison::LEu; |
| |
| case Hexagon::J4_cmplt_t_jumpnv_nt: |
| case Hexagon::J4_cmplt_t_jumpnv_t: |
| return Comparison::LTs; |
| |
| default: |
| break; |
| } |
| return Comparison::Unk; |
| } |
| |
| APInt HexagonConstEvaluator::getCmpImm(unsigned Opc, unsigned OpX, |
| const MachineOperand &MO) { |
| bool Signed = false; |
| switch (Opc) { |
| case Hexagon::A4_cmpbgtui: // u7 |
| case Hexagon::A4_cmphgtui: // u7 |
| break; |
| case Hexagon::A4_cmpheqi: // s8 |
| case Hexagon::C4_cmpneqi: // s8 |
| Signed = true; |
| break; |
| case Hexagon::A4_cmpbeqi: // u8 |
| break; |
| case Hexagon::C2_cmpgtui: // u9 |
| case Hexagon::C4_cmplteui: // u9 |
| break; |
| case Hexagon::C2_cmpeqi: // s10 |
| case Hexagon::C2_cmpgti: // s10 |
| case Hexagon::C4_cmpltei: // s10 |
| Signed = true; |
| break; |
| case Hexagon::J4_cmpeqi_f_jumpnv_nt: // u5 |
| case Hexagon::J4_cmpeqi_f_jumpnv_t: // u5 |
| case Hexagon::J4_cmpeqi_t_jumpnv_nt: // u5 |
| case Hexagon::J4_cmpeqi_t_jumpnv_t: // u5 |
| case Hexagon::J4_cmpgti_f_jumpnv_nt: // u5 |
| case Hexagon::J4_cmpgti_f_jumpnv_t: // u5 |
| case Hexagon::J4_cmpgti_t_jumpnv_nt: // u5 |
| case Hexagon::J4_cmpgti_t_jumpnv_t: // u5 |
| case Hexagon::J4_cmpgtui_f_jumpnv_nt: // u5 |
| case Hexagon::J4_cmpgtui_f_jumpnv_t: // u5 |
| case Hexagon::J4_cmpgtui_t_jumpnv_nt: // u5 |
| case Hexagon::J4_cmpgtui_t_jumpnv_t: // u5 |
| break; |
| default: |
| llvm_unreachable("Unhandled instruction"); |
| break; |
| } |
| |
| uint64_t Val = MO.getImm(); |
| return APInt(32, Val, Signed); |
| } |
| |
| void HexagonConstEvaluator::replaceWithNop(MachineInstr &MI) { |
| MI.setDesc(HII.get(Hexagon::A2_nop)); |
| while (MI.getNumOperands() > 0) |
| MI.RemoveOperand(0); |
| } |
| |
| bool HexagonConstEvaluator::evaluateHexRSEQ32(RegisterSubReg RL, RegisterSubReg RH, |
| const CellMap &Inputs, LatticeCell &Result) { |
| assert(Inputs.has(RL.Reg) && Inputs.has(RH.Reg)); |
| LatticeCell LSL, LSH; |
| if (!getCell(RL, Inputs, LSL) || !getCell(RH, Inputs, LSH)) |
| return false; |
| if (LSL.isProperty() || LSH.isProperty()) |
| return false; |
| |
| unsigned LN = LSL.size(), HN = LSH.size(); |
| SmallVector<APInt,4> LoVs(LN), HiVs(HN); |
| for (unsigned i = 0; i < LN; ++i) { |
| bool Eval = constToInt(LSL.Values[i], LoVs[i]); |
| if (!Eval) |
| return false; |
| assert(LoVs[i].getBitWidth() == 32); |
| } |
| for (unsigned i = 0; i < HN; ++i) { |
| bool Eval = constToInt(LSH.Values[i], HiVs[i]); |
| if (!Eval) |
| return false; |
| assert(HiVs[i].getBitWidth() == 32); |
| } |
| |
| for (unsigned i = 0; i < HiVs.size(); ++i) { |
| APInt HV = HiVs[i].zextOrSelf(64) << 32; |
| for (unsigned j = 0; j < LoVs.size(); ++j) { |
| APInt LV = LoVs[j].zextOrSelf(64); |
| const Constant *C = intToConst(HV | LV); |
| Result.add(C); |
| if (Result.isBottom()) |
| return false; |
| } |
| } |
| return !Result.isBottom(); |
| } |
| |
| bool HexagonConstEvaluator::evaluateHexCompare(const MachineInstr &MI, |
| const CellMap &Inputs, CellMap &Outputs) { |
| unsigned Opc = MI.getOpcode(); |
| bool Classic = false; |
| switch (Opc) { |
| case Hexagon::C2_cmpeq: |
| case Hexagon::C2_cmpeqp: |
| case Hexagon::C2_cmpgt: |
| case Hexagon::C2_cmpgtp: |
| case Hexagon::C2_cmpgtu: |
| case Hexagon::C2_cmpgtup: |
| case Hexagon::C2_cmpeqi: |
| |