| //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run |
| // both before and after the DAG is legalized. |
| // |
| // This pass is not a substitute for the LLVM IR instcombine pass. This pass is |
| // primarily intended to handle simplification opportunities that are implicit |
| // in the LLVM IR and exposed by the various codegen lowering phases. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/IntervalMap.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/CodeGen/DAGCombine.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/RuntimeLibcalls.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/SelectionDAGTargetInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <functional> |
| #include <iterator> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "dagcombine" |
| |
| STATISTIC(NodesCombined , "Number of dag nodes combined"); |
| STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); |
| STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); |
| STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); |
| STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); |
| STATISTIC(SlicedLoads, "Number of load sliced"); |
| STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops"); |
| |
| static cl::opt<bool> |
| CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, |
| cl::desc("Enable DAG combiner's use of IR alias analysis")); |
| |
| static cl::opt<bool> |
| UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), |
| cl::desc("Enable DAG combiner's use of TBAA")); |
| |
| #ifndef NDEBUG |
| static cl::opt<std::string> |
| CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, |
| cl::desc("Only use DAG-combiner alias analysis in this" |
| " function")); |
| #endif |
| |
| /// Hidden option to stress test load slicing, i.e., when this option |
| /// is enabled, load slicing bypasses most of its profitability guards. |
| static cl::opt<bool> |
| StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, |
| cl::desc("Bypass the profitability model of load slicing"), |
| cl::init(false)); |
| |
| static cl::opt<bool> |
| MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), |
| cl::desc("DAG combiner may split indexing from loads")); |
| |
| static cl::opt<bool> |
| EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true), |
| cl::desc("DAG combiner enable merging multiple stores " |
| "into a wider store")); |
| |
| static cl::opt<unsigned> TokenFactorInlineLimit( |
| "combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048), |
| cl::desc("Limit the number of operands to inline for Token Factors")); |
| |
| static cl::opt<unsigned> StoreMergeDependenceLimit( |
| "combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10), |
| cl::desc("Limit the number of times for the same StoreNode and RootNode " |
| "to bail out in store merging dependence check")); |
| |
| namespace { |
| |
| class DAGCombiner { |
| SelectionDAG &DAG; |
| const TargetLowering &TLI; |
| CombineLevel Level; |
| CodeGenOpt::Level OptLevel; |
| bool LegalDAG = false; |
| bool LegalOperations = false; |
| bool LegalTypes = false; |
| bool ForCodeSize; |
| |
| /// Worklist of all of the nodes that need to be simplified. |
| /// |
| /// This must behave as a stack -- new nodes to process are pushed onto the |
| /// back and when processing we pop off of the back. |
| /// |
| /// The worklist will not contain duplicates but may contain null entries |
| /// due to nodes being deleted from the underlying DAG. |
| SmallVector<SDNode *, 64> Worklist; |
| |
| /// Mapping from an SDNode to its position on the worklist. |
| /// |
| /// This is used to find and remove nodes from the worklist (by nulling |
| /// them) when they are deleted from the underlying DAG. It relies on |
| /// stable indices of nodes within the worklist. |
| DenseMap<SDNode *, unsigned> WorklistMap; |
| /// This records all nodes attempted to add to the worklist since we |
| /// considered a new worklist entry. As we keep do not add duplicate nodes |
| /// in the worklist, this is different from the tail of the worklist. |
| SmallSetVector<SDNode *, 32> PruningList; |
| |
| /// Set of nodes which have been combined (at least once). |
| /// |
| /// This is used to allow us to reliably add any operands of a DAG node |
| /// which have not yet been combined to the worklist. |
| SmallPtrSet<SDNode *, 32> CombinedNodes; |
| |
| /// Map from candidate StoreNode to the pair of RootNode and count. |
| /// The count is used to track how many times we have seen the StoreNode |
| /// with the same RootNode bail out in dependence check. If we have seen |
| /// the bail out for the same pair many times over a limit, we won't |
| /// consider the StoreNode with the same RootNode as store merging |
| /// candidate again. |
| DenseMap<SDNode *, std::pair<SDNode *, unsigned>> StoreRootCountMap; |
| |
| // AA - Used for DAG load/store alias analysis. |
| AliasAnalysis *AA; |
| |
| /// When an instruction is simplified, add all users of the instruction to |
| /// the work lists because they might get more simplified now. |
| void AddUsersToWorklist(SDNode *N) { |
| for (SDNode *Node : N->uses()) |
| AddToWorklist(Node); |
| } |
| |
| /// Convenient shorthand to add a node and all of its user to the worklist. |
| void AddToWorklistWithUsers(SDNode *N) { |
| AddUsersToWorklist(N); |
| AddToWorklist(N); |
| } |
| |
| // Prune potentially dangling nodes. This is called after |
| // any visit to a node, but should also be called during a visit after any |
| // failed combine which may have created a DAG node. |
| void clearAddedDanglingWorklistEntries() { |
| // Check any nodes added to the worklist to see if they are prunable. |
| while (!PruningList.empty()) { |
| auto *N = PruningList.pop_back_val(); |
| if (N->use_empty()) |
| recursivelyDeleteUnusedNodes(N); |
| } |
| } |
| |
| SDNode *getNextWorklistEntry() { |
| // Before we do any work, remove nodes that are not in use. |
| clearAddedDanglingWorklistEntries(); |
| SDNode *N = nullptr; |
| // The Worklist holds the SDNodes in order, but it may contain null |
| // entries. |
| while (!N && !Worklist.empty()) { |
| N = Worklist.pop_back_val(); |
| } |
| |
| if (N) { |
| bool GoodWorklistEntry = WorklistMap.erase(N); |
| (void)GoodWorklistEntry; |
| assert(GoodWorklistEntry && |
| "Found a worklist entry without a corresponding map entry!"); |
| } |
| return N; |
| } |
| |
| /// Call the node-specific routine that folds each particular type of node. |
| SDValue visit(SDNode *N); |
| |
| public: |
| DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL) |
| : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes), |
| OptLevel(OL), AA(AA) { |
| ForCodeSize = DAG.shouldOptForSize(); |
| |
| MaximumLegalStoreInBits = 0; |
| // We use the minimum store size here, since that's all we can guarantee |
| // for the scalable vector types. |
| for (MVT VT : MVT::all_valuetypes()) |
| if (EVT(VT).isSimple() && VT != MVT::Other && |
| TLI.isTypeLegal(EVT(VT)) && |
| VT.getSizeInBits().getKnownMinSize() >= MaximumLegalStoreInBits) |
| MaximumLegalStoreInBits = VT.getSizeInBits().getKnownMinSize(); |
| } |
| |
| void ConsiderForPruning(SDNode *N) { |
| // Mark this for potential pruning. |
| PruningList.insert(N); |
| } |
| |
| /// Add to the worklist making sure its instance is at the back (next to be |
| /// processed.) |
| void AddToWorklist(SDNode *N) { |
| assert(N->getOpcode() != ISD::DELETED_NODE && |
| "Deleted Node added to Worklist"); |
| |
| // Skip handle nodes as they can't usefully be combined and confuse the |
| // zero-use deletion strategy. |
| if (N->getOpcode() == ISD::HANDLENODE) |
| return; |
| |
| ConsiderForPruning(N); |
| |
| if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) |
| Worklist.push_back(N); |
| } |
| |
| /// Remove all instances of N from the worklist. |
| void removeFromWorklist(SDNode *N) { |
| CombinedNodes.erase(N); |
| PruningList.remove(N); |
| StoreRootCountMap.erase(N); |
| |
| auto It = WorklistMap.find(N); |
| if (It == WorklistMap.end()) |
| return; // Not in the worklist. |
| |
| // Null out the entry rather than erasing it to avoid a linear operation. |
| Worklist[It->second] = nullptr; |
| WorklistMap.erase(It); |
| } |
| |
| void deleteAndRecombine(SDNode *N); |
| bool recursivelyDeleteUnusedNodes(SDNode *N); |
| |
| /// Replaces all uses of the results of one DAG node with new values. |
| SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, |
| bool AddTo = true); |
| |
| /// Replaces all uses of the results of one DAG node with new values. |
| SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { |
| return CombineTo(N, &Res, 1, AddTo); |
| } |
| |
| /// Replaces all uses of the results of one DAG node with new values. |
| SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, |
| bool AddTo = true) { |
| SDValue To[] = { Res0, Res1 }; |
| return CombineTo(N, To, 2, AddTo); |
| } |
| |
| void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); |
| |
| private: |
| unsigned MaximumLegalStoreInBits; |
| |
| /// Check the specified integer node value to see if it can be simplified or |
| /// if things it uses can be simplified by bit propagation. |
| /// If so, return true. |
| bool SimplifyDemandedBits(SDValue Op) { |
| unsigned BitWidth = Op.getScalarValueSizeInBits(); |
| APInt DemandedBits = APInt::getAllOnesValue(BitWidth); |
| return SimplifyDemandedBits(Op, DemandedBits); |
| } |
| |
| bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) { |
| EVT VT = Op.getValueType(); |
| unsigned NumElts = VT.isVector() ? VT.getVectorNumElements() : 1; |
| APInt DemandedElts = APInt::getAllOnesValue(NumElts); |
| return SimplifyDemandedBits(Op, DemandedBits, DemandedElts); |
| } |
| |
| /// Check the specified vector node value to see if it can be simplified or |
| /// if things it uses can be simplified as it only uses some of the |
| /// elements. If so, return true. |
| bool SimplifyDemandedVectorElts(SDValue Op) { |
| unsigned NumElts = Op.getValueType().getVectorNumElements(); |
| APInt DemandedElts = APInt::getAllOnesValue(NumElts); |
| return SimplifyDemandedVectorElts(Op, DemandedElts); |
| } |
| |
| bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, |
| const APInt &DemandedElts); |
| bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts, |
| bool AssumeSingleUse = false); |
| |
| bool CombineToPreIndexedLoadStore(SDNode *N); |
| bool CombineToPostIndexedLoadStore(SDNode *N); |
| SDValue SplitIndexingFromLoad(LoadSDNode *LD); |
| bool SliceUpLoad(SDNode *N); |
| |
| // Scalars have size 0 to distinguish from singleton vectors. |
| SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD); |
| bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val); |
| bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val); |
| |
| /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed |
| /// load. |
| /// |
| /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. |
| /// \param InVecVT type of the input vector to EVE with bitcasts resolved. |
| /// \param EltNo index of the vector element to load. |
| /// \param OriginalLoad load that EVE came from to be replaced. |
| /// \returns EVE on success SDValue() on failure. |
| SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, |
| SDValue EltNo, |
| LoadSDNode *OriginalLoad); |
| void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); |
| SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); |
| SDValue SExtPromoteOperand(SDValue Op, EVT PVT); |
| SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); |
| SDValue PromoteIntBinOp(SDValue Op); |
| SDValue PromoteIntShiftOp(SDValue Op); |
| SDValue PromoteExtend(SDValue Op); |
| bool PromoteLoad(SDValue Op); |
| |
| /// Call the node-specific routine that knows how to fold each |
| /// particular type of node. If that doesn't do anything, try the |
| /// target-specific DAG combines. |
| SDValue combine(SDNode *N); |
| |
| // Visitation implementation - Implement dag node combining for different |
| // node types. The semantics are as follows: |
| // Return Value: |
| // SDValue.getNode() == 0 - No change was made |
| // SDValue.getNode() == N - N was replaced, is dead and has been handled. |
| // otherwise - N should be replaced by the returned Operand. |
| // |
| SDValue visitTokenFactor(SDNode *N); |
| SDValue visitMERGE_VALUES(SDNode *N); |
| SDValue visitADD(SDNode *N); |
| SDValue visitADDLike(SDNode *N); |
| SDValue visitADDLikeCommutative(SDValue N0, SDValue N1, SDNode *LocReference); |
| SDValue visitSUB(SDNode *N); |
| SDValue visitADDSAT(SDNode *N); |
| SDValue visitSUBSAT(SDNode *N); |
| SDValue visitADDC(SDNode *N); |
| SDValue visitADDO(SDNode *N); |
| SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N); |
| SDValue visitSUBC(SDNode *N); |
| SDValue visitSUBO(SDNode *N); |
| SDValue visitADDE(SDNode *N); |
| SDValue visitADDCARRY(SDNode *N); |
| SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N); |
| SDValue visitSUBE(SDNode *N); |
| SDValue visitSUBCARRY(SDNode *N); |
| SDValue visitMUL(SDNode *N); |
| SDValue visitMULFIX(SDNode *N); |
| SDValue useDivRem(SDNode *N); |
| SDValue visitSDIV(SDNode *N); |
| SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N); |
| SDValue visitUDIV(SDNode *N); |
| SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N); |
| SDValue visitREM(SDNode *N); |
| SDValue visitMULHU(SDNode *N); |
| SDValue visitMULHS(SDNode *N); |
| SDValue visitSMUL_LOHI(SDNode *N); |
| SDValue visitUMUL_LOHI(SDNode *N); |
| SDValue visitMULO(SDNode *N); |
| SDValue visitIMINMAX(SDNode *N); |
| SDValue visitAND(SDNode *N); |
| SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N); |
| SDValue visitOR(SDNode *N); |
| SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N); |
| SDValue visitXOR(SDNode *N); |
| SDValue SimplifyVBinOp(SDNode *N); |
| SDValue visitSHL(SDNode *N); |
| SDValue visitSRA(SDNode *N); |
| SDValue visitSRL(SDNode *N); |
| SDValue visitFunnelShift(SDNode *N); |
| SDValue visitRotate(SDNode *N); |
| SDValue visitABS(SDNode *N); |
| SDValue visitBSWAP(SDNode *N); |
| SDValue visitBITREVERSE(SDNode *N); |
| SDValue visitCTLZ(SDNode *N); |
| SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); |
| SDValue visitCTTZ(SDNode *N); |
| SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); |
| SDValue visitCTPOP(SDNode *N); |
| SDValue visitSELECT(SDNode *N); |
| SDValue visitVSELECT(SDNode *N); |
| SDValue visitSELECT_CC(SDNode *N); |
| SDValue visitSETCC(SDNode *N); |
| SDValue visitSETCCCARRY(SDNode *N); |
| SDValue visitSIGN_EXTEND(SDNode *N); |
| SDValue visitZERO_EXTEND(SDNode *N); |
| SDValue visitANY_EXTEND(SDNode *N); |
| SDValue visitAssertExt(SDNode *N); |
| SDValue visitSIGN_EXTEND_INREG(SDNode *N); |
| SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N); |
| SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N); |
| SDValue visitTRUNCATE(SDNode *N); |
| SDValue visitBITCAST(SDNode *N); |
| SDValue visitBUILD_PAIR(SDNode *N); |
| SDValue visitFADD(SDNode *N); |
| SDValue visitFSUB(SDNode *N); |
| SDValue visitFMUL(SDNode *N); |
| SDValue visitFMA(SDNode *N); |
| SDValue visitFDIV(SDNode *N); |
| SDValue visitFREM(SDNode *N); |
| SDValue visitFSQRT(SDNode *N); |
| SDValue visitFCOPYSIGN(SDNode *N); |
| SDValue visitFPOW(SDNode *N); |
| SDValue visitSINT_TO_FP(SDNode *N); |
| SDValue visitUINT_TO_FP(SDNode *N); |
| SDValue visitFP_TO_SINT(SDNode *N); |
| SDValue visitFP_TO_UINT(SDNode *N); |
| SDValue visitFP_ROUND(SDNode *N); |
| SDValue visitFP_EXTEND(SDNode *N); |
| SDValue visitFNEG(SDNode *N); |
| SDValue visitFABS(SDNode *N); |
| SDValue visitFCEIL(SDNode *N); |
| SDValue visitFTRUNC(SDNode *N); |
| SDValue visitFFLOOR(SDNode *N); |
| SDValue visitFMINNUM(SDNode *N); |
| SDValue visitFMAXNUM(SDNode *N); |
| SDValue visitFMINIMUM(SDNode *N); |
| SDValue visitFMAXIMUM(SDNode *N); |
| SDValue visitBRCOND(SDNode *N); |
| SDValue visitBR_CC(SDNode *N); |
| SDValue visitLOAD(SDNode *N); |
| |
| SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); |
| SDValue replaceStoreOfFPConstant(StoreSDNode *ST); |
| |
| SDValue visitSTORE(SDNode *N); |
| SDValue visitLIFETIME_END(SDNode *N); |
| SDValue visitINSERT_VECTOR_ELT(SDNode *N); |
| SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); |
| SDValue visitBUILD_VECTOR(SDNode *N); |
| SDValue visitCONCAT_VECTORS(SDNode *N); |
| SDValue visitEXTRACT_SUBVECTOR(SDNode *N); |
| SDValue visitVECTOR_SHUFFLE(SDNode *N); |
| SDValue visitSCALAR_TO_VECTOR(SDNode *N); |
| SDValue visitINSERT_SUBVECTOR(SDNode *N); |
| SDValue visitMLOAD(SDNode *N); |
| SDValue visitMSTORE(SDNode *N); |
| SDValue visitMGATHER(SDNode *N); |
| SDValue visitMSCATTER(SDNode *N); |
| SDValue visitFP_TO_FP16(SDNode *N); |
| SDValue visitFP16_TO_FP(SDNode *N); |
| SDValue visitVECREDUCE(SDNode *N); |
| |
| SDValue visitFADDForFMACombine(SDNode *N); |
| SDValue visitFSUBForFMACombine(SDNode *N); |
| SDValue visitFMULForFMADistributiveCombine(SDNode *N); |
| |
| SDValue XformToShuffleWithZero(SDNode *N); |
| bool reassociationCanBreakAddressingModePattern(unsigned Opc, |
| const SDLoc &DL, SDValue N0, |
| SDValue N1); |
| SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0, |
| SDValue N1); |
| SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, |
| SDValue N1, SDNodeFlags Flags); |
| |
| SDValue visitShiftByConstant(SDNode *N); |
| |
| SDValue foldSelectOfConstants(SDNode *N); |
| SDValue foldVSelectOfConstants(SDNode *N); |
| SDValue foldBinOpIntoSelect(SDNode *BO); |
| bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); |
| SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N); |
| SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2); |
| SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, |
| SDValue N2, SDValue N3, ISD::CondCode CC, |
| bool NotExtCompare = false); |
| SDValue convertSelectOfFPConstantsToLoadOffset( |
| const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, |
| ISD::CondCode CC); |
| SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1, |
| SDValue N2, SDValue N3, ISD::CondCode CC); |
| SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, |
| const SDLoc &DL); |
| SDValue unfoldMaskedMerge(SDNode *N); |
| SDValue unfoldExtremeBitClearingToShifts(SDNode *N); |
| SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, |
| const SDLoc &DL, bool foldBooleans); |
| SDValue rebuildSetCC(SDValue N); |
| |
| bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, |
| SDValue &CC) const; |
| bool isOneUseSetCC(SDValue N) const; |
| bool isCheaperToUseNegatedFPOps(SDValue X, SDValue Y); |
| |
| SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, |
| unsigned HiOp); |
| SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); |
| SDValue CombineExtLoad(SDNode *N); |
| SDValue CombineZExtLogicopShiftLoad(SDNode *N); |
| SDValue combineRepeatedFPDivisors(SDNode *N); |
| SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex); |
| SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); |
| SDValue BuildSDIV(SDNode *N); |
| SDValue BuildSDIVPow2(SDNode *N); |
| SDValue BuildUDIV(SDNode *N); |
| SDValue BuildLogBase2(SDValue V, const SDLoc &DL); |
| SDValue BuildDivEstimate(SDValue N, SDValue Op, SDNodeFlags Flags); |
| SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags); |
| SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags); |
| SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip); |
| SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations, |
| SDNodeFlags Flags, bool Reciprocal); |
| SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations, |
| SDNodeFlags Flags, bool Reciprocal); |
| SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, |
| bool DemandHighBits = true); |
| SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); |
| SDValue MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, |
| SDValue InnerPos, SDValue InnerNeg, |
| unsigned PosOpcode, unsigned NegOpcode, |
| const SDLoc &DL); |
| SDValue MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL); |
| SDValue MatchLoadCombine(SDNode *N); |
| SDValue MatchStoreCombine(StoreSDNode *N); |
| SDValue ReduceLoadWidth(SDNode *N); |
| SDValue ReduceLoadOpStoreWidth(SDNode *N); |
| SDValue splitMergedValStore(StoreSDNode *ST); |
| SDValue TransformFPLoadStorePair(SDNode *N); |
| SDValue convertBuildVecZextToZext(SDNode *N); |
| SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); |
| SDValue reduceBuildVecToShuffle(SDNode *N); |
| SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N, |
| ArrayRef<int> VectorMask, SDValue VecIn1, |
| SDValue VecIn2, unsigned LeftIdx, |
| bool DidSplitVec); |
| SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast); |
| |
| /// Walk up chain skipping non-aliasing memory nodes, |
| /// looking for aliasing nodes and adding them to the Aliases vector. |
| void GatherAllAliases(SDNode *N, SDValue OriginalChain, |
| SmallVectorImpl<SDValue> &Aliases); |
| |
| /// Return true if there is any possibility that the two addresses overlap. |
| bool isAlias(SDNode *Op0, SDNode *Op1) const; |
| |
| /// Walk up chain skipping non-aliasing memory nodes, looking for a better |
| /// chain (aliasing node.) |
| SDValue FindBetterChain(SDNode *N, SDValue Chain); |
| |
| /// Try to replace a store and any possibly adjacent stores on |
| /// consecutive chains with better chains. Return true only if St is |
| /// replaced. |
| /// |
| /// Notice that other chains may still be replaced even if the function |
| /// returns false. |
| bool findBetterNeighborChains(StoreSDNode *St); |
| |
| // Helper for findBetterNeighborChains. Walk up store chain add additional |
| // chained stores that do not overlap and can be parallelized. |
| bool parallelizeChainedStores(StoreSDNode *St); |
| |
| /// Holds a pointer to an LSBaseSDNode as well as information on where it |
| /// is located in a sequence of memory operations connected by a chain. |
| struct MemOpLink { |
| // Ptr to the mem node. |
| LSBaseSDNode *MemNode; |
| |
| // Offset from the base ptr. |
| int64_t OffsetFromBase; |
| |
| MemOpLink(LSBaseSDNode *N, int64_t Offset) |
| : MemNode(N), OffsetFromBase(Offset) {} |
| }; |
| |
| /// This is a helper function for visitMUL to check the profitability |
| /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). |
| /// MulNode is the original multiply, AddNode is (add x, c1), |
| /// and ConstNode is c2. |
| bool isMulAddWithConstProfitable(SDNode *MulNode, |
| SDValue &AddNode, |
| SDValue &ConstNode); |
| |
| /// This is a helper function for visitAND and visitZERO_EXTEND. Returns |
| /// true if the (and (load x) c) pattern matches an extload. ExtVT returns |
| /// the type of the loaded value to be extended. |
| bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, |
| EVT LoadResultTy, EVT &ExtVT); |
| |
| /// Helper function to calculate whether the given Load/Store can have its |
| /// width reduced to ExtVT. |
| bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType, |
| EVT &MemVT, unsigned ShAmt = 0); |
| |
| /// Used by BackwardsPropagateMask to find suitable loads. |
| bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads, |
| SmallPtrSetImpl<SDNode*> &NodesWithConsts, |
| ConstantSDNode *Mask, SDNode *&NodeToMask); |
| /// Attempt to propagate a given AND node back to load leaves so that they |
| /// can be combined into narrow loads. |
| bool BackwardsPropagateMask(SDNode *N); |
| |
| /// Helper function for MergeConsecutiveStores which merges the |
| /// component store chains. |
| SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, |
| unsigned NumStores); |
| |
| /// This is a helper function for MergeConsecutiveStores. When the |
| /// source elements of the consecutive stores are all constants or |
| /// all extracted vector elements, try to merge them into one |
| /// larger store introducing bitcasts if necessary. \return True |
| /// if a merged store was created. |
| bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, |
| EVT MemVT, unsigned NumStores, |
| bool IsConstantSrc, bool UseVector, |
| bool UseTrunc); |
| |
| /// This is a helper function for MergeConsecutiveStores. Stores |
| /// that potentially may be merged with St are placed in |
| /// StoreNodes. RootNode is a chain predecessor to all store |
| /// candidates. |
| void getStoreMergeCandidates(StoreSDNode *St, |
| SmallVectorImpl<MemOpLink> &StoreNodes, |
| SDNode *&Root); |
| |
| /// Helper function for MergeConsecutiveStores. Checks if |
| /// candidate stores have indirect dependency through their |
| /// operands. RootNode is the predecessor to all stores calculated |
| /// by getStoreMergeCandidates and is used to prune the dependency check. |
| /// \return True if safe to merge. |
| bool checkMergeStoreCandidatesForDependencies( |
| SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, |
| SDNode *RootNode); |
| |
| /// Merge consecutive store operations into a wide store. |
| /// This optimization uses wide integers or vectors when possible. |
| /// \return number of stores that were merged into a merged store (the |
| /// affected nodes are stored as a prefix in \p StoreNodes). |
| bool MergeConsecutiveStores(StoreSDNode *St); |
| |
| /// Try to transform a truncation where C is a constant: |
| /// (trunc (and X, C)) -> (and (trunc X), (trunc C)) |
| /// |
| /// \p N needs to be a truncation and its first operand an AND. Other |
| /// requirements are checked by the function (e.g. that trunc is |
| /// single-use) and if missed an empty SDValue is returned. |
| SDValue distributeTruncateThroughAnd(SDNode *N); |
| |
| /// Helper function to determine whether the target supports operation |
| /// given by \p Opcode for type \p VT, that is, whether the operation |
| /// is legal or custom before legalizing operations, and whether is |
| /// legal (but not custom) after legalization. |
| bool hasOperation(unsigned Opcode, EVT VT) { |
| if (LegalOperations) |
| return TLI.isOperationLegal(Opcode, VT); |
| return TLI.isOperationLegalOrCustom(Opcode, VT); |
| } |
| |
| public: |
| /// Runs the dag combiner on all nodes in the work list |
| void Run(CombineLevel AtLevel); |
| |
| SelectionDAG &getDAG() const { return DAG; } |
| |
| /// Returns a type large enough to hold any valid shift amount - before type |
| /// legalization these can be huge. |
| EVT getShiftAmountTy(EVT LHSTy) { |
| assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); |
| return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes); |
| } |
| |
| /// This method returns true if we are running before type legalization or |
| /// if the specified VT is legal. |
| bool isTypeLegal(const EVT &VT) { |
| if (!LegalTypes) return true; |
| return TLI.isTypeLegal(VT); |
| } |
| |
| /// Convenience wrapper around TargetLowering::getSetCCResultType |
| EVT getSetCCResultType(EVT VT) const { |
| return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); |
| } |
| |
| void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, |
| SDValue OrigLoad, SDValue ExtLoad, |
| ISD::NodeType ExtType); |
| }; |
| |
| /// This class is a DAGUpdateListener that removes any deleted |
| /// nodes from the worklist. |
| class WorklistRemover : public SelectionDAG::DAGUpdateListener { |
| DAGCombiner &DC; |
| |
| public: |
| explicit WorklistRemover(DAGCombiner &dc) |
| : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} |
| |
| void NodeDeleted(SDNode *N, SDNode *E) override { |
| DC.removeFromWorklist(N); |
| } |
| }; |
| |
| class WorklistInserter : public SelectionDAG::DAGUpdateListener { |
| DAGCombiner &DC; |
| |
| public: |
| explicit WorklistInserter(DAGCombiner &dc) |
| : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} |
| |
| // FIXME: Ideally we could add N to the worklist, but this causes exponential |
| // compile time costs in large DAGs, e.g. Halide. |
| void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); } |
| }; |
| |
| } // end anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // TargetLowering::DAGCombinerInfo implementation |
| //===----------------------------------------------------------------------===// |
| |
| void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { |
| ((DAGCombiner*)DC)->AddToWorklist(N); |
| } |
| |
| SDValue TargetLowering::DAGCombinerInfo:: |
| CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { |
| return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); |
| } |
| |
| SDValue TargetLowering::DAGCombinerInfo:: |
| CombineTo(SDNode *N, SDValue Res, bool AddTo) { |
| return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); |
| } |
| |
| SDValue TargetLowering::DAGCombinerInfo:: |
| CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { |
| return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); |
| } |
| |
| bool TargetLowering::DAGCombinerInfo:: |
| recursivelyDeleteUnusedNodes(SDNode *N) { |
| return ((DAGCombiner*)DC)->recursivelyDeleteUnusedNodes(N); |
| } |
| |
| void TargetLowering::DAGCombinerInfo:: |
| CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { |
| return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Helper Functions |
| //===----------------------------------------------------------------------===// |
| |
| void DAGCombiner::deleteAndRecombine(SDNode *N) { |
| removeFromWorklist(N); |
| |
| // If the operands of this node are only used by the node, they will now be |
| // dead. Make sure to re-visit them and recursively delete dead nodes. |
| for (const SDValue &Op : N->ops()) |
| // For an operand generating multiple values, one of the values may |
| // become dead allowing further simplification (e.g. split index |
| // arithmetic from an indexed load). |
| if (Op->hasOneUse() || Op->getNumValues() > 1) |
| AddToWorklist(Op.getNode()); |
| |
| DAG.DeleteNode(N); |
| } |
| |
| // APInts must be the same size for most operations, this helper |
| // function zero extends the shorter of the pair so that they match. |
| // We provide an Offset so that we can create bitwidths that won't overflow. |
| static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) { |
| unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth()); |
| LHS = LHS.zextOrSelf(Bits); |
| RHS = RHS.zextOrSelf(Bits); |
| } |
| |
| // Return true if this node is a setcc, or is a select_cc |
| // that selects between the target values used for true and false, making it |
| // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to |
| // the appropriate nodes based on the type of node we are checking. This |
| // simplifies life a bit for the callers. |
| bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, |
| SDValue &CC) const { |
| if (N.getOpcode() == ISD::SETCC) { |
| LHS = N.getOperand(0); |
| RHS = N.getOperand(1); |
| CC = N.getOperand(2); |
| return true; |
| } |
| |
| if (N.getOpcode() != ISD::SELECT_CC || |
| !TLI.isConstTrueVal(N.getOperand(2).getNode()) || |
| !TLI.isConstFalseVal(N.getOperand(3).getNode())) |
| return false; |
| |
| if (TLI.getBooleanContents(N.getValueType()) == |
| TargetLowering::UndefinedBooleanContent) |
| return false; |
| |
| LHS = N.getOperand(0); |
| RHS = N.getOperand(1); |
| CC = N.getOperand(4); |
| return true; |
| } |
| |
| /// Return true if this is a SetCC-equivalent operation with only one use. |
| /// If this is true, it allows the users to invert the operation for free when |
| /// it is profitable to do so. |
| bool DAGCombiner::isOneUseSetCC(SDValue N) const { |
| SDValue N0, N1, N2; |
| if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) |
| return true; |
| return false; |
| } |
| |
| // Returns the SDNode if it is a constant float BuildVector |
| // or constant float. |
| static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) { |
| if (isa<ConstantFPSDNode>(N)) |
| return N.getNode(); |
| if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) |
| return N.getNode(); |
| return nullptr; |
| } |
| |
| // Determines if it is a constant integer or a build vector of constant |
| // integers (and undefs). |
| // Do not permit build vector implicit truncation. |
| static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) { |
| if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N)) |
| return !(Const->isOpaque() && NoOpaques); |
| if (N.getOpcode() != ISD::BUILD_VECTOR) |
| return false; |
| unsigned BitWidth = N.getScalarValueSizeInBits(); |
| for (const SDValue &Op : N->op_values()) { |
| if (Op.isUndef()) |
| continue; |
| ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op); |
| if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth || |
| (Const->isOpaque() && NoOpaques)) |
| return false; |
| } |
| return true; |
| } |
| |
| // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with |
| // undef's. |
| static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) { |
| if (V.getOpcode() != ISD::BUILD_VECTOR) |
| return false; |
| return isConstantOrConstantVector(V, NoOpaques) || |
| ISD::isBuildVectorOfConstantFPSDNodes(V.getNode()); |
| } |
| |
| bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc, |
| const SDLoc &DL, |
| SDValue N0, |
| SDValue N1) { |
| // Currently this only tries to ensure we don't undo the GEP splits done by |
| // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this, |
| // we check if the following transformation would be problematic: |
| // (load/store (add, (add, x, offset1), offset2)) -> |
| // (load/store (add, x, offset1+offset2)). |
| |
| if (Opc != ISD::ADD || N0.getOpcode() != ISD::ADD) |
| return false; |
| |
| if (N0.hasOneUse()) |
| return false; |
| |
| auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| auto *C2 = dyn_cast<ConstantSDNode>(N1); |
| if (!C1 || !C2) |
| return false; |
| |
| const APInt &C1APIntVal = C1->getAPIntValue(); |
| const APInt &C2APIntVal = C2->getAPIntValue(); |
| if (C1APIntVal.getBitWidth() > 64 || C2APIntVal.getBitWidth() > 64) |
| return false; |
| |
| const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal; |
| if (CombinedValueIntVal.getBitWidth() > 64) |
| return false; |
| const int64_t CombinedValue = CombinedValueIntVal.getSExtValue(); |
| |
| for (SDNode *Node : N0->uses()) { |
| auto LoadStore = dyn_cast<MemSDNode>(Node); |
| if (LoadStore) { |
| // Is x[offset2] already not a legal addressing mode? If so then |
| // reassociating the constants breaks nothing (we test offset2 because |
| // that's the one we hope to fold into the load or store). |
| TargetLoweringBase::AddrMode AM; |
| AM.HasBaseReg = true; |
| AM.BaseOffs = C2APIntVal.getSExtValue(); |
| EVT VT = LoadStore->getMemoryVT(); |
| unsigned AS = LoadStore->getAddressSpace(); |
| Type *AccessTy = VT.getTypeForEVT(*DAG.getContext()); |
| if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) |
| continue; |
| |
| // Would x[offset1+offset2] still be a legal addressing mode? |
| AM.BaseOffs = CombinedValue; |
| if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // Helper for DAGCombiner::reassociateOps. Try to reassociate an expression |
| // such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc. |
| SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, |
| SDValue N0, SDValue N1) { |
| EVT VT = N0.getValueType(); |
| |
| if (N0.getOpcode() != Opc) |
| return SDValue(); |
| |
| // Don't reassociate reductions. |
| if (N0->getFlags().hasVectorReduction()) |
| return SDValue(); |
| |
| if (SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) { |
| if (SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N1)) { |
| // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2)) |
| if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, C1, C2)) |
| return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); |
| return SDValue(); |
| } |
| if (N0.hasOneUse()) { |
| // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1) |
| // iff (op x, c1) has one use |
| SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1); |
| if (!OpNode.getNode()) |
| return SDValue(); |
| return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); |
| } |
| } |
| return SDValue(); |
| } |
| |
| // Try to reassociate commutative binops. |
| SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, |
| SDValue N1, SDNodeFlags Flags) { |
| assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative."); |
| // Don't reassociate reductions. |
| if (Flags.hasVectorReduction()) |
| return SDValue(); |
| |
| // Floating-point reassociation is not allowed without loose FP math. |
| if (N0.getValueType().isFloatingPoint() || |
| N1.getValueType().isFloatingPoint()) |
| if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros()) |
| return SDValue(); |
| |
| if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1)) |
| return Combined; |
| if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0)) |
| return Combined; |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, |
| bool AddTo) { |
| assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); |
| ++NodesCombined; |
| LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: "; |
| To[0].getNode()->dump(&DAG); |
| dbgs() << " and " << NumTo - 1 << " other values\n"); |
| for (unsigned i = 0, e = NumTo; i != e; ++i) |
| assert((!To[i].getNode() || |
| N->getValueType(i) == To[i].getValueType()) && |
| "Cannot combine value to value of different type!"); |
| |
| WorklistRemover DeadNodes(*this); |
| DAG.ReplaceAllUsesWith(N, To); |
| if (AddTo) { |
| // Push the new nodes and any users onto the worklist |
| for (unsigned i = 0, e = NumTo; i != e; ++i) { |
| if (To[i].getNode()) { |
| AddToWorklist(To[i].getNode()); |
| AddUsersToWorklist(To[i].getNode()); |
| } |
| } |
| } |
| |
| // Finally, if the node is now dead, remove it from the graph. The node |
| // may not be dead if the replacement process recursively simplified to |
| // something else needing this node. |
| if (N->use_empty()) |
| deleteAndRecombine(N); |
| return SDValue(N, 0); |
| } |
| |
| void DAGCombiner:: |
| CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { |
| // Replace all uses. If any nodes become isomorphic to other nodes and |
| // are deleted, make sure to remove them from our worklist. |
| WorklistRemover DeadNodes(*this); |
| DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); |
| |
| // Push the new node and any (possibly new) users onto the worklist. |
| AddToWorklistWithUsers(TLO.New.getNode()); |
| |
| // Finally, if the node is now dead, remove it from the graph. The node |
| // may not be dead if the replacement process recursively simplified to |
| // something else needing this node. |
| if (TLO.Old.getNode()->use_empty()) |
| deleteAndRecombine(TLO.Old.getNode()); |
| } |
| |
| /// Check the specified integer node value to see if it can be simplified or if |
| /// things it uses can be simplified by bit propagation. If so, return true. |
| bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, |
| const APInt &DemandedElts) { |
| TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); |
| KnownBits Known; |
| if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO)) |
| return false; |
| |
| // Revisit the node. |
| AddToWorklist(Op.getNode()); |
| |
| // Replace the old value with the new one. |
| ++NodesCombined; |
| LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG); |
| dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG); |
| dbgs() << '\n'); |
| |
| CommitTargetLoweringOpt(TLO); |
| return true; |
| } |
| |
| /// Check the specified vector node value to see if it can be simplified or |
| /// if things it uses can be simplified as it only uses some of the elements. |
| /// If so, return true. |
| bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op, |
| const APInt &DemandedElts, |
| bool AssumeSingleUse) { |
| TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); |
| APInt KnownUndef, KnownZero; |
| if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, |
| TLO, 0, AssumeSingleUse)) |
| return false; |
| |
| // Revisit the node. |
| AddToWorklist(Op.getNode()); |
| |
| // Replace the old value with the new one. |
| ++NodesCombined; |
| LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG); |
| dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG); |
| dbgs() << '\n'); |
| |
| CommitTargetLoweringOpt(TLO); |
| return true; |
| } |
| |
| void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { |
| SDLoc DL(Load); |
| EVT VT = Load->getValueType(0); |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0)); |
| |
| LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: "; |
| Trunc.getNode()->dump(&DAG); dbgs() << '\n'); |
| WorklistRemover DeadNodes(*this); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); |
| deleteAndRecombine(Load); |
| AddToWorklist(Trunc.getNode()); |
| } |
| |
| SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { |
| Replace = false; |
| SDLoc DL(Op); |
| if (ISD::isUNINDEXEDLoad(Op.getNode())) { |
| LoadSDNode *LD = cast<LoadSDNode>(Op); |
| EVT MemVT = LD->getMemoryVT(); |
| ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD |
| : LD->getExtensionType(); |
| Replace = true; |
| return DAG.getExtLoad(ExtType, DL, PVT, |
| LD->getChain(), LD->getBasePtr(), |
| MemVT, LD->getMemOperand()); |
| } |
| |
| unsigned Opc = Op.getOpcode(); |
| switch (Opc) { |
| default: break; |
| case ISD::AssertSext: |
| if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT)) |
| return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1)); |
| break; |
| case ISD::AssertZext: |
| if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT)) |
| return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1)); |
| break; |
| case ISD::Constant: { |
| unsigned ExtOpc = |
| Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| return DAG.getNode(ExtOpc, DL, PVT, Op); |
| } |
| } |
| |
| if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) |
| return SDValue(); |
| return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op); |
| } |
| |
| SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { |
| if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) |
| return SDValue(); |
| EVT OldVT = Op.getValueType(); |
| SDLoc DL(Op); |
| bool Replace = false; |
| SDValue NewOp = PromoteOperand(Op, PVT, Replace); |
| if (!NewOp.getNode()) |
| return SDValue(); |
| AddToWorklist(NewOp.getNode()); |
| |
| if (Replace) |
| ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp, |
| DAG.getValueType(OldVT)); |
| } |
| |
| SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { |
| EVT OldVT = Op.getValueType(); |
| SDLoc DL(Op); |
| bool Replace = false; |
| SDValue NewOp = PromoteOperand(Op, PVT, Replace); |
| if (!NewOp.getNode()) |
| return SDValue(); |
| AddToWorklist(NewOp.getNode()); |
| |
| if (Replace) |
| ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); |
| return DAG.getZeroExtendInReg(NewOp, DL, OldVT); |
| } |
| |
| /// Promote the specified integer binary operation if the target indicates it is |
| /// beneficial. e.g. On x86, it's usually better to promote i16 operations to |
| /// i32 since i16 instructions are longer. |
| SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { |
| if (!LegalOperations) |
| return SDValue(); |
| |
| EVT VT = Op.getValueType(); |
| if (VT.isVector() || !VT.isInteger()) |
| return SDValue(); |
| |
| // If operation type is 'undesirable', e.g. i16 on x86, consider |
| // promoting it. |
| unsigned Opc = Op.getOpcode(); |
| if (TLI.isTypeDesirableForOp(Opc, VT)) |
| return SDValue(); |
| |
| EVT PVT = VT; |
| // Consult target whether it is a good idea to promote this operation and |
| // what's the right type to promote it to. |
| if (TLI.IsDesirableToPromoteOp(Op, PVT)) { |
| assert(PVT != VT && "Don't know what type to promote to!"); |
| |
| LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); |
| |
| bool Replace0 = false; |
| SDValue N0 = Op.getOperand(0); |
| SDValue NN0 = PromoteOperand(N0, PVT, Replace0); |
| |
| bool Replace1 = false; |
| SDValue N1 = Op.getOperand(1); |
| SDValue NN1 = PromoteOperand(N1, PVT, Replace1); |
| SDLoc DL(Op); |
| |
| SDValue RV = |
| DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1)); |
| |
| // We are always replacing N0/N1's use in N and only need |
| // additional replacements if there are additional uses. |
| Replace0 &= !N0->hasOneUse(); |
| Replace1 &= (N0 != N1) && !N1->hasOneUse(); |
| |
| // Combine Op here so it is preserved past replacements. |
| CombineTo(Op.getNode(), RV); |
| |
| // If operands have a use ordering, make sure we deal with |
| // predecessor first. |
| if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) { |
| std::swap(N0, N1); |
| std::swap(NN0, NN1); |
| } |
| |
| if (Replace0) { |
| AddToWorklist(NN0.getNode()); |
| ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); |
| } |
| if (Replace1) { |
| AddToWorklist(NN1.getNode()); |
| ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); |
| } |
| return Op; |
| } |
| return SDValue(); |
| } |
| |
| /// Promote the specified integer shift operation if the target indicates it is |
| /// beneficial. e.g. On x86, it's usually better to promote i16 operations to |
| /// i32 since i16 instructions are longer. |
| SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { |
| if (!LegalOperations) |
| return SDValue(); |
| |
| EVT VT = Op.getValueType(); |
| if (VT.isVector() || !VT.isInteger()) |
| return SDValue(); |
| |
| // If operation type is 'undesirable', e.g. i16 on x86, consider |
| // promoting it. |
| unsigned Opc = Op.getOpcode(); |
| if (TLI.isTypeDesirableForOp(Opc, VT)) |
| return SDValue(); |
| |
| EVT PVT = VT; |
| // Consult target whether it is a good idea to promote this operation and |
| // what's the right type to promote it to. |
| if (TLI.IsDesirableToPromoteOp(Op, PVT)) { |
| assert(PVT != VT && "Don't know what type to promote to!"); |
| |
| LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); |
| |
| bool Replace = false; |
| SDValue N0 = Op.getOperand(0); |
| SDValue N1 = Op.getOperand(1); |
| if (Opc == ISD::SRA) |
| N0 = SExtPromoteOperand(N0, PVT); |
| else if (Opc == ISD::SRL) |
| N0 = ZExtPromoteOperand(N0, PVT); |
| else |
| N0 = PromoteOperand(N0, PVT, Replace); |
| |
| if (!N0.getNode()) |
| return SDValue(); |
| |
| SDLoc DL(Op); |
| SDValue RV = |
| DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1)); |
| |
| if (Replace) |
| ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); |
| |
| // Deal with Op being deleted. |
| if (Op && Op.getOpcode() != ISD::DELETED_NODE) |
| return RV; |
| } |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::PromoteExtend(SDValue Op) { |
| if (!LegalOperations) |
| return SDValue(); |
| |
| EVT VT = Op.getValueType(); |
| if (VT.isVector() || !VT.isInteger()) |
| return SDValue(); |
| |
| // If operation type is 'undesirable', e.g. i16 on x86, consider |
| // promoting it. |
| unsigned Opc = Op.getOpcode(); |
| if (TLI.isTypeDesirableForOp(Opc, VT)) |
| return SDValue(); |
| |
| EVT PVT = VT; |
| // Consult target whether it is a good idea to promote this operation and |
| // what's the right type to promote it to. |
| if (TLI.IsDesirableToPromoteOp(Op, PVT)) { |
| assert(PVT != VT && "Don't know what type to promote to!"); |
| // fold (aext (aext x)) -> (aext x) |
| // fold (aext (zext x)) -> (zext x) |
| // fold (aext (sext x)) -> (sext x) |
| LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); |
| return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); |
| } |
| return SDValue(); |
| } |
| |
| bool DAGCombiner::PromoteLoad(SDValue Op) { |
| if (!LegalOperations) |
| return false; |
| |
| if (!ISD::isUNINDEXEDLoad(Op.getNode())) |
| return false; |
| |
| EVT VT = Op.getValueType(); |
| if (VT.isVector() || !VT.isInteger()) |
| return false; |
| |
| // If operation type is 'undesirable', e.g. i16 on x86, consider |
| // promoting it. |
| unsigned Opc = Op.getOpcode(); |
| if (TLI.isTypeDesirableForOp(Opc, VT)) |
| return false; |
| |
| EVT PVT = VT; |
| // Consult target whether it is a good idea to promote this operation and |
| // what's the right type to promote it to. |
| if (TLI.IsDesirableToPromoteOp(Op, PVT)) { |
| assert(PVT != VT && "Don't know what type to promote to!"); |
| |
| SDLoc DL(Op); |
| SDNode *N = Op.getNode(); |
| LoadSDNode *LD = cast<LoadSDNode>(N); |
| EVT MemVT = LD->getMemoryVT(); |
| ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD |
| : LD->getExtensionType(); |
| SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT, |
| LD->getChain(), LD->getBasePtr(), |
| MemVT, LD->getMemOperand()); |
| SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD); |
| |
| LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: "; |
| Result.getNode()->dump(&DAG); dbgs() << '\n'); |
| WorklistRemover DeadNodes(*this); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); |
| deleteAndRecombine(N); |
| AddToWorklist(Result.getNode()); |
| return true; |
| } |
| return false; |
| } |
| |
| /// Recursively delete a node which has no uses and any operands for |
| /// which it is the only use. |
| /// |
| /// Note that this both deletes the nodes and removes them from the worklist. |
| /// It also adds any nodes who have had a user deleted to the worklist as they |
| /// may now have only one use and subject to other combines. |
| bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { |
| if (!N->use_empty()) |
| return false; |
| |
| SmallSetVector<SDNode *, 16> Nodes; |
| Nodes.insert(N); |
| do { |
| N = Nodes.pop_back_val(); |
| if (!N) |
| continue; |
| |
| if (N->use_empty()) { |
| for (const SDValue &ChildN : N->op_values()) |
| Nodes.insert(ChildN.getNode()); |
| |
| removeFromWorklist(N); |
| DAG.DeleteNode(N); |
| } else { |
| AddToWorklist(N); |
| } |
| } while (!Nodes.empty()); |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Main DAG Combiner implementation |
| //===----------------------------------------------------------------------===// |
| |
| void DAGCombiner::Run(CombineLevel AtLevel) { |
| // set the instance variables, so that the various visit routines may use it. |
| Level = AtLevel; |
| LegalDAG = Level >= AfterLegalizeDAG; |
| LegalOperations = Level >= AfterLegalizeVectorOps; |
| LegalTypes = Level >= AfterLegalizeTypes; |
| |
| WorklistInserter AddNodes(*this); |
| |
| // Add all the dag nodes to the worklist. |
| for (SDNode &Node : DAG.allnodes()) |
| AddToWorklist(&Node); |
| |
| // Create a dummy node (which is not added to allnodes), that adds a reference |
| // to the root node, preventing it from being deleted, and tracking any |
| // changes of the root. |
| HandleSDNode Dummy(DAG.getRoot()); |
| |
| // While we have a valid worklist entry node, try to combine it. |
| while (SDNode *N = getNextWorklistEntry()) { |
| // If N has no uses, it is dead. Make sure to revisit all N's operands once |
| // N is deleted from the DAG, since they too may now be dead or may have a |
| // reduced number of uses, allowing other xforms. |
| if (recursivelyDeleteUnusedNodes(N)) |
| continue; |
| |
| WorklistRemover DeadNodes(*this); |
| |
| // If this combine is running after legalizing the DAG, re-legalize any |
| // nodes pulled off the worklist. |
| if (LegalDAG) { |
| SmallSetVector<SDNode *, 16> UpdatedNodes; |
| bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); |
| |
| for (SDNode *LN : UpdatedNodes) |
| AddToWorklistWithUsers(LN); |
| |
| if (!NIsValid) |
| continue; |
| } |
| |
| LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); |
| |
| // Add any operands of the new node which have not yet been combined to the |
| // worklist as well. Because the worklist uniques things already, this |
| // won't repeatedly process the same operand. |
| CombinedNodes.insert(N); |
| for (const SDValue &ChildN : N->op_values()) |
| if (!CombinedNodes.count(ChildN.getNode())) |
| AddToWorklist(ChildN.getNode()); |
| |
| SDValue RV = combine(N); |
| |
| if (!RV.getNode()) |
| continue; |
| |
| ++NodesCombined; |
| |
| // If we get back the same node we passed in, rather than a new node or |
| // zero, we know that the node must have defined multiple values and |
| // CombineTo was used. Since CombineTo takes care of the worklist |
| // mechanics for us, we have no work to do in this case. |
| if (RV.getNode() == N) |
| continue; |
| |
| assert(N->getOpcode() != ISD::DELETED_NODE && |
| RV.getOpcode() != ISD::DELETED_NODE && |
| "Node was deleted but visit returned new node!"); |
| |
| LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG)); |
| |
| if (N->getNumValues() == RV.getNode()->getNumValues()) |
| DAG.ReplaceAllUsesWith(N, RV.getNode()); |
| else { |
| assert(N->getValueType(0) == RV.getValueType() && |
| N->getNumValues() == 1 && "Type mismatch"); |
| DAG.ReplaceAllUsesWith(N, &RV); |
| } |
| |
| // Push the new node and any users onto the worklist |
| AddToWorklist(RV.getNode()); |
| AddUsersToWorklist(RV.getNode()); |
| |
| // Finally, if the node is now dead, remove it from the graph. The node |
| // may not be dead if the replacement process recursively simplified to |
| // something else needing this node. This will also take care of adding any |
| // operands which have lost a user to the worklist. |
| recursivelyDeleteUnusedNodes(N); |
| } |
| |
| // If the root changed (e.g. it was a dead load, update the root). |
| DAG.setRoot(Dummy.getValue()); |
| DAG.RemoveDeadNodes(); |
| } |
| |
| SDValue DAGCombiner::visit(SDNode *N) { |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::TokenFactor: return visitTokenFactor(N); |
| case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); |
| case ISD::ADD: return visitADD(N); |
| case ISD::SUB: return visitSUB(N); |
| case ISD::SADDSAT: |
| case ISD::UADDSAT: return visitADDSAT(N); |
| case ISD::SSUBSAT: |
| case ISD::USUBSAT: return visitSUBSAT(N); |
| case ISD::ADDC: return visitADDC(N); |
| case ISD::SADDO: |
| case ISD::UADDO: return visitADDO(N); |
| case ISD::SUBC: return visitSUBC(N); |
| case ISD::SSUBO: |
| case ISD::USUBO: return visitSUBO(N); |
| case ISD::ADDE: return visitADDE(N); |
| case ISD::ADDCARRY: return visitADDCARRY(N); |
| case ISD::SUBE: return visitSUBE(N); |
| case ISD::SUBCARRY: return visitSUBCARRY(N); |
| case ISD::SMULFIX: |
| case ISD::SMULFIXSAT: |
| case ISD::UMULFIX: |
| case ISD::UMULFIXSAT: return visitMULFIX(N); |
| case ISD::MUL: return visitMUL(N); |
| case ISD::SDIV: return visitSDIV(N); |
| case ISD::UDIV: return visitUDIV(N); |
| case ISD::SREM: |
| case ISD::UREM: return visitREM(N); |
| case ISD::MULHU: return visitMULHU(N); |
| case ISD::MULHS: return visitMULHS(N); |
| case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); |
| case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); |
| case ISD::SMULO: |
| case ISD::UMULO: return visitMULO(N); |
| case ISD::SMIN: |
| case ISD::SMAX: |
| case ISD::UMIN: |
| case ISD::UMAX: return visitIMINMAX(N); |
| case ISD::AND: return visitAND(N); |
| case ISD::OR: return visitOR(N); |
| case ISD::XOR: return visitXOR(N); |
| case ISD::SHL: return visitSHL(N); |
| case ISD::SRA: return visitSRA(N); |
| case ISD::SRL: return visitSRL(N); |
| case ISD::ROTR: |
| case ISD::ROTL: return visitRotate(N); |
| case ISD::FSHL: |
| case ISD::FSHR: return visitFunnelShift(N); |
| case ISD::ABS: return visitABS(N); |
| case ISD::BSWAP: return visitBSWAP(N); |
| case ISD::BITREVERSE: return visitBITREVERSE(N); |
| case ISD::CTLZ: return visitCTLZ(N); |
| case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); |
| case ISD::CTTZ: return visitCTTZ(N); |
| case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); |
| case ISD::CTPOP: return visitCTPOP(N); |
| case ISD::SELECT: return visitSELECT(N); |
| case ISD::VSELECT: return visitVSELECT(N); |
| case ISD::SELECT_CC: return visitSELECT_CC(N); |
| case ISD::SETCC: return visitSETCC(N); |
| case ISD::SETCCCARRY: return visitSETCCCARRY(N); |
| case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); |
| case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); |
| case ISD::ANY_EXTEND: return visitANY_EXTEND(N); |
| case ISD::AssertSext: |
| case ISD::AssertZext: return visitAssertExt(N); |
| case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); |
| case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N); |
| case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N); |
| case ISD::TRUNCATE: return visitTRUNCATE(N); |
| case ISD::BITCAST: return visitBITCAST(N); |
| case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); |
| case ISD::FADD: return visitFADD(N); |
| case ISD::FSUB: return visitFSUB(N); |
| case ISD::FMUL: return visitFMUL(N); |
| case ISD::FMA: return visitFMA(N); |
| case ISD::FDIV: return visitFDIV(N); |
| case ISD::FREM: return visitFREM(N); |
| case ISD::FSQRT: return visitFSQRT(N); |
| case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); |
| case ISD::FPOW: return visitFPOW(N); |
| case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); |
| case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); |
| case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); |
| case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); |
| case ISD::FP_ROUND: return visitFP_ROUND(N); |
| case ISD::FP_EXTEND: return visitFP_EXTEND(N); |
| case ISD::FNEG: return visitFNEG(N); |
| case ISD::FABS: return visitFABS(N); |
| case ISD::FFLOOR: return visitFFLOOR(N); |
| case ISD::FMINNUM: return visitFMINNUM(N); |
| case ISD::FMAXNUM: return visitFMAXNUM(N); |
| case ISD::FMINIMUM: return visitFMINIMUM(N); |
| case ISD::FMAXIMUM: return visitFMAXIMUM(N); |
| case ISD::FCEIL: return visitFCEIL(N); |
| case ISD::FTRUNC: return visitFTRUNC(N); |
| case ISD::BRCOND: return visitBRCOND(N); |
| case ISD::BR_CC: return visitBR_CC(N); |
| case ISD::LOAD: return visitLOAD(N); |
| case ISD::STORE: return visitSTORE(N); |
| case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); |
| case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); |
| case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); |
| case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); |
| case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); |
| case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); |
| case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N); |
| case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); |
| case ISD::MGATHER: return visitMGATHER(N); |
| case ISD::MLOAD: return visitMLOAD(N); |
| case ISD::MSCATTER: return visitMSCATTER(N); |
| case ISD::MSTORE: return visitMSTORE(N); |
| case ISD::LIFETIME_END: return visitLIFETIME_END(N); |
| case ISD::FP_TO_FP16: return visitFP_TO_FP16(N); |
| case ISD::FP16_TO_FP: return visitFP16_TO_FP(N); |
| case ISD::VECREDUCE_FADD: |
| case ISD::VECREDUCE_FMUL: |
| case ISD::VECREDUCE_ADD: |
| case ISD::VECREDUCE_MUL: |
| case ISD::VECREDUCE_AND: |
| case ISD::VECREDUCE_OR: |
| case ISD::VECREDUCE_XOR: |
| case ISD::VECREDUCE_SMAX: |
| case ISD::VECREDUCE_SMIN: |
| case ISD::VECREDUCE_UMAX: |
| case ISD::VECREDUCE_UMIN: |
| case ISD::VECREDUCE_FMAX: |
| case ISD::VECREDUCE_FMIN: return visitVECREDUCE(N); |
| } |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::combine(SDNode *N) { |
| SDValue RV = visit(N); |
| |
| // If nothing happened, try a target-specific DAG combine. |
| if (!RV.getNode()) { |
| assert(N->getOpcode() != ISD::DELETED_NODE && |
| "Node was deleted but visit returned NULL!"); |
| |
| if (N->getOpcode() >= ISD::BUILTIN_OP_END || |
| TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { |
| |
| // Expose the DAG combiner to the target combiner impls. |
| TargetLowering::DAGCombinerInfo |
| DagCombineInfo(DAG, Level, false, this); |
| |
| RV = TLI.PerformDAGCombine(N, DagCombineInfo); |
| } |
| } |
| |
| // If nothing happened still, try promoting the operation. |
| if (!RV.getNode()) { |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::MUL: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| RV = PromoteIntBinOp(SDValue(N, 0)); |
| break; |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: |
| RV = PromoteIntShiftOp(SDValue(N, 0)); |
| break; |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::ANY_EXTEND: |
| RV = PromoteExtend(SDValue(N, 0)); |
| break; |
| case ISD::LOAD: |
| if (PromoteLoad(SDValue(N, 0))) |
| RV = SDValue(N, 0); |
| break; |
| } |
| } |
| |
| // If N is a commutative binary node, try to eliminate it if the commuted |
| // version is already present in the DAG. |
| if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) && |
| N->getNumValues() == 1) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| // Constant operands are canonicalized to RHS. |
| if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) { |
| SDValue Ops[] = {N1, N0}; |
| SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, |
| N->getFlags()); |
| if (CSENode) |
| return SDValue(CSENode, 0); |
| } |
| } |
| |
| return RV; |
| } |
| |
| /// Given a node, return its input chain if it has one, otherwise return a null |
| /// sd operand. |
| static SDValue getInputChainForNode(SDNode *N) { |
| if (unsigned NumOps = N->getNumOperands()) { |
| if (N->getOperand(0).getValueType() == MVT::Other) |
| return N->getOperand(0); |
| if (N->getOperand(NumOps-1).getValueType() == MVT::Other) |
| return N->getOperand(NumOps-1); |
| for (unsigned i = 1; i < NumOps-1; ++i) |
| if (N->getOperand(i).getValueType() == MVT::Other) |
| return N->getOperand(i); |
| } |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitTokenFactor(SDNode *N) { |
| // If N has two operands, where one has an input chain equal to the other, |
| // the 'other' chain is redundant. |
| if (N->getNumOperands() == 2) { |
| if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) |
| return N->getOperand(0); |
| if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) |
| return N->getOperand(1); |
| } |
| |
| // Don't simplify token factors if optnone. |
| if (OptLevel == CodeGenOpt::None) |
| return SDValue(); |
| |
| // If the sole user is a token factor, we should make sure we have a |
| // chance to merge them together. This prevents TF chains from inhibiting |
| // optimizations. |
| if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::TokenFactor) |
| AddToWorklist(*(N->use_begin())); |
| |
| SmallVector<SDNode *, 8> TFs; // List of token factors to visit. |
| SmallVector<SDValue, 8> Ops; // Ops for replacing token factor. |
| SmallPtrSet<SDNode*, 16> SeenOps; |
| bool Changed = false; // If we should replace this token factor. |
| |
| // Start out with this token factor. |
| TFs.push_back(N); |
| |
| // Iterate through token factors. The TFs grows when new token factors are |
| // encountered. |
| for (unsigned i = 0; i < TFs.size(); ++i) { |
| // Limit number of nodes to inline, to avoid quadratic compile times. |
| // We have to add the outstanding Token Factors to Ops, otherwise we might |
| // drop Ops from the resulting Token Factors. |
| if (Ops.size() > TokenFactorInlineLimit) { |
| for (unsigned j = i; j < TFs.size(); j++) |
| Ops.emplace_back(TFs[j], 0); |
| // Drop unprocessed Token Factors from TFs, so we do not add them to the |
| // combiner worklist later. |
| TFs.resize(i); |
| break; |
| } |
| |
| SDNode *TF = TFs[i]; |
| // Check each of the operands. |
| for (const SDValue &Op : TF->op_values()) { |
| switch (Op.getOpcode()) { |
| case ISD::EntryToken: |
| // Entry tokens don't need to be added to the list. They are |
| // redundant. |
| Changed = true; |
| break; |
| |
| case ISD::TokenFactor: |
| if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) { |
| // Queue up for processing. |
| TFs.push_back(Op.getNode()); |
| Changed = true; |
| break; |
| } |
| LLVM_FALLTHROUGH; |
| |
| default: |
| // Only add if it isn't already in the list. |
| if (SeenOps.insert(Op.getNode()).second) |
| Ops.push_back(Op); |
| else |
| Changed = true; |
| break; |
| } |
| } |
| } |
| |
| // Re-visit inlined Token Factors, to clean them up in case they have been |
| // removed. Skip the first Token Factor, as this is the current node. |
| for (unsigned i = 1, e = TFs.size(); i < e; i++) |
| AddToWorklist(TFs[i]); |
| |
| // Remove Nodes that are chained to another node in the list. Do so |
| // by walking up chains breath-first stopping when we've seen |
| // another operand. In general we must climb to the EntryNode, but we can exit |
| // early if we find all remaining work is associated with just one operand as |
| // no further pruning is possible. |
| |
| // List of nodes to search through and original Ops from which they originate. |
| SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist; |
| SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op. |
| SmallPtrSet<SDNode *, 16> SeenChains; |
| bool DidPruneOps = false; |
| |
| unsigned NumLeftToConsider = 0; |
| for (const SDValue &Op : Ops) { |
| Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++)); |
| OpWorkCount.push_back(1); |
| } |
| |
| auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) { |
| // If this is an Op, we can remove the op from the list. Remark any |
| // search associated with it as from the current OpNumber. |
| if (SeenOps.count(Op) != 0) { |
| Changed = true; |
| DidPruneOps = true; |
| unsigned OrigOpNumber = 0; |
| while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op) |
| OrigOpNumber++; |
| assert((OrigOpNumber != Ops.size()) && |
| "expected to find TokenFactor Operand"); |
| // Re-mark worklist from OrigOpNumber to OpNumber |
| for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) { |
| if (Worklist[i].second == OrigOpNumber) { |
| Worklist[i].second = OpNumber; |
| } |
| } |
| OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber]; |
| OpWorkCount[OrigOpNumber] = 0; |
| NumLeftToConsider--; |
| } |
| // Add if it's a new chain |
| if (SeenChains.insert(Op).second) { |
| OpWorkCount[OpNumber]++; |
| Worklist.push_back(std::make_pair(Op, OpNumber)); |
| } |
| }; |
| |
| for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) { |
| // We need at least be consider at least 2 Ops to prune. |
| if (NumLeftToConsider <= 1) |
| break; |
| auto CurNode = Worklist[i].first; |
| auto CurOpNumber = Worklist[i].second; |
| assert((OpWorkCount[CurOpNumber] > 0) && |
| "Node should not appear in worklist"); |
| switch (CurNode->getOpcode()) { |
| case ISD::EntryToken: |
| // Hitting EntryToken is the only way for the search to terminate without |
| // hitting |
| // another operand's search. Prevent us from marking this operand |
| // considered. |
| NumLeftToConsider++; |
| break; |
| case ISD::TokenFactor: |
| for (const SDValue &Op : CurNode->op_values()) |
| AddToWorklist(i, Op.getNode(), CurOpNumber); |
| break; |
| case ISD::LIFETIME_START: |
| case ISD::LIFETIME_END: |
| case ISD::CopyFromReg: |
| case ISD::CopyToReg: |
| AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber); |
| break; |
| default: |
| if (auto *MemNode = dyn_cast<MemSDNode>(CurNode)) |
| AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber); |
| break; |
| } |
| OpWorkCount[CurOpNumber]--; |
| if (OpWorkCount[CurOpNumber] == 0) |
| NumLeftToConsider--; |
| } |
| |
| // If we've changed things around then replace token factor. |
| if (Changed) { |
| SDValue Result; |
| if (Ops.empty()) { |
| // The entry token is the only possible outcome. |
| Result = DAG.getEntryNode(); |
| } else { |
| if (DidPruneOps) { |
| SmallVector<SDValue, 8> PrunedOps; |
| // |
| for (const SDValue &Op : Ops) { |
| if (SeenChains.count(Op.getNode()) == 0) |
| PrunedOps.push_back(Op); |
| } |
| Result = DAG.getTokenFactor(SDLoc(N), PrunedOps); |
| } else { |
| Result = DAG.getTokenFactor(SDLoc(N), Ops); |
| } |
| } |
| return Result; |
| } |
| return SDValue(); |
| } |
| |
| /// MERGE_VALUES can always be eliminated. |
| SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { |
| WorklistRemover DeadNodes(*this); |
| // Replacing results may cause a different MERGE_VALUES to suddenly |
| // be CSE'd with N, and carry its uses with it. Iterate until no |
| // uses remain, to ensure that the node can be safely deleted. |
| // First add the users of this node to the work list so that they |
| // can be tried again once they have new operands. |
| AddUsersToWorklist(N); |
| do { |
| // Do as a single replacement to avoid rewalking use lists. |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| Ops.push_back(N->getOperand(i)); |
| DAG.ReplaceAllUsesWith(N, Ops.data()); |
| } while (!N->use_empty()); |
| deleteAndRecombine(N); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a |
| /// ConstantSDNode pointer else nullptr. |
| static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { |
| ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); |
| return Const != nullptr && !Const->isOpaque() ? Const : nullptr; |
| } |
| |
| SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) { |
| assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 && |
| "Unexpected binary operator"); |
| |
| // Don't do this unless the old select is going away. We want to eliminate the |
| // binary operator, not replace a binop with a select. |
| // TODO: Handle ISD::SELECT_CC. |
| unsigned SelOpNo = 0; |
| SDValue Sel = BO->getOperand(0); |
| if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) { |
| SelOpNo = 1; |
| Sel = BO->getOperand(1); |
| } |
| |
| if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) |
| return SDValue(); |
| |
| SDValue CT = Sel.getOperand(1); |
| if (!isConstantOrConstantVector(CT, true) && |
| !isConstantFPBuildVectorOrConstantFP(CT)) |
| return SDValue(); |
| |
| SDValue CF = Sel.getOperand(2); |
| if (!isConstantOrConstantVector(CF, true) && |
| !isConstantFPBuildVectorOrConstantFP(CF)) |
| return SDValue(); |
| |
| // Bail out if any constants are opaque because we can't constant fold those. |
| // The exception is "and" and "or" with either 0 or -1 in which case we can |
| // propagate non constant operands into select. I.e.: |
| // and (select Cond, 0, -1), X --> select Cond, 0, X |
| // or X, (select Cond, -1, 0) --> select Cond, -1, X |
| auto BinOpcode = BO->getOpcode(); |
| bool CanFoldNonConst = |
| (BinOpcode == ISD::AND || BinOpcode == ISD::OR) && |
| (isNullOrNullSplat(CT) || isAllOnesOrAllOnesSplat(CT)) && |
| (isNullOrNullSplat(CF) || isAllOnesOrAllOnesSplat(CF)); |
| |
| SDValue CBO = BO->getOperand(SelOpNo ^ 1); |
| if (!CanFoldNonConst && |
| !isConstantOrConstantVector(CBO, true) && |
| !isConstantFPBuildVectorOrConstantFP(CBO)) |
| return SDValue(); |
| |
| EVT VT = Sel.getValueType(); |
| |
| // In case of shift value and shift amount may have different VT. For instance |
| // on x86 shift amount is i8 regardles of LHS type. Bail out if we have |
| // swapped operands and value types do not match. NB: x86 is fine if operands |
| // are not swapped with shift amount VT being not bigger than shifted value. |
| // TODO: that is possible to check for a shift operation, correct VTs and |
| // still perform optimization on x86 if needed. |
| if (SelOpNo && VT != CBO.getValueType()) |
| return SDValue(); |
| |
| // We have a select-of-constants followed by a binary operator with a |
| // constant. Eliminate the binop by pulling the constant math into the select. |
| // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO |
| SDLoc DL(Sel); |
| SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT) |
| : DAG.getNode(BinOpcode, DL, VT, CT, CBO); |
| if (!CanFoldNonConst && !NewCT.isUndef() && |
| !isConstantOrConstantVector(NewCT, true) && |
| !isConstantFPBuildVectorOrConstantFP(NewCT)) |
| return SDValue(); |
| |
| SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF) |
| : DAG.getNode(BinOpcode, DL, VT, CF, CBO); |
| if (!CanFoldNonConst && !NewCF.isUndef() && |
| !isConstantOrConstantVector(NewCF, true) && |
| !isConstantFPBuildVectorOrConstantFP(NewCF)) |
| return SDValue(); |
| |
| SDValue SelectOp = DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF); |
| SelectOp->setFlags(BO->getFlags()); |
| return SelectOp; |
| } |
| |
| static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) { |
| assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && |
| "Expecting add or sub"); |
| |
| // Match a constant operand and a zext operand for the math instruction: |
| // add Z, C |
| // sub C, Z |
| bool IsAdd = N->getOpcode() == ISD::ADD; |
| SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0); |
| SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1); |
| auto *CN = dyn_cast<ConstantSDNode>(C); |
| if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND) |
| return SDValue(); |
| |
| // Match the zext operand as a setcc of a boolean. |
| if (Z.getOperand(0).getOpcode() != ISD::SETCC || |
| Z.getOperand(0).getValueType() != MVT::i1) |
| return SDValue(); |
| |
| // Match the compare as: setcc (X & 1), 0, eq. |
| SDValue SetCC = Z.getOperand(0); |
| ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get(); |
| if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) || |
| SetCC.getOperand(0).getOpcode() != ISD::AND || |
| !isOneConstant(SetCC.getOperand(0).getOperand(1))) |
| return SDValue(); |
| |
| // We are adding/subtracting a constant and an inverted low bit. Turn that |
| // into a subtract/add of the low bit with incremented/decremented constant: |
| // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1)) |
| // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1)) |
| EVT VT = C.getValueType(); |
| SDLoc DL(N); |
| SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT); |
| SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) : |
| DAG.getConstant(CN->getAPIntValue() - 1, DL, VT); |
| return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit); |
| } |
| |
| /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into |
| /// a shift and add with a different constant. |
| static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) { |
| assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && |
| "Expecting add or sub"); |
| |
| // We need a constant operand for the add/sub, and the other operand is a |
| // logical shift right: add (srl), C or sub C, (srl). |
| // TODO - support non-uniform vector amounts. |
| bool IsAdd = N->getOpcode() == ISD::ADD; |
| SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0); |
| SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1); |
| ConstantSDNode *C = isConstOrConstSplat(ConstantOp); |
| if (!C || ShiftOp.getOpcode() != ISD::SRL) |
| return SDValue(); |
| |
| // The shift must be of a 'not' value. |
| SDValue Not = ShiftOp.getOperand(0); |
| if (!Not.hasOneUse() || !isBitwiseNot(Not)) |
| return SDValue(); |
| |
| // The shift must be moving the sign bit to the least-significant-bit. |
| EVT VT = ShiftOp.getValueType(); |
| SDValue ShAmt = ShiftOp.getOperand(1); |
| ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); |
| if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1)) |
| return SDValue(); |
| |
| // Eliminate the 'not' by adjusting the shift and add/sub constant: |
| // add (srl (not X), 31), C --> add (sra X, 31), (C + 1) |
| // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1) |
| SDLoc DL(N); |
| auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL; |
| SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt); |
| APInt NewC = IsAdd ? C->getAPIntValue() + 1 : C->getAPIntValue() - 1; |
| return DAG.getNode(ISD::ADD, DL, VT, NewShift, DAG.getConstant(NewC, DL, VT)); |
| } |
| |
| /// Try to fold a node that behaves like an ADD (note that N isn't necessarily |
| /// an ISD::ADD here, it could for example be an ISD::OR if we know that there |
| /// are no common bits set in the operands). |
| SDValue DAGCombiner::visitADDLike(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| SDLoc DL(N); |
| |
| // fold vector ops |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| // fold (add x, 0) -> x, vector edition |
| if (ISD::isBuildVectorAllZeros(N1.getNode())) |
| return N0; |
| if (ISD::isBuildVectorAllZeros(N0.getNode())) |
| return N1; |
| } |
| |
| // fold (add x, undef) -> undef |
| if (N0.isUndef()) |
| return N0; |
| |
| if (N1.isUndef()) |
| return N1; |
| |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { |
| // canonicalize constant to RHS |
| if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(ISD::ADD, DL, VT, N1, N0); |
| // fold (add c1, c2) -> c1+c2 |
| return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N0.getNode(), |
| N1.getNode()); |
| } |
| |
| // fold (add x, 0) -> x |
| if (isNullConstant(N1)) |
| return N0; |
| |
| if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) { |
| // fold ((A-c1)+c2) -> (A+(c2-c1)) |
| if (N0.getOpcode() == ISD::SUB && |
| isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) { |
| SDValue Sub = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N1.getNode(), |
| N0.getOperand(1).getNode()); |
| assert(Sub && "Constant folding failed"); |
| return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub); |
| } |
| |
| // fold ((c1-A)+c2) -> (c1+c2)-A |
| if (N0.getOpcode() == ISD::SUB && |
| isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) { |
| SDValue Add = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N1.getNode(), |
| N0.getOperand(0).getNode()); |
| assert(Add && "Constant folding failed"); |
| return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); |
| } |
| |
| // add (sext i1 X), 1 -> zext (not i1 X) |
| // We don't transform this pattern: |
| // add (zext i1 X), -1 -> sext (not i1 X) |
| // because most (?) targets generate better code for the zext form. |
| if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() && |
| isOneOrOneSplat(N1)) { |
| SDValue X = N0.getOperand(0); |
| if ((!LegalOperations || |
| (TLI.isOperationLegal(ISD::XOR, X.getValueType()) && |
| TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) && |
| X.getScalarValueSizeInBits() == 1) { |
| SDValue Not = DAG.getNOT(DL, X, X.getValueType()); |
| return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not); |
| } |
| } |
| |
| // Undo the add -> or combine to merge constant offsets from a frame index. |
| if (N0.getOpcode() == ISD::OR && |
| isa<FrameIndexSDNode>(N0.getOperand(0)) && |
| isa<ConstantSDNode>(N0.getOperand(1)) && |
| DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) { |
| SDValue Add0 = DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(1)); |
| return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0); |
| } |
| } |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // reassociate add |
| if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N0, N1)) { |
| if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags())) |
| return RADD; |
| } |
| // fold ((0-A) + B) -> B-A |
| if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0))) |
| return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); |
| |
| // fold (A + (0-B)) -> A-B |
| if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) |
| return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1)); |
| |
| // fold (A+(B-A)) -> B |
| if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) |
| return N1.getOperand(0); |
| |
| // fold ((B-A)+A) -> B |
| if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) |
| return N0.getOperand(0); |
| |
| // fold ((A-B)+(C-A)) -> (C-B) |
| if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && |
| N0.getOperand(0) == N1.getOperand(1)) |
| return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), |
| N0.getOperand(1)); |
| |
| // fold ((A-B)+(B-C)) -> (A-C) |
| if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && |
| N0.getOperand(1) == N1.getOperand(0)) |
| return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), |
| N1.getOperand(1)); |
| |
| // fold (A+(B-(A+C))) to (B-C) |
| if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && |
| N0 == N1.getOperand(1).getOperand(0)) |
| return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), |
| N1.getOperand(1).getOperand(1)); |
| |
| // fold (A+(B-(C+A))) to (B-C) |
| if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && |
| N0 == N1.getOperand(1).getOperand(1)) |
| return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), |
| N1.getOperand(1).getOperand(0)); |
| |
| // fold (A+((B-A)+or-C)) to (B+or-C) |
| if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && |
| N1.getOperand(0).getOpcode() == ISD::SUB && |
| N0 == N1.getOperand(0).getOperand(1)) |
| return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0), |
| N1.getOperand(1)); |
| |
| // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant |
| if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { |
| SDValue N00 = N0.getOperand(0); |
| SDValue N01 = N0.getOperand(1); |
| SDValue N10 = N1.getOperand(0); |
| SDValue N11 = N1.getOperand(1); |
| |
| if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10)) |
| return DAG.getNode(ISD::SUB, DL, VT, |
| DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), |
| DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); |
| } |
| |
| // fold (add (umax X, C), -C) --> (usubsat X, C) |
| if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) { |
| auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) { |
| return (!Max && !Op) || |
| (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue())); |
| }; |
| if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT, |
| /*AllowUndefs*/ true)) |
| return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0), |
| N0.getOperand(1)); |
| } |
| |
| if (SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| if (isOneOrOneSplat(N1)) { |
| // fold (add (xor a, -1), 1) -> (sub 0, a) |
| if (isBitwiseNot(N0)) |
| return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), |
| N0.getOperand(0)); |
| |
| // fold (add (add (xor a, -1), b), 1) -> (sub b, a) |
| if (N0.getOpcode() == ISD::ADD || |
| N0.getOpcode() == ISD::UADDO || |
| N0.getOpcode() == ISD::SADDO) { |
| SDValue A, Xor; |
| |
| if (isBitwiseNot(N0.getOperand(0))) { |
| A = N0.getOperand(1); |
| Xor = N0.getOperand(0); |
| } else if (isBitwiseNot(N0.getOperand(1))) { |
| A = N0.getOperand(0); |
| Xor = N0.getOperand(1); |
| } |
| |
| if (Xor) |
| return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0)); |
| } |
| |
| // Look for: |
| // add (add x, y), 1 |
| // And if the target does not like this form then turn into: |
| // sub y, (xor x, -1) |
| if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && |
| N0.getOpcode() == ISD::ADD) { |
| SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), |
| DAG.getAllOnesConstant(DL, VT)); |
| return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not); |
| } |
| } |
| |
| // (x - y) + -1 -> add (xor y, -1), x |
| if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && |
| isAllOnesOrAllOnesSplat(N1)) { |
| SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), N1); |
| return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); |
| } |
| |
| if (SDValue Combined = visitADDLikeCommutative(N0, N1, N)) |
| return Combined; |
| |
| if (SDValue Combined = visitADDLikeCommutative(N1, N0, N)) |
| return Combined; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitADD(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| SDLoc DL(N); |
| |
| if (SDValue Combined = visitADDLike(N)) |
| return Combined; |
| |
| if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) |
| return V; |
| |
| if (SDValue V = foldAddSubOfSignBit(N, DAG)) |
| return V; |
| |
| // fold (a+b) -> (a|b) iff a and b share no bits. |
| if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && |
| DAG.haveNoCommonBitsSet(N0, N1)) |
| return DAG.getNode(ISD::OR, DL, VT, N0, N1); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitADDSAT(SDNode *N) { |
| unsigned Opcode = N->getOpcode(); |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| SDLoc DL(N); |
| |
| // fold vector ops |
| if (VT.isVector()) { |
| // TODO SimplifyVBinOp |
| |
| // fold (add_sat x, 0) -> x, vector edition |
| if (ISD::isBuildVectorAllZeros(N1.getNode())) |
| return N0; |
| if (ISD::isBuildVectorAllZeros(N0.getNode())) |
| return N1; |
| } |
| |
| // fold (add_sat x, undef) -> -1 |
| if (N0.isUndef() || N1.isUndef()) |
| return DAG.getAllOnesConstant(DL, VT); |
| |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { |
| // canonicalize constant to RHS |
| if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(Opcode, DL, VT, N1, N0); |
| // fold (add_sat c1, c2) -> c3 |
| return DAG.FoldConstantArithmetic(Opcode, DL, VT, N0.getNode(), |
| N1.getNode()); |
| } |
| |
| // fold (add_sat x, 0) -> x |
| if (isNullConstant(N1)) |
| return N0; |
| |
| // If it cannot overflow, transform into an add. |
| if (Opcode == ISD::UADDSAT) |
| if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) |
| return DAG.getNode(ISD::ADD, DL, VT, N0, N1); |
| |
| return SDValue(); |
| } |
| |
| static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) { |
| bool Masked = false; |
| |
| // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization. |
| while (true) { |
| if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) { |
| V = V.getOperand(0); |
| continue; |
| } |
| |
| if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) { |
| Masked = true; |
| V = V.getOperand(0); |
| continue; |
| } |
| |
| break; |
| } |
| |
| // If this is not a carry, return. |
| if (V.getResNo() != 1) |
| return SDValue(); |
| |
| if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY && |
| V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO) |
| return SDValue(); |
| |
| EVT VT = V.getNode()->getValueType(0); |
| if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT)) |
| return SDValue(); |
| |
| // If the result is masked, then no matter what kind of bool it is we can |
| // return. If it isn't, then we need to make sure the bool type is either 0 or |
| // 1 and not other values. |
| if (Masked || |
| TLI.getBooleanContents(V.getValueType()) == |
| TargetLoweringBase::ZeroOrOneBooleanContent) |
| return V; |
| |
| return SDValue(); |
| } |
| |
| /// Given the operands of an add/sub operation, see if the 2nd operand is a |
| /// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert |
| /// the opcode and bypass the mask operation. |
| static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1, |
| SelectionDAG &DAG, const SDLoc &DL) { |
| if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1))) |
| return SDValue(); |
| |
| EVT VT = N0.getValueType(); |
| if (DAG.ComputeNumSignBits(N1.getOperand(0)) != VT.getScalarSizeInBits()) |
| return SDValue(); |
| |
| // add N0, (and (AssertSext X, i1), 1) --> sub N0, X |
| // sub N0, (and (AssertSext X, i1), 1) --> add N0, X |
| return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N1.getOperand(0)); |
| } |
| |
| /// Helper for doing combines based on N0 and N1 being added to each other. |
| SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1, |
| SDNode *LocReference) { |
| EVT VT = N0.getValueType(); |
| SDLoc DL(LocReference); |
| |
| // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) |
| if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && |
| isNullOrNullSplat(N1.getOperand(0).getOperand(0))) |
| return DAG.getNode(ISD::SUB, DL, VT, N0, |
| DAG.getNode(ISD::SHL, DL, VT, |
| N1.getOperand(0).getOperand(1), |
| N1.getOperand(1))); |
| |
| if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL)) |
| return V; |
| |
| // Look for: |
| // add (add x, 1), y |
| // And if the target does not like this form then turn into: |
| // sub y, (xor x, -1) |
| if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && |
| N0.getOpcode() == ISD::ADD && isOneOrOneSplat(N0.getOperand(1))) { |
| SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), |
| DAG.getAllOnesConstant(DL, VT)); |
| return DAG.getNode(ISD::SUB, DL, VT, N1, Not); |
| } |
| |
| // Hoist one-use subtraction by non-opaque constant: |
| // (x - C) + y -> (x + y) - C |
| // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. |
| if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && |
| isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { |
| SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1); |
| return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); |
| } |
| // Hoist one-use subtraction from non-opaque constant: |
| // (C - x) + y -> (y - x) + C |
| if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && |
| isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { |
| SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); |
| return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0)); |
| } |
| |
| // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1' |
| // rather than 'add 0/-1' (the zext should get folded). |
| // add (sext i1 Y), X --> sub X, (zext i1 Y) |
| if (N0.getOpcode() == ISD::SIGN_EXTEND && |
| N0.getOperand(0).getScalarValueSizeInBits() == 1 && |
| TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) { |
| SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); |
| return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); |
| } |
| |
| // add X, (sextinreg Y i1) -> sub X, (and Y 1) |
| if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { |
| VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); |
| if (TN->getVT() == MVT::i1) { |
| SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), |
| DAG.getConstant(1, DL, VT)); |
| return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); |
| } |
| } |
| |
| // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) |
| if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) && |
| N1.getResNo() == 0) |
| return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(), |
| N0, N1.getOperand(0), N1.getOperand(2)); |
| |
| // (add X, Carry) -> (addcarry X, 0, Carry) |
| if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) |
| if (SDValue Carry = getAsCarry(TLI, N1)) |
| return DAG.getNode(ISD::ADDCARRY, DL, |
| DAG.getVTList(VT, Carry.getValueType()), N0, |
| DAG.getConstant(0, DL, VT), Carry); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitADDC(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| SDLoc DL(N); |
| |
| // If the flag result is dead, turn this into an ADD. |
| if (!N->hasAnyUseOfValue(1)) |
| return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), |
| DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); |
| |
| // canonicalize constant to RHS. |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0); |
| |
| // fold (addc x, 0) -> x + no carry out |
| if (isNullConstant(N1)) |
| return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, |
| DL, MVT::Glue)); |
| |
| // If it cannot overflow, transform into an add. |
| if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) |
| return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), |
| DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); |
| |
| return SDValue(); |
| } |
| |
| static SDValue flipBoolean(SDValue V, const SDLoc &DL, |
| SelectionDAG &DAG, const TargetLowering &TLI) { |
| EVT VT = V.getValueType(); |
| |
| SDValue Cst; |
| switch (TLI.getBooleanContents(VT)) { |
| case TargetLowering::ZeroOrOneBooleanContent: |
| case TargetLowering::UndefinedBooleanContent: |
| Cst = DAG.getConstant(1, DL, VT); |
| break; |
| case TargetLowering::ZeroOrNegativeOneBooleanContent: |
| Cst = DAG.getAllOnesConstant(DL, VT); |
| break; |
| } |
| |
| return DAG.getNode(ISD::XOR, DL, VT, V, Cst); |
| } |
| |
| /** |
| * Flips a boolean if it is cheaper to compute. If the Force parameters is set, |
| * then the flip also occurs if computing the inverse is the same cost. |
| * This function returns an empty SDValue in case it cannot flip the boolean |
| * without increasing the cost of the computation. If you want to flip a boolean |
| * no matter what, use flipBoolean. |
| */ |
| static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG, |
| const TargetLowering &TLI, |
| bool Force) { |
| if (Force && isa<ConstantSDNode>(V)) |
| return flipBoolean(V, SDLoc(V), DAG, TLI); |
| |
| if (V.getOpcode() != ISD::XOR) |
| return SDValue(); |
| |
| ConstantSDNode *Const = isConstOrConstSplat(V.getOperand(1), false); |
| if (!Const) |
| return SDValue(); |
| |
| EVT VT = V.getValueType(); |
| |
| bool IsFlip = false; |
| switch(TLI.getBooleanContents(VT)) { |
| case TargetLowering::ZeroOrOneBooleanContent: |
| IsFlip = Const->isOne(); |
| break; |
| case TargetLowering::ZeroOrNegativeOneBooleanContent: |
| IsFlip = Const->isAllOnesValue(); |
| break; |
| case TargetLowering::UndefinedBooleanContent: |
| IsFlip = (Const->getAPIntValue() & 0x01) == 1; |
| break; |
| } |
| |
| if (IsFlip) |
| return V.getOperand(0); |
| if (Force) |
| return flipBoolean(V, SDLoc(V), DAG, TLI); |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitADDO(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| bool IsSigned = (ISD::SADDO == N->getOpcode()); |
| |
| EVT CarryVT = N->getValueType(1); |
| SDLoc DL(N); |
| |
| // If the flag result is dead, turn this into an ADD. |
| if (!N->hasAnyUseOfValue(1)) |
| return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), |
| DAG.getUNDEF(CarryVT)); |
| |
| // canonicalize constant to RHS. |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); |
| |
| // fold (addo x, 0) -> x + no carry out |
| if (isNullOrNullSplat(N1)) |
| return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); |
| |
| if (!IsSigned) { |
| // If it cannot overflow, transform into an add. |
| if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) |
| return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), |
| DAG.getConstant(0, DL, CarryVT)); |
| |
| // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry. |
| if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) { |
| SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(), |
| DAG.getConstant(0, DL, VT), N0.getOperand(0)); |
| return CombineTo(N, Sub, |
| flipBoolean(Sub.getValue(1), DL, DAG, TLI)); |
| } |
| |
| if (SDValue Combined = visitUADDOLike(N0, N1, N)) |
| return Combined; |
| |
| if (SDValue Combined = visitUADDOLike(N1, N0, N)) |
| return Combined; |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) { |
| EVT VT = N0.getValueType(); |
| if (VT.isVector()) |
| return SDValue(); |
| |
| // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) |
| // If Y + 1 cannot overflow. |
| if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) { |
| SDValue Y = N1.getOperand(0); |
| SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType()); |
| if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never) |
| return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y, |
| N1.getOperand(2)); |
| } |
| |
| // (uaddo X, Carry) -> (addcarry X, 0, Carry) |
| if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) |
| if (SDValue Carry = getAsCarry(TLI, N1)) |
| return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, |
| DAG.getConstant(0, SDLoc(N), VT), Carry); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitADDE(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue CarryIn = N->getOperand(2); |
| |
| // canonicalize constant to RHS |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), |
| N1, N0, CarryIn); |
| |
| // fold (adde x, y, false) -> (addc x, y) |
| if (CarryIn.getOpcode() == ISD::CARRY_FALSE) |
| return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitADDCARRY(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue CarryIn = N->getOperand(2); |
| SDLoc DL(N); |
| |
| // canonicalize constant to RHS |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn); |
| |
| // fold (addcarry x, y, false) -> (uaddo x, y) |
| if (isNullConstant(CarryIn)) { |
| if (!LegalOperations || |
| TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0))) |
| return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1); |
| } |
| |
| // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry. |
| if (isNullConstant(N0) && isNullConstant(N1)) { |
| EVT VT = N0.getValueType(); |
| EVT CarryVT = CarryIn.getValueType(); |
| SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT); |
| AddToWorklist(CarryExt.getNode()); |
| return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt, |
| DAG.getConstant(1, DL, VT)), |
| DAG.getConstant(0, DL, CarryVT)); |
| } |
| |
| if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N)) |
| return Combined; |
| |
| if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N)) |
| return Combined; |
| |
| return SDValue(); |
| } |
| |
| /** |
| * If we are facing some sort of diamond carry propapagtion pattern try to |
| * break it up to generate something like: |
| * (addcarry X, 0, (addcarry A, B, Z):Carry) |
| * |
| * The end result is usually an increase in operation required, but because the |
| * carry is now linearized, other tranforms can kick in and optimize the DAG. |
| * |
| * Patterns typically look something like |
| * (uaddo A, B) |
| * / \ |
| * Carry Sum |
| * | \ |
| * | (addcarry *, 0, Z) |
| * | / |
| * \ Carry |
| * | / |
| * (addcarry X, *, *) |
| * |
| * But numerous variation exist. Our goal is to identify A, B, X and Z and |
| * produce a combine with a single path for carry propagation. |
| */ |
| static SDValue combineADDCARRYDiamond(DAGCombiner &Combiner, SelectionDAG &DAG, |
| SDValue X, SDValue Carry0, SDValue Carry1, |
| SDNode *N) { |
| if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1) |
| return SDValue(); |
| if (Carry1.getOpcode() != ISD::UADDO) |
| return SDValue(); |
| |
| SDValue Z; |
| |
| /** |
| * First look for a suitable Z. It will present itself in the form of |
| * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true |
| */ |
| if (Carry0.getOpcode() == ISD::ADDCARRY && |
| isNullConstant(Carry0.getOperand(1))) { |
| Z = Carry0.getOperand(2); |
| } else if (Carry0.getOpcode() == ISD::UADDO && |
| isOneConstant(Carry0.getOperand(1))) { |
| EVT VT = Combiner.getSetCCResultType(Carry0.getValueType()); |
| Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT); |
| } else { |
| // We couldn't find a suitable Z. |
| return SDValue(); |
| } |
| |
| |
| auto cancelDiamond = [&](SDValue A,SDValue B) { |
| SDLoc DL(N); |
| SDValue NewY = DAG.getNode(ISD::ADDCARRY, DL, Carry0->getVTList(), A, B, Z); |
| Combiner.AddToWorklist(NewY.getNode()); |
| return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), X, |
| DAG.getConstant(0, DL, X.getValueType()), |
| NewY.getValue(1)); |
| }; |
| |
| /** |
| * (uaddo A, B) |
| * | |
| * Sum |
| * | |
| * (addcarry *, 0, Z) |
| */ |
| if (Carry0.getOperand(0) == Carry1.getValue(0)) { |
| return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1)); |
| } |
| |
| /** |
| * (addcarry A, 0, Z) |
| * | |
| * Sum |
| * | |
| * (uaddo *, B) |
| */ |
| if (Carry1.getOperand(0) == Carry0.getValue(0)) { |
| return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1)); |
| } |
| |
| if (Carry1.getOperand(1) == Carry0.getValue(0)) { |
| return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0)); |
| } |
| |
| return SDValue(); |
| } |
| |
| // If we are facing some sort of diamond carry/borrow in/out pattern try to |
| // match patterns like: |
| // |
| // (uaddo A, B) CarryIn |
| // | \ | |
| // | \ | |
| // PartialSum PartialCarryOutX / |
| // | | / |
| // | ____|____________/ |
| // | / | |
| // (uaddo *, *) \________ |
| // | \ \ |
| // | \ | |
| // | PartialCarryOutY | |
| // | \ | |
| // | \ / |
| // AddCarrySum | ______/ |
| // | / |
| // CarryOut = (or *, *) |
| // |
| // And generate ADDCARRY (or SUBCARRY) with two result values: |
| // |
| // {AddCarrySum, CarryOut} = (addcarry A, B, CarryIn) |
| // |
| // Our goal is to identify A, B, and CarryIn and produce ADDCARRY/SUBCARRY with |
| // a single path for carry/borrow out propagation: |
| static SDValue combineCarryDiamond(DAGCombiner &Combiner, SelectionDAG &DAG, |
| const TargetLowering &TLI, SDValue Carry0, |
| SDValue Carry1, SDNode *N) { |
| if (Carry0.getResNo() != 1 || Carry1.getResNo() != 1) |
| return SDValue(); |
| unsigned Opcode = Carry0.getOpcode(); |
| if (Opcode != Carry1.getOpcode()) |
| return SDValue(); |
| if (Opcode != ISD::UADDO && Opcode != ISD::USUBO) |
| return SDValue(); |
| |
| // Canonicalize the add/sub of A and B as Carry0 and the add/sub of the |
| // carry/borrow in as Carry1. (The top and middle uaddo nodes respectively in |
| // the above ASCII art.) |
| if (Carry1.getOperand(0) != Carry0.getValue(0) && |
| Carry1.getOperand(1) != Carry0.getValue(0)) |
| std::swap(Carry0, Carry1); |
| if (Carry1.getOperand(0) != Carry0.getValue(0) && |
| Carry1.getOperand(1) != Carry0.getValue(0)) |
| return SDValue(); |
| |
| // The carry in value must be on the righthand side for subtraction. |
| unsigned CarryInOperandNum = |
| Carry1.getOperand(0) == Carry0.getValue(0) ? 1 : 0; |
| if (Opcode == ISD::USUBO && CarryInOperandNum != 1) |
| return SDValue(); |
| SDValue CarryIn = Carry1.getOperand(CarryInOperandNum); |
| |
| unsigned NewOp = Opcode == ISD::UADDO ? ISD::ADDCARRY : ISD::SUBCARRY; |
| if (!TLI.isOperationLegalOrCustom(NewOp, Carry0.getValue(0).getValueType())) |
| return SDValue(); |
| |
| // Verify that the carry/borrow in is plausibly a carry/borrow bit. |
| // TODO: make getAsCarry() aware of how partial carries are merged. |
| if (CarryIn.getOpcode() != ISD::ZERO_EXTEND) |
| return SDValue(); |
| CarryIn = CarryIn.getOperand(0); |
| if (CarryIn.getValueType() != MVT::i1) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| SDValue Merged = |
| DAG.getNode(NewOp, DL, Carry1->getVTList(), Carry0.getOperand(0), |
| Carry0.getOperand(1), CarryIn); |
| |
| // Please note that because we have proven that the result of the UADDO/USUBO |
| // of A and B feeds into the UADDO/USUBO that does the carry/borrow in, we can |
| // therefore prove that if the first UADDO/USUBO overflows, the second |
| // UADDO/USUBO cannot. For example consider 8-bit numbers where 0xFF is the |
| // maximum value. |
| // |
| // 0xFF + 0xFF == 0xFE with carry but 0xFE + 1 does not carry |
| // 0x00 - 0xFF == 1 with a carry/borrow but 1 - 1 == 0 (no carry/borrow) |
| // |
| // This is important because it means that OR and XOR can be used to merge |
| // carry flags; and that AND can return a constant zero. |
| // |
| // TODO: match other operations that can merge flags (ADD, etc) |
| DAG.ReplaceAllUsesOfValueWith(Carry1.getValue(0), Merged.getValue(0)); |
| if (N->getOpcode() == ISD::AND) |
| return DAG.getConstant(0, DL, MVT::i1); |
| return Merged.getValue(1); |
| } |
| |
| SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, |
| SDNode *N) { |
| // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry. |
| if (isBitwiseNot(N0)) |
| if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) { |
| SDLoc DL(N); |
| SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), N1, |
| N0.getOperand(0), NotC); |
| return CombineTo(N, Sub, |
| flipBoolean(Sub.getValue(1), DL, DAG, TLI)); |
| } |
| |
| // Iff the flag result is dead: |
| // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry) |
| // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo |
| // or the dependency between the instructions. |
| if ((N0.getOpcode() == ISD::ADD || |
| (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 && |
| N0.getValue(1) != CarryIn)) && |
| isNullConstant(N1) && !N->hasAnyUseOfValue(1)) |
| return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), |
| N0.getOperand(0), N0.getOperand(1), CarryIn); |
| |
| /** |
| * When one of the addcarry argument is itself a carry, we may be facing |
| * a diamond carry propagation. In which case we try to transform the DAG |
| * to ensure linear carry propagation if that is possible. |
| */ |
| if (auto Y = getAsCarry(TLI, N1)) { |
| // Because both are carries, Y and Z can be swapped. |
| if (auto R = combineADDCARRYDiamond(*this, DAG, N0, Y, CarryIn, N)) |
| return R; |
| if (auto R = combineADDCARRYDiamond(*this, DAG, N0, CarryIn, Y, N)) |
| return R; |
| } |
| |
| return SDValue(); |
| } |
| |
| // Since it may not be valid to emit a fold to zero for vector initializers |
| // check if we can before folding. |
| static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT, |
| SelectionDAG &DAG, bool LegalOperations) { |
| if (!VT.isVector()) |
| return DAG.getConstant(0, DL, VT); |
| if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) |
| return DAG.getConstant(0, DL, VT); |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSUB(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| SDLoc DL(N); |
| |
| // fold vector ops |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| // fold (sub x, 0) -> x, vector edition |
| if (ISD::isBuildVectorAllZeros(N1.getNode())) |
| return N0; |
| } |
| |
| // fold (sub x, x) -> 0 |
| // FIXME: Refactor this and xor and other similar operations together. |
| if (N0 == N1) |
| return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| DAG.isConstantIntBuildVectorOrConstantInt(N1)) { |
| // fold (sub c1, c2) -> c1-c2 |
| return DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(), |
| N1.getNode()); |
| } |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); |
| |
| // fold (sub x, c) -> (add x, -c) |
| if (N1C) { |
| return DAG.getNode(ISD::ADD, DL, VT, N0, |
| DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); |
| } |
| |
| if (isNullOrNullSplat(N0)) { |
| unsigned BitWidth = VT.getScalarSizeInBits(); |
| // Right-shifting everything out but the sign bit followed by negation is |
| // the same as flipping arithmetic/logical shift type without the negation: |
| // -(X >>u 31) -> (X >>s 31) |
| // -(X >>s 31) -> (X >>u 31) |
| if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) { |
| ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1)); |
| if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) { |
| auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA; |
| if (!LegalOperations || TLI.isOperationLegal(NewSh, VT)) |
| return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1)); |
| } |
| } |
| |
| // 0 - X --> 0 if the sub is NUW. |
| if (N->getFlags().hasNoUnsignedWrap()) |
| return N0; |
| |
| if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) { |
| // N1 is either 0 or the minimum signed value. If the sub is NSW, then |
| // N1 must be 0 because negating the minimum signed value is undefined. |
| if (N->getFlags().hasNoSignedWrap()) |
| return N0; |
| |
| // 0 - X --> X if X is 0 or the minimum signed value. |
| return N1; |
| } |
| } |
| |
| // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) |
| if (isAllOnesOrAllOnesSplat(N0)) |
| return DAG.getNode(ISD::XOR, DL, VT, N1, N0); |
| |
| // fold (A - (0-B)) -> A+B |
| if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) |
| return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1)); |
| |
| // fold A-(A-B) -> B |
| if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) |
| return N1.getOperand(1); |
| |
| // fold (A+B)-A -> B |
| if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) |
| return N0.getOperand(1); |
| |
| // fold (A+B)-B -> A |
| if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) |
| return N0.getOperand(0); |
| |
| // fold (A+C1)-C2 -> A+(C1-C2) |
| if (N0.getOpcode() == ISD::ADD && |
| isConstantOrConstantVector(N1, /* NoOpaques */ true) && |
| isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { |
| SDValue NewC = DAG.FoldConstantArithmetic( |
| ISD::SUB, DL, VT, N0.getOperand(1).getNode(), N1.getNode()); |
| assert(NewC && "Constant folding failed"); |
| return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC); |
| } |
| |
| // fold C2-(A+C1) -> (C2-C1)-A |
| if (N1.getOpcode() == ISD::ADD) { |
| SDValue N11 = N1.getOperand(1); |
| if (isConstantOrConstantVector(N0, /* NoOpaques */ true) && |
| isConstantOrConstantVector(N11, /* NoOpaques */ true)) { |
| SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(), |
| N11.getNode()); |
| assert(NewC && "Constant folding failed"); |
| return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0)); |
| } |
| } |
| |
| // fold (A-C1)-C2 -> A-(C1+C2) |
| if (N0.getOpcode() == ISD::SUB && |
| isConstantOrConstantVector(N1, /* NoOpaques */ true) && |
| isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { |
| SDValue NewC = DAG.FoldConstantArithmetic( |
| ISD::ADD, DL, VT, N0.getOperand(1).getNode(), N1.getNode()); |
| assert(NewC && "Constant folding failed"); |
| return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC); |
| } |
| |
| // fold (c1-A)-c2 -> (c1-c2)-A |
| if (N0.getOpcode() == ISD::SUB && |
| isConstantOrConstantVector(N1, /* NoOpaques */ true) && |
| isConstantOrConstantVector(N0.getOperand(0), /* NoOpaques */ true)) { |
| SDValue NewC = DAG.FoldConstantArithmetic( |
| ISD::SUB, DL, VT, N0.getOperand(0).getNode(), N1.getNode()); |
| assert(NewC && "Constant folding failed"); |
| return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1)); |
| } |
| |
| // fold ((A+(B+or-C))-B) -> A+or-C |
| if (N0.getOpcode() == ISD::ADD && |
| (N0.getOperand(1).getOpcode() == ISD::SUB || |
| N0.getOperand(1).getOpcode() == ISD::ADD) && |
| N0.getOperand(1).getOperand(0) == N1) |
| return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0), |
| N0.getOperand(1).getOperand(1)); |
| |
| // fold ((A+(C+B))-B) -> A+C |
| if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD && |
| N0.getOperand(1).getOperand(1) == N1) |
| return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), |
| N0.getOperand(1).getOperand(0)); |
| |
| // fold ((A-(B-C))-C) -> A-B |
| if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB && |
| N0.getOperand(1).getOperand(1) == N1) |
| return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), |
| N0.getOperand(1).getOperand(0)); |
| |
| // fold (A-(B-C)) -> A+(C-B) |
| if (N1.getOpcode() == ISD::SUB && N1.hasOneUse()) |
| return DAG.getNode(ISD::ADD, DL, VT, N0, |
| DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1), |
| N1.getOperand(0))); |
| |
| // A - (A & B) -> A & (~B) |
| if (N1.getOpcode() == ISD::AND) { |
| SDValue A = N1.getOperand(0); |
| SDValue B = N1.getOperand(1); |
| if (A != N0) |
| std::swap(A, B); |
| if (A == N0 && |
| (N1.hasOneUse() || isConstantOrConstantVector(B, /*NoOpaques=*/true))) { |
| SDValue InvB = |
| DAG.getNode(ISD::XOR, DL, VT, B, DAG.getAllOnesConstant(DL, VT)); |
| return DAG.getNode(ISD::AND, DL, VT, A, InvB); |
| } |
| } |
| |
| // fold (X - (-Y * Z)) -> (X + (Y * Z)) |
| if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) { |
| if (N1.getOperand(0).getOpcode() == ISD::SUB && |
| isNullOrNullSplat(N1.getOperand(0).getOperand(0))) { |
| SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, |
| N1.getOperand(0).getOperand(1), |
| N1.getOperand(1)); |
| return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); |
| } |
| if (N1.getOperand(1).getOpcode() == ISD::SUB && |
| isNullOrNullSplat(N1.getOperand(1).getOperand(0))) { |
| SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, |
| N1.getOperand(0), |
| N1.getOperand(1).getOperand(1)); |
| return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); |
| } |
| } |
| |
| // If either operand of a sub is undef, the result is undef |
| if (N0.isUndef()) |
| return N0; |
| if (N1.isUndef()) |
| return N1; |
| |
| if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) |
| return V; |
| |
| if (SDValue V = foldAddSubOfSignBit(N, DAG)) |
| return V; |
| |
| if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, SDLoc(N))) |
| return V; |
| |
| // (x - y) - 1 -> add (xor y, -1), x |
| if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && isOneOrOneSplat(N1)) { |
| SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), |
| DAG.getAllOnesConstant(DL, VT)); |
| return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); |
| } |
| |
| // Look for: |
| // sub y, (xor x, -1) |
| // And if the target does not like this form then turn into: |
| // add (add x, y), 1 |
| if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) { |
| SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0)); |
| return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT)); |
| } |
| |
| // Hoist one-use addition by non-opaque constant: |
| // (x + C) - y -> (x - y) + C |
| if (N0.hasOneUse() && N0.getOpcode() == ISD::ADD && |
| isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { |
| SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); |
| return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1)); |
| } |
| // y - (x + C) -> (y - x) - C |
| if (N1.hasOneUse() && N1.getOpcode() == ISD::ADD && |
| isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) { |
| SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0)); |
| return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1)); |
| } |
| // (x - C) - y -> (x - y) - C |
| // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. |
| if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && |
| isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { |
| SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); |
| return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1)); |
| } |
| // (C - x) - y -> C - (x + y) |
| if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && |
| isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { |
| SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1); |
| return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add); |
| } |
| |
| // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1' |
| // rather than 'sub 0/1' (the sext should get folded). |
| // sub X, (zext i1 Y) --> add X, (sext i1 Y) |
| if (N1.getOpcode() == ISD::ZERO_EXTEND && |
| N1.getOperand(0).getScalarValueSizeInBits() == 1 && |
| TLI.getBooleanContents(VT) == |
| TargetLowering::ZeroOrNegativeOneBooleanContent) { |
| SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0)); |
| return DAG.getNode(ISD::ADD, DL, VT, N0, SExt); |
| } |
| |
| // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X) |
| if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { |
| if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) { |
| SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1); |
| SDValue S0 = N1.getOperand(0); |
| if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0)) { |
| unsigned OpSizeInBits = VT.getScalarSizeInBits(); |
| if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1))) |
| if (C->getAPIntValue() == (OpSizeInBits - 1)) |
| return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0); |
| } |
| } |
| } |
| |
| // If the relocation model supports it, consider symbol offsets. |
| if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) |
| if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { |
| // fold (sub Sym, c) -> Sym-c |
| if (N1C && GA->getOpcode() == ISD::GlobalAddress) |
| return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, |
| GA->getOffset() - |
| (uint64_t)N1C->getSExtValue()); |
| // fold (sub Sym+c1, Sym+c2) -> c1-c2 |
| if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) |
| if (GA->getGlobal() == GB->getGlobal()) |
| return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), |
| DL, VT); |
| } |
| |
| // sub X, (sextinreg Y i1) -> add X, (and Y 1) |
| if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { |
| VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); |
| if (TN->getVT() == MVT::i1) { |
| SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), |
| DAG.getConstant(1, DL, VT)); |
| return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); |
| } |
| } |
| |
| // Prefer an add for more folding potential and possibly better codegen: |
| // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1) |
| if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) { |
| SDValue ShAmt = N1.getOperand(1); |
| ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); |
| if (ShAmtC && |
| ShAmtC->getAPIntValue() == (N1.getScalarValueSizeInBits() - 1)) { |
| SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt); |
| return DAG.getNode(ISD::ADD, DL, VT, N0, SRA); |
| } |
| } |
| |
| if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) { |
| // (sub Carry, X) -> (addcarry (sub 0, X), 0, Carry) |
| if (SDValue Carry = getAsCarry(TLI, N0)) { |
| SDValue X = N1; |
| SDValue Zero = DAG.getConstant(0, DL, VT); |
| SDValue NegX = DAG.getNode(ISD::SUB, DL, VT, Zero, X); |
| return DAG.getNode(ISD::ADDCARRY, DL, |
| DAG.getVTList(VT, Carry.getValueType()), NegX, Zero, |
| Carry); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSUBSAT(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| SDLoc DL(N); |
| |
| // fold vector ops |
| if (VT.isVector()) { |
| // TODO SimplifyVBinOp |
| |
| // fold (sub_sat x, 0) -> x, vector edition |
| if (ISD::isBuildVectorAllZeros(N1.getNode())) |
| return N0; |
| } |
| |
| // fold (sub_sat x, undef) -> 0 |
| if (N0.isUndef() || N1.isUndef()) |
| return DAG.getConstant(0, DL, VT); |
| |
| // fold (sub_sat x, x) -> 0 |
| if (N0 == N1) |
| return DAG.getConstant(0, DL, VT); |
| |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| DAG.isConstantIntBuildVectorOrConstantInt(N1)) { |
| // fold (sub_sat c1, c2) -> c3 |
| return DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, N0.getNode(), |
| N1.getNode()); |
| } |
| |
| // fold (sub_sat x, 0) -> x |
| if (isNullConstant(N1)) |
| return N0; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSUBC(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| SDLoc DL(N); |
| |
| // If the flag result is dead, turn this into an SUB. |
| if (!N->hasAnyUseOfValue(1)) |
| return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), |
| DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); |
| |
| // fold (subc x, x) -> 0 + no borrow |
| if (N0 == N1) |
| return CombineTo(N, DAG.getConstant(0, DL, VT), |
| DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); |
| |
| // fold (subc x, 0) -> x + no borrow |
| if (isNullConstant(N1)) |
| return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); |
| |
| // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow |
| if (isAllOnesConstant(N0)) |
| return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), |
| DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSUBO(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| bool IsSigned = (ISD::SSUBO == N->getOpcode()); |
| |
| EVT CarryVT = N->getValueType(1); |
| SDLoc DL(N); |
| |
| // If the flag result is dead, turn this into an SUB. |
| if (!N->hasAnyUseOfValue(1)) |
| return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), |
| DAG.getUNDEF(CarryVT)); |
| |
| // fold (subo x, x) -> 0 + no borrow |
| if (N0 == N1) |
| return CombineTo(N, DAG.getConstant(0, DL, VT), |
| DAG.getConstant(0, DL, CarryVT)); |
| |
| ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); |
| |
| // fold (subox, c) -> (addo x, -c) |
| if (IsSigned && N1C && !N1C->getAPIntValue().isMinSignedValue()) { |
| return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, |
| DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); |
| } |
| |
| // fold (subo x, 0) -> x + no borrow |
| if (isNullOrNullSplat(N1)) |
| return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); |
| |
| // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow |
| if (!IsSigned && isAllOnesOrAllOnesSplat(N0)) |
| return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), |
| DAG.getConstant(0, DL, CarryVT)); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSUBE(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue CarryIn = N->getOperand(2); |
| |
| // fold (sube x, y, false) -> (subc x, y) |
| if (CarryIn.getOpcode() == ISD::CARRY_FALSE) |
| return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSUBCARRY(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue CarryIn = N->getOperand(2); |
| |
| // fold (subcarry x, y, false) -> (usubo x, y) |
| if (isNullConstant(CarryIn)) { |
| if (!LegalOperations || |
| TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0))) |
| return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1); |
| } |
| |
| return SDValue(); |
| } |
| |
| // Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and |
| // UMULFIXSAT here. |
| SDValue DAGCombiner::visitMULFIX(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue Scale = N->getOperand(2); |
| EVT VT = N0.getValueType(); |
| |
| // fold (mulfix x, undef, scale) -> 0 |
| if (N0.isUndef() || N1.isUndef()) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| |
| // Canonicalize constant to RHS (vector doesn't have to splat) |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale); |
| |
| // fold (mulfix x, 0, scale) -> 0 |
| if (isNullConstant(N1)) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitMUL(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| |
| // fold (mul x, undef) -> 0 |
| if (N0.isUndef() || N1.isUndef()) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| |
| bool N0IsConst = false; |
| bool N1IsConst = false; |
| bool N1IsOpaqueConst = false; |
| bool N0IsOpaqueConst = false; |
| APInt ConstValue0, ConstValue1; |
| // fold vector ops |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| N0IsConst = ISD::isConstantSplatVector(N0.getNode(), ConstValue0); |
| N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1); |
| assert((!N0IsConst || |
| ConstValue0.getBitWidth() == VT.getScalarSizeInBits()) && |
| "Splat APInt should be element width"); |
| assert((!N1IsConst || |
| ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) && |
| "Splat APInt should be element width"); |
| } else { |
| N0IsConst = isa<ConstantSDNode>(N0); |
| if (N0IsConst) { |
| ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue(); |
| N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque(); |
| } |
| N1IsConst = isa<ConstantSDNode>(N1); |
| if (N1IsConst) { |
| ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); |
| N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); |
| } |
| } |
| |
| // fold (mul c1, c2) -> c1*c2 |
| if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst) |
| return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, |
| N0.getNode(), N1.getNode()); |
| |
| // canonicalize constant to RHS (vector doesn't have to splat) |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); |
| // fold (mul x, 0) -> 0 |
| if (N1IsConst && ConstValue1.isNullValue()) |
| return N1; |
| // fold (mul x, 1) -> x |
| if (N1IsConst && ConstValue1.isOneValue()) |
| return N0; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // fold (mul x, -1) -> 0-x |
| if (N1IsConst && ConstValue1.isAllOnesValue()) { |
| SDLoc DL(N); |
| return DAG.getNode(ISD::SUB, DL, VT, |
| DAG.getConstant(0, DL, VT), N0); |
| } |
| // fold (mul x, (1 << c)) -> x << c |
| if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && |
| DAG.isKnownToBeAPowerOfTwo(N1) && |
| (!VT.isVector() || Level <= AfterLegalizeVectorOps)) { |
| SDLoc DL(N); |
| SDValue LogBase2 = BuildLogBase2(N1, DL); |
| EVT ShiftVT = getShiftAmountTy(N0.getValueType()); |
| SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); |
| return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc); |
| } |
| // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c |
| if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2()) { |
| unsigned Log2Val = (-ConstValue1).logBase2(); |
| SDLoc DL(N); |
| // FIXME: If the input is something that is easily negated (e.g. a |
| // single-use add), we should put the negate there. |
| return DAG.getNode(ISD::SUB, DL, VT, |
| DAG.getConstant(0, DL, VT), |
| DAG.getNode(ISD::SHL, DL, VT, N0, |
| DAG.getConstant(Log2Val, DL, |
| getShiftAmountTy(N0.getValueType())))); |
| } |
| |
| // Try to transform multiply-by-(power-of-2 +/- 1) into shift and add/sub. |
| // mul x, (2^N + 1) --> add (shl x, N), x |
| // mul x, (2^N - 1) --> sub (shl x, N), x |
| // Examples: x * 33 --> (x << 5) + x |
| // x * 15 --> (x << 4) - x |
| // x * -33 --> -((x << 5) + x) |
| // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4) |
| if (N1IsConst && TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) { |
| // TODO: We could handle more general decomposition of any constant by |
| // having the target set a limit on number of ops and making a |
| // callback to determine that sequence (similar to sqrt expansion). |
| unsigned MathOp = ISD::DELETED_NODE; |
| APInt MulC = ConstValue1.abs(); |
| if ((MulC - 1).isPowerOf2()) |
| MathOp = ISD::ADD; |
| else if ((MulC + 1).isPowerOf2()) |
| MathOp = ISD::SUB; |
| |
| if (MathOp != ISD::DELETED_NODE) { |
| unsigned ShAmt = |
| MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2(); |
| assert(ShAmt < VT.getScalarSizeInBits() && |
| "multiply-by-constant generated out of bounds shift"); |
| SDLoc DL(N); |
| SDValue Shl = |
| DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT)); |
| SDValue R = DAG.getNode(MathOp, DL, VT, Shl, N0); |
| if (ConstValue1.isNegative()) |
| R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R); |
| return R; |
| } |
| } |
| |
| // (mul (shl X, c1), c2) -> (mul X, c2 << c1) |
| if (N0.getOpcode() == ISD::SHL && |
| isConstantOrConstantVector(N1, /* NoOpaques */ true) && |
| isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { |
| SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1)); |
| if (isConstantOrConstantVector(C3)) |
| return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3); |
| } |
| |
| // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one |
| // use. |
| { |
| SDValue Sh(nullptr, 0), Y(nullptr, 0); |
| |
| // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). |
| if (N0.getOpcode() == ISD::SHL && |
| isConstantOrConstantVector(N0.getOperand(1)) && |
| N0.getNode()->hasOneUse()) { |
| Sh = N0; Y = N1; |
| } else if (N1.getOpcode() == ISD::SHL && |
| isConstantOrConstantVector(N1.getOperand(1)) && |
| N1.getNode()->hasOneUse()) { |
| Sh = N1; Y = N0; |
| } |
| |
| if (Sh.getNode()) { |
| SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y); |
| return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1)); |
| } |
| } |
| |
| // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && |
| N0.getOpcode() == ISD::ADD && |
| DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && |
| isMulAddWithConstProfitable(N, N0, N1)) |
| return DAG.getNode(ISD::ADD, SDLoc(N), VT, |
| DAG.getNode(ISD::MUL, SDLoc(N0), VT, |
| N0.getOperand(0), N1), |
| DAG.getNode(ISD::MUL, SDLoc(N1), VT, |
| N0.getOperand(1), N1)); |
| |
| // reassociate mul |
| if (SDValue RMUL = reassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags())) |
| return RMUL; |
| |
| return SDValue(); |
| } |
| |
| /// Return true if divmod libcall is available. |
| static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, |
| const TargetLowering &TLI) { |
| RTLIB::Libcall LC; |
| EVT NodeType = Node->getValueType(0); |
| if (!NodeType.isSimple()) |
| return false; |
| switch (NodeType.getSimpleVT().SimpleTy) { |
| default: return false; // No libcall for vector types. |
| case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; |
| case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; |
| case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; |
| case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; |
| case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; |
| } |
| |
| return TLI.getLibcallName(LC) != nullptr; |
| } |
| |
| /// Issue divrem if both quotient and remainder are needed. |
| SDValue DAGCombiner::useDivRem(SDNode *Node) { |
| if (Node->use_empty()) |
| return SDValue(); // This is a dead node, leave it alone. |
| |
| unsigned Opcode = Node->getOpcode(); |
| bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); |
| unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; |
| |
| // DivMod lib calls can still work on non-legal types if using lib-calls. |
| EVT VT = Node->getValueType(0); |
| if (VT.isVector() || !VT.isInteger()) |
| return SDValue(); |
| |
| if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT)) |
| return SDValue(); |
| |
| // If DIVREM is going to get expanded into a libcall, |
| // but there is no libcall available, then don't combine. |
| if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && |
| !isDivRemLibcallAvailable(Node, isSigned, TLI)) |
| return SDValue(); |
| |
| // If div is legal, it's better to do the normal expansion |
| unsigned OtherOpcode = 0; |
| if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { |
| OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; |
| if (TLI.isOperationLegalOrCustom(Opcode, VT)) |
| return SDValue(); |
| } else { |
| OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; |
| if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) |
| return SDValue(); |
| } |
| |
| SDValue Op0 = Node->getOperand(0); |
| SDValue Op1 = Node->getOperand(1); |
| SDValue combined; |
| for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), |
| UE = Op0.getNode()->use_end(); UI != UE; ++UI) { |
| SDNode *User = *UI; |
| if (User == Node || User->getOpcode() == ISD::DELETED_NODE || |
| User->use_empty()) |
| continue; |
| // Convert the other matching node(s), too; |
| // otherwise, the DIVREM may get target-legalized into something |
| // target-specific that we won't be able to recognize. |
| unsigned UserOpc = User->getOpcode(); |
| if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && |
| User->getOperand(0) == Op0 && |
| User->getOperand(1) == Op1) { |
| if (!combined) { |
| if (UserOpc == OtherOpcode) { |
| SDVTList VTs = DAG.getVTList(VT, VT); |
| combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); |
| } else if (UserOpc == DivRemOpc) { |
| combined = SDValue(User, 0); |
| } else { |
| assert(UserOpc == Opcode); |
| continue; |
| } |
| } |
| if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) |
| CombineTo(User, combined); |
| else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) |
| CombineTo(User, combined.getValue(1)); |
| } |
| } |
| return combined; |
| } |
| |
| static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| unsigned Opc = N->getOpcode(); |
| bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc); |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| |
| // X / undef -> undef |
| // X % undef -> undef |
| // X / 0 -> undef |
| // X % 0 -> undef |
| // NOTE: This includes vectors where any divisor element is zero/undef. |
| if (DAG.isUndef(Opc, {N0, N1})) |
| return DAG.getUNDEF(VT); |
| |
| // undef / X -> 0 |
| // undef % X -> 0 |
| if (N0.isUndef()) |
| return DAG.getConstant(0, DL, VT); |
| |
| // 0 / X -> 0 |
| // 0 % X -> 0 |
| ConstantSDNode *N0C = isConstOrConstSplat(N0); |
| if (N0C && N0C->isNullValue()) |
| return N0; |
| |
| // X / X -> 1 |
| // X % X -> 0 |
| if (N0 == N1) |
| return DAG.getConstant(IsDiv ? 1 : 0, DL, VT); |
| |
| // X / 1 -> X |
| // X % 1 -> 0 |
| // If this is a boolean op (single-bit element type), we can't have |
| // division-by-zero or remainder-by-zero, so assume the divisor is 1. |
| // TODO: Similarly, if we're zero-extending a boolean divisor, then assume |
| // it's a 1. |
| if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1)) |
| return IsDiv ? N0 : DAG.getConstant(0, DL, VT); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSDIV(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| EVT CCVT = getSetCCResultType(VT); |
| |
| // fold vector ops |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| SDLoc DL(N); |
| |
| // fold (sdiv c1, c2) -> c1/c2 |
| ConstantSDNode *N0C = isConstOrConstSplat(N0); |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque()) |
| return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C); |
| // fold (sdiv X, -1) -> 0-X |
| if (N1C && N1C->isAllOnesValue()) |
| return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0); |
| // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0) |
| if (N1C && N1C->getAPIntValue().isMinSignedValue()) |
| return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), |
| DAG.getConstant(1, DL, VT), |
| DAG.getConstant(0, DL, VT)); |
| |
| if (SDValue V = simplifyDivRem(N, DAG)) |
| return V; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // If we know the sign bits of both operands are zero, strength reduce to a |
| // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 |
| if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) |
| return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); |
| |
| if (SDValue V = visitSDIVLike(N0, N1, N)) { |
| // If the corresponding remainder node exists, update its users with |
| // (Dividend - (Quotient * Divisor). |
| if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(), |
| { N0, N1 })) { |
| SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); |
| SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); |
| AddToWorklist(Mul.getNode()); |
| AddToWorklist(Sub.getNode()); |
| CombineTo(RemNode, Sub); |
| } |
| return V; |
| } |
| |
| // sdiv, srem -> sdivrem |
| // If the divisor is constant, then return DIVREM only if isIntDivCheap() is |
| // true. Otherwise, we break the simplification logic in visitREM(). |
| AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); |
| if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) |
| if (SDValue DivRem = useDivRem(N)) |
| return DivRem; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) { |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| EVT CCVT = getSetCCResultType(VT); |
| unsigned BitWidth = VT.getScalarSizeInBits(); |
| |
| // Helper for determining whether a value is a power-2 constant scalar or a |
| // vector of such elements. |
| auto IsPowerOfTwo = [](ConstantSDNode *C) { |
| if (C->isNullValue() || C->isOpaque()) |
| return false; |
| if (C->getAPIntValue().isPowerOf2()) |
| return true; |
| if ((-C->getAPIntValue()).isPowerOf2()) |
| return true; |
| return false; |
| }; |
| |
| // fold (sdiv X, pow2) -> simple ops after legalize |
| // FIXME: We check for the exact bit here because the generic lowering gives |
| // better results in that case. The target-specific lowering should learn how |
| // to handle exact sdivs efficiently. |
| if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) { |
| // Target-specific implementation of sdiv x, pow2. |
| if (SDValue Res = BuildSDIVPow2(N)) |
| return Res; |
| |
| // Create constants that are functions of the shift amount value. |
| EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); |
| SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy); |
| SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1); |
| C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy); |
| SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1); |
| if (!isConstantOrConstantVector(Inexact)) |
| return SDValue(); |
| |
| // Splat the sign bit into the register |
| SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0, |
| DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy)); |
| AddToWorklist(Sign.getNode()); |
| |
| // Add (N0 < 0) ? abs2 - 1 : 0; |
| SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact); |
| AddToWorklist(Srl.getNode()); |
| SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl); |
| AddToWorklist(Add.getNode()); |
| SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1); |
| AddToWorklist(Sra.getNode()); |
| |
| // Special case: (sdiv X, 1) -> X |
| // Special Case: (sdiv X, -1) -> 0-X |
| SDValue One = DAG.getConstant(1, DL, VT); |
| SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); |
| SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ); |
| SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ); |
| SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes); |
| Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra); |
| |
| // If dividing by a positive value, we're done. Otherwise, the result must |
| // be negated. |
| SDValue Zero = DAG.getConstant(0, DL, VT); |
| SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra); |
| |
| // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding. |
| SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT); |
| SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra); |
| return Res; |
| } |
| |
| // If integer divide is expensive and we satisfy the requirements, emit an |
| // alternate sequence. Targets may check function attributes for size/speed |
| // trade-offs. |
| AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); |
| if (isConstantOrConstantVector(N1) && |
| !TLI.isIntDivCheap(N->getValueType(0), Attr)) |
| if (SDValue Op = BuildSDIV(N)) |
| return Op; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitUDIV(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| EVT CCVT = getSetCCResultType(VT); |
| |
| // fold vector ops |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| SDLoc DL(N); |
| |
| // fold (udiv c1, c2) -> c1/c2 |
| ConstantSDNode *N0C = isConstOrConstSplat(N0); |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| if (N0C && N1C) |
| if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, |
| N0C, N1C)) |
| return Folded; |
| // fold (udiv X, -1) -> select(X == -1, 1, 0) |
| if (N1C && N1C->getAPIntValue().isAllOnesValue()) |
| return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), |
| DAG.getConstant(1, DL, VT), |
| DAG.getConstant(0, DL, VT)); |
| |
| if (SDValue V = simplifyDivRem(N, DAG)) |
| return V; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| if (SDValue V = visitUDIVLike(N0, N1, N)) { |
| // If the corresponding remainder node exists, update its users with |
| // (Dividend - (Quotient * Divisor). |
| if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(), |
| { N0, N1 })) { |
| SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); |
| SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); |
| AddToWorklist(Mul.getNode()); |
| AddToWorklist(Sub.getNode()); |
| CombineTo(RemNode, Sub); |
| } |
| return V; |
| } |
| |
| // sdiv, srem -> sdivrem |
| // If the divisor is constant, then return DIVREM only if isIntDivCheap() is |
| // true. Otherwise, we break the simplification logic in visitREM(). |
| AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); |
| if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) |
| if (SDValue DivRem = useDivRem(N)) |
| return DivRem; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) { |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| |
| // fold (udiv x, (1 << c)) -> x >>u c |
| if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && |
| DAG.isKnownToBeAPowerOfTwo(N1)) { |
| SDValue LogBase2 = BuildLogBase2(N1, DL); |
| AddToWorklist(LogBase2.getNode()); |
| |
| EVT ShiftVT = getShiftAmountTy(N0.getValueType()); |
| SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); |
| AddToWorklist(Trunc.getNode()); |
| return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); |
| } |
| |
| // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 |
| if (N1.getOpcode() == ISD::SHL) { |
| SDValue N10 = N1.getOperand(0); |
| if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) && |
| DAG.isKnownToBeAPowerOfTwo(N10)) { |
| SDValue LogBase2 = BuildLogBase2(N10, DL); |
| AddToWorklist(LogBase2.getNode()); |
| |
| EVT ADDVT = N1.getOperand(1).getValueType(); |
| SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT); |
| AddToWorklist(Trunc.getNode()); |
| SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc); |
| AddToWorklist(Add.getNode()); |
| return DAG.getNode(ISD::SRL, DL, VT, N0, Add); |
| } |
| } |
| |
| // fold (udiv x, c) -> alternate |
| AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); |
| if (isConstantOrConstantVector(N1) && |
| !TLI.isIntDivCheap(N->getValueType(0), Attr)) |
| if (SDValue Op = BuildUDIV(N)) |
| return Op; |
| |
| return SDValue(); |
| } |
| |
| // handles ISD::SREM and ISD::UREM |
| SDValue DAGCombiner::visitREM(SDNode *N) { |
| unsigned Opcode = N->getOpcode(); |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| EVT CCVT = getSetCCResultType(VT); |
| |
| bool isSigned = (Opcode == ISD::SREM); |
| SDLoc DL(N); |
| |
| // fold (rem c1, c2) -> c1%c2 |
| ConstantSDNode *N0C = isConstOrConstSplat(N0); |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| if (N0C && N1C) |
| if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C)) |
| return Folded; |
| // fold (urem X, -1) -> select(X == -1, 0, x) |
| if (!isSigned && N1C && N1C->getAPIntValue().isAllOnesValue()) |
| return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), |
| DAG.getConstant(0, DL, VT), N0); |
| |
| if (SDValue V = simplifyDivRem(N, DAG)) |
| return V; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| if (isSigned) { |
| // If we know the sign bits of both operands are zero, strength reduce to a |
| // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 |
| if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) |
| return DAG.getNode(ISD::UREM, DL, VT, N0, N1); |
| } else { |
| SDValue NegOne = DAG.getAllOnesConstant(DL, VT); |
| if (DAG.isKnownToBeAPowerOfTwo(N1)) { |
| // fold (urem x, pow2) -> (and x, pow2-1) |
| SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); |
| AddToWorklist(Add.getNode()); |
| return DAG.getNode(ISD::AND, DL, VT, N0, Add); |
| } |
| if (N1.getOpcode() == ISD::SHL && |
| DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) { |
| // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) |
| SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); |
| AddToWorklist(Add.getNode()); |
| return DAG.getNode(ISD::AND, DL, VT, N0, Add); |
| } |
| } |
| |
| AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); |
| |
| // If X/C can be simplified by the division-by-constant logic, lower |
| // X%C to the equivalent of X-X/C*C. |
| // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the |
| // speculative DIV must not cause a DIVREM conversion. We guard against this |
| // by skipping the simplification if isIntDivCheap(). When div is not cheap, |
| // combine will not return a DIVREM. Regardless, checking cheapness here |
| // makes sense since the simplification results in fatter code. |
| if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) { |
| SDValue OptimizedDiv = |
| isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N); |
| if (OptimizedDiv.getNode()) { |
| // If the equivalent Div node also exists, update its users. |
| unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; |
| if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(), |
| { N0, N1 })) |
| CombineTo(DivNode, OptimizedDiv); |
| SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); |
| SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); |
| AddToWorklist(OptimizedDiv.getNode()); |
| AddToWorklist(Mul.getNode()); |
| return Sub; |
| } |
| } |
| |
| // sdiv, srem -> sdivrem |
| if (SDValue DivRem = useDivRem(N)) |
| return DivRem.getValue(1); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitMULHS(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| if (VT.isVector()) { |
| // fold (mulhs x, 0) -> 0 |
| // do not return N0/N1, because undef node may exist. |
| if (ISD::isBuildVectorAllZeros(N0.getNode()) || |
| ISD::isBuildVectorAllZeros(N1.getNode())) |
| return DAG.getConstant(0, DL, VT); |
| } |
| |
| // fold (mulhs x, 0) -> 0 |
| if (isNullConstant(N1)) |
| return N1; |
| // fold (mulhs x, 1) -> (sra x, size(x)-1) |
| if (isOneConstant(N1)) |
| return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, |
| DAG.getConstant(N0.getScalarValueSizeInBits() - 1, DL, |
| getShiftAmountTy(N0.getValueType()))); |
| |
| // fold (mulhs x, undef) -> 0 |
| if (N0.isUndef() || N1.isUndef()) |
| return DAG.getConstant(0, DL, VT); |
| |
| // If the type twice as wide is legal, transform the mulhs to a wider multiply |
| // plus a shift. |
| if (VT.isSimple() && !VT.isVector()) { |
| MVT Simple = VT.getSimpleVT(); |
| unsigned SimpleSize = Simple.getSizeInBits(); |
| EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); |
| if (TLI.isOperationLegal(ISD::MUL, NewVT)) { |
| N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); |
| N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); |
| N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); |
| N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, |
| DAG.getConstant(SimpleSize, DL, |
| getShiftAmountTy(N1.getValueType()))); |
| return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitMULHU(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| if (VT.isVector()) { |
| // fold (mulhu x, 0) -> 0 |
| // do not return N0/N1, because undef node may exist. |
| if (ISD::isBuildVectorAllZeros(N0.getNode()) || |
| ISD::isBuildVectorAllZeros(N1.getNode())) |
| return DAG.getConstant(0, DL, VT); |
| } |
| |
| // fold (mulhu x, 0) -> 0 |
| if (isNullConstant(N1)) |
| return N1; |
| // fold (mulhu x, 1) -> 0 |
| if (isOneConstant(N1)) |
| return DAG.getConstant(0, DL, N0.getValueType()); |
| // fold (mulhu x, undef) -> 0 |
| if (N0.isUndef() || N1.isUndef()) |
| return DAG.getConstant(0, DL, VT); |
| |
| // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c) |
| if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && |
| DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) { |
| unsigned NumEltBits = VT.getScalarSizeInBits(); |
| SDValue LogBase2 = BuildLogBase2(N1, DL); |
| SDValue SRLAmt = DAG.getNode( |
| ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2); |
| EVT ShiftVT = getShiftAmountTy(N0.getValueType()); |
| SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT); |
| return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); |
| } |
| |
| // If the type twice as wide is legal, transform the mulhu to a wider multiply |
| // plus a shift. |
| if (VT.isSimple() && !VT.isVector()) { |
| MVT Simple = VT.getSimpleVT(); |
| unsigned SimpleSize = Simple.getSizeInBits(); |
| EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); |
| if (TLI.isOperationLegal(ISD::MUL, NewVT)) { |
| N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); |
| N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); |
| N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); |
| N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, |
| DAG.getConstant(SimpleSize, DL, |
| getShiftAmountTy(N1.getValueType()))); |
| return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Perform optimizations common to nodes that compute two values. LoOp and HiOp |
| /// give the opcodes for the two computations that are being performed. Return |
| /// true if a simplification was made. |
| SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, |
| unsigned HiOp) { |
| // If the high half is not needed, just compute the low half. |
| bool HiExists = N->hasAnyUseOfValue(1); |
| if (!HiExists && (!LegalOperations || |
| TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { |
| SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); |
| return CombineTo(N, Res, Res); |
| } |
| |
| // If the low half is not needed, just compute the high half. |
| bool LoExists = N->hasAnyUseOfValue(0); |
| if (!LoExists && (!LegalOperations || |
| TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) { |
| SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); |
| return CombineTo(N, Res, Res); |
| } |
| |
| // If both halves are used, return as it is. |
| if (LoExists && HiExists) |
| return SDValue(); |
| |
| // If the two computed results can be simplified separately, separate them. |
| if (LoExists) { |
| SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); |
| AddToWorklist(Lo.getNode()); |
| SDValue LoOpt = combine(Lo.getNode()); |
| if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && |
| (!LegalOperations || |
| TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType()))) |
| return CombineTo(N, LoOpt, LoOpt); |
| } |
| |
| if (HiExists) { |
| SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); |
| AddToWorklist(Hi.getNode()); |
| SDValue HiOpt = combine(Hi.getNode()); |
| if (HiOpt.getNode() && HiOpt != Hi && |
| (!LegalOperations || |
| TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType()))) |
| return CombineTo(N, HiOpt, HiOpt); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { |
| if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) |
| return Res; |
| |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| // If the type is twice as wide is legal, transform the mulhu to a wider |
| // multiply plus a shift. |
| if (VT.isSimple() && !VT.isVector()) { |
| MVT Simple = VT.getSimpleVT(); |
| unsigned SimpleSize = Simple.getSizeInBits(); |
| EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); |
| if (TLI.isOperationLegal(ISD::MUL, NewVT)) { |
| SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); |
| SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); |
| Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); |
| // Compute the high part as N1. |
| Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, |
| DAG.getConstant(SimpleSize, DL, |
| getShiftAmountTy(Lo.getValueType()))); |
| Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); |
| // Compute the low part as N0. |
| Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); |
| return CombineTo(N, Lo, Hi); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { |
| if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) |
| return Res; |
| |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| // (umul_lohi N0, 0) -> (0, 0) |
| if (isNullConstant(N->getOperand(1))) { |
| SDValue Zero = DAG.getConstant(0, DL, VT); |
| return CombineTo(N, Zero, Zero); |
| } |
| |
| // (umul_lohi N0, 1) -> (N0, 0) |
| if (isOneConstant(N->getOperand(1))) { |
| SDValue Zero = DAG.getConstant(0, DL, VT); |
| return CombineTo(N, N->getOperand(0), Zero); |
| } |
| |
| // If the type is twice as wide is legal, transform the mulhu to a wider |
| // multiply plus a shift. |
| if (VT.isSimple() && !VT.isVector()) { |
| MVT Simple = VT.getSimpleVT(); |
| unsigned SimpleSize = Simple.getSizeInBits(); |
| EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); |
| if (TLI.isOperationLegal(ISD::MUL, NewVT)) { |
| SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); |
| SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); |
| Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); |
| // Compute the high part as N1. |
| Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, |
| DAG.getConstant(SimpleSize, DL, |
| getShiftAmountTy(Lo.getValueType()))); |
| Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); |
| // Compute the low part as N0. |
| Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); |
| return CombineTo(N, Lo, Hi); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitMULO(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| bool IsSigned = (ISD::SMULO == N->getOpcode()); |
| |
| EVT CarryVT = N->getValueType(1); |
| SDLoc DL(N); |
| |
| // canonicalize constant to RHS. |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); |
| |
| // fold (mulo x, 0) -> 0 + no carry out |
| if (isNullOrNullSplat(N1)) |
| return CombineTo(N, DAG.getConstant(0, DL, VT), |
| DAG.getConstant(0, DL, CarryVT)); |
| |
| // (mulo x, 2) -> (addo x, x) |
| if (ConstantSDNode *C2 = isConstOrConstSplat(N1)) |
| if (C2->getAPIntValue() == 2) |
| return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, DL, |
| N->getVTList(), N0, N0); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitIMINMAX(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| |
| // fold vector ops |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| // fold operation with constant operands. |
| ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); |
| ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); |
| if (N0C && N1C) |
| return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C); |
| |
| // canonicalize constant to RHS |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); |
| |
| // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX. |
| // Only do this if the current op isn't legal and the flipped is. |
| unsigned Opcode = N->getOpcode(); |
| if (!TLI.isOperationLegal(Opcode, VT) && |
| (N0.isUndef() || DAG.SignBitIsZero(N0)) && |
| (N1.isUndef() || DAG.SignBitIsZero(N1))) { |
| unsigned AltOpcode; |
| switch (Opcode) { |
| case ISD::SMIN: AltOpcode = ISD::UMIN; break; |
| case ISD::SMAX: AltOpcode = ISD::UMAX; break; |
| case ISD::UMIN: AltOpcode = ISD::SMIN; break; |
| case ISD::UMAX: AltOpcode = ISD::SMAX; break; |
| default: llvm_unreachable("Unknown MINMAX opcode"); |
| } |
| if (TLI.isOperationLegal(AltOpcode, VT)) |
| return DAG.getNode(AltOpcode, SDLoc(N), VT, N0, N1); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// If this is a bitwise logic instruction and both operands have the same |
| /// opcode, try to sink the other opcode after the logic instruction. |
| SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) { |
| SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| unsigned LogicOpcode = N->getOpcode(); |
| unsigned HandOpcode = N0.getOpcode(); |
| assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR || |
| LogicOpcode == ISD::XOR) && "Expected logic opcode"); |
| assert(HandOpcode == N1.getOpcode() && "Bad input!"); |
| |
| // Bail early if none of these transforms apply. |
| if (N0.getNumOperands() == 0) |
| return SDValue(); |
| |
| // FIXME: We should check number of uses of the operands to not increase |
| // the instruction count for all transforms. |
| |
| // Handle size-changing casts. |
| SDValue X = N0.getOperand(0); |
| SDValue Y = N1.getOperand(0); |
| EVT XVT = X.getValueType(); |
| SDLoc DL(N); |
| if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND || |
| HandOpcode == ISD::SIGN_EXTEND) { |
| // If both operands have other uses, this transform would create extra |
| // instructions without eliminating anything. |
| if (!N0.hasOneUse() && !N1.hasOneUse()) |
| return SDValue(); |
| // We need matching integer source types. |
| if (XVT != Y.getValueType()) |
| return SDValue(); |
| // Don't create an illegal op during or after legalization. Don't ever |
| // create an unsupported vector op. |
| if ((VT.isVector() || LegalOperations) && |
| !TLI.isOperationLegalOrCustom(LogicOpcode, XVT)) |
| return SDValue(); |
| // Avoid infinite looping with PromoteIntBinOp. |
| // TODO: Should we apply desirable/legal constraints to all opcodes? |
| if (HandOpcode == ISD::ANY_EXTEND && LegalTypes && |
| !TLI.isTypeDesirableForOp(LogicOpcode, XVT)) |
| return SDValue(); |
| // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y) |
| SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); |
| return DAG.getNode(HandOpcode, DL, VT, Logic); |
| } |
| |
| // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y) |
| if (HandOpcode == ISD::TRUNCATE) { |
| // If both operands have other uses, this transform would create extra |
| // instructions without eliminating anything. |
| if (!N0.hasOneUse() && !N1.hasOneUse()) |
| return SDValue(); |
| // We need matching source types. |
| if (XVT != Y.getValueType()) |
| return SDValue(); |
| // Don't create an illegal op during or after legalization. |
| if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT)) |
| return SDValue(); |
| // Be extra careful sinking truncate. If it's free, there's no benefit in |
| // widening a binop. Also, don't create a logic op on an illegal type. |
| if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT)) |
| return SDValue(); |
| if (!TLI.isTypeLegal(XVT)) |
| return SDValue(); |
| SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); |
| return DAG.getNode(HandOpcode, DL, VT, Logic); |
| } |
| |
| // For binops SHL/SRL/SRA/AND: |
| // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z |
| if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL || |
| HandOpcode == ISD::SRA || HandOpcode == ISD::AND) && |
| N0.getOperand(1) == N1.getOperand(1)) { |
| // If either operand has other uses, this transform is not an improvement. |
| if (!N0.hasOneUse() || !N1.hasOneUse()) |
| return SDValue(); |
| SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); |
| return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1)); |
| } |
| |
| // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y) |
| if (HandOpcode == ISD::BSWAP) { |
| // If either operand has other uses, this transform is not an improvement. |
| if (!N0.hasOneUse() || !N1.hasOneUse()) |
| return SDValue(); |
| SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); |
| return DAG.getNode(HandOpcode, DL, VT, Logic); |
| } |
| |
| // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) |
| // Only perform this optimization up until type legalization, before |
| // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by |
| // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and |
| // we don't want to undo this promotion. |
| // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper |
| // on scalars. |
| if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) && |
| Level <= AfterLegalizeTypes) { |
| // Input types must be integer and the same. |
| if (XVT.isInteger() && XVT == Y.getValueType() && |
| !(VT.isVector() && TLI.isTypeLegal(VT) && |
| !XVT.isVector() && !TLI.isTypeLegal(XVT))) { |
| SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); |
| return DAG.getNode(HandOpcode, DL, VT, Logic); |
| } |
| } |
| |
| // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). |
| // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) |
| // If both shuffles use the same mask, and both shuffle within a single |
| // vector, then it is worthwhile to move the swizzle after the operation. |
| // The type-legalizer generates this pattern when loading illegal |
| // vector types from memory. In many cases this allows additional shuffle |
| // optimizations. |
| // There are other cases where moving the shuffle after the xor/and/or |
| // is profitable even if shuffles don't perform a swizzle. |
| // If both shuffles use the same mask, and both shuffles have the same first |
| // or second operand, then it might still be profitable to move the shuffle |
| // after the xor/and/or operation. |
| if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { |
| auto *SVN0 = cast<ShuffleVectorSDNode>(N0); |
| auto *SVN1 = cast<ShuffleVectorSDNode>(N1); |
| assert(X.getValueType() == Y.getValueType() && |
| "Inputs to shuffles are not the same type"); |
| |
| // Check that both shuffles use the same mask. The masks are known to be of |
| // the same length because the result vector type is the same. |
| // Check also that shuffles have only one use to avoid introducing extra |
| // instructions. |
| if (!SVN0->hasOneUse() || !SVN1->hasOneUse() || |
| !SVN0->getMask().equals(SVN1->getMask())) |
| return SDValue(); |
| |
| // Don't try to fold this node if it requires introducing a |
| // build vector of all zeros that might be illegal at this stage. |
| SDValue ShOp = N0.getOperand(1); |
| if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) |
| ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); |
| |
| // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C) |
| if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { |
| SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, |
| N0.getOperand(0), N1.getOperand(0)); |
| return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask()); |
| } |
| |
| // Don't try to fold this node if it requires introducing a |
| // build vector of all zeros that might be illegal at this stage. |
| ShOp = N0.getOperand(0); |
| if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) |
| ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); |
| |
| // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B)) |
| if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) { |
| SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1), |
| N1.getOperand(1)); |
| return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask()); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient. |
| SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, |
| const SDLoc &DL) { |
| SDValue LL, LR, RL, RR, N0CC, N1CC; |
| if (!isSetCCEquivalent(N0, LL, LR, N0CC) || |
| !isSetCCEquivalent(N1, RL, RR, N1CC)) |
| return SDValue(); |
| |
| assert(N0.getValueType() == N1.getValueType() && |
| "Unexpected operand types for bitwise logic op"); |
| assert(LL.getValueType() == LR.getValueType() && |
| RL.getValueType() == RR.getValueType() && |
| "Unexpected operand types for setcc"); |
| |
| // If we're here post-legalization or the logic op type is not i1, the logic |
| // op type must match a setcc result type. Also, all folds require new |
| // operations on the left and right operands, so those types must match. |
| EVT VT = N0.getValueType(); |
| EVT OpVT = LL.getValueType(); |
| if (LegalOperations || VT.getScalarType() != MVT::i1) |
| if (VT != getSetCCResultType(OpVT)) |
| return SDValue(); |
| if (OpVT != RL.getValueType()) |
| return SDValue(); |
| |
| ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get(); |
| ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get(); |
| bool IsInteger = OpVT.isInteger(); |
| if (LR == RR && CC0 == CC1 && IsInteger) { |
| bool IsZero = isNullOrNullSplat(LR); |
| bool IsNeg1 = isAllOnesOrAllOnesSplat(LR); |
| |
| // All bits clear? |
| bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero; |
| // All sign bits clear? |
| bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1; |
| // Any bits set? |
| bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero; |
| // Any sign bits set? |
| bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero; |
| |
| // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0) |
| // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1) |
| // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0) |
| // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0) |
| if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) { |
| SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL); |
| AddToWorklist(Or.getNode()); |
| return DAG.getSetCC(DL, VT, Or, LR, CC1); |
| } |
| |
| // All bits set? |
| bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1; |
| // All sign bits set? |
| bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero; |
| // Any bits clear? |
| bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1; |
| // Any sign bits clear? |
| bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1; |
| |
| // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1) |
| // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0) |
| // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1) |
| // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1) |
| if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) { |
| SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL); |
| AddToWorklist(And.getNode()); |
| return DAG.getSetCC(DL, VT, And, LR, CC1); |
| } |
| } |
| |
| // TODO: What is the 'or' equivalent of this fold? |
| // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2) |
| if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 && |
| IsInteger && CC0 == ISD::SETNE && |
| ((isNullConstant(LR) && isAllOnesConstant(RR)) || |
| (isAllOnesConstant(LR) && isNullConstant(RR)))) { |
| SDValue One = DAG.getConstant(1, DL, OpVT); |
| SDValue Two = DAG.getConstant(2, DL, OpVT); |
| SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One); |
| AddToWorklist(Add.getNode()); |
| return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE); |
| } |
| |
| // Try more general transforms if the predicates match and the only user of |
| // the compares is the 'and' or 'or'. |
| if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 && |
| N0.hasOneUse() && N1.hasOneUse()) { |
| // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0 |
| // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0 |
| if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) { |
| SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR); |
| SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR); |
| SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR); |
| SDValue Zero = DAG.getConstant(0, DL, OpVT); |
| return DAG.getSetCC(DL, VT, Or, Zero, CC1); |
| } |
| |
| // Turn compare of constants whose difference is 1 bit into add+and+setcc. |
| // TODO - support non-uniform vector amounts. |
| if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) { |
| // Match a shared variable operand and 2 non-opaque constant operands. |
| ConstantSDNode *C0 = isConstOrConstSplat(LR); |
| ConstantSDNode *C1 = isConstOrConstSplat(RR); |
| if (LL == RL && C0 && C1 && !C0->isOpaque() && !C1->isOpaque()) { |
| // Canonicalize larger constant as C0. |
| if (C1->getAPIntValue().ugt(C0->getAPIntValue())) |
| std::swap(C0, C1); |
| |
| // The difference of the constants must be a single bit. |
| const APInt &C0Val = C0->getAPIntValue(); |
| const APInt &C1Val = C1->getAPIntValue(); |
| if ((C0Val - C1Val).isPowerOf2()) { |
| // and/or (setcc X, C0, ne), (setcc X, C1, ne/eq) --> |
| // setcc ((add X, -C1), ~(C0 - C1)), 0, ne/eq |
| SDValue OffsetC = DAG.getConstant(-C1Val, DL, OpVT); |
| SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LL, OffsetC); |
| SDValue MaskC = DAG.getConstant(~(C0Val - C1Val), DL, OpVT); |
| SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Add, MaskC); |
| SDValue Zero = DAG.getConstant(0, DL, OpVT); |
| return DAG.getSetCC(DL, VT, And, Zero, CC0); |
| } |
| } |
| } |
| } |
| |
| // Canonicalize equivalent operands to LL == RL. |
| if (LL == RR && LR == RL) { |
| CC1 = ISD::getSetCCSwappedOperands(CC1); |
| std::swap(RL, RR); |
| } |
| |
| // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) |
| // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) |
| if (LL == RL && LR == RR) { |
| ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, OpVT) |
| : ISD::getSetCCOrOperation(CC0, CC1, OpVT); |
| if (NewCC != ISD::SETCC_INVALID && |
| (!LegalOperations || |
| (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) && |
| TLI.isOperationLegal(ISD::SETCC, OpVT)))) |
| return DAG.getSetCC(DL, VT, LL, LR, NewCC); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// This contains all DAGCombine rules which reduce two values combined by |
| /// an And operation to a single value. This makes them reusable in the context |
| /// of visitSELECT(). Rules involving constants are not included as |
| /// visitSELECT() already handles those cases. |
| SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) { |
| EVT VT = N1.getValueType(); |
| SDLoc DL(N); |
| |
| // fold (and x, undef) -> 0 |
| if (N0.isUndef() || N1.isUndef()) |
| return DAG.getConstant(0, DL, VT); |
| |
| if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL)) |
| return V; |
| |
| if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && |
| VT.getSizeInBits() <= 64) { |
| if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { |
| if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { |
| // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal |
| // immediate for an add, but it is legal if its top c2 bits are set, |
| // transform the ADD so the immediate doesn't need to be materialized |
| // in a register. |
| APInt ADDC = ADDI->getAPIntValue(); |
| APInt SRLC = SRLI->getAPIntValue(); |
| if (ADDC.getMinSignedBits() <= 64 && |
| SRLC.ult(VT.getSizeInBits()) && |
| !TLI.isLegalAddImmediate(ADDC.getSExtValue())) { |
| APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), |
| SRLC.getZExtValue()); |
| if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { |
| ADDC |= Mask; |
| if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { |
| SDLoc DL0(N0); |
| SDValue NewAdd = |
| DAG.getNode(ISD::ADD, DL0, VT, |
| N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); |
| CombineTo(N0.getNode(), NewAdd); |
| // Return N so it doesn't get rechecked! |
| return SDValue(N, 0); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Reduce bit extract of low half of an integer to the narrower type. |
| // (and (srl i64:x, K), KMask) -> |
| // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask) |
| if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { |
| if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) { |
| if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { |
| unsigned Size = VT.getSizeInBits(); |
| const APInt &AndMask = CAnd->getAPIntValue(); |
| unsigned ShiftBits = CShift->getZExtValue(); |
| |
| // Bail out, this node will probably disappear anyway. |
| if (ShiftBits == 0) |
| return SDValue(); |
| |
| unsigned MaskBits = AndMask.countTrailingOnes(); |
| EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2); |
| |
| if (AndMask.isMask() && |
| // Required bits must not span the two halves of the integer and |
| // must fit in the half size type. |
| (ShiftBits + MaskBits <= Size / 2) && |
| TLI.isNarrowingProfitable(VT, HalfVT) && |
| TLI.isTypeDesirableForOp(ISD::AND, HalfVT) && |
| TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) && |
| TLI.isTruncateFree(VT, HalfVT) && |
| TLI.isZExtFree(HalfVT, VT)) { |
| // The isNarrowingProfitable is to avoid regressions on PPC and |
| // AArch64 which match a few 64-bit bit insert / bit extract patterns |
| // on downstream users of this. Those patterns could probably be |
| // extended to handle extensions mixed in. |
| |
| SDValue SL(N0); |
| assert(MaskBits <= Size); |
| |
| // Extracting the highest bit of the low half. |
| EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout()); |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT, |
| N0.getOperand(0)); |
| |
| SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT); |
| SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT); |
| SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK); |
| SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask); |
| return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And); |
| } |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, |
| EVT LoadResultTy, EVT &ExtVT) { |
| if (!AndC->getAPIntValue().isMask()) |
| return false; |
| |
| unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes(); |
| |
| ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); |
| EVT LoadedVT = LoadN->getMemoryVT(); |
| |
| if (ExtVT == LoadedVT && |
| (!LegalOperations || |
| TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { |
| // ZEXTLOAD will match without needing to change the size of the value being |
| // loaded. |
| return true; |
| } |
| |
| // Do not change the width of a volatile or atomic loads. |
| if (!LoadN->isSimple()) |
| return false; |
| |
| // Do not generate loads of non-round integer types since these can |
| // be expensive (and would be wrong if the type is not byte sized). |
| if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) |
| return false; |
| |
| if (LegalOperations && |
| !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) |
| return false; |
| |
| if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) |
| return false; |
| |
| return true; |
| } |
| |
| bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST, |
| ISD::LoadExtType ExtType, EVT &MemVT, |
| unsigned ShAmt) { |
| if (!LDST) |
| return false; |
| // Only allow byte offsets. |
| if (ShAmt % 8) |
| return false; |
| |
| // Do not generate loads of non-round integer types since these can |
| // be expensive (and would be wrong if the type is not byte sized). |
| if (!MemVT.isRound()) |
| return false; |
| |
| // Don't change the width of a volatile or atomic loads. |
| if (!LDST->isSimple()) |
| return false; |
| |
| // Verify that we are actually reducing a load width here. |
| if (LDST->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits()) |
| return false; |
| |
| // Ensure that this isn't going to produce an unsupported memory access. |
| if (ShAmt && |
| !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, |
| LDST->getAddressSpace(), ShAmt / 8, |
| LDST->getMemOperand()->getFlags())) |
| return false; |
| |
| // It's not possible to generate a constant of extended or untyped type. |
| EVT PtrType = LDST->getBasePtr().getValueType(); |
| if (PtrType == MVT::Untyped || PtrType.isExtended()) |
| return false; |
| |
| if (isa<LoadSDNode>(LDST)) { |
| LoadSDNode *Load = cast<LoadSDNode>(LDST); |
| // Don't transform one with multiple uses, this would require adding a new |
| // load. |
| if (!SDValue(Load, 0).hasOneUse()) |
| return false; |
| |
| if (LegalOperations && |
| !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT)) |
| return false; |
| |
| // For the transform to be legal, the load must produce only two values |
| // (the value loaded and the chain). Don't transform a pre-increment |
| // load, for example, which produces an extra value. Otherwise the |
| // transformation is not equivalent, and the downstream logic to replace |
| // uses gets things wrong. |
| if (Load->getNumValues() > 2) |
| return false; |
| |
| // If the load that we're shrinking is an extload and we're not just |
| // discarding the extension we can't simply shrink the load. Bail. |
| // TODO: It would be possible to merge the extensions in some cases. |
| if (Load->getExtensionType() != ISD::NON_EXTLOAD && |
| Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) |
| return false; |
| |
| if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT)) |
| return false; |
| } else { |
| assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode"); |
| StoreSDNode *Store = cast<StoreSDNode>(LDST); |
| // Can't write outside the original store |
| if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) |
| return false; |
| |
| if (LegalOperations && |
| !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool DAGCombiner::SearchForAndLoads(SDNode *N, |
| SmallVectorImpl<LoadSDNode*> &Loads, |
| SmallPtrSetImpl<SDNode*> &NodesWithConsts, |
| ConstantSDNode *Mask, |
| SDNode *&NodeToMask) { |
| // Recursively search for the operands, looking for loads which can be |
| // narrowed. |
| for (SDValue Op : N->op_values()) { |
| if (Op.getValueType().isVector()) |
| return false; |
| |
| // Some constants may need fixing up later if they are too large. |
| if (auto *C = dyn_cast<ConstantSDNode>(Op)) { |
| if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) && |
| (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue()) |
| NodesWithConsts.insert(N); |
| continue; |
| } |
| |
| if (!Op.hasOneUse()) |
| return false; |
| |
| switch(Op.getOpcode()) { |
| case ISD::LOAD: { |
| auto *Load = cast<LoadSDNode>(Op); |
| EVT ExtVT; |
| if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) && |
| isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) { |
| |
| // ZEXTLOAD is already small enough. |
| if (Load->getExtensionType() == ISD::ZEXTLOAD && |
| ExtVT.bitsGE(Load->getMemoryVT())) |
| continue; |
| |
| // Use LE to convert equal sized loads to zext. |
| if (ExtVT.bitsLE(Load->getMemoryVT())) |
| Loads.push_back(Load); |
| |
| continue; |
| } |
| return false; |
| } |
| case ISD::ZERO_EXTEND: |
| case ISD::AssertZext: { |
| unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes(); |
| EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); |
| EVT VT = Op.getOpcode() == ISD::AssertZext ? |
| cast<VTSDNode>(Op.getOperand(1))->getVT() : |
| Op.getOperand(0).getValueType(); |
| |
| // We can accept extending nodes if the mask is wider or an equal |
| // width to the original type. |
| if (ExtVT.bitsGE(VT)) |
| continue; |
| break; |
| } |
| case ISD::OR: |
| case ISD::XOR: |
| case ISD::AND: |
| if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask, |
| NodeToMask)) |
| return false; |
| continue; |
| } |
| |
| // Allow one node which will masked along with any loads found. |
| if (NodeToMask) |
| return false; |
| |
| // Also ensure that the node to be masked only produces one data result. |
| NodeToMask = Op.getNode(); |
| if (NodeToMask->getNumValues() > 1) { |
| bool HasValue = false; |
| for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) { |
| MVT VT = SDValue(NodeToMask, i).getSimpleValueType(); |
| if (VT != MVT::Glue && VT != MVT::Other) { |
| if (HasValue) { |
| NodeToMask = nullptr; |
| return false; |
| } |
| HasValue = true; |
| } |
| } |
| assert(HasValue && "Node to be masked has no data result?"); |
| } |
| } |
| return true; |
| } |
| |
| bool DAGCombiner::BackwardsPropagateMask(SDNode *N) { |
| auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!Mask) |
| return false; |
| |
| if (!Mask->getAPIntValue().isMask()) |
| return false; |
| |
| // No need to do anything if the and directly uses a load. |
| if (isa<LoadSDNode>(N->getOperand(0))) |
| return false; |
| |
| SmallVector<LoadSDNode*, 8> Loads; |
| SmallPtrSet<SDNode*, 2> NodesWithConsts; |
| SDNode *FixupNode = nullptr; |
| if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) { |
| if (Loads.size() == 0) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump()); |
| SDValue MaskOp = N->getOperand(1); |
| |
| // If it exists, fixup the single node we allow in the tree that needs |
| // masking. |
| if (FixupNode) { |
| LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump()); |
| SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode), |
| FixupNode->getValueType(0), |
| SDValue(FixupNode, 0), MaskOp); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And); |
| if (And.getOpcode() == ISD ::AND) |
| DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp); |
| } |
| |
| // Narrow any constants that need it. |
| for (auto *LogicN : NodesWithConsts) { |
| SDValue Op0 = LogicN->getOperand(0); |
| SDValue Op1 = LogicN->getOperand(1); |
| |
| if (isa<ConstantSDNode>(Op0)) |
| std::swap(Op0, Op1); |
| |
| SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(), |
| Op1, MaskOp); |
| |
| DAG.UpdateNodeOperands(LogicN, Op0, And); |
| } |
| |
| // Create narrow loads. |
| for (auto *Load : Loads) { |
| LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump()); |
| SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0), |
| SDValue(Load, 0), MaskOp); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And); |
| if (And.getOpcode() == ISD ::AND) |
| And = SDValue( |
| DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0); |
| SDValue NewLoad = ReduceLoadWidth(And.getNode()); |
| assert(NewLoad && |
| "Shouldn't be masking the load if it can't be narrowed"); |
| CombineTo(Load, NewLoad, NewLoad.getValue(1)); |
| } |
| DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode()); |
| return true; |
| } |
| return false; |
| } |
| |
| // Unfold |
| // x & (-1 'logical shift' y) |
| // To |
| // (x 'opposite logical shift' y) 'logical shift' y |
| // if it is better for performance. |
| SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) { |
| assert(N->getOpcode() == ISD::AND); |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| // Do we actually prefer shifts over mask? |
| if (!TLI.shouldFoldMaskToVariableShiftPair(N0)) |
| return SDValue(); |
| |
| // Try to match (-1 '[outer] logical shift' y) |
| unsigned OuterShift; |
| unsigned InnerShift; // The opposite direction to the OuterShift. |
| SDValue Y; // Shift amount. |
| auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool { |
| if (!M.hasOneUse()) |
| return false; |
| OuterShift = M->getOpcode(); |
| if (OuterShift == ISD::SHL) |
| InnerShift = ISD::SRL; |
| else if (OuterShift == ISD::SRL) |
| InnerShift = ISD::SHL; |
| else |
| return false; |
| if (!isAllOnesConstant(M->getOperand(0))) |
| return false; |
| Y = M->getOperand(1); |
| return true; |
| }; |
| |
| SDValue X; |
| if (matchMask(N1)) |
| X = N0; |
| else if (matchMask(N0)) |
| X = N1; |
| else |
| return SDValue(); |
| |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| |
| // tmp = x 'opposite logical shift' y |
| SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y); |
| // ret = tmp 'logical shift' y |
| SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y); |
| |
| return T1; |
| } |
| |
| /// Try to replace shift/logic that tests if a bit is clear with mask + setcc. |
| /// For a target with a bit test, this is expected to become test + set and save |
| /// at least 1 instruction. |
| static SDValue combineShiftAnd1ToBitTest(SDNode *And, SelectionDAG &DAG) { |
| assert(And->getOpcode() == ISD::AND && "Expected an 'and' op"); |
| |
| // This is probably not worthwhile without a supported type. |
| EVT VT = And->getValueType(0); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (!TLI.isTypeLegal(VT)) |
| return SDValue(); |
| |
| // Look through an optional extension and find a 'not'. |
| // TODO: Should we favor test+set even without the 'not' op? |
| SDValue Not = And->getOperand(0), And1 = And->getOperand(1); |
| if (Not.getOpcode() == ISD::ANY_EXTEND) |
| Not = Not.getOperand(0); |
| if (!isBitwiseNot(Not) || !Not.hasOneUse() || !isOneConstant(And1)) |
| return SDValue(); |
| |
| // Look though an optional truncation. The source operand may not be the same |
| // type as the original 'and', but that is ok because we are masking off |
| // everything but the low bit. |
| SDValue Srl = Not.getOperand(0); |
| if (Srl.getOpcode() == ISD::TRUNCATE) |
| Srl = Srl.getOperand(0); |
| |
| // Match a shift-right by constant. |
| if (Srl.getOpcode() != ISD::SRL || !Srl.hasOneUse() || |
| !isa<ConstantSDNode>(Srl.getOperand(1))) |
| return SDValue(); |
| |
| // We might have looked through casts that make this transform invalid. |
| // TODO: If the source type is wider than the result type, do the mask and |
| // compare in the source type. |
| const APInt &ShiftAmt = Srl.getConstantOperandAPInt(1); |
| unsigned VTBitWidth = VT.getSizeInBits(); |
| if (ShiftAmt.uge(VTBitWidth)) |
| return SDValue(); |
| |
| // Turn this into a bit-test pattern using mask op + setcc: |
| // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0 |
| SDLoc DL(And); |
| SDValue X = DAG.getZExtOrTrunc(Srl.getOperand(0), DL, VT); |
| EVT CCVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); |
| SDValue Mask = DAG.getConstant( |
| APInt::getOneBitSet(VTBitWidth, ShiftAmt.getZExtValue()), DL, VT); |
| SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, Mask); |
| SDValue Zero = DAG.getConstant(0, DL, VT); |
| SDValue Setcc = DAG.getSetCC(DL, CCVT, NewAnd, Zero, ISD::SETEQ); |
| return DAG.getZExtOrTrunc(Setcc, DL, VT); |
| } |
| |
| SDValue DAGCombiner::visitAND(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N1.getValueType(); |
| |
| // x & x --> x |
| if (N0 == N1) |
| return N0; |
| |
| // fold vector ops |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| // fold (and x, 0) -> 0, vector edition |
| if (ISD::isBuildVectorAllZeros(N0.getNode())) |
| // do not return N0, because undef node may exist in N0 |
| return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()), |
| SDLoc(N), N0.getValueType()); |
| if (ISD::isBuildVectorAllZeros(N1.getNode())) |
| // do not return N1, because undef node may exist in N1 |
| return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()), |
| SDLoc(N), N1.getValueType()); |
| |
| // fold (and x, -1) -> x, vector edition |
| if (ISD::isBuildVectorAllOnes(N0.getNode())) |
| return N1; |
| if (ISD::isBuildVectorAllOnes(N1.getNode())) |
| return N0; |
| } |
| |
| // fold (and c1, c2) -> c1&c2 |
| ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| if (N0C && N1C && !N1C->isOpaque()) |
| return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C); |
| // canonicalize constant to RHS |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); |
| // fold (and x, -1) -> x |
| if (isAllOnesConstant(N1)) |
| return N0; |
| // if (and x, c) is known to be zero, return 0 |
| unsigned BitWidth = VT.getScalarSizeInBits(); |
| if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), |
| APInt::getAllOnesValue(BitWidth))) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // reassociate and |
| if (SDValue RAND = reassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags())) |
| return RAND; |
| |
| // Try to convert a constant mask AND into a shuffle clear mask. |
| if (VT.isVector()) |
| if (SDValue Shuffle = XformToShuffleWithZero(N)) |
| return Shuffle; |
| |
| if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) |
| return Combined; |
| |
| // fold (and (or x, C), D) -> D if (C & D) == D |
| auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) { |
| return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue()); |
| }; |
| if (N0.getOpcode() == ISD::OR && |
| ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset)) |
| return N1; |
| // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. |
| if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { |
| SDValue N0Op0 = N0.getOperand(0); |
| APInt Mask = ~N1C->getAPIntValue(); |
| Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits()); |
| if (DAG.MaskedValueIsZero(N0Op0, Mask)) { |
| SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), |
| N0.getValueType(), N0Op0); |
| |
| // Replace uses of the AND with uses of the Zero extend node. |
| CombineTo(N, Zext); |
| |
| // We actually want to replace all uses of the any_extend with the |
| // zero_extend, to avoid duplicating things. This will later cause this |
| // AND to be folded. |
| CombineTo(N0.getNode(), Zext); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| |
| // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> |
| // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must |
| // already be zero by virtue of the width of the base type of the load. |
| // |
| // the 'X' node here can either be nothing or an extract_vector_elt to catch |
| // more cases. |
| if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && |
| N0.getOperand(0).getOpcode() == ISD::LOAD && |
| N0.getOperand(0).getResNo() == 0) || |
| (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) { |
| LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? |
| N0 : N0.getOperand(0) ); |
| |
| // Get the constant (if applicable) the zero'th operand is being ANDed with. |
| // This can be a pure constant or a vector splat, in which case we treat the |
| // vector as a scalar and use the splat value. |
| APInt Constant = APInt::getNullValue(1); |
| if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { |
| Constant = C->getAPIntValue(); |
| } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { |
| APInt SplatValue, SplatUndef; |
| unsigned SplatBitSize; |
| bool HasAnyUndefs; |
| bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, |
| SplatBitSize, HasAnyUndefs); |
| if (IsSplat) { |
| // Undef bits can contribute to a possible optimisation if set, so |
| // set them. |
| SplatValue |= SplatUndef; |
| |
| // The splat value may be something like "0x00FFFFFF", which means 0 for |
| // the first vector value and FF for the rest, repeating. We need a mask |
| // that will apply equally to all members of the vector, so AND all the |
| // lanes of the constant together. |
| unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits(); |
| |
| // If the splat value has been compressed to a bitlength lower |
| // than the size of the vector lane, we need to re-expand it to |
| // the lane size. |
| if (EltBitWidth > SplatBitSize) |
| for (SplatValue = SplatValue.zextOrTrunc(EltBitWidth); |
| SplatBitSize < EltBitWidth; SplatBitSize = SplatBitSize * 2) |
| SplatValue |= SplatValue.shl(SplatBitSize); |
| |
| // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a |
| // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. |
| if ((SplatBitSize % EltBitWidth) == 0) { |
| Constant = APInt::getAllOnesValue(EltBitWidth); |
| for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i) |
| Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth); |
| } |
| } |
| } |
| |
| // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is |
| // actually legal and isn't going to get expanded, else this is a false |
| // optimisation. |
| bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, |
| Load->getValueType(0), |
| Load->getMemoryVT()); |
| |
| // Resize the constant to the same size as the original memory access before |
| // extension. If it is still the AllOnesValue then this AND is completely |
| // unneeded. |
| Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits()); |
| |
| bool B; |
| switch (Load->getExtensionType()) { |
| default: B = false; break; |
| case ISD::EXTLOAD: B = CanZextLoadProfitably; break; |
| case ISD::ZEXTLOAD: |
| case ISD::NON_EXTLOAD: B = true; break; |
| } |
| |
| if (B && Constant.isAllOnesValue()) { |
| // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to |
| // preserve semantics once we get rid of the AND. |
| SDValue NewLoad(Load, 0); |
| |
| // Fold the AND away. NewLoad may get replaced immediately. |
| CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); |
| |
| if (Load->getExtensionType() == ISD::EXTLOAD) { |
| NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, |
| Load->getValueType(0), SDLoc(Load), |
| Load->getChain(), Load->getBasePtr(), |
| Load->getOffset(), Load->getMemoryVT(), |
| Load->getMemOperand()); |
| // Replace uses of the EXTLOAD with the new ZEXTLOAD. |
| if (Load->getNumValues() == 3) { |
| // PRE/POST_INC loads have 3 values. |
| SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), |
| NewLoad.getValue(2) }; |
| CombineTo(Load, To, 3, true); |
| } else { |
| CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); |
| } |
| } |
| |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| |
| // fold (and (load x), 255) -> (zextload x, i8) |
| // fold (and (extload x, i16), 255) -> (zextload x, i8) |
| // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) |
| if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD || |
| (N0.getOpcode() == ISD::ANY_EXTEND && |
| N0.getOperand(0).getOpcode() == ISD::LOAD))) { |
| if (SDValue Res = ReduceLoadWidth(N)) { |
| LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND |
| ? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0); |
| AddToWorklist(N); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 0), Res); |
| return SDValue(N, 0); |
| } |
| } |
| |
| if (LegalTypes) { |
| // Attempt to propagate the AND back up to the leaves which, if they're |
| // loads, can be combined to narrow loads and the AND node can be removed. |
| // Perform after legalization so that extend nodes will already be |
| // combined into the loads. |
| if (BackwardsPropagateMask(N)) |
| return SDValue(N, 0); |
| } |
| |
| if (SDValue Combined = visitANDLike(N0, N1, N)) |
| return Combined; |
| |
| // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) |
| if (N0.getOpcode() == N1.getOpcode()) |
| if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) |
| return V; |
| |
| // Masking the negated extension of a boolean is just the zero-extended |
| // boolean: |
| // and (sub 0, zext(bool X)), 1 --> zext(bool X) |
| // and (sub 0, sext(bool X)), 1 --> zext(bool X) |
| // |
| // Note: the SimplifyDemandedBits fold below can make an information-losing |
| // transform, and then we have no way to find this better fold. |
| if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) { |
| if (isNullOrNullSplat(N0.getOperand(0))) { |
| SDValue SubRHS = N0.getOperand(1); |
| if (SubRHS.getOpcode() == ISD::ZERO_EXTEND && |
| SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) |
| return SubRHS; |
| if (SubRHS.getOpcode() == ISD::SIGN_EXTEND && |
| SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) |
| return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0)); |
| } |
| } |
| |
| // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) |
| // fold (and (sra)) -> (and (srl)) when possible. |
| if (SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| // fold (zext_inreg (extload x)) -> (zextload x) |
| // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use |
| if (ISD::isUNINDEXEDLoad(N0.getNode()) && |
| (ISD::isEXTLoad(N0.getNode()) || |
| (ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| EVT MemVT = LN0->getMemoryVT(); |
| // If we zero all the possible extended bits, then we can turn this into |
| // a zextload if we are running before legalize or the operation is legal. |
| unsigned ExtBitSize = N1.getScalarValueSizeInBits(); |
| unsigned MemBitSize = MemVT.getScalarSizeInBits(); |
| APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize); |
| if (DAG.MaskedValueIsZero(N1, ExtBits) && |
| ((!LegalOperations && LN0->isSimple()) || |
| TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { |
| SDValue ExtLoad = |
| DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(), |
| LN0->getBasePtr(), MemVT, LN0->getMemOperand()); |
| AddToWorklist(N); |
| CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| |
| // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) |
| if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { |
| if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), |
| N0.getOperand(1), false)) |
| return BSwap; |
| } |
| |
| if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N)) |
| return Shifts; |
| |
| if (TLI.hasBitTest(N0, N1)) |
| if (SDValue V = combineShiftAnd1ToBitTest(N, DAG)) |
| return V; |
| |
| return SDValue(); |
| } |
| |
| /// Match (a >> 8) | (a << 8) as (bswap a) >> 16. |
| SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, |
| bool DemandHighBits) { |
| if (!LegalOperations) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) |
| return SDValue(); |
| if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) |
| return SDValue(); |
| |
| // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff) |
| bool LookPassAnd0 = false; |
| bool LookPassAnd1 = false; |
| if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) |
| std::swap(N0, N1); |
| if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) |
| std::swap(N0, N1); |
| if (N0.getOpcode() == ISD::AND) { |
| if (!N0.getNode()->hasOneUse()) |
| return SDValue(); |
| ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| // Also handle 0xffff since the LHS is guaranteed to have zeros there. |
| // This is needed for X86. |
| if (!N01C || (N01C->getZExtValue() != 0xFF00 && |
| N01C->getZExtValue() != 0xFFFF)) |
| return SDValue(); |
| N0 = N0.getOperand(0); |
| LookPassAnd0 = true; |
| } |
| |
| if (N1.getOpcode() == ISD::AND) { |
| if (!N1.getNode()->hasOneUse()) |
| return SDValue(); |
| ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); |
| if (!N11C || N11C->getZExtValue() != 0xFF) |
| return SDValue(); |
| N1 = N1.getOperand(0); |
| LookPassAnd1 = true; |
| } |
| |
| if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) |
| std::swap(N0, N1); |
| if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) |
| return SDValue(); |
| if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse()) |
| return SDValue(); |
| |
| ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); |
| if (!N01C || !N11C) |
| return SDValue(); |
| if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) |
| return SDValue(); |
| |
| // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) |
| SDValue N00 = N0->getOperand(0); |
| if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { |
| if (!N00.getNode()->hasOneUse()) |
| return SDValue(); |
| ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); |
| if (!N001C || N001C->getZExtValue() != 0xFF) |
| return SDValue(); |
| N00 = N00.getOperand(0); |
| LookPassAnd0 = true; |
| } |
| |
| SDValue N10 = N1->getOperand(0); |
| if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { |
| if (!N10.getNode()->hasOneUse()) |
| return SDValue(); |
| ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); |
| // Also allow 0xFFFF since the bits will be shifted out. This is needed |
| // for X86. |
| if (!N101C || (N101C->getZExtValue() != 0xFF00 && |
| N101C->getZExtValue() != 0xFFFF)) |
| return SDValue(); |
| N10 = N10.getOperand(0); |
| LookPassAnd1 = true; |
| } |
| |
| if (N00 != N10) |
| return SDValue(); |
| |
| // Make sure everything beyond the low halfword gets set to zero since the SRL |
| // 16 will clear the top bits. |
| unsigned OpSizeInBits = VT.getSizeInBits(); |
| if (DemandHighBits && OpSizeInBits > 16) { |
| // If the left-shift isn't masked out then the only way this is a bswap is |
| // if all bits beyond the low 8 are 0. In that case the entire pattern |
| // reduces to a left shift anyway: leave it for other parts of the combiner. |
| if (!LookPassAnd0) |
| return SDValue(); |
| |
| // However, if the right shift isn't masked out then it might be because |
| // it's not needed. See if we can spot that too. |
| if (!LookPassAnd1 && |
| !DAG.MaskedValueIsZero( |
| N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) |
| return SDValue(); |
| } |
| |
| SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); |
| if (OpSizeInBits > 16) { |
| SDLoc DL(N); |
| Res = DAG.getNode(ISD::SRL, DL, VT, Res, |
| DAG.getConstant(OpSizeInBits - 16, DL, |
| getShiftAmountTy(VT))); |
| } |
| return Res; |
| } |
| |
| /// Return true if the specified node is an element that makes up a 32-bit |
| /// packed halfword byteswap. |
| /// ((x & 0x000000ff) << 8) | |
| /// ((x & 0x0000ff00) >> 8) | |
| /// ((x & 0x00ff0000) << 8) | |
| /// ((x & 0xff000000) >> 8) |
| static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { |
| if (!N.getNode()->hasOneUse()) |
| return false; |
| |
| unsigned Opc = N.getOpcode(); |
| if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) |
| return false; |
| |
| SDValue N0 = N.getOperand(0); |
| unsigned Opc0 = N0.getOpcode(); |
| if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL) |
| return false; |
| |
| ConstantSDNode *N1C = nullptr; |
| // SHL or SRL: look upstream for AND mask operand |
| if (Opc == ISD::AND) |
| N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); |
| else if (Opc0 == ISD::AND) |
| N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| if (!N1C) |
| return false; |
| |
| unsigned MaskByteOffset; |
| switch (N1C->getZExtValue()) { |
| default: |
| return false; |
| case 0xFF: MaskByteOffset = 0; break; |
| case 0xFF00: MaskByteOffset = 1; break; |
| case 0xFFFF: |
| // In case demanded bits didn't clear the bits that will be shifted out. |
| // This is needed for X86. |
| if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) { |
| MaskByteOffset = 1; |
| break; |
| } |
| return false; |
| case 0xFF0000: MaskByteOffset = 2; break; |
| case 0xFF000000: MaskByteOffset = 3; break; |
| } |
| |
| // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). |
| if (Opc == ISD::AND) { |
| if (MaskByteOffset == 0 || MaskByteOffset == 2) { |
| // (x >> 8) & 0xff |
| // (x >> 8) & 0xff0000 |
| if (Opc0 != ISD::SRL) |
| return false; |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| if (!C || C->getZExtValue() != 8) |
| return false; |
| } else { |
| // (x << 8) & 0xff00 |
| // (x << 8) & 0xff000000 |
| if (Opc0 != ISD::SHL) |
| return false; |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| if (!C || C->getZExtValue() != 8) |
| return false; |
| } |
| } else if (Opc == ISD::SHL) { |
| // (x & 0xff) << 8 |
| // (x & 0xff0000) << 8 |
| if (MaskByteOffset != 0 && MaskByteOffset != 2) |
| return false; |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); |
| if (!C || C->getZExtValue() != 8) |
| return false; |
| } else { // Opc == ISD::SRL |
| // (x & 0xff00) >> 8 |
| // (x & 0xff000000) >> 8 |
| if (MaskByteOffset != 1 && MaskByteOffset != 3) |
| return false; |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); |
| if (!C || C->getZExtValue() != 8) |
| return false; |
| } |
| |
| if (Parts[MaskByteOffset]) |
| return false; |
| |
| Parts[MaskByteOffset] = N0.getOperand(0).getNode(); |
| return true; |
| } |
| |
| // Match 2 elements of a packed halfword bswap. |
| static bool isBSwapHWordPair(SDValue N, MutableArrayRef<SDNode *> Parts) { |
| if (N.getOpcode() == ISD::OR) |
| return isBSwapHWordElement(N.getOperand(0), Parts) && |
| isBSwapHWordElement(N.getOperand(1), Parts); |
| |
| if (N.getOpcode() == ISD::SRL && N.getOperand(0).getOpcode() == ISD::BSWAP) { |
| ConstantSDNode *C = isConstOrConstSplat(N.getOperand(1)); |
| if (!C || C->getAPIntValue() != 16) |
| return false; |
| Parts[0] = Parts[1] = N.getOperand(0).getOperand(0).getNode(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Match a 32-bit packed halfword bswap. That is |
| /// ((x & 0x000000ff) << 8) | |
| /// ((x & 0x0000ff00) >> 8) | |
| /// ((x & 0x00ff0000) << 8) | |
| /// ((x & 0xff000000) >> 8) |
| /// => (rotl (bswap x), 16) |
| SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { |
| if (!LegalOperations) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::i32) |
| return SDValue(); |
| if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) |
| return SDValue(); |
| |
| // Look for either |
| // (or (bswaphpair), (bswaphpair)) |
| // (or (or (bswaphpair), (and)), (and)) |
| // (or (or (and), (bswaphpair)), (and)) |
| SDNode *Parts[4] = {}; |
| |
| if (isBSwapHWordPair(N0, Parts)) { |
| // (or (or (and), (and)), (or (and), (and))) |
| if (!isBSwapHWordPair(N1, Parts)) |
| return SDValue(); |
| } else if (N0.getOpcode() == ISD::OR) { |
| // (or (or (or (and), (and)), (and)), (and)) |
| if (!isBSwapHWordElement(N1, Parts)) |
| return SDValue(); |
| SDValue N00 = N0.getOperand(0); |
| SDValue N01 = N0.getOperand(1); |
| if (!(isBSwapHWordElement(N01, Parts) && isBSwapHWordPair(N00, Parts)) && |
| !(isBSwapHWordElement(N00, Parts) && isBSwapHWordPair(N01, Parts))) |
| return SDValue(); |
| } else |
| return SDValue(); |
| |
| // Make sure the parts are all coming from the same node. |
| if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, |
| SDValue(Parts[0], 0)); |
| |
| // Result of the bswap should be rotated by 16. If it's not legal, then |
| // do (x << 16) | (x >> 16). |
| SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); |
| if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) |
| return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); |
| if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) |
| return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); |
| return DAG.getNode(ISD::OR, DL, VT, |
| DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), |
| DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); |
| } |
| |
| /// This contains all DAGCombine rules which reduce two values combined by |
| /// an Or operation to a single value \see visitANDLike(). |
| SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) { |
| EVT VT = N1.getValueType(); |
| SDLoc DL(N); |
| |
| // fold (or x, undef) -> -1 |
| if (!LegalOperations && (N0.isUndef() || N1.isUndef())) |
| return DAG.getAllOnesConstant(DL, VT); |
| |
| if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL)) |
| return V; |
| |
| // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. |
| if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && |
| // Don't increase # computations. |
| (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { |
| // We can only do this xform if we know that bits from X that are set in C2 |
| // but not in C1 are already zero. Likewise for Y. |
| if (const ConstantSDNode *N0O1C = |
| getAsNonOpaqueConstant(N0.getOperand(1))) { |
| if (const ConstantSDNode *N1O1C = |
| getAsNonOpaqueConstant(N1.getOperand(1))) { |
| // We can only do this xform if we know that bits from X that are set in |
| // C2 but not in C1 are already zero. Likewise for Y. |
| const APInt &LHSMask = N0O1C->getAPIntValue(); |
| const APInt &RHSMask = N1O1C->getAPIntValue(); |
| |
| if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && |
| DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { |
| SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, |
| N0.getOperand(0), N1.getOperand(0)); |
| return DAG.getNode(ISD::AND, DL, VT, X, |
| DAG.getConstant(LHSMask | RHSMask, DL, VT)); |
| } |
| } |
| } |
| } |
| |
| // (or (and X, M), (and X, N)) -> (and X, (or M, N)) |
| if (N0.getOpcode() == ISD::AND && |
| N1.getOpcode() == ISD::AND && |
| N0.getOperand(0) == N1.getOperand(0) && |
| // Don't increase # computations. |
| (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { |
| SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, |
| N0.getOperand(1), N1.getOperand(1)); |
| return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// OR combines for which the commuted variant will be tried as well. |
| static SDValue visitORCommutative( |
| SelectionDAG &DAG, SDValue N0, SDValue N1, SDNode *N) { |
| EVT VT = N0.getValueType(); |
| if (N0.getOpcode() == ISD::AND) { |
| // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y) |
| if (isBitwiseNot(N0.getOperand(1)) && N0.getOperand(1).getOperand(0) == N1) |
| return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(0), N1); |
| |
| // fold (or (and (xor Y, -1), X), Y) -> (or X, Y) |
| if (isBitwiseNot(N0.getOperand(0)) && N0.getOperand(0).getOperand(0) == N1) |
| return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(1), N1); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitOR(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N1.getValueType(); |
| |
| // x | x --> x |
| if (N0 == N1) |
| return N0; |
| |
| // fold vector ops |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| // fold (or x, 0) -> x, vector edition |
| if (ISD::isBuildVectorAllZeros(N0.getNode())) |
| return N1; |
| if (ISD::isBuildVectorAllZeros(N1.getNode())) |
| return N0; |
| |
| // fold (or x, -1) -> -1, vector edition |
| if (ISD::isBuildVectorAllOnes(N0.getNode())) |
| // do not return N0, because undef node may exist in N0 |
| return DAG.getAllOnesConstant(SDLoc(N), N0.getValueType()); |
| if (ISD::isBuildVectorAllOnes(N1.getNode())) |
| // do not return N1, because undef node may exist in N1 |
| return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType()); |
| |
| // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask) |
| // Do this only if the resulting shuffle is legal. |
| if (isa<ShuffleVectorSDNode>(N0) && |
| isa<ShuffleVectorSDNode>(N1) && |
| // Avoid folding a node with illegal type. |
| TLI.isTypeLegal(VT)) { |
| bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode()); |
| bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode()); |
| bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); |
| bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode()); |
| // Ensure both shuffles have a zero input. |
| if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) { |
| assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!"); |
| assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!"); |
| const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); |
| const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); |
| bool CanFold = true; |
| int NumElts = VT.getVectorNumElements(); |
| SmallVector<int, 4> Mask(NumElts); |
| |
| for (int i = 0; i != NumElts; ++i) { |
| int M0 = SV0->getMaskElt(i); |
| int M1 = SV1->getMaskElt(i); |
| |
| // Determine if either index is pointing to a zero vector. |
| bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts)); |
| bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts)); |
| |
| // If one element is zero and the otherside is undef, keep undef. |
| // This also handles the case that both are undef. |
| if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) { |
| Mask[i] = -1; |
| continue; |
| } |
| |
| // Make sure only one of the elements is zero. |
| if (M0Zero == M1Zero) { |
| CanFold = false; |
| break; |
| } |
| |
| assert((M0 >= 0 || M1 >= 0) && "Undef index!"); |
| |
| // We have a zero and non-zero element. If the non-zero came from |
| // SV0 make the index a LHS index. If it came from SV1, make it |
| // a RHS index. We need to mod by NumElts because we don't care |
| // which operand it came from in the original shuffles. |
| Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts; |
| } |
| |
| if (CanFold) { |
| SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0); |
| SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0); |
| |
| SDValue LegalShuffle = |
| TLI.buildLegalVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, |
| Mask, DAG); |
| if (LegalShuffle) |
| return LegalShuffle; |
| } |
| } |
| } |
| } |
| |
| // fold (or c1, c2) -> c1|c2 |
| ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| if (N0C && N1C && !N1C->isOpaque()) |
| return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C); |
| // canonicalize constant to RHS |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); |
| // fold (or x, 0) -> x |
| if (isNullConstant(N1)) |
| return N0; |
| // fold (or x, -1) -> -1 |
| if (isAllOnesConstant(N1)) |
| return N1; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // fold (or x, c) -> c iff (x & ~c) == 0 |
| if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) |
| return N1; |
| |
| if (SDValue Combined = visitORLike(N0, N1, N)) |
| return Combined; |
| |
| if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) |
| return Combined; |
| |
| // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) |
| if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) |
| return BSwap; |
| if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) |
| return BSwap; |
| |
| // reassociate or |
| if (SDValue ROR = reassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags())) |
| return ROR; |
| |
| // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) |
| // iff (c1 & c2) != 0 or c1/c2 are undef. |
| auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) { |
| return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue()); |
| }; |
| if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && |
| ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) { |
| if (SDValue COR = DAG.FoldConstantArithmetic( |
| ISD::OR, SDLoc(N1), VT, N1.getNode(), N0.getOperand(1).getNode())) { |
| SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1); |
| AddToWorklist(IOR.getNode()); |
| return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR); |
| } |
| } |
| |
| if (SDValue Combined = visitORCommutative(DAG, N0, N1, N)) |
| return Combined; |
| if (SDValue Combined = visitORCommutative(DAG, N1, N0, N)) |
| return Combined; |
| |
| // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) |
| if (N0.getOpcode() == N1.getOpcode()) |
| if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) |
| return V; |
| |
| // See if this is some rotate idiom. |
| if (SDValue Rot = MatchRotate(N0, N1, SDLoc(N))) |
| return Rot; |
| |
| if (SDValue Load = MatchLoadCombine(N)) |
| return Load; |
| |
| // Simplify the operands using demanded-bits information. |
| if (SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| // If OR can be rewritten into ADD, try combines based on ADD. |
| if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) && |
| DAG.haveNoCommonBitsSet(N0, N1)) |
| if (SDValue Combined = visitADDLike(N)) |
| return Combined; |
| |
| return SDValue(); |
| } |
| |
| static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) { |
| if (Op.getOpcode() == ISD::AND && |
| DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { |
| Mask = Op.getOperand(1); |
| return Op.getOperand(0); |
| } |
| return Op; |
| } |
| |
| /// Match "(X shl/srl V1) & V2" where V2 may not be present. |
| static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift, |
| SDValue &Mask) { |
| Op = stripConstantMask(DAG, Op, Mask); |
| if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { |
| Shift = Op; |
| return true; |
| } |
| return false; |
| } |
| |
| /// Helper function for visitOR to extract the needed side of a rotate idiom |
| /// from a shl/srl/mul/udiv. This is meant to handle cases where |
| /// InstCombine merged some outside op with one of the shifts from |
| /// the rotate pattern. |
| /// \returns An empty \c SDValue if the needed shift couldn't be extracted. |
| /// Otherwise, returns an expansion of \p ExtractFrom based on the following |
| /// patterns: |
| /// |
| /// (or (add v v) (shrl v bitwidth-1)): |
| /// expands (add v v) -> (shl v 1) |
| /// |
| /// (or (mul v c0) (shrl (mul v c1) c2)): |
| /// expands (mul v c0) -> (shl (mul v c1) c3) |
| /// |
| /// (or (udiv v c0) (shl (udiv v c1) c2)): |
| /// expands (udiv v c0) -> (shrl (udiv v c1) c3) |
| /// |
| /// (or (shl v c0) (shrl (shl v c1) c2)): |
| /// expands (shl v c0) -> (shl (shl v c1) c3) |
| /// |
| /// (or (shrl v c0) (shl (shrl v c1) c2)): |
| /// expands (shrl v c0) -> (shrl (shrl v c1) c3) |
| /// |
| /// Such that in all cases, c3+c2==bitwidth(op v c1). |
| static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift, |
| SDValue ExtractFrom, SDValue &Mask, |
| const SDLoc &DL) { |
| assert(OppShift && ExtractFrom && "Empty SDValue"); |
| assert( |
| (OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) && |
| "Existing shift must be valid as a rotate half"); |
| |
| ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask); |
| |
| // Value and Type of the shift. |
| SDValue OppShiftLHS = OppShift.getOperand(0); |
| EVT ShiftedVT = OppShiftLHS.getValueType(); |
| |
| // Amount of the existing shift. |
| ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1)); |
| |
| // (add v v) -> (shl v 1) |
| if (OppShift.getOpcode() == ISD::SRL && OppShiftCst && |
| ExtractFrom.getOpcode() == ISD::ADD && |
| ExtractFrom.getOperand(0) == ExtractFrom.getOperand(1) && |
| ExtractFrom.getOperand(0) == OppShiftLHS && |
| OppShiftCst->getAPIntValue() == ShiftedVT.getScalarSizeInBits() - 1) |
| return DAG.getNode(ISD::SHL, DL, ShiftedVT, OppShiftLHS, |
| DAG.getShiftAmountConstant(1, ShiftedVT, DL)); |
| |
| // Preconditions: |
| // (or (op0 v c0) (shiftl/r (op0 v c1) c2)) |
| // |
| // Find opcode of the needed shift to be extracted from (op0 v c0). |
| unsigned Opcode = ISD::DELETED_NODE; |
| bool IsMulOrDiv = false; |
| // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift |
| // opcode or its arithmetic (mul or udiv) variant. |
| auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) { |
| IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant; |
| if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift) |
| return false; |
| Opcode = NeededShift; |
| return true; |
| }; |
| // op0 must be either the needed shift opcode or the mul/udiv equivalent |
| // that the needed shift can be extracted from. |
| if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) && |
| (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV))) |
| return SDValue(); |
| |
| // op0 must be the same opcode on both sides, have the same LHS argument, |
| // and produce the same value type. |
| if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() || |
| OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) || |
| ShiftedVT != ExtractFrom.getValueType()) |
| return SDValue(); |
| |
| // Constant mul/udiv/shift amount from the RHS of the shift's LHS op. |
| ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1)); |
| // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op. |
| ConstantSDNode *ExtractFromCst = |
| isConstOrConstSplat(ExtractFrom.getOperand(1)); |
| // TODO: We should be able to handle non-uniform constant vectors for these values |
| // Check that we have constant values. |
| if (!OppShiftCst || !OppShiftCst->getAPIntValue() || |
| !OppLHSCst || !OppLHSCst->getAPIntValue() || |
| !ExtractFromCst || !ExtractFromCst->getAPIntValue()) |
| return SDValue(); |
| |
| // Compute the shift amount we need to extract to complete the rotate. |
| const unsigned VTWidth = ShiftedVT.getScalarSizeInBits(); |
| if (OppShiftCst->getAPIntValue().ugt(VTWidth)) |
| return SDValue(); |
| APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue(); |
| // Normalize the bitwidth of the two mul/udiv/shift constant operands. |
| APInt ExtractFromAmt = ExtractFromCst->getAPIntValue(); |
| APInt OppLHSAmt = OppLHSCst->getAPIntValue(); |
| zeroExtendToMatch(ExtractFromAmt, OppLHSAmt); |
| |
| // Now try extract the needed shift from the ExtractFrom op and see if the |
| // result matches up with the existing shift's LHS op. |
| if (IsMulOrDiv) { |
| // Op to extract from is a mul or udiv by a constant. |
| // Check: |
| // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0 |
| // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0 |
| const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(), |
| NeededShiftAmt.getZExtValue()); |
| APInt ResultAmt; |
| APInt Rem; |
| APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem); |
| if (Rem != 0 || ResultAmt != OppLHSAmt) |
| return SDValue(); |
| } else { |
| // Op to extract from is a shift by a constant. |
| // Check: |
| // c2 - (bitwidth(op0 v c0) - c1) == c0 |
| if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc( |
| ExtractFromAmt.getBitWidth())) |
| return SDValue(); |
| } |
| |
| // Return the expanded shift op that should allow a rotate to be formed. |
| EVT ShiftVT = OppShift.getOperand(1).getValueType(); |
| EVT ResVT = ExtractFrom.getValueType(); |
| SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT); |
| return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode); |
| } |
| |
| // Return true if we can prove that, whenever Neg and Pos are both in the |
| // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that |
| // for two opposing shifts shift1 and shift2 and a value X with OpBits bits: |
| // |
| // (or (shift1 X, Neg), (shift2 X, Pos)) |
| // |
| // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate |
| // in direction shift1 by Neg. The range [0, EltSize) means that we only need |
| // to consider shift amounts with defined behavior. |
| static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize, |
| SelectionDAG &DAG) { |
| // If EltSize is a power of 2 then: |
| // |
| // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) |
| // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). |
| // |
| // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check |
| // for the stronger condition: |
| // |
| // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A] |
| // |
| // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) |
| // we can just replace Neg with Neg' for the rest of the function. |
| // |
| // In other cases we check for the even stronger condition: |
| // |
| // Neg == EltSize - Pos [B] |
| // |
| // for all Neg and Pos. Note that the (or ...) then invokes undefined |
| // behavior if Pos == 0 (and consequently Neg == EltSize). |
| // |
| // We could actually use [A] whenever EltSize is a power of 2, but the |
| // only extra cases that it would match are those uninteresting ones |
| // where Neg and Pos are never in range at the same time. E.g. for |
| // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) |
| // as well as (sub 32, Pos), but: |
| // |
| // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) |
| // |
| // always invokes undefined behavior for 32-bit X. |
| // |
| // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. |
| unsigned MaskLoBits = 0; |
| if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) { |
| if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) { |
| KnownBits Known = DAG.computeKnownBits(Neg.getOperand(0)); |
| unsigned Bits = Log2_64(EltSize); |
| if (NegC->getAPIntValue().getActiveBits() <= Bits && |
| ((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) { |
| Neg = Neg.getOperand(0); |
| MaskLoBits = Bits; |
| } |
| } |
| } |
| |
| // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. |
| if (Neg.getOpcode() != ISD::SUB) |
| return false; |
| ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); |
| if (!NegC) |
| return false; |
| SDValue NegOp1 = Neg.getOperand(1); |
| |
| // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with |
| // Pos'. The truncation is redundant for the purpose of the equality. |
| if (MaskLoBits && Pos.getOpcode() == ISD::AND) { |
| if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) { |
| KnownBits Known = DAG.computeKnownBits(Pos.getOperand(0)); |
| if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits && |
| ((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >= |
| MaskLoBits)) |
| Pos = Pos.getOperand(0); |
| } |
| } |
| |
| // The condition we need is now: |
| // |
| // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask |
| // |
| // If NegOp1 == Pos then we need: |
| // |
| // EltSize & Mask == NegC & Mask |
| // |
| // (because "x & Mask" is a truncation and distributes through subtraction). |
| APInt Width; |
| if (Pos == NegOp1) |
| Width = NegC->getAPIntValue(); |
| |
| // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. |
| // Then the condition we want to prove becomes: |
| // |
| // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask |
| // |
| // which, again because "x & Mask" is a truncation, becomes: |
| // |
| // NegC & Mask == (EltSize - PosC) & Mask |
| // EltSize & Mask == (NegC + PosC) & Mask |
| else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { |
| if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) |
| Width = PosC->getAPIntValue() + NegC->getAPIntValue(); |
| else |
| return false; |
| } else |
| return false; |
| |
| // Now we just need to check that EltSize & Mask == Width & Mask. |
| if (MaskLoBits) |
| // EltSize & Mask is 0 since Mask is EltSize - 1. |
| return Width.getLoBits(MaskLoBits) == 0; |
| return Width == EltSize; |
| } |
| |
| // A subroutine of MatchRotate used once we have found an OR of two opposite |
| // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces |
| // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the |
| // former being preferred if supported. InnerPos and InnerNeg are Pos and |
| // Neg with outer conversions stripped away. |
| SDValue DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, |
| SDValue Neg, SDValue InnerPos, |
| SDValue InnerNeg, unsigned PosOpcode, |
| unsigned NegOpcode, const SDLoc &DL) { |
| // fold (or (shl x, (*ext y)), |
| // (srl x, (*ext (sub 32, y)))) -> |
| // (rotl x, y) or (rotr x, (sub 32, y)) |
| // |
| // fold (or (shl x, (*ext (sub 32, y))), |
| // (srl x, (*ext y))) -> |
| // (rotr x, y) or (rotl x, (sub 32, y)) |
| EVT VT = Shifted.getValueType(); |
| if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG)) { |
| bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); |
| return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, |
| HasPos ? Pos : Neg); |
| } |
| |
| return SDValue(); |
| } |
| |
| // MatchRotate - Handle an 'or' of two operands. If this is one of the many |
| // idioms for rotate, and if the target supports rotation instructions, generate |
| // a rot[lr]. |
| SDValue DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) { |
| // Must be a legal type. Expanded 'n promoted things won't work with rotates. |
| EVT VT = LHS.getValueType(); |
| if (!TLI.isTypeLegal(VT)) |
| return SDValue(); |
| |
| // The target must have at least one rotate flavor. |
| bool HasROTL = hasOperation(ISD::ROTL, VT); |
| bool HasROTR = hasOperation(ISD::ROTR, VT); |
| if (!HasROTL && !HasROTR) |
| return SDValue(); |
| |
| // Check for truncated rotate. |
| if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE && |
| LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) { |
| assert(LHS.getValueType() == RHS.getValueType()); |
| if (SDValue Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) { |
| return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), Rot); |
| } |
| } |
| |
| // Match "(X shl/srl V1) & V2" where V2 may not be present. |
| SDValue LHSShift; // The shift. |
| SDValue LHSMask; // AND value if any. |
| matchRotateHalf(DAG, LHS, LHSShift, LHSMask); |
| |
| SDValue RHSShift; // The shift. |
| SDValue RHSMask; // AND value if any. |
| matchRotateHalf(DAG, RHS, RHSShift, RHSMask); |
| |
| // If neither side matched a rotate half, bail |
| if (!LHSShift && !RHSShift) |
| return SDValue(); |
| |
| // InstCombine may have combined a constant shl, srl, mul, or udiv with one |
| // side of the rotate, so try to handle that here. In all cases we need to |
| // pass the matched shift from the opposite side to compute the opcode and |
| // needed shift amount to extract. We still want to do this if both sides |
| // matched a rotate half because one half may be a potential overshift that |
| // can be broken down (ie if InstCombine merged two shl or srl ops into a |
| // single one). |
| |
| // Have LHS side of the rotate, try to extract the needed shift from the RHS. |
| if (LHSShift) |
| if (SDValue NewRHSShift = |
| extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL)) |
| RHSShift = NewRHSShift; |
| // Have RHS side of the rotate, try to extract the needed shift from the LHS. |
| if (RHSShift) |
| if (SDValue NewLHSShift = |
| extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL)) |
| LHSShift = NewLHSShift; |
| |
| // If a side is still missing, nothing else we can do. |
| if (!RHSShift || !LHSShift) |
| return SDValue(); |
| |
| // At this point we've matched or extracted a shift op on each side. |
| |
| if (LHSShift.getOperand(0) != RHSShift.getOperand(0)) |
| return SDValue(); // Not shifting the same value. |
| |
| if (LHSShift.getOpcode() == RHSShift.getOpcode()) |
| return SDValue(); // Shifts must disagree. |
| |
| // Canonicalize shl to left side in a shl/srl pair. |
| if (RHSShift.getOpcode() == ISD::SHL) { |
| std::swap(LHS, RHS); |
| std::swap(LHSShift, RHSShift); |
| std::swap(LHSMask, RHSMask); |
| } |
| |
| unsigned EltSizeInBits = VT.getScalarSizeInBits(); |
| SDValue LHSShiftArg = LHSShift.getOperand(0); |
| SDValue LHSShiftAmt = LHSShift.getOperand(1); |
| SDValue RHSShiftArg = RHSShift.getOperand(0); |
| SDValue RHSShiftAmt = RHSShift.getOperand(1); |
| |
| // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) |
| // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) |
| auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS, |
| ConstantSDNode *RHS) { |
| return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits; |
| }; |
| if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) { |
| SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, |
| LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt); |
| |
| // If there is an AND of either shifted operand, apply it to the result. |
| if (LHSMask.getNode() || RHSMask.getNode()) { |
| SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); |
| SDValue Mask = AllOnes; |
| |
| if (LHSMask.getNode()) { |
| SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt); |
| Mask = DAG.getNode(ISD::AND, DL, VT, Mask, |
| DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits)); |
| } |
| if (RHSMask.getNode()) { |
| SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt); |
| Mask = DAG.getNode(ISD::AND, DL, VT, Mask, |
| DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits)); |
| } |
| |
| Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask); |
| } |
| |
| return Rot; |
| } |
| |
| // If there is a mask here, and we have a variable shift, we can't be sure |
| // that we're masking out the right stuff. |
| if (LHSMask.getNode() || RHSMask.getNode()) |
| return SDValue(); |
| |
| // If the shift amount is sign/zext/any-extended just peel it off. |
| SDValue LExtOp0 = LHSShiftAmt; |
| SDValue RExtOp0 = RHSShiftAmt; |
| if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || |
| LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || |
| LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || |
| LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && |
| (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || |
| RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || |
| RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || |
| RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { |
| LExtOp0 = LHSShiftAmt.getOperand(0); |
| RExtOp0 = RHSShiftAmt.getOperand(0); |
| } |
| |
| SDValue TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, |
| LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL); |
| if (TryL) |
| return TryL; |
| |
| SDValue TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, |
| RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL); |
| if (TryR) |
| return TryR; |
| |
| return SDValue(); |
| } |
| |
| namespace { |
| |
| /// Represents known origin of an individual byte in load combine pattern. The |
| /// value of the byte is either constant zero or comes from memory. |
| struct ByteProvider { |
| // For constant zero providers Load is set to nullptr. For memory providers |
| // Load represents the node which loads the byte from memory. |
| // ByteOffset is the offset of the byte in the value produced by the load. |
| LoadSDNode *Load = nullptr; |
| unsigned ByteOffset = 0; |
| |
| ByteProvider() = default; |
| |
| static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) { |
| return ByteProvider(Load, ByteOffset); |
| } |
| |
| static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); } |
| |
| bool isConstantZero() const { return !Load; } |
| bool isMemory() const { return Load; } |
| |
| bool operator==(const ByteProvider &Other) const { |
| return Other.Load == Load && Other.ByteOffset == ByteOffset; |
| } |
| |
| private: |
| ByteProvider(LoadSDNode *Load, unsigned ByteOffset) |
| : Load(Load), ByteOffset(ByteOffset) {} |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Recursively traverses the expression calculating the origin of the requested |
| /// byte of the given value. Returns None if the provider can't be calculated. |
| /// |
| /// For all the values except the root of the expression verifies that the value |
| /// has exactly one use and if it's not true return None. This way if the origin |
| /// of the byte is returned it's guaranteed that the values which contribute to |
| /// the byte are not used outside of this expression. |
| /// |
| /// Because the parts of the expression are not allowed to have more than one |
| /// use this function iterates over trees, not DAGs. So it never visits the same |
| /// node more than once. |
| static const Optional<ByteProvider> |
| calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth, |
| bool Root = false) { |
| // Typical i64 by i8 pattern requires recursion up to 8 calls depth |
| if (Depth == 10) |
| return None; |
| |
| if (!Root && !Op.hasOneUse()) |
| return None; |
| |
| assert(Op.getValueType().isScalarInteger() && "can't handle other types"); |
| unsigned BitWidth = Op.getValueSizeInBits(); |
| if (BitWidth % 8 != 0) |
| return None; |
| unsigned ByteWidth = BitWidth / 8; |
| assert(Index < ByteWidth && "invalid index requested"); |
| (void) ByteWidth; |
| |
| switch (Op.getOpcode()) { |
| case ISD::OR: { |
| auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1); |
| if (!LHS) |
| return None; |
| auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1); |
| if (!RHS) |
| return None; |
| |
| if (LHS->isConstantZero()) |
| return RHS; |
| if (RHS->isConstantZero()) |
| return LHS; |
| return None; |
| } |
| case ISD::SHL: { |
| auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); |
| if (!ShiftOp) |
| return None; |
| |
| uint64_t BitShift = ShiftOp->getZExtValue(); |
| if (BitShift % 8 != 0) |
| return None; |
| uint64_t ByteShift = BitShift / 8; |
| |
| return Index < ByteShift |
| ? ByteProvider::getConstantZero() |
| : calculateByteProvider(Op->getOperand(0), Index - ByteShift, |
| Depth + 1); |
| } |
| case ISD::ANY_EXTEND: |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: { |
| SDValue NarrowOp = Op->getOperand(0); |
| unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits(); |
| if (NarrowBitWidth % 8 != 0) |
| return None; |
| uint64_t NarrowByteWidth = NarrowBitWidth / 8; |
| |
| if (Index >= NarrowByteWidth) |
| return Op.getOpcode() == ISD::ZERO_EXTEND |
| ? Optional<ByteProvider>(ByteProvider::getConstantZero()) |
| : None; |
| return calculateByteProvider(NarrowOp, Index, Depth + 1); |
| } |
| case ISD::BSWAP: |
| return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1, |
| Depth + 1); |
| case ISD::LOAD: { |
| auto L = cast<LoadSDNode>(Op.getNode()); |
| if (!L->isSimple() || L->isIndexed()) |
| return None; |
| |
| unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits(); |
| if (NarrowBitWidth % 8 != 0) |
| return None; |
| uint64_t NarrowByteWidth = NarrowBitWidth / 8; |
| |
| if (Index >= NarrowByteWidth) |
| return L->getExtensionType() == ISD::ZEXTLOAD |
| ? Optional<ByteProvider>(ByteProvider::getConstantZero()) |
| : None; |
| return ByteProvider::getMemory(L, Index); |
| } |
| } |
| |
| return None; |
| } |
| |
| static unsigned LittleEndianByteAt(unsigned BW, unsigned i) { |
| return i; |
| } |
| |
| static unsigned BigEndianByteAt(unsigned BW, unsigned i) { |
| return BW - i - 1; |
| } |
| |
| // Check if the bytes offsets we are looking at match with either big or |
| // little endian value loaded. Return true for big endian, false for little |
| // endian, and None if match failed. |
| static Optional<bool> isBigEndian(const ArrayRef<int64_t> ByteOffsets, |
| int64_t FirstOffset) { |
| // The endian can be decided only when it is 2 bytes at least. |
| unsigned Width = ByteOffsets.size(); |
| if (Width < 2) |
| return None; |
| |
| bool BigEndian = true, LittleEndian = true; |
| for (unsigned i = 0; i < Width; i++) { |
| int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset; |
| LittleEndian &= CurrentByteOffset == LittleEndianByteAt(Width, i); |
| BigEndian &= CurrentByteOffset == BigEndianByteAt(Width, i); |
| if (!BigEndian && !LittleEndian) |
| return None; |
| } |
| |
| assert((BigEndian != LittleEndian) && "It should be either big endian or" |
| "little endian"); |
| return BigEndian; |
| } |
| |
| static SDValue stripTruncAndExt(SDValue Value) { |
| switch (Value.getOpcode()) { |
| case ISD::TRUNCATE: |
| case ISD::ZERO_EXTEND: |
| case ISD::SIGN_EXTEND: |
| case ISD::ANY_EXTEND: |
| return stripTruncAndExt(Value.getOperand(0)); |
| } |
| return Value; |
| } |
| |
| /// Match a pattern where a wide type scalar value is stored by several narrow |
| /// stores. Fold it into a single store or a BSWAP and a store if the targets |
| /// supports it. |
| /// |
| /// Assuming little endian target: |
| /// i8 *p = ... |
| /// i32 val = ... |
| /// p[0] = (val >> 0) & 0xFF; |
| /// p[1] = (val >> 8) & 0xFF; |
| /// p[2] = (val >> 16) & 0xFF; |
| /// p[3] = (val >> 24) & 0xFF; |
| /// => |
| /// *((i32)p) = val; |
| /// |
| /// i8 *p = ... |
| /// i32 val = ... |
| /// p[0] = (val >> 24) & 0xFF; |
| /// p[1] = (val >> 16) & 0xFF; |
| /// p[2] = (val >> 8) & 0xFF; |
| /// p[3] = (val >> 0) & 0xFF; |
| /// => |
| /// *((i32)p) = BSWAP(val); |
| SDValue DAGCombiner::MatchStoreCombine(StoreSDNode *N) { |
| // Collect all the stores in the chain. |
| SDValue Chain; |
| SmallVector<StoreSDNode *, 8> Stores; |
| for (StoreSDNode *Store = N; Store; Store = dyn_cast<StoreSDNode>(Chain)) { |
| // TODO: Allow unordered atomics when wider type is legal (see D66309) |
| if (Store->getMemoryVT() != MVT::i8 || |
| !Store->isSimple() || Store->isIndexed()) |
| return SDValue(); |
| Stores.push_back(Store); |
| Chain = Store->getChain(); |
| } |
| // Handle the simple type only. |
| unsigned Width = Stores.size(); |
| EVT VT = EVT::getIntegerVT( |
| *DAG.getContext(), Width * N->getMemoryVT().getSizeInBits()); |
| if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) |
| return SDValue(); |
| |
| if (LegalOperations && !TLI.isOperationLegal(ISD::STORE, VT)) |
| return SDValue(); |
| |
| // Check if all the bytes of the combined value we are looking at are stored |
| // to the same base address. Collect bytes offsets from Base address into |
| // ByteOffsets. |
| SDValue CombinedValue; |
| SmallVector<int64_t, 8> ByteOffsets(Width, INT64_MAX); |
| int64_t FirstOffset = INT64_MAX; |
| StoreSDNode *FirstStore = nullptr; |
| Optional<BaseIndexOffset> Base; |
| for (auto Store : Stores) { |
| // All the stores store different byte of the CombinedValue. A truncate is |
| // required to get that byte value. |
| SDValue Trunc = Store->getValue(); |
| if (Trunc.getOpcode() != ISD::TRUNCATE) |
| return SDValue(); |
| // A shift operation is required to get the right byte offset, except the |
| // first byte. |
| int64_t Offset = 0; |
| SDValue Value = Trunc.getOperand(0); |
| if (Value.getOpcode() == ISD::SRL || |
| Value.getOpcode() == ISD::SRA) { |
| ConstantSDNode *ShiftOffset = |
| dyn_cast<ConstantSDNode>(Value.getOperand(1)); |
| // Trying to match the following pattern. The shift offset must be |
| // a constant and a multiple of 8. It is the byte offset in "y". |
| // |
| // x = srl y, offset |
| // i8 z = trunc x |
| // store z, ... |
| if (!ShiftOffset || (ShiftOffset->getSExtValue() % 8)) |
| return SDValue(); |
| |
| Offset = ShiftOffset->getSExtValue()/8; |
| Value = Value.getOperand(0); |
| } |
| |
| // Stores must share the same combined value with different offsets. |
| if (!CombinedValue) |
| CombinedValue = Value; |
| else if (stripTruncAndExt(CombinedValue) != stripTruncAndExt(Value)) |
| return SDValue(); |
| |
| // The trunc and all the extend operation should be stripped to get the |
| // real value we are stored. |
| else if (CombinedValue.getValueType() != VT) { |
| if (Value.getValueType() == VT || |
| Value.getValueSizeInBits() > CombinedValue.getValueSizeInBits()) |
| CombinedValue = Value; |
| // Give up if the combined value type is smaller than the store size. |
| if (CombinedValue.getValueSizeInBits() < VT.getSizeInBits()) |
| return SDValue(); |
| } |
| |
| // Stores must share the same base address |
| BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG); |
| int64_t ByteOffsetFromBase = 0; |
| if (!Base) |
| Base = Ptr; |
| else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) |
| return SDValue(); |
| |
| // Remember the first byte store |
| if (ByteOffsetFromBase < FirstOffset) { |
| FirstStore = Store; |
| FirstOffset = ByteOffsetFromBase; |
| } |
| // Map the offset in the store and the offset in the combined value, and |
| // early return if it has been set before. |
| if (Offset < 0 || Offset >= Width || ByteOffsets[Offset] != INT64_MAX) |
| return SDValue(); |
| ByteOffsets[Offset] = ByteOffsetFromBase; |
| } |
| |
| assert(FirstOffset != INT64_MAX && "First byte offset must be set"); |
| assert(FirstStore && "First store must be set"); |
| |
| // Check if the bytes of the combined value we are looking at match with |
| // either big or little endian value store. |
| Optional<bool> IsBigEndian = isBigEndian(ByteOffsets, FirstOffset); |
| if (!IsBigEndian.hasValue()) |
| return SDValue(); |
| |
| // The node we are looking at matches with the pattern, check if we can |
| // replace it with a single bswap if needed and store. |
| |
| // If the store needs byte swap check if the target supports it |
| bool NeedsBswap = DAG.getDataLayout().isBigEndian() != *IsBigEndian; |
| |
| // Before legalize we can introduce illegal bswaps which will be later |
| // converted to an explicit bswap sequence. This way we end up with a single |
| // store and byte shuffling instead of several stores and byte shuffling. |
| if (NeedsBswap && LegalOperations && !TLI.isOperationLegal(ISD::BSWAP, VT)) |
| return SDValue(); |
| |
| // Check that a store of the wide type is both allowed and fast on the target |
| bool Fast = false; |
| bool Allowed = |
| TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, |
| *FirstStore->getMemOperand(), &Fast); |
| if (!Allowed || !Fast) |
| return SDValue(); |
| |
| if (VT != CombinedValue.getValueType()) { |
| assert(CombinedValue.getValueType().getSizeInBits() > VT.getSizeInBits() && |
| "Get unexpected store value to combine"); |
| CombinedValue = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, |
| CombinedValue); |
| } |
| |
| if (NeedsBswap) |
| CombinedValue = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, CombinedValue); |
| |
| SDValue NewStore = |
| DAG.getStore(Chain, SDLoc(N), CombinedValue, FirstStore->getBasePtr(), |
| FirstStore->getPointerInfo(), FirstStore->getAlignment()); |
| |
| // Rely on other DAG combine rules to remove the other individual stores. |
| DAG.ReplaceAllUsesWith(N, NewStore.getNode()); |
| return NewStore; |
| } |
| |
| /// Match a pattern where a wide type scalar value is loaded by several narrow |
| /// loads and combined by shifts and ors. Fold it into a single load or a load |
| /// and a BSWAP if the targets supports it. |
| /// |
| /// Assuming little endian target: |
| /// i8 *a = ... |
| /// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) |
| /// => |
| /// i32 val = *((i32)a) |
| /// |
| /// i8 *a = ... |
| /// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] |
| /// => |
| /// i32 val = BSWAP(*((i32)a)) |
| /// |
| /// TODO: This rule matches complex patterns with OR node roots and doesn't |
| /// interact well with the worklist mechanism. When a part of the pattern is |
| /// updated (e.g. one of the loads) its direct users are put into the worklist, |
| /// but the root node of the pattern which triggers the load combine is not |
| /// necessarily a direct user of the changed node. For example, once the address |
| /// of t28 load is reassociated load combine won't be triggered: |
| /// t25: i32 = add t4, Constant:i32<2> |
| /// t26: i64 = sign_extend t25 |
| /// t27: i64 = add t2, t26 |
| /// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64 |
| /// t29: i32 = zero_extend t28 |
| /// t32: i32 = shl t29, Constant:i8<8> |
| /// t33: i32 = or t23, t32 |
| /// As a possible fix visitLoad can check if the load can be a part of a load |
| /// combine pattern and add corresponding OR roots to the worklist. |
| SDValue DAGCombiner::MatchLoadCombine(SDNode *N) { |
| assert(N->getOpcode() == ISD::OR && |
| "Can only match load combining against OR nodes"); |
| |
| // Handles simple types only |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) |
| return SDValue(); |
| unsigned ByteWidth = VT.getSizeInBits() / 8; |
| |
| bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian(); |
| auto MemoryByteOffset = [&] (ByteProvider P) { |
| assert(P.isMemory() && "Must be a memory byte provider"); |
| unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits(); |
| assert(LoadBitWidth % 8 == 0 && |
| "can only analyze providers for individual bytes not bit"); |
| unsigned LoadByteWidth = LoadBitWidth / 8; |
| return IsBigEndianTarget |
| ? BigEndianByteAt(LoadByteWidth, P.ByteOffset) |
| : LittleEndianByteAt(LoadByteWidth, P.ByteOffset); |
| }; |
| |
| Optional<BaseIndexOffset> Base; |
| SDValue Chain; |
| |
| SmallPtrSet<LoadSDNode *, 8> Loads; |
| Optional<ByteProvider> FirstByteProvider; |
| int64_t FirstOffset = INT64_MAX; |
| |
| // Check if all the bytes of the OR we are looking at are loaded from the same |
| // base address. Collect bytes offsets from Base address in ByteOffsets. |
| SmallVector<int64_t, 8> ByteOffsets(ByteWidth); |
| unsigned ZeroExtendedBytes = 0; |
| for (int i = ByteWidth - 1; i >= 0; --i) { |
| auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true); |
| if (!P) |
| return SDValue(); |
| |
| if (P->isConstantZero()) { |
| // It's OK for the N most significant bytes to be 0, we can just |
| // zero-extend the load. |
| if (++ZeroExtendedBytes != (ByteWidth - static_cast<unsigned>(i))) |
| return SDValue(); |
| continue; |
| } |
| assert(P->isMemory() && "provenance should either be memory or zero"); |
| |
| LoadSDNode *L = P->Load; |
| assert(L->hasNUsesOfValue(1, 0) && L->isSimple() && |
| !L->isIndexed() && |
| "Must be enforced by calculateByteProvider"); |
| assert(L->getOffset().isUndef() && "Unindexed load must have undef offset"); |
| |
| // All loads must share the same chain |
| SDValue LChain = L->getChain(); |
| if (!Chain) |
| Chain = LChain; |
| else if (Chain != LChain) |
| return SDValue(); |
| |
| // Loads must share the same base address |
| BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG); |
| int64_t ByteOffsetFromBase = 0; |
| if (!Base) |
| Base = Ptr; |
| else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) |
| return SDValue(); |
| |
| // Calculate the offset of the current byte from the base address |
| ByteOffsetFromBase += MemoryByteOffset(*P); |
| ByteOffsets[i] = ByteOffsetFromBase; |
| |
| // Remember the first byte load |
| if (ByteOffsetFromBase < FirstOffset) { |
| FirstByteProvider = P; |
| FirstOffset = ByteOffsetFromBase; |
| } |
| |
| Loads.insert(L); |
| } |
| assert(!Loads.empty() && "All the bytes of the value must be loaded from " |
| "memory, so there must be at least one load which produces the value"); |
| assert(Base && "Base address of the accessed memory location must be set"); |
| assert(FirstOffset != INT64_MAX && "First byte offset must be set"); |
| |
| bool NeedsZext = ZeroExtendedBytes > 0; |
| |
| EVT MemVT = |
| EVT::getIntegerVT(*DAG.getContext(), (ByteWidth - ZeroExtendedBytes) * 8); |
| |
| if (!MemVT.isSimple()) |
| return SDValue(); |
| |
| // Before legalize we can introduce too wide illegal loads which will be later |
| // split into legal sized loads. This enables us to combine i64 load by i8 |
| // patterns to a couple of i32 loads on 32 bit targets. |
| if (LegalOperations && |
| !TLI.isOperationLegal(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, |
| MemVT)) |
| return SDValue(); |
| |
| // Check if the bytes of the OR we are looking at match with either big or |
| // little endian value load |
| Optional<bool> IsBigEndian = isBigEndian( |
| makeArrayRef(ByteOffsets).drop_back(ZeroExtendedBytes), FirstOffset); |
| if (!IsBigEndian.hasValue()) |
| return SDValue(); |
| |
| assert(FirstByteProvider && "must be set"); |
| |
| // Ensure that the first byte is loaded from zero offset of the first load. |
| // So the combined value can be loaded from the first load address. |
| if (MemoryByteOffset(*FirstByteProvider) != 0) |
| return SDValue(); |
| LoadSDNode *FirstLoad = FirstByteProvider->Load; |
| |
| // The node we are looking at matches with the pattern, check if we can |
| // replace it with a single (possibly zero-extended) load and bswap + shift if |
| // needed. |
| |
| // If the load needs byte swap check if the target supports it |
| bool NeedsBswap = IsBigEndianTarget != *IsBigEndian; |
| |
| // Before legalize we can introduce illegal bswaps which will be later |
| // converted to an explicit bswap sequence. This way we end up with a single |
| // load and byte shuffling instead of several loads and byte shuffling. |
| // We do not introduce illegal bswaps when zero-extending as this tends to |
| // introduce too many arithmetic instructions. |
| if (NeedsBswap && (LegalOperations || NeedsZext) && |
| !TLI.isOperationLegal(ISD::BSWAP, VT)) |
| return SDValue(); |
| |
| // If we need to bswap and zero extend, we have to insert a shift. Check that |
| // it is legal. |
| if (NeedsBswap && NeedsZext && LegalOperations && |
| !TLI.isOperationLegal(ISD::SHL, VT)) |
| return SDValue(); |
| |
| // Check that a load of the wide type is both allowed and fast on the target |
| bool Fast = false; |
| bool Allowed = |
| TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, |
| *FirstLoad->getMemOperand(), &Fast); |
| if (!Allowed || !Fast) |
| return SDValue(); |
| |
| SDValue NewLoad = DAG.getExtLoad(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, |
| SDLoc(N), VT, Chain, FirstLoad->getBasePtr(), |
| FirstLoad->getPointerInfo(), MemVT, |
| FirstLoad->getAlignment()); |
| |
| // Transfer chain users from old loads to the new load. |
| for (LoadSDNode *L : Loads) |
| DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1)); |
| |
| if (!NeedsBswap) |
| return NewLoad; |
| |
| SDValue ShiftedLoad = |
| NeedsZext |
| ? DAG.getNode(ISD::SHL, SDLoc(N), VT, NewLoad, |
| DAG.getShiftAmountConstant(ZeroExtendedBytes * 8, VT, |
| SDLoc(N), LegalOperations)) |
| : NewLoad; |
| return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, ShiftedLoad); |
| } |
| |
| // If the target has andn, bsl, or a similar bit-select instruction, |
| // we want to unfold masked merge, with canonical pattern of: |
| // | A | |B| |
| // ((x ^ y) & m) ^ y |
| // | D | |
| // Into: |
| // (x & m) | (y & ~m) |
| // If y is a constant, and the 'andn' does not work with immediates, |
| // we unfold into a different pattern: |
| // ~(~x & m) & (m | y) |
| // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at |
| // the very least that breaks andnpd / andnps patterns, and because those |
| // patterns are simplified in IR and shouldn't be created in the DAG |
| SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) { |
| assert(N->getOpcode() == ISD::XOR); |
| |
| // Don't touch 'not' (i.e. where y = -1). |
| if (isAllOnesOrAllOnesSplat(N->getOperand(1))) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| |
| // There are 3 commutable operators in the pattern, |
| // so we have to deal with 8 possible variants of the basic pattern. |
| SDValue X, Y, M; |
| auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) { |
| if (And.getOpcode() != ISD::AND || !And.hasOneUse()) |
| return false; |
| SDValue Xor = And.getOperand(XorIdx); |
| if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse()) |
| return false; |
| SDValue Xor0 = Xor.getOperand(0); |
| SDValue Xor1 = Xor.getOperand(1); |
| // Don't touch 'not' (i.e. where y = -1). |
| if (isAllOnesOrAllOnesSplat(Xor1)) |
| return false; |
| if (Other == Xor0) |
| std::swap(Xor0, Xor1); |
| if (Other != Xor1) |
| return false; |
| X = Xor0; |
| Y = Xor1; |
| M = And.getOperand(XorIdx ? 0 : 1); |
| return true; |
| }; |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) && |
| !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0)) |
| return SDValue(); |
| |
| // Don't do anything if the mask is constant. This should not be reachable. |
| // InstCombine should have already unfolded this pattern, and DAGCombiner |
| // probably shouldn't produce it, too. |
| if (isa<ConstantSDNode>(M.getNode())) |
| return SDValue(); |
| |
| // We can transform if the target has AndNot |
| if (!TLI.hasAndNot(M)) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| |
| // If Y is a constant, check that 'andn' works with immediates. |
| if (!TLI.hasAndNot(Y)) { |
| assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable."); |
| // If not, we need to do a bit more work to make sure andn is still used. |
| SDValue NotX = DAG.getNOT(DL, X, VT); |
| SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M); |
| SDValue NotLHS = DAG.getNOT(DL, LHS, VT); |
| SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y); |
| return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS); |
| } |
| |
| SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M); |
| SDValue NotM = DAG.getNOT(DL, M, VT); |
| SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM); |
| |
| return DAG.getNode(ISD::OR, DL, VT, LHS, RHS); |
| } |
| |
| SDValue DAGCombiner::visitXOR(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| |
| // fold vector ops |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| // fold (xor x, 0) -> x, vector edition |
| if (ISD::isBuildVectorAllZeros(N0.getNode())) |
| return N1; |
| if (ISD::isBuildVectorAllZeros(N1.getNode())) |
| return N0; |
| } |
| |
| // fold (xor undef, undef) -> 0. This is a common idiom (misuse). |
| SDLoc DL(N); |
| if (N0.isUndef() && N1.isUndef()) |
| return DAG.getConstant(0, DL, VT); |
| // fold (xor x, undef) -> undef |
| if (N0.isUndef()) |
| return N0; |
| if (N1.isUndef()) |
| return N1; |
| // fold (xor c1, c2) -> c1^c2 |
| ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); |
| ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); |
| if (N0C && N1C) |
| return DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, N0C, N1C); |
| // canonicalize constant to RHS |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(ISD::XOR, DL, VT, N1, N0); |
| // fold (xor x, 0) -> x |
| if (isNullConstant(N1)) |
| return N0; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // reassociate xor |
| if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags())) |
| return RXOR; |
| |
| // fold !(x cc y) -> (x !cc y) |
| unsigned N0Opcode = N0.getOpcode(); |
| SDValue LHS, RHS, CC; |
| if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) { |
| ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), |
| LHS.getValueType()); |
| if (!LegalOperations || |
| TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { |
| switch (N0Opcode) { |
| default: |
| llvm_unreachable("Unhandled SetCC Equivalent!"); |
| case ISD::SETCC: |
| return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC); |
| case ISD::SELECT_CC: |
| return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2), |
| N0.getOperand(3), NotCC); |
| } |
| } |
| } |
| |
| // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) |
| if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() && |
| isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ |
| SDValue V = N0.getOperand(0); |
| SDLoc DL0(N0); |
| V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V, |
| DAG.getConstant(1, DL0, V.getValueType())); |
| AddToWorklist(V.getNode()); |
| return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V); |
| } |
| |
| // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc |
| if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() && |
| (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { |
| SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); |
| if (isOneUseSetCC(N01) || isOneUseSetCC(N00)) { |
| unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; |
| N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 |
| N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 |
| AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); |
| return DAG.getNode(NewOpcode, DL, VT, N00, N01); |
| } |
| } |
| // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants |
| if (isAllOnesConstant(N1) && N0.hasOneUse() && |
| (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { |
| SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); |
| if (isa<ConstantSDNode>(N01) || isa<ConstantSDNode>(N00)) { |
| unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; |
| N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 |
| N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 |
| AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); |
| return DAG.getNode(NewOpcode, DL, VT, N00, N01); |
| } |
| } |
| |
| // fold (not (neg x)) -> (add X, -1) |
| // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if |
| // Y is a constant or the subtract has a single use. |
| if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::SUB && |
| isNullConstant(N0.getOperand(0))) { |
| return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), |
| DAG.getAllOnesConstant(DL, VT)); |
| } |
| |
| // fold (not (add X, -1)) -> (neg X) |
| if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::ADD && |
| isAllOnesOrAllOnesSplat(N0.getOperand(1))) { |
| return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), |
| N0.getOperand(0)); |
| } |
| |
| // fold (xor (and x, y), y) -> (and (not x), y) |
| if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) { |
| SDValue X = N0.getOperand(0); |
| SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); |
| AddToWorklist(NotX.getNode()); |
| return DAG.getNode(ISD::AND, DL, VT, NotX, N1); |
| } |
| |
| if ((N0Opcode == ISD::SRL || N0Opcode == ISD::SHL) && N0.hasOneUse()) { |
| ConstantSDNode *XorC = isConstOrConstSplat(N1); |
| ConstantSDNode *ShiftC = isConstOrConstSplat(N0.getOperand(1)); |
| unsigned BitWidth = VT.getScalarSizeInBits(); |
| if (XorC && ShiftC) { |
| // Don't crash on an oversized shift. We can not guarantee that a bogus |
| // shift has been simplified to undef. |
| uint64_t ShiftAmt = ShiftC->getLimitedValue(); |
| if (ShiftAmt < BitWidth) { |
| APInt Ones = APInt::getAllOnesValue(BitWidth); |
| Ones = N0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) : Ones.lshr(ShiftAmt); |
| if (XorC->getAPIntValue() == Ones) { |
| // If the xor constant is a shifted -1, do a 'not' before the shift: |
| // xor (X << ShiftC), XorC --> (not X) << ShiftC |
| // xor (X >> ShiftC), XorC --> (not X) >> ShiftC |
| SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT); |
| return DAG.getNode(N0Opcode, DL, VT, Not, N0.getOperand(1)); |
| } |
| } |
| } |
| } |
| |
| // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X) |
| if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { |
| SDValue A = N0Opcode == ISD::ADD ? N0 : N1; |
| SDValue S = N0Opcode == ISD::SRA ? N0 : N1; |
| if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) { |
| SDValue A0 = A.getOperand(0), A1 = A.getOperand(1); |
| SDValue S0 = S.getOperand(0); |
| if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0)) { |
| unsigned OpSizeInBits = VT.getScalarSizeInBits(); |
| if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1))) |
| if (C->getAPIntValue() == (OpSizeInBits - 1)) |
| return DAG.getNode(ISD::ABS, DL, VT, S0); |
| } |
| } |
| } |
| |
| // fold (xor x, x) -> 0 |
| if (N0 == N1) |
| return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); |
| |
| // fold (xor (shl 1, x), -1) -> (rotl ~1, x) |
| // Here is a concrete example of this equivalence: |
| // i16 x == 14 |
| // i16 shl == 1 << 14 == 16384 == 0b0100000000000000 |
| // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 |
| // |
| // => |
| // |
| // i16 ~1 == 0b1111111111111110 |
| // i16 rol(~1, 14) == 0b1011111111111111 |
| // |
| // Some additional tips to help conceptualize this transform: |
| // - Try to see the operation as placing a single zero in a value of all ones. |
| // - There exists no value for x which would allow the result to contain zero. |
| // - Values of x larger than the bitwidth are undefined and do not require a |
| // consistent result. |
| // - Pushing the zero left requires shifting one bits in from the right. |
| // A rotate left of ~1 is a nice way of achieving the desired result. |
| if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL && |
| isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { |
| return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), |
| N0.getOperand(1)); |
| } |
| |
| // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) |
| if (N0Opcode == N1.getOpcode()) |
| if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) |
| return V; |
| |
| // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable |
| if (SDValue MM = unfoldMaskedMerge(N)) |
| return MM; |
| |
| // Simplify the expression using non-local knowledge. |
| if (SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) |
| return Combined; |
| |
| return SDValue(); |
| } |
| |
| /// If we have a shift-by-constant of a bitwise logic op that itself has a |
| /// shift-by-constant operand with identical opcode, we may be able to convert |
| /// that into 2 independent shifts followed by the logic op. This is a |
| /// throughput improvement. |
| static SDValue combineShiftOfShiftedLogic(SDNode *Shift, SelectionDAG &DAG) { |
| // Match a one-use bitwise logic op. |
| SDValue LogicOp = Shift->getOperand(0); |
| if (!LogicOp.hasOneUse()) |
| return SDValue(); |
| |
| unsigned LogicOpcode = LogicOp.getOpcode(); |
| if (LogicOpcode != ISD::AND && LogicOpcode != ISD::OR && |
| LogicOpcode != ISD::XOR) |
| return SDValue(); |
| |
| // Find a matching one-use shift by constant. |
| unsigned ShiftOpcode = Shift->getOpcode(); |
| SDValue C1 = Shift->getOperand(1); |
| ConstantSDNode *C1Node = isConstOrConstSplat(C1); |
| assert(C1Node && "Expected a shift with constant operand"); |
| const APInt &C1Val = C1Node->getAPIntValue(); |
| auto matchFirstShift = [&](SDValue V, SDValue &ShiftOp, |
| const APInt *&ShiftAmtVal) { |
| if (V.getOpcode() != ShiftOpcode || !V.hasOneUse()) |
| return false; |
| |
| ConstantSDNode *ShiftCNode = isConstOrConstSplat(V.getOperand(1)); |
| if (!ShiftCNode) |
| return false; |
| |
| // Capture the shifted operand and shift amount value. |
| ShiftOp = V.getOperand(0); |
| ShiftAmtVal = &ShiftCNode->getAPIntValue(); |
| |
| // Shift amount types do not have to match their operand type, so check that |
| // the constants are the same width. |
| if (ShiftAmtVal->getBitWidth() != C1Val.getBitWidth()) |
| return false; |
| |
| // The fold is not valid if the sum of the shift values exceeds bitwidth. |
| if ((*ShiftAmtVal + C1Val).uge(V.getScalarValueSizeInBits())) |
| return false; |
| |
| return true; |
| }; |
| |
| // Logic ops are commutative, so check each operand for a match. |
| SDValue X, Y; |
| const APInt *C0Val; |
| if (matchFirstShift(LogicOp.getOperand(0), X, C0Val)) |
| Y = LogicOp.getOperand(1); |
| else if (matchFirstShift(LogicOp.getOperand(1), X, C0Val)) |
| Y = LogicOp.getOperand(0); |
| else |
| return SDValue(); |
| |
| // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1) |
| SDLoc DL(Shift); |
| EVT VT = Shift->getValueType(0); |
| EVT ShiftAmtVT = Shift->getOperand(1).getValueType(); |
| SDValue ShiftSumC = DAG.getConstant(*C0Val + C1Val, DL, ShiftAmtVT); |
| SDValue NewShift1 = DAG.getNode(ShiftOpcode, DL, VT, X, ShiftSumC); |
| SDValue NewShift2 = DAG.getNode(ShiftOpcode, DL, VT, Y, C1); |
| return DAG.getNode(LogicOpcode, DL, VT, NewShift1, NewShift2); |
| } |
| |
| /// Handle transforms common to the three shifts, when the shift amount is a |
| /// constant. |
| /// We are looking for: (shift being one of shl/sra/srl) |
| /// shift (binop X, C0), C1 |
| /// And want to transform into: |
| /// binop (shift X, C1), (shift C0, C1) |
| SDValue DAGCombiner::visitShiftByConstant(SDNode *N) { |
| assert(isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand"); |
| |
| // Do not turn a 'not' into a regular xor. |
| if (isBitwiseNot(N->getOperand(0))) |
| return SDValue(); |
| |
| // The inner binop must be one-use, since we want to replace it. |
| SDValue LHS = N->getOperand(0); |
| if (!LHS.hasOneUse() || !TLI.isDesirableToCommuteWithShift(N, Level)) |
| return SDValue(); |
| |
| // TODO: This is limited to early combining because it may reveal regressions |
| // otherwise. But since we just checked a target hook to see if this is |
| // desirable, that should have filtered out cases where this interferes |
| // with some other pattern matching. |
| if (!LegalTypes) |
| if (SDValue R = combineShiftOfShiftedLogic(N, DAG)) |
| return R; |
| |
| // We want to pull some binops through shifts, so that we have (and (shift)) |
| // instead of (shift (and)), likewise for add, or, xor, etc. This sort of |
| // thing happens with address calculations, so it's important to canonicalize |
| // it. |
| switch (LHS.getOpcode()) { |
| default: |
| return SDValue(); |
| case ISD::OR: |
| case ISD::XOR: |
| case ISD::AND: |
| break; |
| case ISD::ADD: |
| if (N->getOpcode() != ISD::SHL) |
| return SDValue(); // only shl(add) not sr[al](add). |
| break; |
| } |
| |
| // We require the RHS of the binop to be a constant and not opaque as well. |
| ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS.getOperand(1)); |
| if (!BinOpCst) |
| return SDValue(); |
| |
| // FIXME: disable this unless the input to the binop is a shift by a constant |
| // or is copy/select. Enable this in other cases when figure out it's exactly |
| // profitable. |
| SDValue BinOpLHSVal = LHS.getOperand(0); |
| bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL || |
| BinOpLHSVal.getOpcode() == ISD::SRA || |
| BinOpLHSVal.getOpcode() == ISD::SRL) && |
| isa<ConstantSDNode>(BinOpLHSVal.getOperand(1)); |
| bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg || |
| BinOpLHSVal.getOpcode() == ISD::SELECT; |
| |
| if (!IsShiftByConstant && !IsCopyOrSelect) |
| return SDValue(); |
| |
| if (IsCopyOrSelect && N->hasOneUse()) |
| return SDValue(); |
| |
| // Fold the constants, shifting the binop RHS by the shift amount. |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| SDValue NewRHS = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(1), |
| N->getOperand(1)); |
| assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); |
| |
| SDValue NewShift = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(0), |
| N->getOperand(1)); |
| return DAG.getNode(LHS.getOpcode(), DL, VT, NewShift, NewRHS); |
| } |
| |
| SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { |
| assert(N->getOpcode() == ISD::TRUNCATE); |
| assert(N->getOperand(0).getOpcode() == ISD::AND); |
| |
| // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) |
| EVT TruncVT = N->getValueType(0); |
| if (N->hasOneUse() && N->getOperand(0).hasOneUse() && |
| TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) { |
| SDValue N01 = N->getOperand(0).getOperand(1); |
| if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) { |
| SDLoc DL(N); |
| SDValue N00 = N->getOperand(0).getOperand(0); |
| SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00); |
| SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01); |
| AddToWorklist(Trunc00.getNode()); |
| AddToWorklist(Trunc01.getNode()); |
| return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitRotate(SDNode *N) { |
| SDLoc dl(N); |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| unsigned Bitsize = VT.getScalarSizeInBits(); |
| |
| // fold (rot x, 0) -> x |
| if (isNullOrNullSplat(N1)) |
| return N0; |
| |
| // fold (rot x, c) -> x iff (c % BitSize) == 0 |
| if (isPowerOf2_32(Bitsize) && Bitsize > 1) { |
| APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1); |
| if (DAG.MaskedValueIsZero(N1, ModuloMask)) |
| return N0; |
| } |
| |
| // fold (rot x, c) -> (rot x, c % BitSize) |
| // TODO - support non-uniform vector amounts. |
| if (ConstantSDNode *Cst = isConstOrConstSplat(N1)) { |
| if (Cst->getAPIntValue().uge(Bitsize)) { |
| uint64_t RotAmt = Cst->getAPIntValue().urem(Bitsize); |
| return DAG.getNode(N->getOpcode(), dl, VT, N0, |
| DAG.getConstant(RotAmt, dl, N1.getValueType())); |
| } |
| } |
| |
| // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). |
| if (N1.getOpcode() == ISD::TRUNCATE && |
| N1.getOperand(0).getOpcode() == ISD::AND) { |
| if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) |
| return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1); |
| } |
| |
| unsigned NextOp = N0.getOpcode(); |
| // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize) |
| if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) { |
| SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1); |
| SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)); |
| if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) { |
| EVT ShiftVT = C1->getValueType(0); |
| bool SameSide = (N->getOpcode() == NextOp); |
| unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB; |
| if (SDValue CombinedShift = |
| DAG.FoldConstantArithmetic(CombineOp, dl, ShiftVT, C1, C2)) { |
| SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT); |
| SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic( |
| ISD::SREM, dl, ShiftVT, CombinedShift.getNode(), |
| BitsizeC.getNode()); |
| return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0), |
| CombinedShiftNorm); |
| } |
| } |
| } |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSHL(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| if (SDValue V = DAG.simplifyShift(N0, N1)) |
| return V; |
| |
| EVT VT = N0.getValueType(); |
| EVT ShiftVT = N1.getValueType(); |
| unsigned OpSizeInBits = VT.getScalarSizeInBits(); |
| |
| // fold vector ops |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); |
| // If setcc produces all-one true value then: |
| // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) |
| if (N1CV && N1CV->isConstant()) { |
| if (N0.getOpcode() == ISD::AND) { |
| SDValue N00 = N0->getOperand(0); |
| SDValue N01 = N0->getOperand(1); |
| BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); |
| |
| if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && |
| TLI.getBooleanContents(N00.getOperand(0).getValueType()) == |
| TargetLowering::ZeroOrNegativeOneBooleanContent) { |
| if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, |
| N01CV, N1CV)) |
| return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); |
| } |
| } |
| } |
| } |
| |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| |
| // fold (shl c1, c2) -> c1<<c2 |
| // TODO - support non-uniform vector shift amounts. |
| ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); |
| if (N0C && N1C && !N1C->isOpaque()) |
| return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C); |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // if (shl x, c) is known to be zero, return 0 |
| if (DAG.MaskedValueIsZero(SDValue(N, 0), |
| APInt::getAllOnesValue(OpSizeInBits))) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| |
| // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). |
| if (N1.getOpcode() == ISD::TRUNCATE && |
| N1.getOperand(0).getOpcode() == ISD::AND) { |
| if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) |
| return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); |
| } |
| |
| // TODO - support non-uniform vector shift amounts. |
| if (N1C && SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) |
| if (N0.getOpcode() == ISD::SHL) { |
| auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, |
| ConstantSDNode *RHS) { |
| APInt c1 = LHS->getAPIntValue(); |
| APInt c2 = RHS->getAPIntValue(); |
| zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); |
| return (c1 + c2).uge(OpSizeInBits); |
| }; |
| if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| |
| auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, |
| ConstantSDNode *RHS) { |
| APInt c1 = LHS->getAPIntValue(); |
| APInt c2 = RHS->getAPIntValue(); |
| zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); |
| return (c1 + c2).ult(OpSizeInBits); |
| }; |
| if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { |
| SDLoc DL(N); |
| SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); |
| return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum); |
| } |
| } |
| |
| // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2)) |
| // For this to be valid, the second form must not preserve any of the bits |
| // that are shifted out by the inner shift in the first form. This means |
| // the outer shift size must be >= the number of bits added by the ext. |
| // As a corollary, we don't care what kind of ext it is. |
| if ((N0.getOpcode() == ISD::ZERO_EXTEND || |
| N0.getOpcode() == ISD::ANY_EXTEND || |
| N0.getOpcode() == ISD::SIGN_EXTEND) && |
| N0.getOperand(0).getOpcode() == ISD::SHL) { |
| SDValue N0Op0 = N0.getOperand(0); |
| SDValue InnerShiftAmt = N0Op0.getOperand(1); |
| EVT InnerVT = N0Op0.getValueType(); |
| uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits(); |
| |
| auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, |
| ConstantSDNode *RHS) { |
| APInt c1 = LHS->getAPIntValue(); |
| APInt c2 = RHS->getAPIntValue(); |
| zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); |
| return c2.uge(OpSizeInBits - InnerBitwidth) && |
| (c1 + c2).uge(OpSizeInBits); |
| }; |
| if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange, |
| /*AllowUndefs*/ false, |
| /*AllowTypeMismatch*/ true)) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| |
| auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, |
| ConstantSDNode *RHS) { |
| APInt c1 = LHS->getAPIntValue(); |
| APInt c2 = RHS->getAPIntValue(); |
| zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); |
| return c2.uge(OpSizeInBits - InnerBitwidth) && |
| (c1 + c2).ult(OpSizeInBits); |
| }; |
| if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange, |
| /*AllowUndefs*/ false, |
| /*AllowTypeMismatch*/ true)) { |
| SDLoc DL(N); |
| SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0)); |
| SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT); |
| Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1); |
| return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum); |
| } |
| } |
| |
| // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) |
| // Only fold this if the inner zext has no other uses to avoid increasing |
| // the total number of instructions. |
| if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && |
| N0.getOperand(0).getOpcode() == ISD::SRL) { |
| SDValue N0Op0 = N0.getOperand(0); |
| SDValue InnerShiftAmt = N0Op0.getOperand(1); |
| |
| auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) { |
| APInt c1 = LHS->getAPIntValue(); |
| APInt c2 = RHS->getAPIntValue(); |
| zeroExtendToMatch(c1, c2); |
| return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2); |
| }; |
| if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual, |
| /*AllowUndefs*/ false, |
| /*AllowTypeMismatch*/ true)) { |
| SDLoc DL(N); |
| EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType(); |
| SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT); |
| NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL); |
| AddToWorklist(NewSHL.getNode()); |
| return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); |
| } |
| } |
| |
| // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2 |
| // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2 |
| // TODO - support non-uniform vector shift amounts. |
| if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && |
| N0->getFlags().hasExact()) { |
| if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { |
| uint64_t C1 = N0C1->getZExtValue(); |
| uint64_t C2 = N1C->getZExtValue(); |
| SDLoc DL(N); |
| if (C1 <= C2) |
| return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), |
| DAG.getConstant(C2 - C1, DL, ShiftVT)); |
| return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), |
| DAG.getConstant(C1 - C2, DL, ShiftVT)); |
| } |
| } |
| |
| // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or |
| // (and (srl x, (sub c1, c2), MASK) |
| // Only fold this if the inner shift has no other uses -- if it does, folding |
| // this will increase the total number of instructions. |
| // TODO - drop hasOneUse requirement if c1 == c2? |
| // TODO - support non-uniform vector shift amounts. |
| if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() && |
| TLI.shouldFoldConstantShiftPairToMask(N, Level)) { |
| if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { |
| if (N0C1->getAPIntValue().ult(OpSizeInBits)) { |
| uint64_t c1 = N0C1->getZExtValue(); |
| uint64_t c2 = N1C->getZExtValue(); |
| APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); |
| SDValue Shift; |
| if (c2 > c1) { |
| Mask <<= c2 - c1; |
| SDLoc DL(N); |
| Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), |
| DAG.getConstant(c2 - c1, DL, ShiftVT)); |
| } else { |
| Mask.lshrInPlace(c1 - c2); |
| SDLoc DL(N); |
| Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), |
| DAG.getConstant(c1 - c2, DL, ShiftVT)); |
| } |
| SDLoc DL(N0); |
| return DAG.getNode(ISD::AND, DL, VT, Shift, |
| DAG.getConstant(Mask, DL, VT)); |
| } |
| } |
| } |
| |
| // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) |
| if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) && |
| isConstantOrConstantVector(N1, /* No Opaques */ true)) { |
| SDLoc DL(N); |
| SDValue AllBits = DAG.getAllOnesConstant(DL, VT); |
| SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1); |
| return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask); |
| } |
| |
| // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) |
| // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) |
| // Variant of version done on multiply, except mul by a power of 2 is turned |
| // into a shift. |
| if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) && |
| N0.getNode()->hasOneUse() && |
| isConstantOrConstantVector(N1, /* No Opaques */ true) && |
| isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) && |
| TLI.isDesirableToCommuteWithShift(N, Level)) { |
| SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); |
| SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); |
| AddToWorklist(Shl0.getNode()); |
| AddToWorklist(Shl1.getNode()); |
| return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1); |
| } |
| |
| // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) |
| if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() && |
| isConstantOrConstantVector(N1, /* No Opaques */ true) && |
| isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) { |
| SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); |
| if (isConstantOrConstantVector(Shl)) |
| return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl); |
| } |
| |
| if (N1C && !N1C->isOpaque()) |
| if (SDValue NewSHL = visitShiftByConstant(N)) |
| return NewSHL; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSRA(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| if (SDValue V = DAG.simplifyShift(N0, N1)) |
| return V; |
| |
| EVT VT = N0.getValueType(); |
| unsigned OpSizeInBits = VT.getScalarSizeInBits(); |
| |
| // Arithmetic shifting an all-sign-bit value is a no-op. |
| // fold (sra 0, x) -> 0 |
| // fold (sra -1, x) -> -1 |
| if (DAG.ComputeNumSignBits(N0) == OpSizeInBits) |
| return N0; |
| |
| // fold vector ops |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| |
| // fold (sra c1, c2) -> (sra c1, c2) |
| // TODO - support non-uniform vector shift amounts. |
| ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); |
| if (N0C && N1C && !N1C->isOpaque()) |
| return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C); |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports |
| // sext_inreg. |
| if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { |
| unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); |
| EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); |
| if (VT.isVector()) |
| ExtVT = EVT::getVectorVT(*DAG.getContext(), |
| ExtVT, VT.getVectorNumElements()); |
| if (!LegalOperations || |
| TLI.getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == |
| TargetLowering::Legal) |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, |
| N0.getOperand(0), DAG.getValueType(ExtVT)); |
| } |
| |
| // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) |
| // clamp (add c1, c2) to max shift. |
| if (N0.getOpcode() == ISD::SRA) { |
| SDLoc DL(N); |
| EVT ShiftVT = N1.getValueType(); |
| EVT ShiftSVT = ShiftVT.getScalarType(); |
| SmallVector<SDValue, 16> ShiftValues; |
| |
| auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) { |
| APInt c1 = LHS->getAPIntValue(); |
| APInt c2 = RHS->getAPIntValue(); |
| zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); |
| APInt Sum = c1 + c2; |
| unsigned ShiftSum = |
| Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue(); |
| ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT)); |
| return true; |
| }; |
| if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) { |
| SDValue ShiftValue; |
| if (VT.isVector()) |
| ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues); |
| else |
| ShiftValue = ShiftValues[0]; |
| return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue); |
| } |
| } |
| |
| // fold (sra (shl X, m), (sub result_size, n)) |
| // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for |
| // result_size - n != m. |
| // If truncate is free for the target sext(shl) is likely to result in better |
| // code. |
| if (N0.getOpcode() == ISD::SHL && N1C) { |
| // Get the two constanst of the shifts, CN0 = m, CN = n. |
| const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); |
| if (N01C) { |
| LLVMContext &Ctx = *DAG.getContext(); |
| // Determine what the truncate's result bitsize and type would be. |
| EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); |
| |
| if (VT.isVector()) |
| TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); |
| |
| // Determine the residual right-shift amount. |
| int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); |
| |
| // If the shift is not a no-op (in which case this should be just a sign |
| // extend already), the truncated to type is legal, sign_extend is legal |
| // on that type, and the truncate to that type is both legal and free, |
| // perform the transform. |
| if ((ShiftAmt > 0) && |
| TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && |
| TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && |
| TLI.isTruncateFree(VT, TruncVT)) { |
| SDLoc DL(N); |
| SDValue Amt = DAG.getConstant(ShiftAmt, DL, |
| getShiftAmountTy(N0.getOperand(0).getValueType())); |
| SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, |
| N0.getOperand(0), Amt); |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, |
| Shift); |
| return DAG.getNode(ISD::SIGN_EXTEND, DL, |
| N->getValueType(0), Trunc); |
| } |
| } |
| } |
| |
| // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper. |
| // sra (add (shl X, N1C), AddC), N1C --> |
| // sext (add (trunc X to (width - N1C)), AddC') |
| if (!LegalTypes && N0.getOpcode() == ISD::ADD && N0.hasOneUse() && N1C && |
| N0.getOperand(0).getOpcode() == ISD::SHL && |
| N0.getOperand(0).getOperand(1) == N1 && N0.getOperand(0).hasOneUse()) { |
| if (ConstantSDNode *AddC = isConstOrConstSplat(N0.getOperand(1))) { |
| SDValue Shl = N0.getOperand(0); |
| // Determine what the truncate's type would be and ask the target if that |
| // is a free operation. |
| LLVMContext &Ctx = *DAG.getContext(); |
| unsigned ShiftAmt = N1C->getZExtValue(); |
| EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt); |
| if (VT.isVector()) |
| TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); |
| |
| // TODO: The simple type check probably belongs in the default hook |
| // implementation and/or target-specific overrides (because |
| // non-simple types likely require masking when legalized), but that |
| // restriction may conflict with other transforms. |
| if (TruncVT.isSimple() && TLI.isTruncateFree(VT, TruncVT)) { |
| SDLoc DL(N); |
| SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT); |
| SDValue ShiftC = DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt). |
| trunc(TruncVT.getScalarSizeInBits()), DL, TruncVT); |
| SDValue Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC); |
| return DAG.getSExtOrTrunc(Add, DL, VT); |
| } |
| } |
| } |
| |
| // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). |
| if (N1.getOpcode() == ISD::TRUNCATE && |
| N1.getOperand(0).getOpcode() == ISD::AND) { |
| if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) |
| return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); |
| } |
| |
| // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2)) |
| // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) |
| // if c1 is equal to the number of bits the trunc removes |
| // TODO - support non-uniform vector shift amounts. |
| if (N0.getOpcode() == ISD::TRUNCATE && |
| (N0.getOperand(0).getOpcode() == ISD::SRL || |
| N0.getOperand(0).getOpcode() == ISD::SRA) && |
| N0.getOperand(0).hasOneUse() && |
| N0.getOperand(0).getOperand(1).hasOneUse() && N1C) { |
| SDValue N0Op0 = N0.getOperand(0); |
| if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { |
| EVT LargeVT = N0Op0.getValueType(); |
| unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits; |
| if (LargeShift->getAPIntValue() == TruncBits) { |
| SDLoc DL(N); |
| SDValue Amt = DAG.getConstant(N1C->getZExtValue() + TruncBits, DL, |
| getShiftAmountTy(LargeVT)); |
| SDValue SRA = |
| DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt); |
| return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); |
| } |
| } |
| } |
| |
| // Simplify, based on bits shifted out of the LHS. |
| // TODO - support non-uniform vector shift amounts. |
| if (N1C && SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| // If the sign bit is known to be zero, switch this to a SRL. |
| if (DAG.SignBitIsZero(N0)) |
| return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); |
| |
| if (N1C && !N1C->isOpaque()) |
| if (SDValue NewSRA = visitShiftByConstant(N)) |
| return NewSRA; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSRL(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| if (SDValue V = DAG.simplifyShift(N0, N1)) |
| return V; |
| |
| EVT VT = N0.getValueType(); |
| unsigned OpSizeInBits = VT.getScalarSizeInBits(); |
| |
| // fold vector ops |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| |
| // fold (srl c1, c2) -> c1 >>u c2 |
| // TODO - support non-uniform vector shift amounts. |
| ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); |
| if (N0C && N1C && !N1C->isOpaque()) |
| return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C); |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // if (srl x, c) is known to be zero, return 0 |
| if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), |
| APInt::getAllOnesValue(OpSizeInBits))) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| |
| // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) |
| if (N0.getOpcode() == ISD::SRL) { |
| auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, |
| ConstantSDNode *RHS) { |
| APInt c1 = LHS->getAPIntValue(); |
| APInt c2 = RHS->getAPIntValue(); |
| zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); |
| return (c1 + c2).uge(OpSizeInBits); |
| }; |
| if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| |
| auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, |
| ConstantSDNode *RHS) { |
| APInt c1 = LHS->getAPIntValue(); |
| APInt c2 = RHS->getAPIntValue(); |
| zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); |
| return (c1 + c2).ult(OpSizeInBits); |
| }; |
| if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { |
| SDLoc DL(N); |
| EVT ShiftVT = N1.getValueType(); |
| SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); |
| return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum); |
| } |
| } |
| |
| if (N1C && N0.getOpcode() == ISD::TRUNCATE && |
| N0.getOperand(0).getOpcode() == ISD::SRL) { |
| SDValue InnerShift = N0.getOperand(0); |
| // TODO - support non-uniform vector shift amounts. |
| if (auto *N001C = isConstOrConstSplat(InnerShift.getOperand(1))) { |
| uint64_t c1 = N001C->getZExtValue(); |
| uint64_t c2 = N1C->getZExtValue(); |
| EVT InnerShiftVT = InnerShift.getValueType(); |
| EVT ShiftAmtVT = InnerShift.getOperand(1).getValueType(); |
| uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); |
| // srl (trunc (srl x, c1)), c2 --> 0 or (trunc (srl x, (add c1, c2))) |
| // This is only valid if the OpSizeInBits + c1 = size of inner shift. |
| if (c1 + OpSizeInBits == InnerShiftSize) { |
| SDLoc DL(N); |
| if (c1 + c2 >= InnerShiftSize) |
| return DAG.getConstant(0, DL, VT); |
| SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); |
| SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, |
| InnerShift.getOperand(0), NewShiftAmt); |
| return DAG.getNode(ISD::TRUNCATE, DL, VT, NewShift); |
| } |
| // In the more general case, we can clear the high bits after the shift: |
| // srl (trunc (srl x, c1)), c2 --> trunc (and (srl x, (c1+c2)), Mask) |
| if (N0.hasOneUse() && InnerShift.hasOneUse() && |
| c1 + c2 < InnerShiftSize) { |
| SDLoc DL(N); |
| SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); |
| SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, |
| InnerShift.getOperand(0), NewShiftAmt); |
| SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(InnerShiftSize, |
| OpSizeInBits - c2), |
| DL, InnerShiftVT); |
| SDValue And = DAG.getNode(ISD::AND, DL, InnerShiftVT, NewShift, Mask); |
| return DAG.getNode(ISD::TRUNCATE, DL, VT, And); |
| } |
| } |
| } |
| |
| // fold (srl (shl x, c), c) -> (and x, cst2) |
| // TODO - (srl (shl x, c1), c2). |
| if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 && |
| isConstantOrConstantVector(N1, /* NoOpaques */ true)) { |
| SDLoc DL(N); |
| SDValue Mask = |
| DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1); |
| AddToWorklist(Mask.getNode()); |
| return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask); |
| } |
| |
| // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) |
| // TODO - support non-uniform vector shift amounts. |
| if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { |
| // Shifting in all undef bits? |
| EVT SmallVT = N0.getOperand(0).getValueType(); |
| unsigned BitSize = SmallVT.getScalarSizeInBits(); |
| if (N1C->getAPIntValue().uge(BitSize)) |
| return DAG.getUNDEF(VT); |
| |
| if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { |
| uint64_t ShiftAmt = N1C->getZExtValue(); |
| SDLoc DL0(N0); |
| SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, |
| N0.getOperand(0), |
| DAG.getConstant(ShiftAmt, DL0, |
| getShiftAmountTy(SmallVT))); |
| AddToWorklist(SmallShift.getNode()); |
| APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt); |
| SDLoc DL(N); |
| return DAG.getNode(ISD::AND, DL, VT, |
| DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), |
| DAG.getConstant(Mask, DL, VT)); |
| } |
| } |
| |
| // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign |
| // bit, which is unmodified by sra. |
| if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) { |
| if (N0.getOpcode() == ISD::SRA) |
| return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); |
| } |
| |
| // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). |
| if (N1C && N0.getOpcode() == ISD::CTLZ && |
| N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { |
| KnownBits Known = DAG.computeKnownBits(N0.getOperand(0)); |
| |
| // If any of the input bits are KnownOne, then the input couldn't be all |
| // zeros, thus the result of the srl will always be zero. |
| if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); |
| |
| // If all of the bits input the to ctlz node are known to be zero, then |
| // the result of the ctlz is "32" and the result of the shift is one. |
| APInt UnknownBits = ~Known.Zero; |
| if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); |
| |
| // Otherwise, check to see if there is exactly one bit input to the ctlz. |
| if (UnknownBits.isPowerOf2()) { |
| // Okay, we know that only that the single bit specified by UnknownBits |
| // could be set on input to the CTLZ node. If this bit is set, the SRL |
| // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair |
| // to an SRL/XOR pair, which is likely to simplify more. |
| unsigned ShAmt = UnknownBits.countTrailingZeros(); |
| SDValue Op = N0.getOperand(0); |
| |
| if (ShAmt) { |
| SDLoc DL(N0); |
| Op = DAG.getNode(ISD::SRL, DL, VT, Op, |
| DAG.getConstant(ShAmt, DL, |
| getShiftAmountTy(Op.getValueType()))); |
| AddToWorklist(Op.getNode()); |
| } |
| |
| SDLoc DL(N); |
| return DAG.getNode(ISD::XOR, DL, VT, |
| Op, DAG.getConstant(1, DL, VT)); |
| } |
| } |
| |
| // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). |
| if (N1.getOpcode() == ISD::TRUNCATE && |
| N1.getOperand(0).getOpcode() == ISD::AND) { |
| if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) |
| return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); |
| } |
| |
| // fold operands of srl based on knowledge that the low bits are not |
| // demanded. |
| // TODO - support non-uniform vector shift amounts. |
| if (N1C && SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| if (N1C && !N1C->isOpaque()) |
| if (SDValue NewSRL = visitShiftByConstant(N)) |
| return NewSRL; |
| |
| // Attempt to convert a srl of a load into a narrower zero-extending load. |
| if (SDValue NarrowLoad = ReduceLoadWidth(N)) |
| return NarrowLoad; |
| |
| // Here is a common situation. We want to optimize: |
| // |
| // %a = ... |
| // %b = and i32 %a, 2 |
| // %c = srl i32 %b, 1 |
| // brcond i32 %c ... |
| // |
| // into |
| // |
| // %a = ... |
| // %b = and %a, 2 |
| // %c = setcc eq %b, 0 |
| // brcond %c ... |
| // |
| // However when after the source operand of SRL is optimized into AND, the SRL |
| // itself may not be optimized further. Look for it and add the BRCOND into |
| // the worklist. |
| if (N->hasOneUse()) { |
| SDNode *Use = *N->use_begin(); |
| if (Use->getOpcode() == ISD::BRCOND) |
| AddToWorklist(Use); |
| else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { |
| // Also look pass the truncate. |
| Use = *Use->use_begin(); |
| if (Use->getOpcode() == ISD::BRCOND) |
| AddToWorklist(Use); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFunnelShift(SDNode *N) { |
| EVT VT = N->getValueType(0); |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| bool IsFSHL = N->getOpcode() == ISD::FSHL; |
| unsigned BitWidth = VT.getScalarSizeInBits(); |
| |
| // fold (fshl N0, N1, 0) -> N0 |
| // fold (fshr N0, N1, 0) -> N1 |
| if (isPowerOf2_32(BitWidth)) |
| if (DAG.MaskedValueIsZero( |
| N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1))) |
| return IsFSHL ? N0 : N1; |
| |
| auto IsUndefOrZero = [](SDValue V) { |
| return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true); |
| }; |
| |
| // TODO - support non-uniform vector shift amounts. |
| if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) { |
| EVT ShAmtTy = N2.getValueType(); |
| |
| // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth) |
| if (Cst->getAPIntValue().uge(BitWidth)) { |
| uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth); |
| return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1, |
| DAG.getConstant(RotAmt, SDLoc(N), ShAmtTy)); |
| } |
| |
| unsigned ShAmt = Cst->getZExtValue(); |
| if (ShAmt == 0) |
| return IsFSHL ? N0 : N1; |
| |
| // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C) |
| // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C) |
| // fold fshl(N0, undef_or_zero, C) -> shl(N0, C) |
| // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C) |
| if (IsUndefOrZero(N0)) |
| return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, |
| DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt, |
| SDLoc(N), ShAmtTy)); |
| if (IsUndefOrZero(N1)) |
| return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, |
| DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt, |
| SDLoc(N), ShAmtTy)); |
| } |
| |
| // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2) |
| // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2) |
| // iff We know the shift amount is in range. |
| // TODO: when is it worth doing SUB(BW, N2) as well? |
| if (isPowerOf2_32(BitWidth)) { |
| APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1); |
| if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) |
| return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, N2); |
| if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) |
| return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N2); |
| } |
| |
| // fold (fshl N0, N0, N2) -> (rotl N0, N2) |
| // fold (fshr N0, N0, N2) -> (rotr N0, N2) |
| // TODO: Investigate flipping this rotate if only one is legal, if funnel shift |
| // is legal as well we might be better off avoiding non-constant (BW - N2). |
| unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR; |
| if (N0 == N1 && hasOperation(RotOpc, VT)) |
| return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2); |
| |
| // Simplify, based on bits shifted out of N0/N1. |
| if (SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitABS(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (abs c1) -> c2 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0); |
| // fold (abs (abs x)) -> (abs x) |
| if (N0.getOpcode() == ISD::ABS) |
| return N0; |
| // fold (abs x) -> x iff not-negative |
| if (DAG.SignBitIsZero(N0)) |
| return N0; |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitBSWAP(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (bswap c1) -> c2 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); |
| // fold (bswap (bswap x)) -> x |
| if (N0.getOpcode() == ISD::BSWAP) |
| return N0->getOperand(0); |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitBITREVERSE(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (bitreverse c1) -> c2 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0); |
| // fold (bitreverse (bitreverse x)) -> x |
| if (N0.getOpcode() == ISD::BITREVERSE) |
| return N0.getOperand(0); |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitCTLZ(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (ctlz c1) -> c2 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); |
| |
| // If the value is known never to be zero, switch to the undef version. |
| if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) { |
| if (DAG.isKnownNeverZero(N0)) |
| return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (ctlz_zero_undef c1) -> c2 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitCTTZ(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (cttz c1) -> c2 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); |
| |
| // If the value is known never to be zero, switch to the undef version. |
| if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) { |
| if (DAG.isKnownNeverZero(N0)) |
| return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (cttz_zero_undef c1) -> c2 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitCTPOP(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (ctpop c1) -> c2 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); |
| return SDValue(); |
| } |
| |
| // FIXME: This should be checking for no signed zeros on individual operands, as |
| // well as no nans. |
| static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS, |
| SDValue RHS, |
| const TargetLowering &TLI) { |
| const TargetOptions &Options = DAG.getTarget().Options; |
| EVT VT = LHS.getValueType(); |
| |
| return Options.NoSignedZerosFPMath && VT.isFloatingPoint() && |
| TLI.isProfitableToCombineMinNumMaxNum(VT) && |
| DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS); |
| } |
| |
| /// Generate Min/Max node |
| static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS, |
| SDValue RHS, SDValue True, SDValue False, |
| ISD::CondCode CC, const TargetLowering &TLI, |
| SelectionDAG &DAG) { |
| if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) |
| return SDValue(); |
| |
| EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); |
| switch (CC) { |
| case ISD::SETOLT: |
| case ISD::SETOLE: |
| case ISD::SETLT: |
| case ISD::SETLE: |
| case ISD::SETULT: |
| case ISD::SETULE: { |
| // Since it's known never nan to get here already, either fminnum or |
| // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is |
| // expanded in terms of it. |
| unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; |
| if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) |
| return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); |
| |
| unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; |
| if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) |
| return DAG.getNode(Opcode, DL, VT, LHS, RHS); |
| return SDValue(); |
| } |
| case ISD::SETOGT: |
| case ISD::SETOGE: |
| case ISD::SETGT: |
| case ISD::SETGE: |
| case ISD::SETUGT: |
| case ISD::SETUGE: { |
| unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; |
| if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) |
| return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); |
| |
| unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; |
| if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) |
| return DAG.getNode(Opcode, DL, VT, LHS, RHS); |
| return SDValue(); |
| } |
| default: |
| return SDValue(); |
| } |
| } |
| |
| /// If a (v)select has a condition value that is a sign-bit test, try to smear |
| /// the condition operand sign-bit across the value width and use it as a mask. |
| static SDValue foldSelectOfConstantsUsingSra(SDNode *N, SelectionDAG &DAG) { |
| SDValue Cond = N->getOperand(0); |
| SDValue C1 = N->getOperand(1); |
| SDValue C2 = N->getOperand(2); |
| assert(isConstantOrConstantVector(C1) && isConstantOrConstantVector(C2) && |
| "Expected select-of-constants"); |
| |
| EVT VT = N->getValueType(0); |
| if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse() || |
| VT != Cond.getOperand(0).getValueType()) |
| return SDValue(); |
| |
| // The inverted-condition + commuted-select variants of these patterns are |
| // canonicalized to these forms in IR. |
| SDValue X = Cond.getOperand(0); |
| SDValue CondC = Cond.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); |
| if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CondC) && |
| isAllOnesOrAllOnesSplat(C2)) { |
| // i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1 |
| SDLoc DL(N); |
| SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); |
| SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); |
| return DAG.getNode(ISD::OR, DL, VT, Sra, C1); |
| } |
| if (CC == ISD::SETLT && isNullOrNullSplat(CondC) && isNullOrNullSplat(C2)) { |
| // i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1 |
| SDLoc DL(N); |
| SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); |
| SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); |
| return DAG.getNode(ISD::AND, DL, VT, Sra, C1); |
| } |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) { |
| SDValue Cond = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| EVT VT = N->getValueType(0); |
| EVT CondVT = Cond.getValueType(); |
| SDLoc DL(N); |
| |
| if (!VT.isInteger()) |
| return SDValue(); |
| |
| auto *C1 = dyn_cast<ConstantSDNode>(N1); |
| auto *C2 = dyn_cast<ConstantSDNode>(N2); |
| if (!C1 || !C2) |
| return SDValue(); |
| |
| // Only do this before legalization to avoid conflicting with target-specific |
| // transforms in the other direction (create a select from a zext/sext). There |
| // is also a target-independent combine here in DAGCombiner in the other |
| // direction for (select Cond, -1, 0) when the condition is not i1. |
| if (CondVT == MVT::i1 && !LegalOperations) { |
| if (C1->isNullValue() && C2->isOne()) { |
| // select Cond, 0, 1 --> zext (!Cond) |
| SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); |
| if (VT != MVT::i1) |
| NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond); |
| return NotCond; |
| } |
| if (C1->isNullValue() && C2->isAllOnesValue()) { |
| // select Cond, 0, -1 --> sext (!Cond) |
| SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); |
| if (VT != MVT::i1) |
| NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond); |
| return NotCond; |
| } |
| if (C1->isOne() && C2->isNullValue()) { |
| // select Cond, 1, 0 --> zext (Cond) |
| if (VT != MVT::i1) |
| Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); |
| return Cond; |
| } |
| if (C1->isAllOnesValue() && C2->isNullValue()) { |
| // select Cond, -1, 0 --> sext (Cond) |
| if (VT != MVT::i1) |
| Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); |
| return Cond; |
| } |
| |
| // Use a target hook because some targets may prefer to transform in the |
| // other direction. |
| if (TLI.convertSelectOfConstantsToMath(VT)) { |
| // For any constants that differ by 1, we can transform the select into an |
| // extend and add. |
| const APInt &C1Val = C1->getAPIntValue(); |
| const APInt &C2Val = C2->getAPIntValue(); |
| if (C1Val - 1 == C2Val) { |
| // select Cond, C1, C1-1 --> add (zext Cond), C1-1 |
| if (VT != MVT::i1) |
| Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); |
| return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); |
| } |
| if (C1Val + 1 == C2Val) { |
| // select Cond, C1, C1+1 --> add (sext Cond), C1+1 |
| if (VT != MVT::i1) |
| Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); |
| return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); |
| } |
| |
| // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2) |
| if (C1Val.isPowerOf2() && C2Val.isNullValue()) { |
| if (VT != MVT::i1) |
| Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); |
| SDValue ShAmtC = DAG.getConstant(C1Val.exactLogBase2(), DL, VT); |
| return DAG.getNode(ISD::SHL, DL, VT, Cond, ShAmtC); |
| } |
| |
| if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) |
| return V; |
| } |
| |
| return SDValue(); |
| } |
| |
| // fold (select Cond, 0, 1) -> (xor Cond, 1) |
| // We can't do this reliably if integer based booleans have different contents |
| // to floating point based booleans. This is because we can't tell whether we |
| // have an integer-based boolean or a floating-point-based boolean unless we |
| // can find the SETCC that produced it and inspect its operands. This is |
| // fairly easy if C is the SETCC node, but it can potentially be |
| // undiscoverable (or not reasonably discoverable). For example, it could be |
| // in another basic block or it could require searching a complicated |
| // expression. |
| if (CondVT.isInteger() && |
| TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) == |
| TargetLowering::ZeroOrOneBooleanContent && |
| TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) == |
| TargetLowering::ZeroOrOneBooleanContent && |
| C1->isNullValue() && C2->isOne()) { |
| SDValue NotCond = |
| DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT)); |
| if (VT.bitsEq(CondVT)) |
| return NotCond; |
| return DAG.getZExtOrTrunc(NotCond, DL, VT); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSELECT(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| EVT VT = N->getValueType(0); |
| EVT VT0 = N0.getValueType(); |
| SDLoc DL(N); |
| SDNodeFlags Flags = N->getFlags(); |
| |
| if (SDValue V = DAG.simplifySelect(N0, N1, N2)) |
| return V; |
| |
| // fold (select X, X, Y) -> (or X, Y) |
| // fold (select X, 1, Y) -> (or C, Y) |
| if (VT == VT0 && VT == MVT::i1 && (N0 == N1 || isOneConstant(N1))) |
| return DAG.getNode(ISD::OR, DL, VT, N0, N2); |
| |
| if (SDValue V = foldSelectOfConstants(N)) |
| return V; |
| |
| // fold (select C, 0, X) -> (and (not C), X) |
| if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) { |
| SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); |
| AddToWorklist(NOTNode.getNode()); |
| return DAG.getNode(ISD::AND, DL, VT, NOTNode, N2); |
| } |
| // fold (select C, X, 1) -> (or (not C), X) |
| if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) { |
| SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); |
| AddToWorklist(NOTNode.getNode()); |
| return DAG.getNode(ISD::OR, DL, VT, NOTNode, N1); |
| } |
| // fold (select X, Y, X) -> (and X, Y) |
| // fold (select X, Y, 0) -> (and X, Y) |
| if (VT == VT0 && VT == MVT::i1 && (N0 == N2 || isNullConstant(N2))) |
| return DAG.getNode(ISD::AND, DL, VT, N0, N1); |
| |
| // If we can fold this based on the true/false value, do so. |
| if (SimplifySelectOps(N, N1, N2)) |
| return SDValue(N, 0); // Don't revisit N. |
| |
| if (VT0 == MVT::i1) { |
| // The code in this block deals with the following 2 equivalences: |
| // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) |
| // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) |
| // The target can specify its preferred form with the |
| // shouldNormalizeToSelectSequence() callback. However we always transform |
| // to the right anyway if we find the inner select exists in the DAG anyway |
| // and we always transform to the left side if we know that we can further |
| // optimize the combination of the conditions. |
| bool normalizeToSequence = |
| TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); |
| // select (and Cond0, Cond1), X, Y |
| // -> select Cond0, (select Cond1, X, Y), Y |
| if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { |
| SDValue Cond0 = N0->getOperand(0); |
| SDValue Cond1 = N0->getOperand(1); |
| SDValue InnerSelect = |
| DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags); |
| if (normalizeToSequence || !InnerSelect.use_empty()) |
| return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, |
| InnerSelect, N2, Flags); |
| // Cleanup on failure. |
| if (InnerSelect.use_empty()) |
| recursivelyDeleteUnusedNodes(InnerSelect.getNode()); |
| } |
| // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) |
| if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { |
| SDValue Cond0 = N0->getOperand(0); |
| SDValue Cond1 = N0->getOperand(1); |
| SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(), |
| Cond1, N1, N2, Flags); |
| if (normalizeToSequence || !InnerSelect.use_empty()) |
| return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1, |
| InnerSelect, Flags); |
| // Cleanup on failure. |
| if (InnerSelect.use_empty()) |
| recursivelyDeleteUnusedNodes(InnerSelect.getNode()); |
| } |
| |
| // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y |
| if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { |
| SDValue N1_0 = N1->getOperand(0); |
| SDValue N1_1 = N1->getOperand(1); |
| SDValue N1_2 = N1->getOperand(2); |
| if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { |
| // Create the actual and node if we can generate good code for it. |
| if (!normalizeToSequence) { |
| SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0); |
| return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1, |
| N2, Flags); |
| } |
| // Otherwise see if we can optimize the "and" to a better pattern. |
| if (SDValue Combined = visitANDLike(N0, N1_0, N)) { |
| return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1, |
| N2, Flags); |
| } |
| } |
| } |
| // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y |
| if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { |
| SDValue N2_0 = N2->getOperand(0); |
| SDValue N2_1 = N2->getOperand(1); |
| SDValue N2_2 = N2->getOperand(2); |
| if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { |
| // Create the actual or node if we can generate good code for it. |
| if (!normalizeToSequence) { |
| SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0); |
| return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1, |
| N2_2, Flags); |
| } |
| // Otherwise see if we can optimize to a better pattern. |
| if (SDValue Combined = visitORLike(N0, N2_0, N)) |
| return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1, |
| N2_2, Flags); |
| } |
| } |
| } |
| |
| // select (not Cond), N1, N2 -> select Cond, N2, N1 |
| if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) { |
| SDValue SelectOp = DAG.getSelect(DL, VT, F, N2, N1); |
| SelectOp->setFlags(Flags); |
| return SelectOp; |
| } |
| |
| // Fold selects based on a setcc into other things, such as min/max/abs. |
| if (N0.getOpcode() == ISD::SETCC) { |
| SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); |
| |
| // select (fcmp lt x, y), x, y -> fminnum x, y |
| // select (fcmp gt x, y), x, y -> fmaxnum x, y |
| // |
| // This is OK if we don't care what happens if either operand is a NaN. |
| if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, TLI)) |
| if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2, |
| CC, TLI, DAG)) |
| return FMinMax; |
| |
| // Use 'unsigned add with overflow' to optimize an unsigned saturating add. |
| // This is conservatively limited to pre-legal-operations to give targets |
| // a chance to reverse the transform if they want to do that. Also, it is |
| // unlikely that the pattern would be formed late, so it's probably not |
| // worth going through the other checks. |
| if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) && |
| CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) && |
| N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) { |
| auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1)); |
| auto *NotC = dyn_cast<ConstantSDNode>(Cond1); |
| if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) { |
| // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) --> |
| // uaddo Cond0, C; select uaddo.1, -1, uaddo.0 |
| // |
| // The IR equivalent of this transform would have this form: |
| // %a = add %x, C |
| // %c = icmp ugt %x, ~C |
| // %r = select %c, -1, %a |
| // => |
| // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C) |
| // %u0 = extractvalue %u, 0 |
| // %u1 = extractvalue %u, 1 |
| // %r = select %u1, -1, %u0 |
| SDVTList VTs = DAG.getVTList(VT, VT0); |
| SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1)); |
| return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0)); |
| } |
| } |
| |
| if (TLI.isOperationLegal(ISD::SELECT_CC, VT) || |
| (!LegalOperations && |
| TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) { |
| // Any flags available in a select/setcc fold will be on the setcc as they |
| // migrated from fcmp |
| Flags = N0.getNode()->getFlags(); |
| SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1, |
| N2, N0.getOperand(2)); |
| SelectNode->setFlags(Flags); |
| return SelectNode; |
| } |
| |
| return SimplifySelect(DL, N0, N1, N2); |
| } |
| |
| return SDValue(); |
| } |
| |
| // This function assumes all the vselect's arguments are CONCAT_VECTOR |
| // nodes and that the condition is a BV of ConstantSDNodes (or undefs). |
| static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { |
| SDLoc DL(N); |
| SDValue Cond = N->getOperand(0); |
| SDValue LHS = N->getOperand(1); |
| SDValue RHS = N->getOperand(2); |
| EVT VT = N->getValueType(0); |
| int NumElems = VT.getVectorNumElements(); |
| assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && |
| RHS.getOpcode() == ISD::CONCAT_VECTORS && |
| Cond.getOpcode() == ISD::BUILD_VECTOR); |
| |
| // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about |
| // binary ones here. |
| if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) |
| return SDValue(); |
| |
| // We're sure we have an even number of elements due to the |
| // concat_vectors we have as arguments to vselect. |
| // Skip BV elements until we find one that's not an UNDEF |
| // After we find an UNDEF element, keep looping until we get to half the |
| // length of the BV and see if all the non-undef nodes are the same. |
| ConstantSDNode *BottomHalf = nullptr; |
| for (int i = 0; i < NumElems / 2; ++i) { |
| if (Cond->getOperand(i)->isUndef()) |
| continue; |
| |
| if (BottomHalf == nullptr) |
| BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); |
| else if (Cond->getOperand(i).getNode() != BottomHalf) |
| return SDValue(); |
| } |
| |
| // Do the same for the second half of the BuildVector |
| ConstantSDNode *TopHalf = nullptr; |
| for (int i = NumElems / 2; i < NumElems; ++i) { |
| if (Cond->getOperand(i)->isUndef()) |
| continue; |
| |
| if (TopHalf == nullptr) |
| TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); |
| else if (Cond->getOperand(i).getNode() != TopHalf) |
| return SDValue(); |
| } |
| |
| assert(TopHalf && BottomHalf && |
| "One half of the selector was all UNDEFs and the other was all the " |
| "same value. This should have been addressed before this function."); |
| return DAG.getNode( |
| ISD::CONCAT_VECTORS, DL, VT, |
| BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0), |
| TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1)); |
| } |
| |
| SDValue DAGCombiner::visitMSCATTER(SDNode *N) { |
| MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); |
| SDValue Mask = MSC->getMask(); |
| SDValue Chain = MSC->getChain(); |
| SDLoc DL(N); |
| |
| // Zap scatters with a zero mask. |
| if (ISD::isBuildVectorAllZeros(Mask.getNode())) |
| return Chain; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitMSTORE(SDNode *N) { |
| MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); |
| SDValue Mask = MST->getMask(); |
| SDValue Chain = MST->getChain(); |
| SDLoc DL(N); |
| |
| // Zap masked stores with a zero mask. |
| if (ISD::isBuildVectorAllZeros(Mask.getNode())) |
| return Chain; |
| |
| // Try transforming N to an indexed store. |
| if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) |
| return SDValue(N, 0); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitMGATHER(SDNode *N) { |
| MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N); |
| SDValue Mask = MGT->getMask(); |
| SDLoc DL(N); |
| |
| // Zap gathers with a zero mask. |
| if (ISD::isBuildVectorAllZeros(Mask.getNode())) |
| return CombineTo(N, MGT->getPassThru(), MGT->getChain()); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitMLOAD(SDNode *N) { |
| MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); |
| SDValue Mask = MLD->getMask(); |
| SDLoc DL(N); |
| |
| // Zap masked loads with a zero mask. |
| if (ISD::isBuildVectorAllZeros(Mask.getNode())) |
| return CombineTo(N, MLD->getPassThru(), MLD->getChain()); |
| |
| // Try transforming N to an indexed load. |
| if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) |
| return SDValue(N, 0); |
| |
| return SDValue(); |
| } |
| |
| /// A vector select of 2 constant vectors can be simplified to math/logic to |
| /// avoid a variable select instruction and possibly avoid constant loads. |
| SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) { |
| SDValue Cond = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| EVT VT = N->getValueType(0); |
| if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 || |
| !TLI.convertSelectOfConstantsToMath(VT) || |
| !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) || |
| !ISD::isBuildVectorOfConstantSDNodes(N2.getNode())) |
| return SDValue(); |
| |
| // Check if we can use the condition value to increment/decrement a single |
| // constant value. This simplifies a select to an add and removes a constant |
| // load/materialization from the general case. |
| bool AllAddOne = true; |
| bool AllSubOne = true; |
| unsigned Elts = VT.getVectorNumElements(); |
| for (unsigned i = 0; i != Elts; ++i) { |
| SDValue N1Elt = N1.getOperand(i); |
| SDValue N2Elt = N2.getOperand(i); |
| if (N1Elt.isUndef() || N2Elt.isUndef()) |
| continue; |
| |
| const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue(); |
| const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue(); |
| if (C1 != C2 + 1) |
| AllAddOne = false; |
| if (C1 != C2 - 1) |
| AllSubOne = false; |
| } |
| |
| // Further simplifications for the extra-special cases where the constants are |
| // all 0 or all -1 should be implemented as folds of these patterns. |
| SDLoc DL(N); |
| if (AllAddOne || AllSubOne) { |
| // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C |
| // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C |
| auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; |
| SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond); |
| return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2); |
| } |
| |
| // select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C) |
| APInt Pow2C; |
| if (ISD::isConstantSplatVector(N1.getNode(), Pow2C) && Pow2C.isPowerOf2() && |
| isNullOrNullSplat(N2)) { |
| SDValue ZextCond = DAG.getZExtOrTrunc(Cond, DL, VT); |
| SDValue ShAmtC = DAG.getConstant(Pow2C.exactLogBase2(), DL, VT); |
| return DAG.getNode(ISD::SHL, DL, VT, ZextCond, ShAmtC); |
| } |
| |
| if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) |
| return V; |
| |
| // The general case for select-of-constants: |
| // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2 |
| // ...but that only makes sense if a vselect is slower than 2 logic ops, so |
| // leave that to a machine-specific pass. |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitVSELECT(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| if (SDValue V = DAG.simplifySelect(N0, N1, N2)) |
| return V; |
| |
| // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1 |
| if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) |
| return DAG.getSelect(DL, VT, F, N2, N1); |
| |
| // Canonicalize integer abs. |
| // vselect (setg[te] X, 0), X, -X -> |
| // vselect (setgt X, -1), X, -X -> |
| // vselect (setl[te] X, 0), -X, X -> |
| // Y = sra (X, size(X)-1); xor (add (X, Y), Y) |
| if (N0.getOpcode() == ISD::SETCC) { |
| SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); |
| bool isAbs = false; |
| bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); |
| |
| if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || |
| (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && |
| N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) |
| isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); |
| else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && |
| N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) |
| isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); |
| |
| if (isAbs) { |
| if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) |
| return DAG.getNode(ISD::ABS, DL, VT, LHS); |
| |
| SDValue Shift = DAG.getNode(ISD::SRA, DL, VT, LHS, |
| DAG.getConstant(VT.getScalarSizeInBits() - 1, |
| DL, getShiftAmountTy(VT))); |
| SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); |
| AddToWorklist(Shift.getNode()); |
| AddToWorklist(Add.getNode()); |
| return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); |
| } |
| |
| // vselect x, y (fcmp lt x, y) -> fminnum x, y |
| // vselect x, y (fcmp gt x, y) -> fmaxnum x, y |
| // |
| // This is OK if we don't care about what happens if either operand is a |
| // NaN. |
| // |
| if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, LHS, RHS, TLI)) { |
| if (SDValue FMinMax = |
| combineMinNumMaxNum(DL, VT, LHS, RHS, N1, N2, CC, TLI, DAG)) |
| return FMinMax; |
| } |
| |
| // If this select has a condition (setcc) with narrower operands than the |
| // select, try to widen the compare to match the select width. |
| // TODO: This should be extended to handle any constant. |
| // TODO: This could be extended to handle non-loading patterns, but that |
| // requires thorough testing to avoid regressions. |
| if (isNullOrNullSplat(RHS)) { |
| EVT NarrowVT = LHS.getValueType(); |
| EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger(); |
| EVT SetCCVT = getSetCCResultType(LHS.getValueType()); |
| unsigned SetCCWidth = SetCCVT.getScalarSizeInBits(); |
| unsigned WideWidth = WideVT.getScalarSizeInBits(); |
| bool IsSigned = isSignedIntSetCC(CC); |
| auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD; |
| if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() && |
| SetCCWidth != 1 && SetCCWidth < WideWidth && |
| TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) && |
| TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) { |
| // Both compare operands can be widened for free. The LHS can use an |
| // extended load, and the RHS is a constant: |
| // vselect (ext (setcc load(X), C)), N1, N2 --> |
| // vselect (setcc extload(X), C'), N1, N2 |
| auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS); |
| SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS); |
| EVT WideSetCCVT = getSetCCResultType(WideVT); |
| SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC); |
| return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2); |
| } |
| } |
| } |
| |
| if (SimplifySelectOps(N, N1, N2)) |
| return SDValue(N, 0); // Don't revisit N. |
| |
| // Fold (vselect (build_vector all_ones), N1, N2) -> N1 |
| if (ISD::isBuildVectorAllOnes(N0.getNode())) |
| return N1; |
| // Fold (vselect (build_vector all_zeros), N1, N2) -> N2 |
| if (ISD::isBuildVectorAllZeros(N0.getNode())) |
| return N2; |
| |
| // The ConvertSelectToConcatVector function is assuming both the above |
| // checks for (vselect (build_vector all{ones,zeros) ...) have been made |
| // and addressed. |
| if (N1.getOpcode() == ISD::CONCAT_VECTORS && |
| N2.getOpcode() == ISD::CONCAT_VECTORS && |
| ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { |
| if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) |
| return CV; |
| } |
| |
| if (SDValue V = foldVSelectOfConstants(N)) |
| return V; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| SDValue N3 = N->getOperand(3); |
| SDValue N4 = N->getOperand(4); |
| ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); |
| |
| // fold select_cc lhs, rhs, x, x, cc -> x |
| if (N2 == N3) |
| return N2; |
| |
| // Determine if the condition we're dealing with is constant |
| if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, |
| CC, SDLoc(N), false)) { |
| AddToWorklist(SCC.getNode()); |
| |
| if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { |
| if (!SCCC->isNullValue()) |
| return N2; // cond always true -> true val |
| else |
| return N3; // cond always false -> false val |
| } else if (SCC->isUndef()) { |
| // When the condition is UNDEF, just return the first operand. This is |
| // coherent the DAG creation, no setcc node is created in this case |
| return N2; |
| } else if (SCC.getOpcode() == ISD::SETCC) { |
| // Fold to a simpler select_cc |
| SDValue SelectOp = DAG.getNode( |
| ISD::SELECT_CC, SDLoc(N), N2.getValueType(), SCC.getOperand(0), |
| SCC.getOperand(1), N2, N3, SCC.getOperand(2)); |
| SelectOp->setFlags(SCC->getFlags()); |
| return SelectOp; |
| } |
| } |
| |
| // If we can fold this based on the true/false value, do so. |
| if (SimplifySelectOps(N, N2, N3)) |
| return SDValue(N, 0); // Don't revisit N. |
| |
| // fold select_cc into other things, such as min/max/abs |
| return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); |
| } |
| |
| SDValue DAGCombiner::visitSETCC(SDNode *N) { |
| // setcc is very commonly used as an argument to brcond. This pattern |
| // also lend itself to numerous combines and, as a result, it is desired |
| // we keep the argument to a brcond as a setcc as much as possible. |
| bool PreferSetCC = |
| N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND; |
| |
| SDValue Combined = SimplifySetCC( |
| N->getValueType(0), N->getOperand(0), N->getOperand(1), |
| cast<CondCodeSDNode>(N->getOperand(2))->get(), SDLoc(N), !PreferSetCC); |
| |
| if (!Combined) |
| return SDValue(); |
| |
| // If we prefer to have a setcc, and we don't, we'll try our best to |
| // recreate one using rebuildSetCC. |
| if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) { |
| SDValue NewSetCC = rebuildSetCC(Combined); |
| |
| // We don't have anything interesting to combine to. |
| if (NewSetCC.getNode() == N) |
| return SDValue(); |
| |
| if (NewSetCC) |
| return NewSetCC; |
| } |
| |
| return Combined; |
| } |
| |
| SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) { |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| SDValue Carry = N->getOperand(2); |
| SDValue Cond = N->getOperand(3); |
| |
| // If Carry is false, fold to a regular SETCC. |
| if (isNullConstant(Carry)) |
| return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); |
| |
| return SDValue(); |
| } |
| |
| /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or |
| /// a build_vector of constants. |
| /// This function is called by the DAGCombiner when visiting sext/zext/aext |
| /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). |
| /// Vector extends are not folded if operations are legal; this is to |
| /// avoid introducing illegal build_vector dag nodes. |
| static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, |
| SelectionDAG &DAG, bool LegalTypes) { |
| unsigned Opcode = N->getOpcode(); |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || |
| Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || |
| Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) |
| && "Expected EXTEND dag node in input!"); |
| |
| // fold (sext c1) -> c1 |
| // fold (zext c1) -> c1 |
| // fold (aext c1) -> c1 |
| if (isa<ConstantSDNode>(N0)) |
| return DAG.getNode(Opcode, DL, VT, N0); |
| |
| // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) |
| // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2) |
| // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) |
| if (N0->getOpcode() == ISD::SELECT) { |
| SDValue Op1 = N0->getOperand(1); |
| SDValue Op2 = N0->getOperand(2); |
| if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) && |
| (Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) { |
| // For any_extend, choose sign extension of the constants to allow a |
| // possible further transform to sign_extend_inreg.i.e. |
| // |
| // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0> |
| // t2: i64 = any_extend t1 |
| // --> |
| // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0> |
| // --> |
| // t4: i64 = sign_extend_inreg t3 |
| unsigned FoldOpc = Opcode; |
| if (FoldOpc == ISD::ANY_EXTEND) |
| FoldOpc = ISD::SIGN_EXTEND; |
| return DAG.getSelect(DL, VT, N0->getOperand(0), |
| DAG.getNode(FoldOpc, DL, VT, Op1), |
| DAG.getNode(FoldOpc, DL, VT, Op2)); |
| } |
| } |
| |
| // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) |
| // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) |
| // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) |
| EVT SVT = VT.getScalarType(); |
| if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) && |
| ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) |
| return SDValue(); |
| |
| // We can fold this node into a build_vector. |
| unsigned VTBits = SVT.getSizeInBits(); |
| unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits(); |
| SmallVector<SDValue, 8> Elts; |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| // For zero-extensions, UNDEF elements still guarantee to have the upper |
| // bits set to zero. |
| bool IsZext = |
| Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG; |
| |
| for (unsigned i = 0; i != NumElts; ++i) { |
| SDValue Op = N0.getOperand(i); |
| if (Op.isUndef()) { |
| Elts.push_back(IsZext ? DAG.getConstant(0, DL, SVT) : DAG.getUNDEF(SVT)); |
| continue; |
| } |
| |
| SDLoc DL(Op); |
| // Get the constant value and if needed trunc it to the size of the type. |
| // Nodes like build_vector might have constants wider than the scalar type. |
| APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); |
| if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) |
| Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); |
| else |
| Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); |
| } |
| |
| return DAG.getBuildVector(VT, DL, Elts); |
| } |
| |
| // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: |
| // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" |
| // transformation. Returns true if extension are possible and the above |
| // mentioned transformation is profitable. |
| static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0, |
| unsigned ExtOpc, |
| SmallVectorImpl<SDNode *> &ExtendNodes, |
| const TargetLowering &TLI) { |
| bool HasCopyToRegUses = false; |
| bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType()); |
| for (SDNode::use_iterator UI = N0.getNode()->use_begin(), |
| UE = N0.getNode()->use_end(); |
| UI != UE; ++UI) { |
| SDNode *User = *UI; |
| if (User == N) |
| continue; |
| if (UI.getUse().getResNo() != N0.getResNo()) |
| continue; |
| // FIXME: Only extend SETCC N, N and SETCC N, c for now. |
| if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { |
| ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); |
| if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) |
| // Sign bits will be lost after a zext. |
| return false; |
| bool Add = false; |
| for (unsigned i = 0; i != 2; ++i) { |
| SDValue UseOp = User->getOperand(i); |
| if (UseOp == N0) |
| continue; |
| if (!isa<ConstantSDNode>(UseOp)) |
| return false; |
| Add = true; |
| } |
| if (Add) |
| ExtendNodes.push_back(User); |
| continue; |
| } |
| // If truncates aren't free and there are users we can't |
| // extend, it isn't worthwhile. |
| if (!isTruncFree) |
| return false; |
| // Remember if this value is live-out. |
| if (User->getOpcode() == ISD::CopyToReg) |
| HasCopyToRegUses = true; |
| } |
| |
| if (HasCopyToRegUses) { |
| bool BothLiveOut = false; |
| for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); |
| UI != UE; ++UI) { |
| SDUse &Use = UI.getUse(); |
| if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { |
| BothLiveOut = true; |
| break; |
| } |
| } |
| if (BothLiveOut) |
| // Both unextended and extended values are live out. There had better be |
| // a good reason for the transformation. |
| return ExtendNodes.size(); |
| } |
| return true; |
| } |
| |
| void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, |
| SDValue OrigLoad, SDValue ExtLoad, |
| ISD::NodeType ExtType) { |
| // Extend SetCC uses if necessary. |
| SDLoc DL(ExtLoad); |
| for (SDNode *SetCC : SetCCs) { |
| SmallVector<SDValue, 4> Ops; |
| |
| for (unsigned j = 0; j != 2; ++j) { |
| SDValue SOp = SetCC->getOperand(j); |
| if (SOp == OrigLoad) |
| Ops.push_back(ExtLoad); |
| else |
| Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); |
| } |
| |
| Ops.push_back(SetCC->getOperand(2)); |
| CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); |
| } |
| } |
| |
| // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). |
| SDValue DAGCombiner::CombineExtLoad(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT DstVT = N->getValueType(0); |
| EVT SrcVT = N0.getValueType(); |
| |
| assert((N->getOpcode() == ISD::SIGN_EXTEND || |
| N->getOpcode() == ISD::ZERO_EXTEND) && |
| "Unexpected node type (not an extend)!"); |
| |
| // fold (sext (load x)) to multiple smaller sextloads; same for zext. |
| // For example, on a target with legal v4i32, but illegal v8i32, turn: |
| // (v8i32 (sext (v8i16 (load x)))) |
| // into: |
| // (v8i32 (concat_vectors (v4i32 (sextload x)), |
| // (v4i32 (sextload (x + 16))))) |
| // Where uses of the original load, i.e.: |
| // (v8i16 (load x)) |
| // are replaced with: |
| // (v8i16 (truncate |
| // (v8i32 (concat_vectors (v4i32 (sextload x)), |
| // (v4i32 (sextload (x + 16))))))) |
| // |
| // This combine is only applicable to illegal, but splittable, vectors. |
| // All legal types, and illegal non-vector types, are handled elsewhere. |
| // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. |
| // |
| if (N0->getOpcode() != ISD::LOAD) |
| return SDValue(); |
| |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| |
| if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || |
| !N0.hasOneUse() || !LN0->isSimple() || |
| !DstVT.isVector() || !DstVT.isPow2VectorType() || |
| !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) |
| return SDValue(); |
| |
| SmallVector<SDNode *, 4> SetCCs; |
| if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI)) |
| return SDValue(); |
| |
| ISD::LoadExtType ExtType = |
| N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; |
| |
| // Try to split the vector types to get down to legal types. |
| EVT SplitSrcVT = SrcVT; |
| EVT SplitDstVT = DstVT; |
| while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && |
| SplitSrcVT.getVectorNumElements() > 1) { |
| SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; |
| SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; |
| } |
| |
| if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) |
| return SDValue(); |
| |
| assert(!DstVT.isScalableVector() && "Unexpected scalable vector type"); |
| |
| SDLoc DL(N); |
| const unsigned NumSplits = |
| DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); |
| const unsigned Stride = SplitSrcVT.getStoreSize(); |
| SmallVector<SDValue, 4> Loads; |
| SmallVector<SDValue, 4> Chains; |
| |
| SDValue BasePtr = LN0->getBasePtr(); |
| for (unsigned Idx = 0; Idx < NumSplits; Idx++) { |
| const unsigned Offset = Idx * Stride; |
| const unsigned Align = MinAlign(LN0->getAlignment(), Offset); |
| |
| SDValue SplitLoad = DAG.getExtLoad( |
| ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr, |
| LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align, |
| LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); |
| |
| BasePtr = DAG.getMemBasePlusOffset(BasePtr, Stride, DL); |
| |
| Loads.push_back(SplitLoad.getValue(0)); |
| Chains.push_back(SplitLoad.getValue(1)); |
| } |
| |
| SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); |
| SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); |
| |
| // Simplify TF. |
| AddToWorklist(NewChain.getNode()); |
| |
| CombineTo(N, NewValue); |
| |
| // Replace uses of the original load (before extension) |
| // with a truncate of the concatenated sextloaded vectors. |
| SDValue Trunc = |
| DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); |
| ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode()); |
| CombineTo(N0.getNode(), Trunc, NewChain); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> |
| // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) |
| SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) { |
| assert(N->getOpcode() == ISD::ZERO_EXTEND); |
| EVT VT = N->getValueType(0); |
| EVT OrigVT = N->getOperand(0).getValueType(); |
| if (TLI.isZExtFree(OrigVT, VT)) |
| return SDValue(); |
| |
| // and/or/xor |
| SDValue N0 = N->getOperand(0); |
| if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || |
| N0.getOpcode() == ISD::XOR) || |
| N0.getOperand(1).getOpcode() != ISD::Constant || |
| (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT))) |
| return SDValue(); |
| |
| // shl/shr |
| SDValue N1 = N0->getOperand(0); |
| if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) || |
| N1.getOperand(1).getOpcode() != ISD::Constant || |
| (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT))) |
| return SDValue(); |
| |
| // load |
| if (!isa<LoadSDNode>(N1.getOperand(0))) |
| return SDValue(); |
| LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0)); |
| EVT MemVT = Load->getMemoryVT(); |
| if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) || |
| Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed()) |
| return SDValue(); |
| |
| |
| // If the shift op is SHL, the logic op must be AND, otherwise the result |
| // will be wrong. |
| if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND) |
| return SDValue(); |
| |
| if (!N0.hasOneUse() || !N1.hasOneUse()) |
| return SDValue(); |
| |
| SmallVector<SDNode*, 4> SetCCs; |
| if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0), |
| ISD::ZERO_EXTEND, SetCCs, TLI)) |
| return SDValue(); |
| |
| // Actually do the transformation. |
| SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT, |
| Load->getChain(), Load->getBasePtr(), |
| Load->getMemoryVT(), Load->getMemOperand()); |
| |
| SDLoc DL1(N1); |
| SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad, |
| N1.getOperand(1)); |
| |
| APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); |
| Mask = Mask.zext(VT.getSizeInBits()); |
| SDLoc DL0(N0); |
| SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift, |
| DAG.getConstant(Mask, DL0, VT)); |
| |
| ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); |
| CombineTo(N, And); |
| if (SDValue(Load, 0).hasOneUse()) { |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1)); |
| } else { |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load), |
| Load->getValueType(0), ExtLoad); |
| CombineTo(Load, Trunc, ExtLoad.getValue(1)); |
| } |
| |
| // N0 is dead at this point. |
| recursivelyDeleteUnusedNodes(N0.getNode()); |
| |
| return SDValue(N,0); // Return N so it doesn't get rechecked! |
| } |
| |
| /// If we're narrowing or widening the result of a vector select and the final |
| /// size is the same size as a setcc (compare) feeding the select, then try to |
| /// apply the cast operation to the select's operands because matching vector |
| /// sizes for a select condition and other operands should be more efficient. |
| SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) { |
| unsigned CastOpcode = Cast->getOpcode(); |
| assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND || |
| CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND || |
| CastOpcode == ISD::FP_ROUND) && |
| "Unexpected opcode for vector select narrowing/widening"); |
| |
| // We only do this transform before legal ops because the pattern may be |
| // obfuscated by target-specific operations after legalization. Do not create |
| // an illegal select op, however, because that may be difficult to lower. |
| EVT VT = Cast->getValueType(0); |
| if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT)) |
| return SDValue(); |
| |
| SDValue VSel = Cast->getOperand(0); |
| if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() || |
| VSel.getOperand(0).getOpcode() != ISD::SETCC) |
| return SDValue(); |
| |
| // Does the setcc have the same vector size as the casted select? |
| SDValue SetCC = VSel.getOperand(0); |
| EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType()); |
| if (SetCCVT.getSizeInBits() != VT.getSizeInBits()) |
| return SDValue(); |
| |
| // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B) |
| SDValue A = VSel.getOperand(1); |
| SDValue B = VSel.getOperand(2); |
| SDValue CastA, CastB; |
| SDLoc DL(Cast); |
| if (CastOpcode == ISD::FP_ROUND) { |
| // FP_ROUND (fptrunc) has an extra flag operand to pass along. |
| CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1)); |
| CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1)); |
| } else { |
| CastA = DAG.getNode(CastOpcode, DL, VT, A); |
| CastB = DAG.getNode(CastOpcode, DL, VT, B); |
| } |
| return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB); |
| } |
| |
| // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) |
| // fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) |
| static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner, |
| const TargetLowering &TLI, EVT VT, |
| bool LegalOperations, SDNode *N, |
| SDValue N0, ISD::LoadExtType ExtLoadType) { |
| SDNode *N0Node = N0.getNode(); |
| bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node) |
| : ISD::isZEXTLoad(N0Node); |
| if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) || |
| !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse()) |
| return SDValue(); |
| |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| EVT MemVT = LN0->getMemoryVT(); |
| if ((LegalOperations || !LN0->isSimple() || |
| VT.isVector()) && |
| !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT)) |
| return SDValue(); |
| |
| SDValue ExtLoad = |
| DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), |
| LN0->getBasePtr(), MemVT, LN0->getMemOperand()); |
| Combiner.CombineTo(N, ExtLoad); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); |
| if (LN0->use_empty()) |
| Combiner.recursivelyDeleteUnusedNodes(LN0); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x))) |
| // Only generate vector extloads when 1) they're legal, and 2) they are |
| // deemed desirable by the target. |
| static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner, |
| const TargetLowering &TLI, EVT VT, |
| bool LegalOperations, SDNode *N, SDValue N0, |
| ISD::LoadExtType ExtLoadType, |
| ISD::NodeType ExtOpc) { |
| if (!ISD::isNON_EXTLoad(N0.getNode()) || |
| !ISD::isUNINDEXEDLoad(N0.getNode()) || |
| ((LegalOperations || VT.isVector() || |
| !cast<LoadSDNode>(N0)->isSimple()) && |
| !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType()))) |
| return {}; |
| |
| bool DoXform = true; |
| SmallVector<SDNode *, 4> SetCCs; |
| if (!N0.hasOneUse()) |
| DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI); |
| if (VT.isVector()) |
| DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); |
| if (!DoXform) |
| return {}; |
| |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), |
| LN0->getBasePtr(), N0.getValueType(), |
| LN0->getMemOperand()); |
| Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc); |
| // If the load value is used only by N, replace it via CombineTo N. |
| bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse(); |
| Combiner.CombineTo(N, ExtLoad); |
| if (NoReplaceTrunc) { |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); |
| Combiner.recursivelyDeleteUnusedNodes(LN0); |
| } else { |
| SDValue Trunc = |
| DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); |
| Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1)); |
| } |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| static SDValue tryToFoldExtOfMaskedLoad(SelectionDAG &DAG, |
| const TargetLowering &TLI, EVT VT, |
| SDNode *N, SDValue N0, |
| ISD::LoadExtType ExtLoadType, |
| ISD::NodeType ExtOpc) { |
| if (!N0.hasOneUse()) |
| return SDValue(); |
| |
| MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0); |
| if (!Ld || Ld->getExtensionType() != ISD::NON_EXTLOAD) |
| return SDValue(); |
| |
| if (!TLI.isLoadExtLegal(ExtLoadType, VT, Ld->getValueType(0))) |
| return SDValue(); |
| |
| if (!TLI.isVectorLoadExtDesirable(SDValue(N, 0))) |
| return SDValue(); |
| |
| SDLoc dl(Ld); |
| SDValue PassThru = DAG.getNode(ExtOpc, dl, VT, Ld->getPassThru()); |
| SDValue NewLoad = DAG.getMaskedLoad( |
| VT, dl, Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), Ld->getMask(), |
| PassThru, Ld->getMemoryVT(), Ld->getMemOperand(), Ld->getAddressingMode(), |
| ExtLoadType, Ld->isExpandingLoad()); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), SDValue(NewLoad.getNode(), 1)); |
| return NewLoad; |
| } |
| |
| static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG, |
| bool LegalOperations) { |
| assert((N->getOpcode() == ISD::SIGN_EXTEND || |
| N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext"); |
| |
| SDValue SetCC = N->getOperand(0); |
| if (LegalOperations || SetCC.getOpcode() != ISD::SETCC || |
| !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1) |
| return SDValue(); |
| |
| SDValue X = SetCC.getOperand(0); |
| SDValue Ones = SetCC.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); |
| EVT VT = N->getValueType(0); |
| EVT XVT = X.getValueType(); |
| // setge X, C is canonicalized to setgt, so we do not need to match that |
| // pattern. The setlt sibling is folded in SimplifySelectCC() because it does |
| // not require the 'not' op. |
| if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) { |
| // Invert and smear/shift the sign bit: |
| // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1) |
| // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1) |
| SDLoc DL(N); |
| unsigned ShCt = VT.getSizeInBits() - 1; |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) { |
| SDValue NotX = DAG.getNOT(DL, X, VT); |
| SDValue ShiftAmount = DAG.getConstant(ShCt, DL, VT); |
| auto ShiftOpcode = |
| N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL; |
| return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount); |
| } |
| } |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) |
| return Res; |
| |
| // fold (sext (sext x)) -> (sext x) |
| // fold (sext (aext x)) -> (sext x) |
| if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) |
| return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0)); |
| |
| if (N0.getOpcode() == ISD::TRUNCATE) { |
| // fold (sext (truncate (load x))) -> (sext (smaller load x)) |
| // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) |
| if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { |
| SDNode *oye = N0.getOperand(0).getNode(); |
| if (NarrowLoad.getNode() != N0.getNode()) { |
| CombineTo(N0.getNode(), NarrowLoad); |
| // CombineTo deleted the truncate, if needed, but not what's under it. |
| AddToWorklist(oye); |
| } |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| // See if the value being truncated is already sign extended. If so, just |
| // eliminate the trunc/sext pair. |
| SDValue Op = N0.getOperand(0); |
| unsigned OpBits = Op.getScalarValueSizeInBits(); |
| unsigned MidBits = N0.getScalarValueSizeInBits(); |
| unsigned DestBits = VT.getScalarSizeInBits(); |
| unsigned NumSignBits = DAG.ComputeNumSignBits(Op); |
| |
| if (OpBits == DestBits) { |
| // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign |
| // bits, it is already ready. |
| if (NumSignBits > DestBits-MidBits) |
| return Op; |
| } else if (OpBits < DestBits) { |
| // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign |
| // bits, just sext from i32. |
| if (NumSignBits > OpBits-MidBits) |
| return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op); |
| } else { |
| // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign |
| // bits, just truncate to i32. |
| if (NumSignBits > OpBits-MidBits) |
| return DAG.getNode(ISD::TRUNCATE, DL, VT, Op); |
| } |
| |
| // fold (sext (truncate x)) -> (sextinreg x). |
| if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, |
| N0.getValueType())) { |
| if (OpBits < DestBits) |
| Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); |
| else if (OpBits > DestBits) |
| Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op, |
| DAG.getValueType(N0.getValueType())); |
| } |
| } |
| |
| // Try to simplify (sext (load x)). |
| if (SDValue foldedExt = |
| tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, |
| ISD::SEXTLOAD, ISD::SIGN_EXTEND)) |
| return foldedExt; |
| |
| if (SDValue foldedExt = |
| tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::SEXTLOAD, |
| ISD::SIGN_EXTEND)) |
| return foldedExt; |
| |
| // fold (sext (load x)) to multiple smaller sextloads. |
| // Only on illegal but splittable vectors. |
| if (SDValue ExtLoad = CombineExtLoad(N)) |
| return ExtLoad; |
| |
| // Try to simplify (sext (sextload x)). |
| if (SDValue foldedExt = tryToFoldExtOfExtload( |
| DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD)) |
| return foldedExt; |
| |
| // fold (sext (and/or/xor (load x), cst)) -> |
| // (and/or/xor (sextload x), (sext cst)) |
| if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || |
| N0.getOpcode() == ISD::XOR) && |
| isa<LoadSDNode>(N0.getOperand(0)) && |
| N0.getOperand(1).getOpcode() == ISD::Constant && |
| (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { |
| LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); |
| EVT MemVT = LN00->getMemoryVT(); |
| if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) && |
| LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) { |
| SmallVector<SDNode*, 4> SetCCs; |
| bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), |
| ISD::SIGN_EXTEND, SetCCs, TLI); |
| if (DoXform) { |
| SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT, |
| LN00->getChain(), LN00->getBasePtr(), |
| LN00->getMemoryVT(), |
| LN00->getMemOperand()); |
| APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); |
| Mask = Mask.sext(VT.getSizeInBits()); |
| SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, |
| ExtLoad, DAG.getConstant(Mask, DL, VT)); |
| ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND); |
| bool NoReplaceTruncAnd = !N0.hasOneUse(); |
| bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); |
| CombineTo(N, And); |
| // If N0 has multiple uses, change other uses as well. |
| if (NoReplaceTruncAnd) { |
| SDValue TruncAnd = |
| DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); |
| CombineTo(N0.getNode(), TruncAnd); |
| } |
| if (NoReplaceTrunc) { |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); |
| } else { |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), |
| LN00->getValueType(0), ExtLoad); |
| CombineTo(LN00, Trunc, ExtLoad.getValue(1)); |
| } |
| return SDValue(N,0); // Return N so it doesn't get rechecked! |
| } |
| } |
| } |
| |
| if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) |
| return V; |
| |
| if (N0.getOpcode() == ISD::SETCC) { |
| SDValue N00 = N0.getOperand(0); |
| SDValue N01 = N0.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); |
| EVT N00VT = N0.getOperand(0).getValueType(); |
| |
| // sext(setcc) -> sext_in_reg(vsetcc) for vectors. |
| // Only do this before legalize for now. |
| if (VT.isVector() && !LegalOperations && |
| TLI.getBooleanContents(N00VT) == |
| TargetLowering::ZeroOrNegativeOneBooleanContent) { |
| // On some architectures (such as SSE/NEON/etc) the SETCC result type is |
| // of the same size as the compared operands. Only optimize sext(setcc()) |
| // if this is the case. |
| EVT SVT = getSetCCResultType(N00VT); |
| |
| // If we already have the desired type, don't change it. |
| if (SVT != N0.getValueType()) { |
| // We know that the # elements of the results is the same as the |
| // # elements of the compare (and the # elements of the compare result |
| // for that matter). Check to see that they are the same size. If so, |
| // we know that the element size of the sext'd result matches the |
| // element size of the compare operands. |
| if (VT.getSizeInBits() == SVT.getSizeInBits()) |
| return DAG.getSetCC(DL, VT, N00, N01, CC); |
| |
| // If the desired elements are smaller or larger than the source |
| // elements, we can use a matching integer vector type and then |
| // truncate/sign extend. |
| EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger(); |
| if (SVT == MatchingVecType) { |
| SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC); |
| return DAG.getSExtOrTrunc(VsetCC, DL, VT); |
| } |
| } |
| } |
| |
| // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0) |
| // Here, T can be 1 or -1, depending on the type of the setcc and |
| // getBooleanContents(). |
| unsigned SetCCWidth = N0.getScalarValueSizeInBits(); |
| |
| // To determine the "true" side of the select, we need to know the high bit |
| // of the value returned by the setcc if it evaluates to true. |
| // If the type of the setcc is i1, then the true case of the select is just |
| // sext(i1 1), that is, -1. |
| // If the type of the setcc is larger (say, i8) then the value of the high |
| // bit depends on getBooleanContents(), so ask TLI for a real "true" value |
| // of the appropriate width. |
| SDValue ExtTrueVal = (SetCCWidth == 1) |
| ? DAG.getAllOnesConstant(DL, VT) |
| : DAG.getBoolConstant(true, DL, VT, N00VT); |
| SDValue Zero = DAG.getConstant(0, DL, VT); |
| if (SDValue SCC = |
| SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true)) |
| return SCC; |
| |
| if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) { |
| EVT SetCCVT = getSetCCResultType(N00VT); |
| // Don't do this transform for i1 because there's a select transform |
| // that would reverse it. |
| // TODO: We should not do this transform at all without a target hook |
| // because a sext is likely cheaper than a select? |
| if (SetCCVT.getScalarSizeInBits() != 1 && |
| (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) { |
| SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC); |
| return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero); |
| } |
| } |
| } |
| |
| // fold (sext x) -> (zext x) if the sign bit is known zero. |
| if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && |
| DAG.SignBitIsZero(N0)) |
| return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0); |
| |
| if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) |
| return NewVSel; |
| |
| // Eliminate this sign extend by doing a negation in the destination type: |
| // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64) |
| if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() && |
| isNullOrNullSplat(N0.getOperand(0)) && |
| N0.getOperand(1).getOpcode() == ISD::ZERO_EXTEND && |
| TLI.isOperationLegalOrCustom(ISD::SUB, VT)) { |
| SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT); |
| return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Zext); |
| } |
| // Eliminate this sign extend by doing a decrement in the destination type: |
| // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1) |
| if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && |
| isAllOnesOrAllOnesSplat(N0.getOperand(1)) && |
| N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && |
| TLI.isOperationLegalOrCustom(ISD::ADD, VT)) { |
| SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT); |
| return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); |
| } |
| |
| return SDValue(); |
| } |
| |
| // isTruncateOf - If N is a truncate of some other value, return true, record |
| // the value being truncated in Op and which of Op's bits are zero/one in Known. |
| // This function computes KnownBits to avoid a duplicated call to |
| // computeKnownBits in the caller. |
| static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, |
| KnownBits &Known) { |
| if (N->getOpcode() == ISD::TRUNCATE) { |
| Op = N->getOperand(0); |
| Known = DAG.computeKnownBits(Op); |
| return true; |
| } |
| |
| if (N.getOpcode() != ISD::SETCC || |
| N.getValueType().getScalarType() != MVT::i1 || |
| cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE) |
| return false; |
| |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| assert(Op0.getValueType() == Op1.getValueType()); |
| |
| if (isNullOrNullSplat(Op0)) |
| Op = Op1; |
| else if (isNullOrNullSplat(Op1)) |
| Op = Op0; |
| else |
| return false; |
| |
| Known = DAG.computeKnownBits(Op); |
| |
| return (Known.Zero | 1).isAllOnesValue(); |
| } |
| |
| /// Given an extending node with a pop-count operand, if the target does not |
| /// support a pop-count in the narrow source type but does support it in the |
| /// destination type, widen the pop-count to the destination type. |
| static SDValue widenCtPop(SDNode *Extend, SelectionDAG &DAG) { |
| assert((Extend->getOpcode() == ISD::ZERO_EXTEND || |
| Extend->getOpcode() == ISD::ANY_EXTEND) && "Expected extend op"); |
| |
| SDValue CtPop = Extend->getOperand(0); |
| if (CtPop.getOpcode() != ISD::CTPOP || !CtPop.hasOneUse()) |
| return SDValue(); |
| |
| EVT VT = Extend->getValueType(0); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (TLI.isOperationLegalOrCustom(ISD::CTPOP, CtPop.getValueType()) || |
| !TLI.isOperationLegalOrCustom(ISD::CTPOP, VT)) |
| return SDValue(); |
| |
| // zext (ctpop X) --> ctpop (zext X) |
| SDLoc DL(Extend); |
| SDValue NewZext = DAG.getZExtOrTrunc(CtPop.getOperand(0), DL, VT); |
| return DAG.getNode(ISD::CTPOP, DL, VT, NewZext); |
| } |
| |
| SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) |
| return Res; |
| |
| // fold (zext (zext x)) -> (zext x) |
| // fold (zext (aext x)) -> (zext x) |
| if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) |
| return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, |
| N0.getOperand(0)); |
| |
| // fold (zext (truncate x)) -> (zext x) or |
| // (zext (truncate x)) -> (truncate x) |
| // This is valid when the truncated bits of x are already zero. |
| SDValue Op; |
| KnownBits Known; |
| if (isTruncateOf(DAG, N0, Op, Known)) { |
| APInt TruncatedBits = |
| (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ? |
| APInt(Op.getScalarValueSizeInBits(), 0) : |
| APInt::getBitsSet(Op.getScalarValueSizeInBits(), |
| N0.getScalarValueSizeInBits(), |
| std::min(Op.getScalarValueSizeInBits(), |
| VT.getScalarSizeInBits())); |
| if (TruncatedBits.isSubsetOf(Known.Zero)) |
| return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); |
| } |
| |
| // fold (zext (truncate x)) -> (and x, mask) |
| if (N0.getOpcode() == ISD::TRUNCATE) { |
| // fold (zext (truncate (load x))) -> (zext (smaller load x)) |
| // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) |
| if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { |
| SDNode *oye = N0.getOperand(0).getNode(); |
| if (NarrowLoad.getNode() != N0.getNode()) { |
| CombineTo(N0.getNode(), NarrowLoad); |
| // CombineTo deleted the truncate, if needed, but not what's under it. |
| AddToWorklist(oye); |
| } |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| EVT SrcVT = N0.getOperand(0).getValueType(); |
| EVT MinVT = N0.getValueType(); |
| |
| // Try to mask before the extension to avoid having to generate a larger mask, |
| // possibly over several sub-vectors. |
| if (SrcVT.bitsLT(VT) && VT.isVector()) { |
| if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && |
| TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { |
| SDValue Op = N0.getOperand(0); |
| Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); |
| AddToWorklist(Op.getNode()); |
| SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT); |
| // Transfer the debug info; the new node is equivalent to N0. |
| DAG.transferDbgValues(N0, ZExtOrTrunc); |
| return ZExtOrTrunc; |
| } |
| } |
| |
| if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { |
| SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); |
| AddToWorklist(Op.getNode()); |
| SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); |
| // We may safely transfer the debug info describing the truncate node over |
| // to the equivalent and operation. |
| DAG.transferDbgValues(N0, And); |
| return And; |
| } |
| } |
| |
| // Fold (zext (and (trunc x), cst)) -> (and x, cst), |
| // if either of the casts is not free. |
| if (N0.getOpcode() == ISD::AND && |
| N0.getOperand(0).getOpcode() == ISD::TRUNCATE && |
| N0.getOperand(1).getOpcode() == ISD::Constant && |
| (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), |
| N0.getValueType()) || |
| !TLI.isZExtFree(N0.getValueType(), VT))) { |
| SDValue X = N0.getOperand(0).getOperand(0); |
| X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT); |
| APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); |
| Mask = Mask.zext(VT.getSizeInBits()); |
| SDLoc DL(N); |
| return DAG.getNode(ISD::AND, DL, VT, |
| X, DAG.getConstant(Mask, DL, VT)); |
| } |
| |
| // Try to simplify (zext (load x)). |
| if (SDValue foldedExt = |
| tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, |
| ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) |
| return foldedExt; |
| |
| if (SDValue foldedExt = |
| tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::ZEXTLOAD, |
| ISD::ZERO_EXTEND)) |
| return foldedExt; |
| |
| // fold (zext (load x)) to multiple smaller zextloads. |
| // Only on illegal but splittable vectors. |
| if (SDValue ExtLoad = CombineExtLoad(N)) |
| return ExtLoad; |
| |
| // fold (zext (and/or/xor (load x), cst)) -> |
| // (and/or/xor (zextload x), (zext cst)) |
| // Unless (and (load x) cst) will match as a zextload already and has |
| // additional users. |
| if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || |
| N0.getOpcode() == ISD::XOR) && |
| isa<LoadSDNode>(N0.getOperand(0)) && |
| N0.getOperand(1).getOpcode() == ISD::Constant && |
| (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { |
| LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); |
| EVT MemVT = LN00->getMemoryVT(); |
| if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) && |
| LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) { |
| bool DoXform = true; |
| SmallVector<SDNode*, 4> SetCCs; |
| if (!N0.hasOneUse()) { |
| if (N0.getOpcode() == ISD::AND) { |
| auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); |
| EVT LoadResultTy = AndC->getValueType(0); |
| EVT ExtVT; |
| if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT)) |
| DoXform = false; |
| } |
| } |
| if (DoXform) |
| DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), |
| ISD::ZERO_EXTEND, SetCCs, TLI); |
| if (DoXform) { |
| SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT, |
| LN00->getChain(), LN00->getBasePtr(), |
| LN00->getMemoryVT(), |
| LN00->getMemOperand()); |
| APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); |
| Mask = Mask.zext(VT.getSizeInBits()); |
| SDLoc DL(N); |
| SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, |
| ExtLoad, DAG.getConstant(Mask, DL, VT)); |
| ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); |
| bool NoReplaceTruncAnd = !N0.hasOneUse(); |
| bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); |
| CombineTo(N, And); |
| // If N0 has multiple uses, change other uses as well. |
| if (NoReplaceTruncAnd) { |
| SDValue TruncAnd = |
| DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); |
| CombineTo(N0.getNode(), TruncAnd); |
| } |
| if (NoReplaceTrunc) { |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); |
| } else { |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), |
| LN00->getValueType(0), ExtLoad); |
| CombineTo(LN00, Trunc, ExtLoad.getValue(1)); |
| } |
| return SDValue(N,0); // Return N so it doesn't get rechecked! |
| } |
| } |
| } |
| |
| // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> |
| // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) |
| if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N)) |
| return ZExtLoad; |
| |
| // Try to simplify (zext (zextload x)). |
| if (SDValue foldedExt = tryToFoldExtOfExtload( |
| DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD)) |
| return foldedExt; |
| |
| if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) |
| return V; |
| |
| if (N0.getOpcode() == ISD::SETCC) { |
| // Only do this before legalize for now. |
| if (!LegalOperations && VT.isVector() && |
| N0.getValueType().getVectorElementType() == MVT::i1) { |
| EVT N00VT = N0.getOperand(0).getValueType(); |
| if (getSetCCResultType(N00VT) == N0.getValueType()) |
| return SDValue(); |
| |
| // We know that the # elements of the results is the same as the # |
| // elements of the compare (and the # elements of the compare result for |
| // that matter). Check to see that they are the same size. If so, we know |
| // that the element size of the sext'd result matches the element size of |
| // the compare operands. |
| SDLoc DL(N); |
| SDValue VecOnes = DAG.getConstant(1, DL, VT); |
| if (VT.getSizeInBits() == N00VT.getSizeInBits()) { |
| // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors. |
| SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0), |
| N0.getOperand(1), N0.getOperand(2)); |
| return DAG.getNode(ISD::AND, DL, VT, VSetCC, VecOnes); |
| } |
| |
| // If the desired elements are smaller or larger than the source |
| // elements we can use a matching integer vector type and then |
| // truncate/sign extend. |
| EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); |
| SDValue VsetCC = |
| DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0), |
| N0.getOperand(1), N0.getOperand(2)); |
| return DAG.getNode(ISD::AND, DL, VT, DAG.getSExtOrTrunc(VsetCC, DL, VT), |
| VecOnes); |
| } |
| |
| // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc |
| SDLoc DL(N); |
| if (SDValue SCC = SimplifySelectCC( |
| DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), |
| DAG.getConstant(0, DL, VT), |
| cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) |
| return SCC; |
| } |
| |
| // (zext (shl (zext x), cst)) -> (shl (zext x), cst) |
| if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && |
| isa<ConstantSDNode>(N0.getOperand(1)) && |
| N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && |
| N0.hasOneUse()) { |
| SDValue ShAmt = N0.getOperand(1); |
| if (N0.getOpcode() == ISD::SHL) { |
| SDValue InnerZExt = N0.getOperand(0); |
| // If the original shl may be shifting out bits, do not perform this |
| // transformation. |
| unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() - |
| InnerZExt.getOperand(0).getValueSizeInBits(); |
| if (cast<ConstantSDNode>(ShAmt)->getAPIntValue().ugt(KnownZeroBits)) |
| return SDValue(); |
| } |
| |
| SDLoc DL(N); |
| |
| // Ensure that the shift amount is wide enough for the shifted value. |
| if (VT.getSizeInBits() >= 256) |
| ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); |
| |
| return DAG.getNode(N0.getOpcode(), DL, VT, |
| DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), |
| ShAmt); |
| } |
| |
| if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) |
| return NewVSel; |
| |
| if (SDValue NewCtPop = widenCtPop(N, DAG)) |
| return NewCtPop; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) |
| return Res; |
| |
| // fold (aext (aext x)) -> (aext x) |
| // fold (aext (zext x)) -> (zext x) |
| // fold (aext (sext x)) -> (sext x) |
| if (N0.getOpcode() == ISD::ANY_EXTEND || |
| N0.getOpcode() == ISD::ZERO_EXTEND || |
| N0.getOpcode() == ISD::SIGN_EXTEND) |
| return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); |
| |
| // fold (aext (truncate (load x))) -> (aext (smaller load x)) |
| // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) |
| if (N0.getOpcode() == ISD::TRUNCATE) { |
| if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { |
| SDNode *oye = N0.getOperand(0).getNode(); |
| if (NarrowLoad.getNode() != N0.getNode()) { |
| CombineTo(N0.getNode(), NarrowLoad); |
| // CombineTo deleted the truncate, if needed, but not what's under it. |
| AddToWorklist(oye); |
| } |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| |
| // fold (aext (truncate x)) |
| if (N0.getOpcode() == ISD::TRUNCATE) |
| return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); |
| |
| // Fold (aext (and (trunc x), cst)) -> (and x, cst) |
| // if the trunc is not free. |
| if (N0.getOpcode() == ISD::AND && |
| N0.getOperand(0).getOpcode() == ISD::TRUNCATE && |
| N0.getOperand(1).getOpcode() == ISD::Constant && |
| !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), |
| N0.getValueType())) { |
| SDLoc DL(N); |
| SDValue X = N0.getOperand(0).getOperand(0); |
| X = DAG.getAnyExtOrTrunc(X, DL, VT); |
| APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); |
| Mask = Mask.zext(VT.getSizeInBits()); |
| return DAG.getNode(ISD::AND, DL, VT, |
| X, DAG.getConstant(Mask, DL, VT)); |
| } |
| |
| // fold (aext (load x)) -> (aext (truncate (extload x))) |
| // None of the supported targets knows how to perform load and any_ext |
| // on vectors in one instruction. We only perform this transformation on |
| // scalars. |
| if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && |
| ISD::isUNINDEXEDLoad(N0.getNode()) && |
| TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { |
| bool DoXform = true; |
| SmallVector<SDNode*, 4> SetCCs; |
| if (!N0.hasOneUse()) |
| DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs, |
| TLI); |
| if (DoXform) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, |
| LN0->getChain(), |
| LN0->getBasePtr(), N0.getValueType(), |
| LN0->getMemOperand()); |
| ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND); |
| // If the load value is used only by N, replace it via CombineTo N. |
| bool NoReplaceTrunc = N0.hasOneUse(); |
| CombineTo(N, ExtLoad); |
| if (NoReplaceTrunc) { |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); |
| recursivelyDeleteUnusedNodes(LN0); |
| } else { |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), |
| N0.getValueType(), ExtLoad); |
| CombineTo(LN0, Trunc, ExtLoad.getValue(1)); |
| } |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| |
| // fold (aext (zextload x)) -> (aext (truncate (zextload x))) |
| // fold (aext (sextload x)) -> (aext (truncate (sextload x))) |
| // fold (aext ( extload x)) -> (aext (truncate (extload x))) |
| if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) && |
| ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| ISD::LoadExtType ExtType = LN0->getExtensionType(); |
| EVT MemVT = LN0->getMemoryVT(); |
| if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { |
| SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), |
| VT, LN0->getChain(), LN0->getBasePtr(), |
| MemVT, LN0->getMemOperand()); |
| CombineTo(N, ExtLoad); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); |
| recursivelyDeleteUnusedNodes(LN0); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| |
| if (N0.getOpcode() == ISD::SETCC) { |
| // For vectors: |
| // aext(setcc) -> vsetcc |
| // aext(setcc) -> truncate(vsetcc) |
| // aext(setcc) -> aext(vsetcc) |
| // Only do this before legalize for now. |
| if (VT.isVector() && !LegalOperations) { |
| EVT N00VT = N0.getOperand(0).getValueType(); |
| if (getSetCCResultType(N00VT) == N0.getValueType()) |
| return SDValue(); |
| |
| // We know that the # elements of the results is the same as the |
| // # elements of the compare (and the # elements of the compare result |
| // for that matter). Check to see that they are the same size. If so, |
| // we know that the element size of the sext'd result matches the |
| // element size of the compare operands. |
| if (VT.getSizeInBits() == N00VT.getSizeInBits()) |
| return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), |
| N0.getOperand(1), |
| cast<CondCodeSDNode>(N0.getOperand(2))->get()); |
| |
| // If the desired elements are smaller or larger than the source |
| // elements we can use a matching integer vector type and then |
| // truncate/any extend |
| EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); |
| SDValue VsetCC = |
| DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), |
| N0.getOperand(1), |
| cast<CondCodeSDNode>(N0.getOperand(2))->get()); |
| return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); |
| } |
| |
| // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc |
| SDLoc DL(N); |
| if (SDValue SCC = SimplifySelectCC( |
| DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), |
| DAG.getConstant(0, DL, VT), |
| cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) |
| return SCC; |
| } |
| |
| if (SDValue NewCtPop = widenCtPop(N, DAG)) |
| return NewCtPop; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitAssertExt(SDNode *N) { |
| unsigned Opcode = N->getOpcode(); |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT AssertVT = cast<VTSDNode>(N1)->getVT(); |
| |
| // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt) |
| if (N0.getOpcode() == Opcode && |
| AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT()) |
| return N0; |
| |
| if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && |
| N0.getOperand(0).getOpcode() == Opcode) { |
| // We have an assert, truncate, assert sandwich. Make one stronger assert |
| // by asserting on the smallest asserted type to the larger source type. |
| // This eliminates the later assert: |
| // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN |
| // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN |
| SDValue BigA = N0.getOperand(0); |
| EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); |
| assert(BigA_AssertVT.bitsLE(N0.getValueType()) && |
| "Asserting zero/sign-extended bits to a type larger than the " |
| "truncated destination does not provide information"); |
| |
| SDLoc DL(N); |
| EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT; |
| SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT); |
| SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), |
| BigA.getOperand(0), MinAssertVTVal); |
| return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); |
| } |
| |
| // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller |
| // than X. Just move the AssertZext in front of the truncate and drop the |
| // AssertSExt. |
| if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && |
| N0.getOperand(0).getOpcode() == ISD::AssertSext && |
| Opcode == ISD::AssertZext) { |
| SDValue BigA = N0.getOperand(0); |
| EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); |
| assert(BigA_AssertVT.bitsLE(N0.getValueType()) && |
| "Asserting zero/sign-extended bits to a type larger than the " |
| "truncated destination does not provide information"); |
| |
| if (AssertVT.bitsLT(BigA_AssertVT)) { |
| SDLoc DL(N); |
| SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), |
| BigA.getOperand(0), N1); |
| return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// If the result of a wider load is shifted to right of N bits and then |
| /// truncated to a narrower type and where N is a multiple of number of bits of |
| /// the narrower type, transform it to a narrower load from address + N / num of |
| /// bits of new type. Also narrow the load if the result is masked with an AND |
| /// to effectively produce a smaller type. If the result is to be extended, also |
| /// fold the extension to form a extending load. |
| SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { |
| unsigned Opc = N->getOpcode(); |
| |
| ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| EVT ExtVT = VT; |
| |
| // This transformation isn't valid for vector loads. |
| if (VT.isVector()) |
| return SDValue(); |
| |
| unsigned ShAmt = 0; |
| bool HasShiftedOffset = false; |
| // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then |
| // extended to VT. |
| if (Opc == ISD::SIGN_EXTEND_INREG) { |
| ExtType = ISD::SEXTLOAD; |
| ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); |
| } else if (Opc == ISD::SRL) { |
| // Another special-case: SRL is basically zero-extending a narrower value, |
| // or it maybe shifting a higher subword, half or byte into the lowest |
| // bits. |
| ExtType = ISD::ZEXTLOAD; |
| N0 = SDValue(N, 0); |
| |
| auto *LN0 = dyn_cast<LoadSDNode>(N0.getOperand(0)); |
| auto *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| if (!N01 || !LN0) |
| return SDValue(); |
| |
| uint64_t ShiftAmt = N01->getZExtValue(); |
| uint64_t MemoryWidth = LN0->getMemoryVT().getSizeInBits(); |
| if (LN0->getExtensionType() != ISD::SEXTLOAD && MemoryWidth > ShiftAmt) |
| ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShiftAmt); |
| else |
| ExtVT = EVT::getIntegerVT(*DAG.getContext(), |
| VT.getSizeInBits() - ShiftAmt); |
| } else if (Opc == ISD::AND) { |
| // An AND with a constant mask is the same as a truncate + zero-extend. |
| auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!AndC) |
| return SDValue(); |
| |
| const APInt &Mask = AndC->getAPIntValue(); |
| unsigned ActiveBits = 0; |
| if (Mask.isMask()) { |
| ActiveBits = Mask.countTrailingOnes(); |
| } else if (Mask.isShiftedMask()) { |
| ShAmt = Mask.countTrailingZeros(); |
| APInt ShiftedMask = Mask.lshr(ShAmt); |
| ActiveBits = ShiftedMask.countTrailingOnes(); |
| HasShiftedOffset = true; |
| } else |
| return SDValue(); |
| |
| ExtType = ISD::ZEXTLOAD; |
| ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); |
| } |
| |
| if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { |
| SDValue SRL = N0; |
| if (auto *ConstShift = dyn_cast<ConstantSDNode>(SRL.getOperand(1))) { |
| ShAmt = ConstShift->getZExtValue(); |
| unsigned EVTBits = ExtVT.getSizeInBits(); |
| // Is the shift amount a multiple of size of VT? |
| if ((ShAmt & (EVTBits-1)) == 0) { |
| N0 = N0.getOperand(0); |
| // Is the load width a multiple of size of VT? |
| if ((N0.getValueSizeInBits() & (EVTBits-1)) != 0) |
| return SDValue(); |
| } |
| |
| // At this point, we must have a load or else we can't do the transform. |
| if (!isa<LoadSDNode>(N0)) return SDValue(); |
| |
| auto *LN0 = cast<LoadSDNode>(N0); |
| |
| // Because a SRL must be assumed to *need* to zero-extend the high bits |
| // (as opposed to anyext the high bits), we can't combine the zextload |
| // lowering of SRL and an sextload. |
| if (LN0->getExtensionType() == ISD::SEXTLOAD) |
| return SDValue(); |
| |
| // If the shift amount is larger than the input type then we're not |
| // accessing any of the loaded bytes. If the load was a zextload/extload |
| // then the result of the shift+trunc is zero/undef (handled elsewhere). |
| if (ShAmt >= LN0->getMemoryVT().getSizeInBits()) |
| return SDValue(); |
| |
| // If the SRL is only used by a masking AND, we may be able to adjust |
| // the ExtVT to make the AND redundant. |
| SDNode *Mask = *(SRL->use_begin()); |
| if (Mask->getOpcode() == ISD::AND && |
| isa<ConstantSDNode>(Mask->getOperand(1))) { |
| const APInt &ShiftMask = |
| cast<ConstantSDNode>(Mask->getOperand(1))->getAPIntValue(); |
| if (ShiftMask.isMask()) { |
| EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(), |
| ShiftMask.countTrailingOnes()); |
| // If the mask is smaller, recompute the type. |
| if ((ExtVT.getSizeInBits() > MaskedVT.getSizeInBits()) && |
| TLI.isLoadExtLegal(ExtType, N0.getValueType(), MaskedVT)) |
| ExtVT = MaskedVT; |
| } |
| } |
| } |
| } |
| |
| // If the load is shifted left (and the result isn't shifted back right), |
| // we can fold the truncate through the shift. |
| unsigned ShLeftAmt = 0; |
| if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && |
| ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { |
| if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { |
| ShLeftAmt = N01->getZExtValue(); |
| N0 = N0.getOperand(0); |
| } |
| } |
| |
| // If we haven't found a load, we can't narrow it. |
| if (!isa<LoadSDNode>(N0)) |
| return SDValue(); |
| |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| // Reducing the width of a volatile load is illegal. For atomics, we may be |
| // able to reduce the width provided we never widen again. (see D66309) |
| if (!LN0->isSimple() || |
| !isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt)) |
| return SDValue(); |
| |
| auto AdjustBigEndianShift = [&](unsigned ShAmt) { |
| unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits(); |
| unsigned EVTStoreBits = ExtVT.getStoreSizeInBits(); |
| return LVTStoreBits - EVTStoreBits - ShAmt; |
| }; |
| |
| // For big endian targets, we need to adjust the offset to the pointer to |
| // load the correct bytes. |
| if (DAG.getDataLayout().isBigEndian()) |
| ShAmt = AdjustBigEndianShift(ShAmt); |
| |
| uint64_t PtrOff = ShAmt / 8; |
| unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff); |
| SDLoc DL(LN0); |
| // The original load itself didn't wrap, so an offset within it doesn't. |
| SDNodeFlags Flags; |
| Flags.setNoUnsignedWrap(true); |
| SDValue NewPtr = |
| DAG.getMemBasePlusOffset(LN0->getBasePtr(), PtrOff, DL, Flags); |
| AddToWorklist(NewPtr.getNode()); |
| |
| SDValue Load; |
| if (ExtType == ISD::NON_EXTLOAD) |
| Load = DAG.getLoad(VT, DL, LN0->getChain(), NewPtr, |
| LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign, |
| LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); |
| else |
| Load = DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), NewPtr, |
| LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT, |
| NewAlign, LN0->getMemOperand()->getFlags(), |
| LN0->getAAInfo()); |
| |
| // Replace the old load's chain with the new load's chain. |
| WorklistRemover DeadNodes(*this); |
| DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); |
| |
| // Shift the result left, if we've swallowed a left shift. |
| SDValue Result = Load; |
| if (ShLeftAmt != 0) { |
| EVT ShImmTy = getShiftAmountTy(Result.getValueType()); |
| if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt)) |
| ShImmTy = VT; |
| // If the shift amount is as large as the result size (but, presumably, |
| // no larger than the source) then the useful bits of the result are |
| // zero; we can't simply return the shortened shift, because the result |
| // of that operation is undefined. |
| if (ShLeftAmt >= VT.getSizeInBits()) |
| Result = DAG.getConstant(0, DL, VT); |
| else |
| Result = DAG.getNode(ISD::SHL, DL, VT, |
| Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); |
| } |
| |
| if (HasShiftedOffset) { |
| // Recalculate the shift amount after it has been altered to calculate |
| // the offset. |
| if (DAG.getDataLayout().isBigEndian()) |
| ShAmt = AdjustBigEndianShift(ShAmt); |
| |
| // We're using a shifted mask, so the load now has an offset. This means |
| // that data has been loaded into the lower bytes than it would have been |
| // before, so we need to shl the loaded data into the correct position in the |
| // register. |
| SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT); |
| Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); |
| } |
| |
| // Return the new loaded value. |
| return Result; |
| } |
| |
| SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| EVT EVT = cast<VTSDNode>(N1)->getVT(); |
| unsigned VTBits = VT.getScalarSizeInBits(); |
| unsigned EVTBits = EVT.getScalarSizeInBits(); |
| |
| if (N0.isUndef()) |
| return DAG.getUNDEF(VT); |
| |
| // fold (sext_in_reg c1) -> c1 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); |
| |
| // If the input is already sign extended, just drop the extension. |
| if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1) |
| return N0; |
| |
| // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 |
| if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, |
| N0.getOperand(0), N1); |
| |
| // fold (sext_in_reg (sext x)) -> (sext x) |
| // fold (sext_in_reg (aext x)) -> (sext x) |
| // if x is small enough or if we know that x has more than 1 sign bit and the |
| // sign_extend_inreg is extending from one of them. |
| if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { |
| SDValue N00 = N0.getOperand(0); |
| unsigned N00Bits = N00.getScalarValueSizeInBits(); |
| if ((N00Bits <= EVTBits || |
| (N00Bits - DAG.ComputeNumSignBits(N00)) < EVTBits) && |
| (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) |
| return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00); |
| } |
| |
| // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x) |
| if ((N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG || |
| N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG || |
| N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) && |
| N0.getOperand(0).getScalarValueSizeInBits() == EVTBits) { |
| if (!LegalOperations || |
| TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT)) |
| return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT, |
| N0.getOperand(0)); |
| } |
| |
| // fold (sext_in_reg (zext x)) -> (sext x) |
| // iff we are extending the source sign bit. |
| if (N0.getOpcode() == ISD::ZERO_EXTEND) { |
| SDValue N00 = N0.getOperand(0); |
| if (N00.getScalarValueSizeInBits() == EVTBits && |
| (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) |
| return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); |
| } |
| |
| // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. |
| if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, EVTBits - 1))) |
| return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT.getScalarType()); |
| |
| // fold operands of sext_in_reg based on knowledge that the top bits are not |
| // demanded. |
| if (SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| // fold (sext_in_reg (load x)) -> (smaller sextload x) |
| // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) |
| if (SDValue NarrowLoad = ReduceLoadWidth(N)) |
| return NarrowLoad; |
| |
| // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) |
| // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. |
| // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. |
| if (N0.getOpcode() == ISD::SRL) { |
| if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) |
| if (ShAmt->getAPIntValue().ule(VTBits - EVTBits)) { |
| // We can turn this into an SRA iff the input to the SRL is already sign |
| // extended enough. |
| unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); |
| if (((VTBits - EVTBits) - ShAmt->getZExtValue()) < InSignBits) |
| return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0), |
| N0.getOperand(1)); |
| } |
| } |
| |
| // fold (sext_inreg (extload x)) -> (sextload x) |
| // If sextload is not supported by target, we can only do the combine when |
| // load has one use. Doing otherwise can block folding the extload with other |
| // extends that the target does support. |
| if (ISD::isEXTLoad(N0.getNode()) && |
| ISD::isUNINDEXEDLoad(N0.getNode()) && |
| EVT == cast<LoadSDNode>(N0)->getMemoryVT() && |
| ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple() && |
| N0.hasOneUse()) || |
| TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, |
| LN0->getChain(), |
| LN0->getBasePtr(), EVT, |
| LN0->getMemOperand()); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); |
| AddToWorklist(ExtLoad.getNode()); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use |
| if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && |
| N0.hasOneUse() && |
| EVT == cast<LoadSDNode>(N0)->getMemoryVT() && |
| ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) && |
| TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, |
| LN0->getChain(), |
| LN0->getBasePtr(), EVT, |
| LN0->getMemOperand()); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) |
| if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) { |
| if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), |
| N0.getOperand(1), false)) |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, |
| BSwap, N1); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| if (N0.isUndef()) |
| return DAG.getUNDEF(VT); |
| |
| if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) |
| return Res; |
| |
| if (SimplifyDemandedVectorElts(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| if (N0.isUndef()) |
| return DAG.getUNDEF(VT); |
| |
| if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) |
| return Res; |
| |
| if (SimplifyDemandedVectorElts(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| EVT SrcVT = N0.getValueType(); |
| bool isLE = DAG.getDataLayout().isLittleEndian(); |
| |
| // noop truncate |
| if (SrcVT == VT) |
| return N0; |
| |
| // fold (truncate (truncate x)) -> (truncate x) |
| if (N0.getOpcode() == ISD::TRUNCATE) |
| return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); |
| |
| // fold (truncate c1) -> c1 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { |
| SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); |
| if (C.getNode() != N) |
| return C; |
| } |
| |
| // fold (truncate (ext x)) -> (ext x) or (truncate x) or x |
| if (N0.getOpcode() == ISD::ZERO_EXTEND || |
| N0.getOpcode() == ISD::SIGN_EXTEND || |
| N0.getOpcode() == ISD::ANY_EXTEND) { |
| // if the source is smaller than the dest, we still need an extend. |
| if (N0.getOperand(0).getValueType().bitsLT(VT)) |
| return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); |
| // if the source is larger than the dest, than we just need the truncate. |
| if (N0.getOperand(0).getValueType().bitsGT(VT)) |
| return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); |
| // if the source and dest are the same type, we can drop both the extend |
| // and the truncate. |
| return N0.getOperand(0); |
| } |
| |
| // If this is anyext(trunc), don't fold it, allow ourselves to be folded. |
| if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND)) |
| return SDValue(); |
| |
| // Fold extract-and-trunc into a narrow extract. For example: |
| // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) |
| // i32 y = TRUNCATE(i64 x) |
| // -- becomes -- |
| // v16i8 b = BITCAST (v2i64 val) |
| // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) |
| // |
| // Note: We only run this optimization after type legalization (which often |
| // creates this pattern) and before operation legalization after which |
| // we need to be more careful about the vector instructions that we generate. |
| if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { |
| EVT VecTy = N0.getOperand(0).getValueType(); |
| EVT ExTy = N0.getValueType(); |
| EVT TrTy = N->getValueType(0); |
| |
| unsigned NumElem = VecTy.getVectorNumElements(); |
| unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); |
| |
| EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem); |
| assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); |
| |
| SDValue EltNo = N0->getOperand(1); |
| if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { |
| int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); |
| EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); |
| int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); |
| |
| SDLoc DL(N); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, |
| DAG.getBitcast(NVT, N0.getOperand(0)), |
| DAG.getConstant(Index, DL, IndexTy)); |
| } |
| } |
| |
| // trunc (select c, a, b) -> select c, (trunc a), (trunc b) |
| if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) { |
| if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && |
| TLI.isTruncateFree(SrcVT, VT)) { |
| SDLoc SL(N0); |
| SDValue Cond = N0.getOperand(0); |
| SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); |
| SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); |
| return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); |
| } |
| } |
| |
| // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits() |
| if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() && |
| (!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) && |
| TLI.isTypeDesirableForOp(ISD::SHL, VT)) { |
| SDValue Amt = N0.getOperand(1); |
| KnownBits Known = DAG.computeKnownBits(Amt); |
| unsigned Size = VT.getScalarSizeInBits(); |
| if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { |
| SDLoc SL(N); |
| EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); |
| |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); |
| if (AmtVT != Amt.getValueType()) { |
| Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT); |
| AddToWorklist(Amt.getNode()); |
| } |
| return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt); |
| } |
| } |
| |
| // Attempt to pre-truncate BUILD_VECTOR sources. |
| if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations && |
| TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType())) { |
| SDLoc DL(N); |
| EVT SVT = VT.getScalarType(); |
| SmallVector<SDValue, 8> TruncOps; |
| for (const SDValue &Op : N0->op_values()) { |
| SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op); |
| TruncOps.push_back(TruncOp); |
| } |
| return DAG.getBuildVector(VT, DL, TruncOps); |
| } |
| |
| // Fold a series of buildvector, bitcast, and truncate if possible. |
| // For example fold |
| // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to |
| // (2xi32 (buildvector x, y)). |
| if (Level == AfterLegalizeVectorOps && VT.isVector() && |
| N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && |
| N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && |
| N0.getOperand(0).hasOneUse()) { |
| SDValue BuildVect = N0.getOperand(0); |
| EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); |
| EVT TruncVecEltTy = VT.getVectorElementType(); |
| |
| // Check that the element types match. |
| if (BuildVectEltTy == TruncVecEltTy) { |
| // Now we only need to compute the offset of the truncated elements. |
| unsigned BuildVecNumElts = BuildVect.getNumOperands(); |
| unsigned TruncVecNumElts = VT.getVectorNumElements(); |
| unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; |
| |
| assert((BuildVecNumElts % TruncVecNumElts) == 0 && |
| "Invalid number of elements"); |
| |
| SmallVector<SDValue, 8> Opnds; |
| for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) |
| Opnds.push_back(BuildVect.getOperand(i)); |
| |
| return DAG.getBuildVector(VT, SDLoc(N), Opnds); |
| } |
| } |
| |
| // See if we can simplify the input to this truncate through knowledge that |
| // only the low bits are being used. |
| // For example "trunc (or (shl x, 8), y)" // -> trunc y |
| // Currently we only perform this optimization on scalars because vectors |
| // may have different active low bits. |
| if (!VT.isVector()) { |
| APInt Mask = |
| APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits()); |
| if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask)) |
| return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); |
| } |
| |
| // fold (truncate (load x)) -> (smaller load x) |
| // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) |
| if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { |
| if (SDValue Reduced = ReduceLoadWidth(N)) |
| return Reduced; |
| |
| // Handle the case where the load remains an extending load even |
| // after truncation. |
| if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| if (LN0->isSimple() && |
| LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) { |
| SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), |
| VT, LN0->getChain(), LN0->getBasePtr(), |
| LN0->getMemoryVT(), |
| LN0->getMemOperand()); |
| DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); |
| return NewLoad; |
| } |
| } |
| } |
| |
| // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), |
| // where ... are all 'undef'. |
| if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { |
| SmallVector<EVT, 8> VTs; |
| SDValue V; |
| unsigned Idx = 0; |
| unsigned NumDefs = 0; |
| |
| for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { |
| SDValue X = N0.getOperand(i); |
| if (!X.isUndef()) { |
| V = X; |
| Idx = i; |
| NumDefs++; |
| } |
| // Stop if more than one members are non-undef. |
| if (NumDefs > 1) |
| break; |
| VTs.push_back(EVT::getVectorVT(*DAG.getContext(), |
| VT.getVectorElementType(), |
| X.getValueType().getVectorNumElements())); |
| } |
| |
| if (NumDefs == 0) |
| return DAG.getUNDEF(VT); |
| |
| if (NumDefs == 1) { |
| assert(V.getNode() && "The single defined operand is empty!"); |
| SmallVector<SDValue, 8> Opnds; |
| for (unsigned i = 0, e = VTs.size(); i != e; ++i) { |
| if (i != Idx) { |
| Opnds.push_back(DAG.getUNDEF(VTs[i])); |
| continue; |
| } |
| SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); |
| AddToWorklist(NV.getNode()); |
| Opnds.push_back(NV); |
| } |
| return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); |
| } |
| } |
| |
| // Fold truncate of a bitcast of a vector to an extract of the low vector |
| // element. |
| // |
| // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx |
| if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) { |
| SDValue VecSrc = N0.getOperand(0); |
| EVT VecSrcVT = VecSrc.getValueType(); |
| if (VecSrcVT.isVector() && VecSrcVT.getScalarType() == VT && |
| (!LegalOperations || |
| TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecSrcVT))) { |
| SDLoc SL(N); |
| |
| EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); |
| unsigned Idx = isLE ? 0 : VecSrcVT.getVectorNumElements() - 1; |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, VecSrc, |
| DAG.getConstant(Idx, SL, IdxVT)); |
| } |
| } |
| |
| // Simplify the operands using demanded-bits information. |
| if (!VT.isVector() && |
| SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry) |
| // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry) |
| // When the adde's carry is not used. |
| if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) && |
| N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) && |
| // We only do for addcarry before legalize operation |
| ((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) || |
| TLI.isOperationLegal(N0.getOpcode(), VT))) { |
| SDLoc SL(N); |
| auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); |
| auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); |
| auto VTs = DAG.getVTList(VT, N0->getValueType(1)); |
| return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2)); |
| } |
| |
| // fold (truncate (extract_subvector(ext x))) -> |
| // (extract_subvector x) |
| // TODO: This can be generalized to cover cases where the truncate and extract |
| // do not fully cancel each other out. |
| if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) { |
| SDValue N00 = N0.getOperand(0); |
| if (N00.getOpcode() == ISD::SIGN_EXTEND || |
| N00.getOpcode() == ISD::ZERO_EXTEND || |
| N00.getOpcode() == ISD::ANY_EXTEND) { |
| if (N00.getOperand(0)->getValueType(0).getVectorElementType() == |
| VT.getVectorElementType()) |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT, |
| N00.getOperand(0), N0.getOperand(1)); |
| } |
| } |
| |
| if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) |
| return NewVSel; |
| |
| // Narrow a suitable binary operation with a non-opaque constant operand by |
| // moving it ahead of the truncate. This is limited to pre-legalization |
| // because targets may prefer a wider type during later combines and invert |
| // this transform. |
| switch (N0.getOpcode()) { |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::MUL: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| if (!LegalOperations && N0.hasOneUse() && |
| (isConstantOrConstantVector(N0.getOperand(0), true) || |
| isConstantOrConstantVector(N0.getOperand(1), true))) { |
| // TODO: We already restricted this to pre-legalization, but for vectors |
| // we are extra cautious to not create an unsupported operation. |
| // Target-specific changes are likely needed to avoid regressions here. |
| if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) { |
| SDLoc DL(N); |
| SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0)); |
| SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1)); |
| return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR); |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDNode *getBuildPairElt(SDNode *N, unsigned i) { |
| SDValue Elt = N->getOperand(i); |
| if (Elt.getOpcode() != ISD::MERGE_VALUES) |
| return Elt.getNode(); |
| return Elt.getOperand(Elt.getResNo()).getNode(); |
| } |
| |
| /// build_pair (load, load) -> load |
| /// if load locations are consecutive. |
| SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { |
| assert(N->getOpcode() == ISD::BUILD_PAIR); |
| |
| LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); |
| LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); |
| |
| // A BUILD_PAIR is always having the least significant part in elt 0 and the |
| // most significant part in elt 1. So when combining into one large load, we |
| // need to consider the endianness. |
| if (DAG.getDataLayout().isBigEndian()) |
| std::swap(LD1, LD2); |
| |
| if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() || |
| LD1->getAddressSpace() != LD2->getAddressSpace()) |
| return SDValue(); |
| EVT LD1VT = LD1->getValueType(0); |
| unsigned LD1Bytes = LD1VT.getStoreSize(); |
| if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() && |
| DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) { |
| unsigned Align = LD1->getAlignment(); |
| unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( |
| VT.getTypeForEVT(*DAG.getContext())); |
| |
| if (NewAlign <= Align && |
| (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) |
| return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(), |
| LD1->getPointerInfo(), Align); |
| } |
| |
| return SDValue(); |
| } |
| |
| static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { |
| // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi |
| // and Lo parts; on big-endian machines it doesn't. |
| return DAG.getDataLayout().isBigEndian() ? 1 : 0; |
| } |
| |
| static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| // If this is not a bitcast to an FP type or if the target doesn't have |
| // IEEE754-compliant FP logic, we're done. |
| EVT VT = N->getValueType(0); |
| if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT)) |
| return SDValue(); |
| |
| // TODO: Handle cases where the integer constant is a different scalar |
| // bitwidth to the FP. |
| SDValue N0 = N->getOperand(0); |
| EVT SourceVT = N0.getValueType(); |
| if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits()) |
| return SDValue(); |
| |
| unsigned FPOpcode; |
| APInt SignMask; |
| switch (N0.getOpcode()) { |
| case ISD::AND: |
| FPOpcode = ISD::FABS; |
| SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits()); |
| break; |
| case ISD::XOR: |
| FPOpcode = ISD::FNEG; |
| SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); |
| break; |
| case ISD::OR: |
| FPOpcode = ISD::FABS; |
| SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); |
| break; |
| default: |
| return SDValue(); |
| } |
| |
| // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X |
| // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X |
| // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) -> |
| // fneg (fabs X) |
| SDValue LogicOp0 = N0.getOperand(0); |
| ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true); |
| if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask && |
| LogicOp0.getOpcode() == ISD::BITCAST && |
| LogicOp0.getOperand(0).getValueType() == VT) { |
| SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0)); |
| NumFPLogicOpsConv++; |
| if (N0.getOpcode() == ISD::OR) |
| return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp); |
| return FPOp; |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitBITCAST(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| if (N0.isUndef()) |
| return DAG.getUNDEF(VT); |
| |
| // If the input is a BUILD_VECTOR with all constant elements, fold this now. |
| // Only do this before legalize types, unless both types are integer and the |
| // scalar type is legal. Only do this before legalize ops, since the target |
| // maybe depending on the bitcast. |
| // First check to see if this is all constant. |
| // TODO: Support FP bitcasts after legalize types. |
| if (VT.isVector() && |
| (!LegalTypes || |
| (!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() && |
| TLI.isTypeLegal(VT.getVectorElementType()))) && |
| N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && |
| cast<BuildVectorSDNode>(N0)->isConstant()) |
| return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), |
| VT.getVectorElementType()); |
| |
| // If the input is a constant, let getNode fold it. |
| if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { |
| // If we can't allow illegal operations, we need to check that this is just |
| // a fp -> int or int -> conversion and that the resulting operation will |
| // be legal. |
| if (!LegalOperations || |
| (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && |
| TLI.isOperationLegal(ISD::ConstantFP, VT)) || |
| (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && |
| TLI.isOperationLegal(ISD::Constant, VT))) { |
| SDValue C = DAG.getBitcast(VT, N0); |
| if (C.getNode() != N) |
| return C; |
| } |
| } |
| |
| // (conv (conv x, t1), t2) -> (conv x, t2) |
| if (N0.getOpcode() == ISD::BITCAST) |
| return DAG.getBitcast(VT, N0.getOperand(0)); |
| |
| // fold (conv (load x)) -> (load (conv*)x) |
| // If the resultant load doesn't need a higher alignment than the original! |
| if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && |
| // Do not remove the cast if the types differ in endian layout. |
| TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == |
| TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && |
| // If the load is volatile, we only want to change the load type if the |
| // resulting load is legal. Otherwise we might increase the number of |
| // memory accesses. We don't care if the original type was legal or not |
| // as we assume software couldn't rely on the number of accesses of an |
| // illegal type. |
| ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) || |
| TLI.isOperationLegal(ISD::LOAD, VT))) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| |
| if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG, |
| *LN0->getMemOperand())) { |
| SDValue Load = |
| DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), |
| LN0->getPointerInfo(), LN0->getAlignment(), |
| LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); |
| DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); |
| return Load; |
| } |
| } |
| |
| if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI)) |
| return V; |
| |
| // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) |
| // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) |
| // |
| // For ppc_fp128: |
| // fold (bitcast (fneg x)) -> |
| // flipbit = signbit |
| // (xor (bitcast x) (build_pair flipbit, flipbit)) |
| // |
| // fold (bitcast (fabs x)) -> |
| // flipbit = (and (extract_element (bitcast x), 0), signbit) |
| // (xor (bitcast x) (build_pair flipbit, flipbit)) |
| // This often reduces constant pool loads. |
| if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || |
| (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && |
| N0.getNode()->hasOneUse() && VT.isInteger() && |
| !VT.isVector() && !N0.getValueType().isVector()) { |
| SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0)); |
| AddToWorklist(NewConv.getNode()); |
| |
| SDLoc DL(N); |
| if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { |
| assert(VT.getSizeInBits() == 128); |
| SDValue SignBit = DAG.getConstant( |
| APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); |
| SDValue FlipBit; |
| if (N0.getOpcode() == ISD::FNEG) { |
| FlipBit = SignBit; |
| AddToWorklist(FlipBit.getNode()); |
| } else { |
| assert(N0.getOpcode() == ISD::FABS); |
| SDValue Hi = |
| DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, |
| DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), |
| SDLoc(NewConv))); |
| AddToWorklist(Hi.getNode()); |
| FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); |
| AddToWorklist(FlipBit.getNode()); |
| } |
| SDValue FlipBits = |
| DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); |
| AddToWorklist(FlipBits.getNode()); |
| return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); |
| } |
| APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); |
| if (N0.getOpcode() == ISD::FNEG) |
| return DAG.getNode(ISD::XOR, DL, VT, |
| NewConv, DAG.getConstant(SignBit, DL, VT)); |
| assert(N0.getOpcode() == ISD::FABS); |
| return DAG.getNode(ISD::AND, DL, VT, |
| NewConv, DAG.getConstant(~SignBit, DL, VT)); |
| } |
| |
| // fold (bitconvert (fcopysign cst, x)) -> |
| // (or (and (bitconvert x), sign), (and cst, (not sign))) |
| // Note that we don't handle (copysign x, cst) because this can always be |
| // folded to an fneg or fabs. |
| // |
| // For ppc_fp128: |
| // fold (bitcast (fcopysign cst, x)) -> |
| // flipbit = (and (extract_element |
| // (xor (bitcast cst), (bitcast x)), 0), |
| // signbit) |
| // (xor (bitcast cst) (build_pair flipbit, flipbit)) |
| if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && |
| isa<ConstantFPSDNode>(N0.getOperand(0)) && |
| VT.isInteger() && !VT.isVector()) { |
| unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits(); |
| EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); |
| if (isTypeLegal(IntXVT)) { |
| SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1)); |
| AddToWorklist(X.getNode()); |
| |
| // If X has a different width than the result/lhs, sext it or truncate it. |
| unsigned VTWidth = VT.getSizeInBits(); |
| if (OrigXWidth < VTWidth) { |
| X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); |
| AddToWorklist(X.getNode()); |
| } else if (OrigXWidth > VTWidth) { |
| // To get the sign bit in the right place, we have to shift it right |
| // before truncating. |
| SDLoc DL(X); |
| X = DAG.getNode(ISD::SRL, DL, |
| X.getValueType(), X, |
| DAG.getConstant(OrigXWidth-VTWidth, DL, |
| X.getValueType())); |
| AddToWorklist(X.getNode()); |
| X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); |
| AddToWorklist(X.getNode()); |
| } |
| |
| if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { |
| APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2); |
| SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); |
| AddToWorklist(Cst.getNode()); |
| SDValue X = DAG.getBitcast(VT, N0.getOperand(1)); |
| AddToWorklist(X.getNode()); |
| SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); |
| AddToWorklist(XorResult.getNode()); |
| SDValue XorResult64 = DAG.getNode( |
| ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, |
| DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), |
| SDLoc(XorResult))); |
| AddToWorklist(XorResult64.getNode()); |
| SDValue FlipBit = |
| DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, |
| DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); |
| AddToWorklist(FlipBit.getNode()); |
| SDValue FlipBits = |
| DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); |
| AddToWorklist(FlipBits.getNode()); |
| return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); |
| } |
| APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); |
| X = DAG.getNode(ISD::AND, SDLoc(X), VT, |
| X, DAG.getConstant(SignBit, SDLoc(X), VT)); |
| AddToWorklist(X.getNode()); |
| |
| SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); |
| Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, |
| Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); |
| AddToWorklist(Cst.getNode()); |
| |
| return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); |
| } |
| } |
| |
| // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. |
| if (N0.getOpcode() == ISD::BUILD_PAIR) |
| if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) |
| return CombineLD; |
| |
| // Remove double bitcasts from shuffles - this is often a legacy of |
| // XformToShuffleWithZero being used to combine bitmaskings (of |
| // float vectors bitcast to integer vectors) into shuffles. |
| // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) |
| if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && |
| N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() && |
| VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && |
| !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { |
| ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); |
| |
| // If operands are a bitcast, peek through if it casts the original VT. |
| // If operands are a constant, just bitcast back to original VT. |
| auto PeekThroughBitcast = [&](SDValue Op) { |
| if (Op.getOpcode() == ISD::BITCAST && |
| Op.getOperand(0).getValueType() == VT) |
| return SDValue(Op.getOperand(0)); |
| if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || |
| ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) |
| return DAG.getBitcast(VT, Op); |
| return SDValue(); |
| }; |
| |
| // FIXME: If either input vector is bitcast, try to convert the shuffle to |
| // the result type of this bitcast. This would eliminate at least one |
| // bitcast. See the transform in InstCombine. |
| SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); |
| SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); |
| if (!(SV0 && SV1)) |
| return SDValue(); |
| |
| int MaskScale = |
| VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); |
| SmallVector<int, 8> NewMask; |
| for (int M : SVN->getMask()) |
| for (int i = 0; i != MaskScale; ++i) |
| NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); |
| |
| SDValue LegalShuffle = |
| TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask, DAG); |
| if (LegalShuffle) |
| return LegalShuffle; |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { |
| EVT VT = N->getValueType(0); |
| return CombineConsecutiveLoads(N, VT); |
| } |
| |
| /// We know that BV is a build_vector node with Constant, ConstantFP or Undef |
| /// operands. DstEltVT indicates the destination element value type. |
| SDValue DAGCombiner:: |
| ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { |
| EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); |
| |
| // If this is already the right type, we're done. |
| if (SrcEltVT == DstEltVT) return SDValue(BV, 0); |
| |
| unsigned SrcBitSize = SrcEltVT.getSizeInBits(); |
| unsigned DstBitSize = DstEltVT.getSizeInBits(); |
| |
| // If this is a conversion of N elements of one type to N elements of another |
| // type, convert each element. This handles FP<->INT cases. |
| if (SrcBitSize == DstBitSize) { |
| SmallVector<SDValue, 8> Ops; |
| for (SDValue Op : BV->op_values()) { |
| // If the vector element type is not legal, the BUILD_VECTOR operands |
| // are promoted and implicitly truncated. Make that explicit here. |
| if (Op.getValueType() != SrcEltVT) |
| Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); |
| Ops.push_back(DAG.getBitcast(DstEltVT, Op)); |
| AddToWorklist(Ops.back().getNode()); |
| } |
| EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, |
| BV->getValueType(0).getVectorNumElements()); |
| return DAG.getBuildVector(VT, SDLoc(BV), Ops); |
| } |
| |
| // Otherwise, we're growing or shrinking the elements. To avoid having to |
| // handle annoying details of growing/shrinking FP values, we convert them to |
| // int first. |
| if (SrcEltVT.isFloatingPoint()) { |
| // Convert the input float vector to a int vector where the elements are the |
| // same sizes. |
| EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); |
| BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); |
| SrcEltVT = IntVT; |
| } |
| |
| // Now we know the input is an integer vector. If the output is a FP type, |
| // convert to integer first, then to FP of the right size. |
| if (DstEltVT.isFloatingPoint()) { |
| EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); |
| SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); |
| |
| // Next, convert to FP elements of the same size. |
| return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); |
| } |
| |
| SDLoc DL(BV); |
| |
| // Okay, we know the src/dst types are both integers of differing types. |
| // Handling growing first. |
| assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); |
| if (SrcBitSize < DstBitSize) { |
| unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; |
| |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0, e = BV->getNumOperands(); i != e; |
| i += NumInputsPerOutput) { |
| bool isLE = DAG.getDataLayout().isLittleEndian(); |
| APInt NewBits = APInt(DstBitSize, 0); |
| bool EltIsUndef = true; |
| for (unsigned j = 0; j != NumInputsPerOutput; ++j) { |
| // Shift the previously computed bits over. |
| NewBits <<= SrcBitSize; |
| SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); |
| if (Op.isUndef()) continue; |
| EltIsUndef = false; |
| |
| NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue(). |
| zextOrTrunc(SrcBitSize).zext(DstBitSize); |
| } |
| |
| if (EltIsUndef) |
| Ops.push_back(DAG.getUNDEF(DstEltVT)); |
| else |
| Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT)); |
| } |
| |
| EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); |
| return DAG.getBuildVector(VT, DL, Ops); |
| } |
| |
| // Finally, this must be the case where we are shrinking elements: each input |
| // turns into multiple outputs. |
| unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; |
| EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, |
| NumOutputsPerInput*BV->getNumOperands()); |
| SmallVector<SDValue, 8> Ops; |
| |
| for (const SDValue &Op : BV->op_values()) { |
| if (Op.isUndef()) { |
| Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT)); |
| continue; |
| } |
| |
| APInt OpVal = cast<ConstantSDNode>(Op)-> |
| getAPIntValue().zextOrTrunc(SrcBitSize); |
| |
| for (unsigned j = 0; j != NumOutputsPerInput; ++j) { |
| APInt ThisVal = OpVal.trunc(DstBitSize); |
| Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT)); |
| OpVal.lshrInPlace(DstBitSize); |
| } |
| |
| // For big endian targets, swap the order of the pieces of each element. |
| if (DAG.getDataLayout().isBigEndian()) |
| std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); |
| } |
| |
| return DAG.getBuildVector(VT, DL, Ops); |
| } |
| |
| static bool isContractable(SDNode *N) { |
| SDNodeFlags F = N->getFlags(); |
| return F.hasAllowContract() || F.hasAllowReassociation(); |
| } |
| |
| /// Try to perform FMA combining on a given FADD node. |
| SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| SDLoc SL(N); |
| |
| const TargetOptions &Options = DAG.getTarget().Options; |
| |
| // Floating-point multiply-add with intermediate rounding. |
| bool HasFMAD = (LegalOperations && TLI.isFMADLegalForFAddFSub(DAG, N)); |
| |
| // Floating-point multiply-add without intermediate rounding. |
| bool HasFMA = |
| TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && |
| (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); |
| |
| // No valid opcode, do not combine. |
| if (!HasFMAD && !HasFMA) |
| return SDValue(); |
| |
| SDNodeFlags Flags = N->getFlags(); |
| bool CanFuse = Options.UnsafeFPMath || isContractable(N); |
| bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || |
| CanFuse || HasFMAD); |
| // If the addition is not contractable, do not combine. |
| if (!AllowFusionGlobally && !isContractable(N)) |
| return SDValue(); |
| |
| const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); |
| if (STI && STI->generateFMAsInMachineCombiner(OptLevel)) |
| return SDValue(); |
| |
| // Always prefer FMAD to FMA for precision. |
| unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; |
| bool Aggressive = TLI.enableAggressiveFMAFusion(VT); |
| |
| // Is the node an FMUL and contractable either due to global flags or |
| // SDNodeFlags. |
| auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { |
| if (N.getOpcode() != ISD::FMUL) |
| return false; |
| return AllowFusionGlobally || isContractable(N.getNode()); |
| }; |
| // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), |
| // prefer to fold the multiply with fewer uses. |
| if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) { |
| if (N0.getNode()->use_size() > N1.getNode()->use_size()) |
| std::swap(N0, N1); |
| } |
| |
| // fold (fadd (fmul x, y), z) -> (fma x, y, z) |
| if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| N0.getOperand(0), N0.getOperand(1), N1, Flags); |
| } |
| |
| // fold (fadd x, (fmul y, z)) -> (fma y, z, x) |
| // Note: Commutes FADD operands. |
| if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| N1.getOperand(0), N1.getOperand(1), N0, Flags); |
| } |
| |
| // Look through FP_EXTEND nodes to do more combining. |
| |
| // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) |
| if (N0.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N00 = N0.getOperand(0); |
| if (isContractableFMUL(N00) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N00.getValueType())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N00.getOperand(0)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N00.getOperand(1)), N1, Flags); |
| } |
| } |
| |
| // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) |
| // Note: Commutes FADD operands. |
| if (N1.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N10 = N1.getOperand(0); |
| if (isContractableFMUL(N10) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N10.getValueType())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N10.getOperand(0)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N10.getOperand(1)), N0, Flags); |
| } |
| } |
| |
| // More folding opportunities when target permits. |
| if (Aggressive) { |
| // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z)) |
| if (CanFuse && |
| N0.getOpcode() == PreferredFusedOpcode && |
| N0.getOperand(2).getOpcode() == ISD::FMUL && |
| N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| N0.getOperand(0), N0.getOperand(1), |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| N0.getOperand(2).getOperand(0), |
| N0.getOperand(2).getOperand(1), |
| N1, Flags), Flags); |
| } |
| |
| // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x)) |
| if (CanFuse && |
| N1->getOpcode() == PreferredFusedOpcode && |
| N1.getOperand(2).getOpcode() == ISD::FMUL && |
| N1->hasOneUse() && N1.getOperand(2)->hasOneUse()) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| N1.getOperand(0), N1.getOperand(1), |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| N1.getOperand(2).getOperand(0), |
| N1.getOperand(2).getOperand(1), |
| N0, Flags), Flags); |
| } |
| |
| |
| // fold (fadd (fma x, y, (fpext (fmul u, v))), z) |
| // -> (fma x, y, (fma (fpext u), (fpext v), z)) |
| auto FoldFAddFMAFPExtFMul = [&] ( |
| SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z, |
| SDNodeFlags Flags) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, U), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, V), |
| Z, Flags), Flags); |
| }; |
| if (N0.getOpcode() == PreferredFusedOpcode) { |
| SDValue N02 = N0.getOperand(2); |
| if (N02.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N020 = N02.getOperand(0); |
| if (isContractableFMUL(N020) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N020.getValueType())) { |
| return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), |
| N020.getOperand(0), N020.getOperand(1), |
| N1, Flags); |
| } |
| } |
| } |
| |
| // fold (fadd (fpext (fma x, y, (fmul u, v))), z) |
| // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) |
| // FIXME: This turns two single-precision and one double-precision |
| // operation into two double-precision operations, which might not be |
| // interesting for all targets, especially GPUs. |
| auto FoldFAddFPExtFMAFMul = [&] ( |
| SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z, |
| SDNodeFlags Flags) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, X), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, U), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, V), |
| Z, Flags), Flags); |
| }; |
| if (N0.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N00 = N0.getOperand(0); |
| if (N00.getOpcode() == PreferredFusedOpcode) { |
| SDValue N002 = N00.getOperand(2); |
| if (isContractableFMUL(N002) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N00.getValueType())) { |
| return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), |
| N002.getOperand(0), N002.getOperand(1), |
| N1, Flags); |
| } |
| } |
| } |
| |
| // fold (fadd x, (fma y, z, (fpext (fmul u, v))) |
| // -> (fma y, z, (fma (fpext u), (fpext v), x)) |
| if (N1.getOpcode() == PreferredFusedOpcode) { |
| SDValue N12 = N1.getOperand(2); |
| if (N12.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N120 = N12.getOperand(0); |
| if (isContractableFMUL(N120) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N120.getValueType())) { |
| return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), |
| N120.getOperand(0), N120.getOperand(1), |
| N0, Flags); |
| } |
| } |
| } |
| |
| // fold (fadd x, (fpext (fma y, z, (fmul u, v))) |
| // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) |
| // FIXME: This turns two single-precision and one double-precision |
| // operation into two double-precision operations, which might not be |
| // interesting for all targets, especially GPUs. |
| if (N1.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N10 = N1.getOperand(0); |
| if (N10.getOpcode() == PreferredFusedOpcode) { |
| SDValue N102 = N10.getOperand(2); |
| if (isContractableFMUL(N102) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N10.getValueType())) { |
| return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), |
| N102.getOperand(0), N102.getOperand(1), |
| N0, Flags); |
| } |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Try to perform FMA combining on a given FSUB node. |
| SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| SDLoc SL(N); |
| |
| const TargetOptions &Options = DAG.getTarget().Options; |
| // Floating-point multiply-add with intermediate rounding. |
| bool HasFMAD = (LegalOperations && TLI.isFMADLegalForFAddFSub(DAG, N)); |
| |
| // Floating-point multiply-add without intermediate rounding. |
| bool HasFMA = |
| TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && |
| (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); |
| |
| // No valid opcode, do not combine. |
| if (!HasFMAD && !HasFMA) |
| return SDValue(); |
| |
| const SDNodeFlags Flags = N->getFlags(); |
| bool CanFuse = Options.UnsafeFPMath || isContractable(N); |
| bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || |
| CanFuse || HasFMAD); |
| |
| // If the subtraction is not contractable, do not combine. |
| if (!AllowFusionGlobally && !isContractable(N)) |
| return SDValue(); |
| |
| const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); |
| if (STI && STI->generateFMAsInMachineCombiner(OptLevel)) |
| return SDValue(); |
| |
| // Always prefer FMAD to FMA for precision. |
| unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; |
| bool Aggressive = TLI.enableAggressiveFMAFusion(VT); |
| |
| // Is the node an FMUL and contractable either due to global flags or |
| // SDNodeFlags. |
| auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { |
| if (N.getOpcode() != ISD::FMUL) |
| return false; |
| return AllowFusionGlobally || isContractable(N.getNode()); |
| }; |
| |
| // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) |
| if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| N0.getOperand(0), N0.getOperand(1), |
| DAG.getNode(ISD::FNEG, SL, VT, N1), Flags); |
| } |
| |
| // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) |
| // Note: Commutes FSUB operands. |
| if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, |
| N1.getOperand(0)), |
| N1.getOperand(1), N0, Flags); |
| } |
| |
| // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) |
| if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) && |
| (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { |
| SDValue N00 = N0.getOperand(0).getOperand(0); |
| SDValue N01 = N0.getOperand(0).getOperand(1); |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, N00), N01, |
| DAG.getNode(ISD::FNEG, SL, VT, N1), Flags); |
| } |
| |
| // Look through FP_EXTEND nodes to do more combining. |
| |
| // fold (fsub (fpext (fmul x, y)), z) |
| // -> (fma (fpext x), (fpext y), (fneg z)) |
| if (N0.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N00 = N0.getOperand(0); |
| if (isContractableFMUL(N00) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N00.getValueType())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N00.getOperand(0)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N00.getOperand(1)), |
| DAG.getNode(ISD::FNEG, SL, VT, N1), Flags); |
| } |
| } |
| |
| // fold (fsub x, (fpext (fmul y, z))) |
| // -> (fma (fneg (fpext y)), (fpext z), x) |
| // Note: Commutes FSUB operands. |
| if (N1.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N10 = N1.getOperand(0); |
| if (isContractableFMUL(N10) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N10.getValueType())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N10.getOperand(0))), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N10.getOperand(1)), |
| N0, Flags); |
| } |
| } |
| |
| // fold (fsub (fpext (fneg (fmul, x, y))), z) |
| // -> (fneg (fma (fpext x), (fpext y), z)) |
| // Note: This could be removed with appropriate canonicalization of the |
| // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the |
| // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent |
| // from implementing the canonicalization in visitFSUB. |
| if (N0.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N00 = N0.getOperand(0); |
| if (N00.getOpcode() == ISD::FNEG) { |
| SDValue N000 = N00.getOperand(0); |
| if (isContractableFMUL(N000) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N00.getValueType())) { |
| return DAG.getNode(ISD::FNEG, SL, VT, |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N000.getOperand(0)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N000.getOperand(1)), |
| N1, Flags)); |
| } |
| } |
| } |
| |
| // fold (fsub (fneg (fpext (fmul, x, y))), z) |
| // -> (fneg (fma (fpext x)), (fpext y), z) |
| // Note: This could be removed with appropriate canonicalization of the |
| // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the |
| // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent |
| // from implementing the canonicalization in visitFSUB. |
| if (N0.getOpcode() == ISD::FNEG) { |
| SDValue N00 = N0.getOperand(0); |
| if (N00.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N000 = N00.getOperand(0); |
| if (isContractableFMUL(N000) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N000.getValueType())) { |
| return DAG.getNode(ISD::FNEG, SL, VT, |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N000.getOperand(0)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N000.getOperand(1)), |
| N1, Flags)); |
| } |
| } |
| } |
| |
| // More folding opportunities when target permits. |
| if (Aggressive) { |
| // fold (fsub (fma x, y, (fmul u, v)), z) |
| // -> (fma x, y (fma u, v, (fneg z))) |
| if (CanFuse && N0.getOpcode() == PreferredFusedOpcode && |
| isContractableFMUL(N0.getOperand(2)) && N0->hasOneUse() && |
| N0.getOperand(2)->hasOneUse()) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| N0.getOperand(0), N0.getOperand(1), |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| N0.getOperand(2).getOperand(0), |
| N0.getOperand(2).getOperand(1), |
| DAG.getNode(ISD::FNEG, SL, VT, |
| N1), Flags), Flags); |
| } |
| |
| // fold (fsub x, (fma y, z, (fmul u, v))) |
| // -> (fma (fneg y), z, (fma (fneg u), v, x)) |
| if (CanFuse && N1.getOpcode() == PreferredFusedOpcode && |
| isContractableFMUL(N1.getOperand(2)) && |
| N1->hasOneUse()) { |
| SDValue N20 = N1.getOperand(2).getOperand(0); |
| SDValue N21 = N1.getOperand(2).getOperand(1); |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, |
| N1.getOperand(0)), |
| N1.getOperand(1), |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, N20), |
| N21, N0, Flags), Flags); |
| } |
| |
| |
| // fold (fsub (fma x, y, (fpext (fmul u, v))), z) |
| // -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) |
| if (N0.getOpcode() == PreferredFusedOpcode && |
| N0->hasOneUse()) { |
| SDValue N02 = N0.getOperand(2); |
| if (N02.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N020 = N02.getOperand(0); |
| if (isContractableFMUL(N020) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N020.getValueType())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| N0.getOperand(0), N0.getOperand(1), |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N020.getOperand(0)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N020.getOperand(1)), |
| DAG.getNode(ISD::FNEG, SL, VT, |
| N1), Flags), Flags); |
| } |
| } |
| } |
| |
| // fold (fsub (fpext (fma x, y, (fmul u, v))), z) |
| // -> (fma (fpext x), (fpext y), |
| // (fma (fpext u), (fpext v), (fneg z))) |
| // FIXME: This turns two single-precision and one double-precision |
| // operation into two double-precision operations, which might not be |
| // interesting for all targets, especially GPUs. |
| if (N0.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N00 = N0.getOperand(0); |
| if (N00.getOpcode() == PreferredFusedOpcode) { |
| SDValue N002 = N00.getOperand(2); |
| if (isContractableFMUL(N002) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N00.getValueType())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N00.getOperand(0)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N00.getOperand(1)), |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N002.getOperand(0)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N002.getOperand(1)), |
| DAG.getNode(ISD::FNEG, SL, VT, |
| N1), Flags), Flags); |
| } |
| } |
| } |
| |
| // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) |
| // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) |
| if (N1.getOpcode() == PreferredFusedOpcode && |
| N1.getOperand(2).getOpcode() == ISD::FP_EXTEND && |
| N1->hasOneUse()) { |
| SDValue N120 = N1.getOperand(2).getOperand(0); |
| if (isContractableFMUL(N120) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| N120.getValueType())) { |
| SDValue N1200 = N120.getOperand(0); |
| SDValue N1201 = N120.getOperand(1); |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), |
| N1.getOperand(1), |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, |
| VT, N1200)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N1201), |
| N0, Flags), Flags); |
| } |
| } |
| |
| // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) |
| // -> (fma (fneg (fpext y)), (fpext z), |
| // (fma (fneg (fpext u)), (fpext v), x)) |
| // FIXME: This turns two single-precision and one double-precision |
| // operation into two double-precision operations, which might not be |
| // interesting for all targets, especially GPUs. |
| if (N1.getOpcode() == ISD::FP_EXTEND && |
| N1.getOperand(0).getOpcode() == PreferredFusedOpcode) { |
| SDValue CvtSrc = N1.getOperand(0); |
| SDValue N100 = CvtSrc.getOperand(0); |
| SDValue N101 = CvtSrc.getOperand(1); |
| SDValue N102 = CvtSrc.getOperand(2); |
| if (isContractableFMUL(N102) && |
| TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, |
| CvtSrc.getValueType())) { |
| SDValue N1020 = N102.getOperand(0); |
| SDValue N1021 = N102.getOperand(1); |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N100)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, |
| VT, N1020)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N1021), |
| N0, Flags), Flags); |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Try to perform FMA combining on a given FMUL node based on the distributive |
| /// law x * (y + 1) = x * y + x and variants thereof (commuted versions, |
| /// subtraction instead of addition). |
| SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| SDLoc SL(N); |
| const SDNodeFlags Flags = N->getFlags(); |
| |
| assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); |
| |
| const TargetOptions &Options = DAG.getTarget().Options; |
| |
| // The transforms below are incorrect when x == 0 and y == inf, because the |
| // intermediate multiplication produces a nan. |
| if (!Options.NoInfsFPMath) |
| return SDValue(); |
| |
| // Floating-point multiply-add without intermediate rounding. |
| bool HasFMA = |
| (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) && |
| TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && |
| (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); |
| |
| // Floating-point multiply-add with intermediate rounding. This can result |
| // in a less precise result due to the changed rounding order. |
| bool HasFMAD = Options.UnsafeFPMath && |
| (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); |
| |
| // No valid opcode, do not combine. |
| if (!HasFMAD && !HasFMA) |
| return SDValue(); |
| |
| // Always prefer FMAD to FMA for precision. |
| unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; |
| bool Aggressive = TLI.enableAggressiveFMAFusion(VT); |
| |
| // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y) |
| // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y)) |
| auto FuseFADD = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) { |
| if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { |
| if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) { |
| if (C->isExactlyValue(+1.0)) |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, |
| Y, Flags); |
| if (C->isExactlyValue(-1.0)) |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, |
| DAG.getNode(ISD::FNEG, SL, VT, Y), Flags); |
| } |
| } |
| return SDValue(); |
| }; |
| |
| if (SDValue FMA = FuseFADD(N0, N1, Flags)) |
| return FMA; |
| if (SDValue FMA = FuseFADD(N1, N0, Flags)) |
| return FMA; |
| |
| // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y) |
| // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y)) |
| // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y)) |
| // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y) |
| auto FuseFSUB = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) { |
| if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { |
| if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) { |
| if (C0->isExactlyValue(+1.0)) |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, |
| Y, Flags); |
| if (C0->isExactlyValue(-1.0)) |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, |
| DAG.getNode(ISD::FNEG, SL, VT, Y), Flags); |
| } |
| if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) { |
| if (C1->isExactlyValue(+1.0)) |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, |
| DAG.getNode(ISD::FNEG, SL, VT, Y), Flags); |
| if (C1->isExactlyValue(-1.0)) |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, |
| Y, Flags); |
| } |
| } |
| return SDValue(); |
| }; |
| |
| if (SDValue FMA = FuseFSUB(N0, N1, Flags)) |
| return FMA; |
| if (SDValue FMA = FuseFSUB(N1, N0, Flags)) |
| return FMA; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFADD(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0); |
| bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| const TargetOptions &Options = DAG.getTarget().Options; |
| const SDNodeFlags Flags = N->getFlags(); |
| |
| // fold vector ops |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| // fold (fadd c1, c2) -> c1 + c2 |
| if (N0CFP && N1CFP) |
| return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags); |
| |
| // canonicalize constant to RHS |
| if (N0CFP && !N1CFP) |
| return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags); |
| |
| // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math) |
| ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true); |
| if (N1C && N1C->isZero()) |
| if (N1C->isNegative() || Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) |
| return N0; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // fold (fadd A, (fneg B)) -> (fsub A, B) |
| if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && |
| TLI.isNegatibleForFree(N1, DAG, LegalOperations, ForCodeSize) == 2) |
| return DAG.getNode( |
| ISD::FSUB, DL, VT, N0, |
| TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize), Flags); |
| |
| // fold (fadd (fneg A), B) -> (fsub B, A) |
| if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && |
| TLI.isNegatibleForFree(N0, DAG, LegalOperations, ForCodeSize) == 2) |
| return DAG.getNode( |
| ISD::FSUB, DL, VT, N1, |
| TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize), Flags); |
| |
| auto isFMulNegTwo = [](SDValue FMul) { |
| if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL) |
| return false; |
| auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true); |
| return C && C->isExactlyValue(-2.0); |
| }; |
| |
| // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B) |
| if (isFMulNegTwo(N0)) { |
| SDValue B = N0.getOperand(0); |
| SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags); |
| return DAG.getNode(ISD::FSUB, DL, VT, N1, Add, Flags); |
| } |
| // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B) |
| if (isFMulNegTwo(N1)) { |
| SDValue B = N1.getOperand(0); |
| SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags); |
| return DAG.getNode(ISD::FSUB, DL, VT, N0, Add, Flags); |
| } |
| |
| // No FP constant should be created after legalization as Instruction |
| // Selection pass has a hard time dealing with FP constants. |
| bool AllowNewConst = (Level < AfterLegalizeDAG); |
| |
| // If nnan is enabled, fold lots of things. |
| if ((Options.NoNaNsFPMath || Flags.hasNoNaNs()) && AllowNewConst) { |
| // If allowed, fold (fadd (fneg x), x) -> 0.0 |
| if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) |
| return DAG.getConstantFP(0.0, DL, VT); |
| |
| // If allowed, fold (fadd x, (fneg x)) -> 0.0 |
| if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) |
| return DAG.getConstantFP(0.0, DL, VT); |
| } |
| |
| // If 'unsafe math' or reassoc and nsz, fold lots of things. |
| // TODO: break out portions of the transformations below for which Unsafe is |
| // considered and which do not require both nsz and reassoc |
| if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || |
| (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && |
| AllowNewConst) { |
| // fadd (fadd x, c1), c2 -> fadd x, c1 + c2 |
| if (N1CFP && N0.getOpcode() == ISD::FADD && |
| isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { |
| SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1, Flags); |
| return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC, Flags); |
| } |
| |
| // We can fold chains of FADD's of the same value into multiplications. |
| // This transform is not safe in general because we are reducing the number |
| // of rounding steps. |
| if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { |
| if (N0.getOpcode() == ISD::FMUL) { |
| bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); |
| bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); |
| |
| // (fadd (fmul x, c), x) -> (fmul x, c+1) |
| if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { |
| SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), |
| DAG.getConstantFP(1.0, DL, VT), Flags); |
| return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags); |
| } |
| |
| // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) |
| if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && |
| N1.getOperand(0) == N1.getOperand(1) && |
| N0.getOperand(0) == N1.getOperand(0)) { |
| SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), |
| DAG.getConstantFP(2.0, DL, VT), Flags); |
| return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags); |
| } |
| } |
| |
| if (N1.getOpcode() == ISD::FMUL) { |
| bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); |
| bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); |
| |
| // (fadd x, (fmul x, c)) -> (fmul x, c+1) |
| if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { |
| SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), |
| DAG.getConstantFP(1.0, DL, VT), Flags); |
| return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags); |
| } |
| |
| // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) |
| if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && |
| N0.getOperand(0) == N0.getOperand(1) && |
| N1.getOperand(0) == N0.getOperand(0)) { |
| SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), |
| DAG.getConstantFP(2.0, DL, VT), Flags); |
| return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags); |
| } |
| } |
| |
| if (N0.getOpcode() == ISD::FADD) { |
| bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); |
| // (fadd (fadd x, x), x) -> (fmul x, 3.0) |
| if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && |
| (N0.getOperand(0) == N1)) { |
| return DAG.getNode(ISD::FMUL, DL, VT, |
| N1, DAG.getConstantFP(3.0, DL, VT), Flags); |
| } |
| } |
| |
| if (N1.getOpcode() == ISD::FADD) { |
| bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); |
| // (fadd x, (fadd x, x)) -> (fmul x, 3.0) |
| if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && |
| N1.getOperand(0) == N0) { |
| return DAG.getNode(ISD::FMUL, DL, VT, |
| N0, DAG.getConstantFP(3.0, DL, VT), Flags); |
| } |
| } |
| |
| // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) |
| if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && |
| N0.getOperand(0) == N0.getOperand(1) && |
| N1.getOperand(0) == N1.getOperand(1) && |
| N0.getOperand(0) == N1.getOperand(0)) { |
| return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), |
| DAG.getConstantFP(4.0, DL, VT), Flags); |
| } |
| } |
| } // enable-unsafe-fp-math |
| |
| // FADD -> FMA combines: |
| if (SDValue Fused = visitFADDForFMACombine(N)) { |
| AddToWorklist(Fused.getNode()); |
| return Fused; |
| } |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFSUB(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); |
| ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| const TargetOptions &Options = DAG.getTarget().Options; |
| const SDNodeFlags Flags = N->getFlags(); |
| |
| // fold vector ops |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| // fold (fsub c1, c2) -> c1-c2 |
| if (N0CFP && N1CFP) |
| return DAG.getNode(ISD::FSUB, DL, VT, N0, N1, Flags); |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // (fsub A, 0) -> A |
| if (N1CFP && N1CFP->isZero()) { |
| if (!N1CFP->isNegative() || Options.NoSignedZerosFPMath || |
| Flags.hasNoSignedZeros()) { |
| return N0; |
| } |
| } |
| |
| if (N0 == N1) { |
| // (fsub x, x) -> 0.0 |
| if (Options.NoNaNsFPMath || Flags.hasNoNaNs()) |
| return DAG.getConstantFP(0.0f, DL, VT); |
| } |
| |
| // (fsub -0.0, N1) -> -N1 |
| // NOTE: It is safe to transform an FSUB(-0.0,X) into an FNEG(X), since the |
| // FSUB does not specify the sign bit of a NaN. Also note that for |
| // the same reason, the inverse transform is not safe, unless fast math |
| // flags are in play. |
| if (N0CFP && N0CFP->isZero()) { |
| if (N0CFP->isNegative() || |
| (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) { |
| if (TLI.isNegatibleForFree(N1, DAG, LegalOperations, ForCodeSize)) |
| return TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize); |
| if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) |
| return DAG.getNode(ISD::FNEG, DL, VT, N1, Flags); |
| } |
| } |
| |
| if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || |
| (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && |
| N1.getOpcode() == ISD::FADD) { |
| // X - (X + Y) -> -Y |
| if (N0 == N1->getOperand(0)) |
| return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1), Flags); |
| // X - (Y + X) -> -Y |
| if (N0 == N1->getOperand(1)) |
| return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0), Flags); |
| } |
| |
| // fold (fsub A, (fneg B)) -> (fadd A, B) |
| if (TLI.isNegatibleForFree(N1, DAG, LegalOperations, ForCodeSize)) |
| return DAG.getNode( |
| ISD::FADD, DL, VT, N0, |
| TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize), Flags); |
| |
| // FSUB -> FMA combines: |
| if (SDValue Fused = visitFSUBForFMACombine(N)) { |
| AddToWorklist(Fused.getNode()); |
| return Fused; |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Return true if both inputs are at least as cheap in negated form and at |
| /// least one input is strictly cheaper in negated form. |
| bool DAGCombiner::isCheaperToUseNegatedFPOps(SDValue X, SDValue Y) { |
| if (char LHSNeg = |
| TLI.isNegatibleForFree(X, DAG, LegalOperations, ForCodeSize)) |
| if (char RHSNeg = |
| TLI.isNegatibleForFree(Y, DAG, LegalOperations, ForCodeSize)) |
| // Both negated operands are at least as cheap as their counterparts. |
| // Check to see if at least one is cheaper negated. |
| if (LHSNeg == 2 || RHSNeg == 2) |
| return true; |
| |
| return false; |
| } |
| |
| SDValue DAGCombiner::visitFMUL(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); |
| ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| const TargetOptions &Options = DAG.getTarget().Options; |
| const SDNodeFlags Flags = N->getFlags(); |
| |
| // fold vector ops |
| if (VT.isVector()) { |
| // This just handles C1 * C2 for vectors. Other vector folds are below. |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| } |
| |
| // fold (fmul c1, c2) -> c1*c2 |
| if (N0CFP && N1CFP) |
| return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags); |
| |
| // canonicalize constant to RHS |
| if (isConstantFPBuildVectorOrConstantFP(N0) && |
| !isConstantFPBuildVectorOrConstantFP(N1)) |
| return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags); |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| if ((Options.NoNaNsFPMath && Options.NoSignedZerosFPMath) || |
| (Flags.hasNoNaNs() && Flags.hasNoSignedZeros())) { |
| // fold (fmul A, 0) -> 0 |
| if (N1CFP && N1CFP->isZero()) |
| return N1; |
| } |
| |
| if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) { |
| // fmul (fmul X, C1), C2 -> fmul X, C1 * C2 |
| if (isConstantFPBuildVectorOrConstantFP(N1) && |
|