blob: 76ff238234d9985e57d9d01c426d55138e150550 [file] [log] [blame]
//===--- AArch64CallLowering.cpp - Call lowering --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the lowering of LLVM calls to machine code calls for
/// GlobalISel.
///
//===----------------------------------------------------------------------===//
#include "AArch64CallLowering.h"
#include "AArch64ISelLowering.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64Subtarget.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/MachineValueType.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#define DEBUG_TYPE "aarch64-call-lowering"
using namespace llvm;
AArch64CallLowering::AArch64CallLowering(const AArch64TargetLowering &TLI)
: CallLowering(&TLI) {}
namespace {
struct IncomingArgHandler : public CallLowering::ValueHandler {
IncomingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
CCAssignFn *AssignFn)
: ValueHandler(MIRBuilder, MRI, AssignFn), StackUsed(0) {}
Register getStackAddress(uint64_t Size, int64_t Offset,
MachinePointerInfo &MPO) override {
auto &MFI = MIRBuilder.getMF().getFrameInfo();
int FI = MFI.CreateFixedObject(Size, Offset, true);
MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
Register AddrReg = MRI.createGenericVirtualRegister(LLT::pointer(0, 64));
MIRBuilder.buildFrameIndex(AddrReg, FI);
StackUsed = std::max(StackUsed, Size + Offset);
return AddrReg;
}
void assignValueToReg(Register ValVReg, Register PhysReg,
CCValAssign &VA) override {
markPhysRegUsed(PhysReg);
switch (VA.getLocInfo()) {
default:
MIRBuilder.buildCopy(ValVReg, PhysReg);
break;
case CCValAssign::LocInfo::SExt:
case CCValAssign::LocInfo::ZExt:
case CCValAssign::LocInfo::AExt: {
auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
MIRBuilder.buildTrunc(ValVReg, Copy);
break;
}
}
}
void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
MachinePointerInfo &MPO, CCValAssign &VA) override {
// FIXME: Get alignment
auto MMO = MIRBuilder.getMF().getMachineMemOperand(
MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, Size,
1);
MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
}
/// How the physical register gets marked varies between formal
/// parameters (it's a basic-block live-in), and a call instruction
/// (it's an implicit-def of the BL).
virtual void markPhysRegUsed(unsigned PhysReg) = 0;
bool isIncomingArgumentHandler() const override { return true; }
uint64_t StackUsed;
};
struct FormalArgHandler : public IncomingArgHandler {
FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
CCAssignFn *AssignFn)
: IncomingArgHandler(MIRBuilder, MRI, AssignFn) {}
void markPhysRegUsed(unsigned PhysReg) override {
MIRBuilder.getMRI()->addLiveIn(PhysReg);
MIRBuilder.getMBB().addLiveIn(PhysReg);
}
};
struct CallReturnHandler : public IncomingArgHandler {
CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
MachineInstrBuilder MIB, CCAssignFn *AssignFn)
: IncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}
void markPhysRegUsed(unsigned PhysReg) override {
MIB.addDef(PhysReg, RegState::Implicit);
}
MachineInstrBuilder MIB;
};
struct OutgoingArgHandler : public CallLowering::ValueHandler {
OutgoingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
MachineInstrBuilder MIB, CCAssignFn *AssignFn,
CCAssignFn *AssignFnVarArg, bool IsTailCall = false,
int FPDiff = 0)
: ValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB),
AssignFnVarArg(AssignFnVarArg), IsTailCall(IsTailCall), FPDiff(FPDiff),
StackSize(0) {}
bool isIncomingArgumentHandler() const override { return false; }
Register getStackAddress(uint64_t Size, int64_t Offset,
MachinePointerInfo &MPO) override {
MachineFunction &MF = MIRBuilder.getMF();
LLT p0 = LLT::pointer(0, 64);
LLT s64 = LLT::scalar(64);
if (IsTailCall) {
Offset += FPDiff;
int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
Register FIReg = MRI.createGenericVirtualRegister(p0);
MIRBuilder.buildFrameIndex(FIReg, FI);
MPO = MachinePointerInfo::getFixedStack(MF, FI);
return FIReg;
}
Register SPReg = MRI.createGenericVirtualRegister(p0);
MIRBuilder.buildCopy(SPReg, Register(AArch64::SP));
Register OffsetReg = MRI.createGenericVirtualRegister(s64);
MIRBuilder.buildConstant(OffsetReg, Offset);
Register AddrReg = MRI.createGenericVirtualRegister(p0);
MIRBuilder.buildPtrAdd(AddrReg, SPReg, OffsetReg);
MPO = MachinePointerInfo::getStack(MF, Offset);
return AddrReg;
}
void assignValueToReg(Register ValVReg, Register PhysReg,
CCValAssign &VA) override {
MIB.addUse(PhysReg, RegState::Implicit);
Register ExtReg = extendRegister(ValVReg, VA);
MIRBuilder.buildCopy(PhysReg, ExtReg);
}
void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
MachinePointerInfo &MPO, CCValAssign &VA) override {
if (VA.getLocInfo() == CCValAssign::LocInfo::AExt) {
Size = VA.getLocVT().getSizeInBits() / 8;
ValVReg = MIRBuilder.buildAnyExt(LLT::scalar(Size * 8), ValVReg)
->getOperand(0)
.getReg();
}
auto MMO = MIRBuilder.getMF().getMachineMemOperand(
MPO, MachineMemOperand::MOStore, Size, 1);
MIRBuilder.buildStore(ValVReg, Addr, *MMO);
}
bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
const CallLowering::ArgInfo &Info,
ISD::ArgFlagsTy Flags,
CCState &State) override {
bool Res;
if (Info.IsFixed)
Res = AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
else
Res = AssignFnVarArg(ValNo, ValVT, LocVT, LocInfo, Flags, State);
StackSize = State.getNextStackOffset();
return Res;
}
MachineInstrBuilder MIB;
CCAssignFn *AssignFnVarArg;
bool IsTailCall;
/// For tail calls, the byte offset of the call's argument area from the
/// callee's. Unused elsewhere.
int FPDiff;
uint64_t StackSize;
};
} // namespace
static bool doesCalleeRestoreStack(CallingConv::ID CallConv, bool TailCallOpt) {
return CallConv == CallingConv::Fast && TailCallOpt;
}
void AArch64CallLowering::splitToValueTypes(
const ArgInfo &OrigArg, SmallVectorImpl<ArgInfo> &SplitArgs,
const DataLayout &DL, MachineRegisterInfo &MRI, CallingConv::ID CallConv) const {
const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
LLVMContext &Ctx = OrigArg.Ty->getContext();
if (OrigArg.Ty->isVoidTy())
return;
SmallVector<EVT, 4> SplitVTs;
SmallVector<uint64_t, 4> Offsets;
ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0);
if (SplitVTs.size() == 1) {
// No splitting to do, but we want to replace the original type (e.g. [1 x
// double] -> double).
SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
OrigArg.Flags[0], OrigArg.IsFixed);
return;
}
// Create one ArgInfo for each virtual register in the original ArgInfo.
assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
OrigArg.Ty, CallConv, false);
for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0],
OrigArg.IsFixed);
if (NeedsRegBlock)
SplitArgs.back().Flags[0].setInConsecutiveRegs();
}
SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
}
bool AArch64CallLowering::lowerReturn(MachineIRBuilder &MIRBuilder,
const Value *Val,
ArrayRef<Register> VRegs,
Register SwiftErrorVReg) const {
auto MIB = MIRBuilder.buildInstrNoInsert(AArch64::RET_ReallyLR);
assert(((Val && !VRegs.empty()) || (!Val && VRegs.empty())) &&
"Return value without a vreg");
bool Success = true;
if (!VRegs.empty()) {
MachineFunction &MF = MIRBuilder.getMF();
const Function &F = MF.getFunction();
MachineRegisterInfo &MRI = MF.getRegInfo();
const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(F.getCallingConv());
auto &DL = F.getParent()->getDataLayout();
LLVMContext &Ctx = Val->getType()->getContext();
SmallVector<EVT, 4> SplitEVTs;
ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
assert(VRegs.size() == SplitEVTs.size() &&
"For each split Type there should be exactly one VReg.");
SmallVector<ArgInfo, 8> SplitArgs;
CallingConv::ID CC = F.getCallingConv();
for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
if (TLI.getNumRegistersForCallingConv(Ctx, CC, SplitEVTs[i]) > 1) {
LLVM_DEBUG(dbgs() << "Can't handle extended arg types which need split");
return false;
}
Register CurVReg = VRegs[i];
ArgInfo CurArgInfo = ArgInfo{CurVReg, SplitEVTs[i].getTypeForEVT(Ctx)};
setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
// i1 is a special case because SDAG i1 true is naturally zero extended
// when widened using ANYEXT. We need to do it explicitly here.
if (MRI.getType(CurVReg).getSizeInBits() == 1) {
CurVReg = MIRBuilder.buildZExt(LLT::scalar(8), CurVReg).getReg(0);
} else {
// Some types will need extending as specified by the CC.
MVT NewVT = TLI.getRegisterTypeForCallingConv(Ctx, CC, SplitEVTs[i]);
if (EVT(NewVT) != SplitEVTs[i]) {
unsigned ExtendOp = TargetOpcode::G_ANYEXT;
if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
Attribute::SExt))
ExtendOp = TargetOpcode::G_SEXT;
else if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
Attribute::ZExt))
ExtendOp = TargetOpcode::G_ZEXT;
LLT NewLLT(NewVT);
LLT OldLLT(MVT::getVT(CurArgInfo.Ty));
CurArgInfo.Ty = EVT(NewVT).getTypeForEVT(Ctx);
// Instead of an extend, we might have a vector type which needs
// padding with more elements, e.g. <2 x half> -> <4 x half>.
if (NewVT.isVector()) {
if (OldLLT.isVector()) {
if (NewLLT.getNumElements() > OldLLT.getNumElements()) {
// We don't handle VA types which are not exactly twice the
// size, but can easily be done in future.
if (NewLLT.getNumElements() != OldLLT.getNumElements() * 2) {
LLVM_DEBUG(dbgs() << "Outgoing vector ret has too many elts");
return false;
}
auto Undef = MIRBuilder.buildUndef({OldLLT});
CurVReg =
MIRBuilder.buildMerge({NewLLT}, {CurVReg, Undef.getReg(0)})
.getReg(0);
} else {
// Just do a vector extend.
CurVReg = MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg})
.getReg(0);
}
} else if (NewLLT.getNumElements() == 2) {
// We need to pad a <1 x S> type to <2 x S>. Since we don't have
// <1 x S> vector types in GISel we use a build_vector instead
// of a vector merge/concat.
auto Undef = MIRBuilder.buildUndef({OldLLT});
CurVReg =
MIRBuilder
.buildBuildVector({NewLLT}, {CurVReg, Undef.getReg(0)})
.getReg(0);
} else {
LLVM_DEBUG(dbgs() << "Could not handle ret ty");
return false;
}
} else {
// A scalar extend.
CurVReg =
MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg}).getReg(0);
}
}
}
if (CurVReg != CurArgInfo.Regs[0]) {
CurArgInfo.Regs[0] = CurVReg;
// Reset the arg flags after modifying CurVReg.
setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
}
splitToValueTypes(CurArgInfo, SplitArgs, DL, MRI, CC);
}
OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFn, AssignFn);
Success = handleAssignments(MIRBuilder, SplitArgs, Handler);
}
if (SwiftErrorVReg) {
MIB.addUse(AArch64::X21, RegState::Implicit);
MIRBuilder.buildCopy(AArch64::X21, SwiftErrorVReg);
}
MIRBuilder.insertInstr(MIB);
return Success;
}
/// Helper function to compute forwarded registers for musttail calls. Computes
/// the forwarded registers, sets MBB liveness, and emits COPY instructions that
/// can be used to save + restore registers later.
static void handleMustTailForwardedRegisters(MachineIRBuilder &MIRBuilder,
CCAssignFn *AssignFn) {
MachineBasicBlock &MBB = MIRBuilder.getMBB();
MachineFunction &MF = MIRBuilder.getMF();
MachineFrameInfo &MFI = MF.getFrameInfo();
if (!MFI.hasMustTailInVarArgFunc())
return;
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
const Function &F = MF.getFunction();
assert(F.isVarArg() && "Expected F to be vararg?");
// Compute the set of forwarded registers. The rest are scratch.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(F.getCallingConv(), /*IsVarArg=*/true, MF, ArgLocs,
F.getContext());
SmallVector<MVT, 2> RegParmTypes;
RegParmTypes.push_back(MVT::i64);
RegParmTypes.push_back(MVT::f128);
// Later on, we can use this vector to restore the registers if necessary.
SmallVectorImpl<ForwardedRegister> &Forwards =
FuncInfo->getForwardedMustTailRegParms();
CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, AssignFn);
// Conservatively forward X8, since it might be used for an aggregate
// return.
if (!CCInfo.isAllocated(AArch64::X8)) {
unsigned X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass);
Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64));
}
// Add the forwards to the MachineBasicBlock and MachineFunction.
for (const auto &F : Forwards) {
MBB.addLiveIn(F.PReg);
MIRBuilder.buildCopy(Register(F.VReg), Register(F.PReg));
}
}
bool AArch64CallLowering::lowerFormalArguments(
MachineIRBuilder &MIRBuilder, const Function &F,
ArrayRef<ArrayRef<Register>> VRegs) const {
MachineFunction &MF = MIRBuilder.getMF();
MachineBasicBlock &MBB = MIRBuilder.getMBB();
MachineRegisterInfo &MRI = MF.getRegInfo();
auto &DL = F.getParent()->getDataLayout();
SmallVector<ArgInfo, 8> SplitArgs;
unsigned i = 0;
for (auto &Arg : F.args()) {
if (DL.getTypeStoreSize(Arg.getType()) == 0)
continue;
ArgInfo OrigArg{VRegs[i], Arg.getType()};
setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, F);
splitToValueTypes(OrigArg, SplitArgs, DL, MRI, F.getCallingConv());
++i;
}
if (!MBB.empty())
MIRBuilder.setInstr(*MBB.begin());
const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
CCAssignFn *AssignFn =
TLI.CCAssignFnForCall(F.getCallingConv(), /*IsVarArg=*/false);
FormalArgHandler Handler(MIRBuilder, MRI, AssignFn);
if (!handleAssignments(MIRBuilder, SplitArgs, Handler))
return false;
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
uint64_t StackOffset = Handler.StackUsed;
if (F.isVarArg()) {
auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
if (!Subtarget.isTargetDarwin()) {
// FIXME: we need to reimplement saveVarArgsRegisters from
// AArch64ISelLowering.
return false;
}
// We currently pass all varargs at 8-byte alignment, or 4 in ILP32.
StackOffset = alignTo(Handler.StackUsed, Subtarget.isTargetILP32() ? 4 : 8);
auto &MFI = MIRBuilder.getMF().getFrameInfo();
FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
}
if (doesCalleeRestoreStack(F.getCallingConv(),
MF.getTarget().Options.GuaranteedTailCallOpt)) {
// We have a non-standard ABI, so why not make full use of the stack that
// we're going to pop? It must be aligned to 16 B in any case.
StackOffset = alignTo(StackOffset, 16);
// If we're expected to restore the stack (e.g. fastcc), then we'll be
// adding a multiple of 16.
FuncInfo->setArgumentStackToRestore(StackOffset);
// Our own callers will guarantee that the space is free by giving an
// aligned value to CALLSEQ_START.
}
// When we tail call, we need to check if the callee's arguments
// will fit on the caller's stack. So, whenever we lower formal arguments,
// we should keep track of this information, since we might lower a tail call
// in this function later.
FuncInfo->setBytesInStackArgArea(StackOffset);
auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
if (Subtarget.hasCustomCallingConv())
Subtarget.getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF);
handleMustTailForwardedRegisters(MIRBuilder, AssignFn);
// Move back to the end of the basic block.
MIRBuilder.setMBB(MBB);
return true;
}
/// Return true if the calling convention is one that we can guarantee TCO for.
static bool canGuaranteeTCO(CallingConv::ID CC) {
return CC == CallingConv::Fast;
}
/// Return true if we might ever do TCO for calls with this calling convention.
static bool mayTailCallThisCC(CallingConv::ID CC) {
switch (CC) {
case CallingConv::C:
case CallingConv::PreserveMost:
case CallingConv::Swift:
return true;
default:
return canGuaranteeTCO(CC);
}
}
/// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
/// CC.
static std::pair<CCAssignFn *, CCAssignFn *>
getAssignFnsForCC(CallingConv::ID CC, const AArch64TargetLowering &TLI) {
return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
}
bool AArch64CallLowering::doCallerAndCalleePassArgsTheSameWay(
CallLoweringInfo &Info, MachineFunction &MF,
SmallVectorImpl<ArgInfo> &InArgs) const {
const Function &CallerF = MF.getFunction();
CallingConv::ID CalleeCC = Info.CallConv;
CallingConv::ID CallerCC = CallerF.getCallingConv();
// If the calling conventions match, then everything must be the same.
if (CalleeCC == CallerCC)
return true;
// Check if the caller and callee will handle arguments in the same way.
const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
CCAssignFn *CalleeAssignFnFixed;
CCAssignFn *CalleeAssignFnVarArg;
std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) =
getAssignFnsForCC(CalleeCC, TLI);
CCAssignFn *CallerAssignFnFixed;
CCAssignFn *CallerAssignFnVarArg;
std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) =
getAssignFnsForCC(CallerCC, TLI);
if (!resultsCompatible(Info, MF, InArgs, *CalleeAssignFnFixed,
*CalleeAssignFnVarArg, *CallerAssignFnFixed,
*CallerAssignFnVarArg))
return false;
// Make sure that the caller and callee preserve all of the same registers.
auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv()) {
TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved);
TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved);
}
return TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved);
}
bool AArch64CallLowering::areCalleeOutgoingArgsTailCallable(
CallLoweringInfo &Info, MachineFunction &MF,
SmallVectorImpl<ArgInfo> &OutArgs) const {
// If there are no outgoing arguments, then we are done.
if (OutArgs.empty())
return true;
const Function &CallerF = MF.getFunction();
CallingConv::ID CalleeCC = Info.CallConv;
CallingConv::ID CallerCC = CallerF.getCallingConv();
const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
CCAssignFn *AssignFnFixed;
CCAssignFn *AssignFnVarArg;
std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
// We have outgoing arguments. Make sure that we can tail call with them.
SmallVector<CCValAssign, 16> OutLocs;
CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext());
if (!analyzeArgInfo(OutInfo, OutArgs, *AssignFnFixed, *AssignFnVarArg)) {
LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n");
return false;
}
// Make sure that they can fit on the caller's stack.
const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) {
LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n");
return false;
}
// Verify that the parameters in callee-saved registers match.
// TODO: Port this over to CallLowering as general code once swiftself is
// supported.
auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC);
MachineRegisterInfo &MRI = MF.getRegInfo();
for (unsigned i = 0; i < OutLocs.size(); ++i) {
auto &ArgLoc = OutLocs[i];
// If it's not a register, it's fine.
if (!ArgLoc.isRegLoc()) {
if (Info.IsVarArg) {
// Be conservative and disallow variadic memory operands to match SDAG's
// behaviour.
// FIXME: If the caller's calling convention is C, then we can
// potentially use its argument area. However, for cases like fastcc,
// we can't do anything.
LLVM_DEBUG(
dbgs()
<< "... Cannot tail call vararg function with stack arguments\n");
return false;
}
continue;
}
Register Reg = ArgLoc.getLocReg();
// Only look at callee-saved registers.
if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
continue;
LLVM_DEBUG(
dbgs()
<< "... Call has an argument passed in a callee-saved register.\n");
// Check if it was copied from.
ArgInfo &OutInfo = OutArgs[i];
if (OutInfo.Regs.size() > 1) {
LLVM_DEBUG(
dbgs() << "... Cannot handle arguments in multiple registers.\n");
return false;
}
// Check if we copy the register, walking through copies from virtual
// registers. Note that getDefIgnoringCopies does not ignore copies from
// physical registers.
MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
LLVM_DEBUG(
dbgs()
<< "... Parameter was not copied into a VReg, cannot tail call.\n");
return false;
}
// Got a copy. Verify that it's the same as the register we want.
Register CopyRHS = RegDef->getOperand(1).getReg();
if (CopyRHS != Reg) {
LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
"VReg, cannot tail call.\n");
return false;
}
}
return true;
}
bool AArch64CallLowering::isEligibleForTailCallOptimization(
MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
SmallVectorImpl<ArgInfo> &InArgs,
SmallVectorImpl<ArgInfo> &OutArgs) const {
// Must pass all target-independent checks in order to tail call optimize.
if (!Info.IsTailCall)
return false;
CallingConv::ID CalleeCC = Info.CallConv;
MachineFunction &MF = MIRBuilder.getMF();
const Function &CallerF = MF.getFunction();
LLVM_DEBUG(dbgs() << "Attempting to lower call as tail call\n");
if (Info.SwiftErrorVReg) {
// TODO: We should handle this.
// Note that this is also handled by the check for no outgoing arguments.
// Proactively disabling this though, because the swifterror handling in
// lowerCall inserts a COPY *after* the location of the call.
LLVM_DEBUG(dbgs() << "... Cannot handle tail calls with swifterror yet.\n");
return false;
}
if (!mayTailCallThisCC(CalleeCC)) {
LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n");
return false;
}
// Byval parameters hand the function a pointer directly into the stack area
// we want to reuse during a tail call. Working around this *is* possible (see
// X86).
//
// FIXME: In AArch64ISelLowering, this isn't worked around. Can/should we try
// it?
//
// On Windows, "inreg" attributes signify non-aggregate indirect returns.
// In this case, it is necessary to save/restore X0 in the callee. Tail
// call opt interferes with this. So we disable tail call opt when the
// caller has an argument with "inreg" attribute.
//
// FIXME: Check whether the callee also has an "inreg" argument.
//
// When the caller has a swifterror argument, we don't want to tail call
// because would have to move into the swifterror register before the
// tail call.
if (any_of(CallerF.args(), [](const Argument &A) {
return A.hasByValAttr() || A.hasInRegAttr() || A.hasSwiftErrorAttr();
})) {
LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval, "
"inreg, or swifterror arguments\n");
return false;
}
// Externally-defined functions with weak linkage should not be
// tail-called on AArch64 when the OS does not support dynamic
// pre-emption of symbols, as the AAELF spec requires normal calls
// to undefined weak functions to be replaced with a NOP or jump to the
// next instruction. The behaviour of branch instructions in this
// situation (as used for tail calls) is implementation-defined, so we
// cannot rely on the linker replacing the tail call with a return.
if (Info.Callee.isGlobal()) {
const GlobalValue *GV = Info.Callee.getGlobal();
const Triple &TT = MF.getTarget().getTargetTriple();
if (GV->hasExternalWeakLinkage() &&
(!TT.isOSWindows() || TT.isOSBinFormatELF() ||
TT.isOSBinFormatMachO())) {
LLVM_DEBUG(dbgs() << "... Cannot tail call externally-defined function "
"with weak linkage for this OS.\n");
return false;
}
}
// If we have -tailcallopt, then we're done.
if (MF.getTarget().Options.GuaranteedTailCallOpt)
return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv();
// We don't have -tailcallopt, so we're allowed to change the ABI (sibcall).
// Try to find cases where we can do that.
// I want anyone implementing a new calling convention to think long and hard
// about this assert.
assert((!Info.IsVarArg || CalleeCC == CallingConv::C) &&
"Unexpected variadic calling convention");
// Verify that the incoming and outgoing arguments from the callee are
// safe to tail call.
if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) {
LLVM_DEBUG(
dbgs()
<< "... Caller and callee have incompatible calling conventions.\n");
return false;
}
if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs))
return false;
LLVM_DEBUG(
dbgs() << "... Call is eligible for tail call optimization.\n");
return true;
}
static unsigned getCallOpcode(const Function &CallerF, bool IsIndirect,
bool IsTailCall) {
if (!IsTailCall)
return IsIndirect ? AArch64::BLR : AArch64::BL;
if (!IsIndirect)
return AArch64::TCRETURNdi;
// When BTI is enabled, we need to use TCRETURNriBTI to make sure that we use
// x16 or x17.
if (CallerF.hasFnAttribute("branch-target-enforcement"))
return AArch64::TCRETURNriBTI;
return AArch64::TCRETURNri;
}
bool AArch64CallLowering::lowerTailCall(
MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
SmallVectorImpl<ArgInfo> &OutArgs) const {
MachineFunction &MF = MIRBuilder.getMF();
const Function &F = MF.getFunction();
MachineRegisterInfo &MRI = MF.getRegInfo();
const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
// True when we're tail calling, but without -tailcallopt.
bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt;
// TODO: Right now, regbankselect doesn't know how to handle the rtcGPR64
// register class. Until we can do that, we should fall back here.
if (F.hasFnAttribute("branch-target-enforcement")) {
LLVM_DEBUG(
dbgs() << "Cannot lower indirect tail calls with BTI enabled yet.\n");
return false;
}
// Find out which ABI gets to decide where things go.
CallingConv::ID CalleeCC = Info.CallConv;
CCAssignFn *AssignFnFixed;
CCAssignFn *AssignFnVarArg;
std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
MachineInstrBuilder CallSeqStart;
if (!IsSibCall)
CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);
unsigned Opc = getCallOpcode(F, Info.Callee.isReg(), true);
auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
MIB.add(Info.Callee);
// Byte offset for the tail call. When we are sibcalling, this will always
// be 0.
MIB.addImm(0);
// Tell the call which registers are clobbered.
auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC);
if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv())
TRI->UpdateCustomCallPreservedMask(MF, &Mask);
MIB.addRegMask(Mask);
if (TRI->isAnyArgRegReserved(MF))
TRI->emitReservedArgRegCallError(MF);
// FPDiff is the byte offset of the call's argument area from the callee's.
// Stores to callee stack arguments will be placed in FixedStackSlots offset
// by this amount for a tail call. In a sibling call it must be 0 because the
// caller will deallocate the entire stack and the callee still expects its
// arguments to begin at SP+0.
int FPDiff = 0;
// This will be 0 for sibcalls, potentially nonzero for tail calls produced
// by -tailcallopt. For sibcalls, the memory operands for the call are
// already available in the caller's incoming argument space.
unsigned NumBytes = 0;
if (!IsSibCall) {
// We aren't sibcalling, so we need to compute FPDiff. We need to do this
// before handling assignments, because FPDiff must be known for memory
// arguments.
unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
SmallVector<CCValAssign, 16> OutLocs;
CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext());
analyzeArgInfo(OutInfo, OutArgs, *AssignFnFixed, *AssignFnVarArg);
// The callee will pop the argument stack as a tail call. Thus, we must
// keep it 16-byte aligned.
NumBytes = alignTo(OutInfo.getNextStackOffset(), 16);
// FPDiff will be negative if this tail call requires more space than we
// would automatically have in our incoming argument space. Positive if we
// actually shrink the stack.
FPDiff = NumReusableBytes - NumBytes;
// The stack pointer must be 16-byte aligned at all times it's used for a
// memory operation, which in practice means at *all* times and in
// particular across call boundaries. Therefore our own arguments started at
// a 16-byte aligned SP and the delta applied for the tail call should
// satisfy the same constraint.
assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
}
const auto &Forwards = FuncInfo->getForwardedMustTailRegParms();
// Do the actual argument marshalling.
SmallVector<unsigned, 8> PhysRegs;
OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
AssignFnVarArg, true, FPDiff);
if (!handleAssignments(MIRBuilder, OutArgs, Handler))
return false;
if (Info.IsVarArg && Info.IsMustTailCall) {
// Now we know what's being passed to the function. Add uses to the call for
// the forwarded registers that we *aren't* passing as parameters. This will
// preserve the copies we build earlier.
for (const auto &F : Forwards) {
Register ForwardedReg = F.PReg;
// If the register is already passed, or aliases a register which is
// already being passed, then skip it.
if (any_of(MIB->uses(), [&ForwardedReg, &TRI](const MachineOperand &Use) {
if (!Use.isReg())
return false;
return TRI->regsOverlap(Use.getReg(), ForwardedReg);
}))
continue;
// We aren't passing it already, so we should add it to the call.
MIRBuilder.buildCopy(ForwardedReg, Register(F.VReg));
MIB.addReg(ForwardedReg, RegState::Implicit);
}
}
// If we have -tailcallopt, we need to adjust the stack. We'll do the call
// sequence start and end here.
if (!IsSibCall) {
MIB->getOperand(1).setImm(FPDiff);
CallSeqStart.addImm(NumBytes).addImm(0);
// End the call sequence *before* emitting the call. Normally, we would
// tidy the frame up after the call. However, here, we've laid out the
// parameters so that when SP is reset, they will be in the correct
// location.
MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP).addImm(NumBytes).addImm(0);
}
// Now we can add the actual call instruction to the correct basic block.
MIRBuilder.insertInstr(MIB);
// If Callee is a reg, since it is used by a target specific instruction,
// it must have a register class matching the constraint of that instruction.
if (Info.Callee.isReg())
MIB->getOperand(0).setReg(constrainOperandRegClass(
MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
*MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee,
0));
MF.getFrameInfo().setHasTailCall();
Info.LoweredTailCall = true;
return true;
}
bool AArch64CallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
CallLoweringInfo &Info) const {
MachineFunction &MF = MIRBuilder.getMF();
const Function &F = MF.getFunction();
MachineRegisterInfo &MRI = MF.getRegInfo();
auto &DL = F.getParent()->getDataLayout();
const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
SmallVector<ArgInfo, 8> OutArgs;
for (auto &OrigArg : Info.OrigArgs) {
splitToValueTypes(OrigArg, OutArgs, DL, MRI, Info.CallConv);
// AAPCS requires that we zero-extend i1 to 8 bits by the caller.
if (OrigArg.Ty->isIntegerTy(1))
OutArgs.back().Flags[0].setZExt();
}
SmallVector<ArgInfo, 8> InArgs;
if (!Info.OrigRet.Ty->isVoidTy())
splitToValueTypes(Info.OrigRet, InArgs, DL, MRI, F.getCallingConv());
// If we can lower as a tail call, do that instead.
bool CanTailCallOpt =
isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs);
// We must emit a tail call if we have musttail.
if (Info.IsMustTailCall && !CanTailCallOpt) {
// There are types of incoming/outgoing arguments we can't handle yet, so
// it doesn't make sense to actually die here like in ISelLowering. Instead,
// fall back to SelectionDAG and let it try to handle this.
LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
return false;
}
if (CanTailCallOpt)
return lowerTailCall(MIRBuilder, Info, OutArgs);
// Find out which ABI gets to decide where things go.
CCAssignFn *AssignFnFixed;
CCAssignFn *AssignFnVarArg;
std::tie(AssignFnFixed, AssignFnVarArg) =
getAssignFnsForCC(Info.CallConv, TLI);
MachineInstrBuilder CallSeqStart;
CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);
// Create a temporarily-floating call instruction so we can add the implicit
// uses of arg registers.
unsigned Opc = getCallOpcode(F, Info.Callee.isReg(), false);
auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
MIB.add(Info.Callee);
// Tell the call which registers are clobbered.
auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv())
TRI->UpdateCustomCallPreservedMask(MF, &Mask);
MIB.addRegMask(Mask);
if (TRI->isAnyArgRegReserved(MF))
TRI->emitReservedArgRegCallError(MF);
// Do the actual argument marshalling.
SmallVector<unsigned, 8> PhysRegs;
OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
AssignFnVarArg, false);
if (!handleAssignments(MIRBuilder, OutArgs, Handler))
return false;
// Now we can add the actual call instruction to the correct basic block.
MIRBuilder.insertInstr(MIB);
// If Callee is a reg, since it is used by a target specific
// instruction, it must have a register class matching the
// constraint of that instruction.
if (Info.Callee.isReg())
MIB->getOperand(0).setReg(constrainOperandRegClass(
MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
*MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee,
0));
// Finally we can copy the returned value back into its virtual-register. In
// symmetry with the arguments, the physical register must be an
// implicit-define of the call instruction.
if (!Info.OrigRet.Ty->isVoidTy()) {
CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv);
CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn);
if (!handleAssignments(MIRBuilder, InArgs, Handler))
return false;
}
if (Info.SwiftErrorVReg) {
MIB.addDef(AArch64::X21, RegState::Implicit);
MIRBuilder.buildCopy(Info.SwiftErrorVReg, Register(AArch64::X21));
}
uint64_t CalleePopBytes =
doesCalleeRestoreStack(Info.CallConv,
MF.getTarget().Options.GuaranteedTailCallOpt)
? alignTo(Handler.StackSize, 16)
: 0;
CallSeqStart.addImm(Handler.StackSize).addImm(0);
MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP)
.addImm(Handler.StackSize)
.addImm(CalleePopBytes);
return true;
}