| //===-- Automaton.h - Support for driving TableGen-produced DFAs ----------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements class that drive and introspect deterministic finite- |
| // state automata (DFAs) as generated by TableGen's -gen-automata backend. |
| // |
| // For a description of how to define an automaton, see |
| // include/llvm/TableGen/Automaton.td. |
| // |
| // One important detail is that these deterministic automata are created from |
| // (potentially) nondeterministic definitions. Therefore a unique sequence of |
| // input symbols will produce one path through the DFA but multiple paths |
| // through the original NFA. An automaton by default only returns "accepted" or |
| // "not accepted", but frequently we want to analyze what NFA path was taken. |
| // Finding a path through the NFA states that results in a DFA state can help |
| // answer *what* the solution to a problem was, not just that there exists a |
| // solution. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_SUPPORT_AUTOMATON_H |
| #define LLVM_SUPPORT_AUTOMATON_H |
| |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Support/Allocator.h" |
| #include <deque> |
| #include <map> |
| #include <memory> |
| #include <unordered_map> |
| #include <vector> |
| |
| namespace llvm { |
| |
| using NfaPath = SmallVector<uint64_t, 4>; |
| |
| /// Forward define the pair type used by the automata transition info tables. |
| /// |
| /// Experimental results with large tables have shown a significant (multiple |
| /// orders of magnitude) parsing speedup by using a custom struct here with a |
| /// trivial constructor rather than std::pair<uint64_t, uint64_t>. |
| struct NfaStatePair { |
| uint64_t FromDfaState, ToDfaState; |
| |
| bool operator<(const NfaStatePair &Other) const { |
| return std::make_tuple(FromDfaState, ToDfaState) < |
| std::make_tuple(Other.FromDfaState, Other.ToDfaState); |
| } |
| }; |
| |
| namespace internal { |
| /// The internal class that maintains all possible paths through an NFA based |
| /// on a path through the DFA. |
| class NfaTranscriber { |
| private: |
| /// Cached transition table. This is a table of NfaStatePairs that contains |
| /// zero-terminated sequences pointed to by DFA transitions. |
| ArrayRef<NfaStatePair> TransitionInfo; |
| |
| /// A simple linked-list of traversed states that can have a shared tail. The |
| /// traversed path is stored in reverse order with the latest state as the |
| /// head. |
| struct PathSegment { |
| uint64_t State; |
| PathSegment *Tail; |
| }; |
| |
| /// We allocate segment objects frequently. Allocate them upfront and dispose |
| /// at the end of a traversal rather than hammering the system allocator. |
| SpecificBumpPtrAllocator<PathSegment> Allocator; |
| |
| /// Heads of each tracked path. These are not ordered. |
| std::deque<PathSegment *> Heads; |
| |
| /// The returned paths. This is populated during getPaths. |
| SmallVector<NfaPath, 4> Paths; |
| |
| /// Create a new segment and return it. |
| PathSegment *makePathSegment(uint64_t State, PathSegment *Tail) { |
| PathSegment *P = Allocator.Allocate(); |
| *P = {State, Tail}; |
| return P; |
| } |
| |
| /// Pairs defines a sequence of possible NFA transitions for a single DFA |
| /// transition. |
| void transition(ArrayRef<NfaStatePair> Pairs) { |
| // Iterate over all existing heads. We will mutate the Heads deque during |
| // iteration. |
| unsigned NumHeads = Heads.size(); |
| for (unsigned I = 0; I < NumHeads; ++I) { |
| PathSegment *Head = Heads[I]; |
| // The sequence of pairs is sorted. Select the set of pairs that |
| // transition from the current head state. |
| auto PI = lower_bound(Pairs, NfaStatePair{Head->State, 0ULL}); |
| auto PE = upper_bound(Pairs, NfaStatePair{Head->State, INT64_MAX}); |
| // For every transition from the current head state, add a new path |
| // segment. |
| for (; PI != PE; ++PI) |
| if (PI->FromDfaState == Head->State) |
| Heads.push_back(makePathSegment(PI->ToDfaState, Head)); |
| } |
| // Now we've iterated over all the initial heads and added new ones, |
| // dispose of the original heads. |
| Heads.erase(Heads.begin(), std::next(Heads.begin(), NumHeads)); |
| } |
| |
| public: |
| NfaTranscriber(ArrayRef<NfaStatePair> TransitionInfo) |
| : TransitionInfo(TransitionInfo) { |
| reset(); |
| } |
| |
| ArrayRef<NfaStatePair> getTransitionInfo() const { |
| return TransitionInfo; |
| } |
| |
| void reset() { |
| Paths.clear(); |
| Heads.clear(); |
| Allocator.DestroyAll(); |
| // The initial NFA state is 0. |
| Heads.push_back(makePathSegment(0ULL, nullptr)); |
| } |
| |
| void transition(unsigned TransitionInfoIdx) { |
| unsigned EndIdx = TransitionInfoIdx; |
| while (TransitionInfo[EndIdx].ToDfaState != 0) |
| ++EndIdx; |
| ArrayRef<NfaStatePair> Pairs(&TransitionInfo[TransitionInfoIdx], |
| EndIdx - TransitionInfoIdx); |
| transition(Pairs); |
| } |
| |
| ArrayRef<NfaPath> getPaths() { |
| Paths.clear(); |
| for (auto *Head : Heads) { |
| NfaPath P; |
| while (Head->State != 0) { |
| P.push_back(Head->State); |
| Head = Head->Tail; |
| } |
| std::reverse(P.begin(), P.end()); |
| Paths.push_back(std::move(P)); |
| } |
| return Paths; |
| } |
| }; |
| } // namespace internal |
| |
| /// A deterministic finite-state automaton. The automaton is defined in |
| /// TableGen; this object drives an automaton defined by tblgen-emitted tables. |
| /// |
| /// An automaton accepts a sequence of input tokens ("actions"). This class is |
| /// templated on the type of these actions. |
| template <typename ActionT> class Automaton { |
| /// Map from {State, Action} to {NewState, TransitionInfoIdx}. |
| /// TransitionInfoIdx is used by the DfaTranscriber to analyze the transition. |
| /// FIXME: This uses a std::map because ActionT can be a pair type including |
| /// an enum. In particular DenseMapInfo<ActionT> must be defined to use |
| /// DenseMap here. |
| /// This is a shared_ptr to allow very quick copy-construction of Automata; this |
| /// state is immutable after construction so this is safe. |
| using MapTy = std::map<std::pair<uint64_t, ActionT>, std::pair<uint64_t, unsigned>>; |
| std::shared_ptr<MapTy> M; |
| /// An optional transcription object. This uses much more state than simply |
| /// traversing the DFA for acceptance, so is heap allocated. |
| std::shared_ptr<internal::NfaTranscriber> Transcriber; |
| /// The initial DFA state is 1. |
| uint64_t State = 1; |
| /// True if we should transcribe and false if not (even if Transcriber is defined). |
| bool Transcribe; |
| |
| public: |
| /// Create an automaton. |
| /// \param Transitions The Transitions table as created by TableGen. Note that |
| /// because the action type differs per automaton, the |
| /// table type is templated as ArrayRef<InfoT>. |
| /// \param TranscriptionTable The TransitionInfo table as created by TableGen. |
| /// |
| /// Providing the TranscriptionTable argument as non-empty will enable the |
| /// use of transcription, which analyzes the possible paths in the original |
| /// NFA taken by the DFA. NOTE: This is substantially more work than simply |
| /// driving the DFA, so unless you require the getPaths() method leave this |
| /// empty. |
| template <typename InfoT> |
| Automaton(ArrayRef<InfoT> Transitions, |
| ArrayRef<NfaStatePair> TranscriptionTable = {}) { |
| if (!TranscriptionTable.empty()) |
| Transcriber = |
| std::make_shared<internal::NfaTranscriber>(TranscriptionTable); |
| Transcribe = Transcriber != nullptr; |
| M = std::make_shared<MapTy>(); |
| for (const auto &I : Transitions) |
| // Greedily read and cache the transition table. |
| M->emplace(std::make_pair(I.FromDfaState, I.Action), |
| std::make_pair(I.ToDfaState, I.InfoIdx)); |
| } |
| Automaton(const Automaton &Other) |
| : M(Other.M), State(Other.State), Transcribe(Other.Transcribe) { |
| // Transcriber is not thread-safe, so create a new instance on copy. |
| if (Other.Transcriber) |
| Transcriber = std::make_shared<internal::NfaTranscriber>( |
| Other.Transcriber->getTransitionInfo()); |
| } |
| |
| /// Reset the automaton to its initial state. |
| void reset() { |
| State = 1; |
| if (Transcriber) |
| Transcriber->reset(); |
| } |
| |
| /// Enable or disable transcription. Transcription is only available if |
| /// TranscriptionTable was provided to the constructor. |
| void enableTranscription(bool Enable = true) { |
| assert(Transcriber && |
| "Transcription is only available if TranscriptionTable was provided " |
| "to the Automaton constructor"); |
| Transcribe = Enable; |
| } |
| |
| /// Transition the automaton based on input symbol A. Return true if the |
| /// automaton transitioned to a valid state, false if the automaton |
| /// transitioned to an invalid state. |
| /// |
| /// If this function returns false, all methods are undefined until reset() is |
| /// called. |
| bool add(const ActionT &A) { |
| auto I = M->find({State, A}); |
| if (I == M->end()) |
| return false; |
| if (Transcriber && Transcribe) |
| Transcriber->transition(I->second.second); |
| State = I->second.first; |
| return true; |
| } |
| |
| /// Return true if the automaton can be transitioned based on input symbol A. |
| bool canAdd(const ActionT &A) { |
| auto I = M->find({State, A}); |
| return I != M->end(); |
| } |
| |
| /// Obtain a set of possible paths through the input nondeterministic |
| /// automaton that could be obtained from the sequence of input actions |
| /// presented to this deterministic automaton. |
| ArrayRef<NfaPath> getNfaPaths() { |
| assert(Transcriber && Transcribe && |
| "Can only obtain NFA paths if transcribing!"); |
| return Transcriber->getPaths(); |
| } |
| }; |
| |
| } // namespace llvm |
| |
| #endif // LLVM_SUPPORT_AUTOMATON_H |