blob: dd32a3b9e38e4bf61d4a64a0d10f05864b5aecf2 [file] [log] [blame]
//===-- llvm/CodeGen/GlobalISel/LegalizationArtifactCombiner.h -----*- C++ -*-//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file contains some helper functions which try to cleanup artifacts
// such as G_TRUNCs/G_[ZSA]EXTENDS that were created during legalization to make
// the types match. This file also contains some combines of merges that happens
// at the end of the legalization.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "legalizer"
using namespace llvm::MIPatternMatch;
namespace llvm {
class LegalizationArtifactCombiner {
MachineIRBuilder &Builder;
MachineRegisterInfo &MRI;
const LegalizerInfo &LI;
static bool isArtifactCast(unsigned Opc) {
switch (Opc) {
case TargetOpcode::G_TRUNC:
case TargetOpcode::G_SEXT:
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_ANYEXT:
return true;
default:
return false;
}
}
public:
LegalizationArtifactCombiner(MachineIRBuilder &B, MachineRegisterInfo &MRI,
const LegalizerInfo &LI)
: Builder(B), MRI(MRI), LI(LI) {}
bool tryCombineAnyExt(MachineInstr &MI,
SmallVectorImpl<MachineInstr *> &DeadInsts,
SmallVectorImpl<Register> &UpdatedDefs) {
assert(MI.getOpcode() == TargetOpcode::G_ANYEXT);
Builder.setInstr(MI);
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = lookThroughCopyInstrs(MI.getOperand(1).getReg());
// aext(trunc x) - > aext/copy/trunc x
Register TruncSrc;
if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) {
LLVM_DEBUG(dbgs() << ".. Combine MI: " << MI;);
Builder.buildAnyExtOrTrunc(DstReg, TruncSrc);
UpdatedDefs.push_back(DstReg);
markInstAndDefDead(MI, *MRI.getVRegDef(SrcReg), DeadInsts);
return true;
}
// aext([asz]ext x) -> [asz]ext x
Register ExtSrc;
MachineInstr *ExtMI;
if (mi_match(SrcReg, MRI,
m_all_of(m_MInstr(ExtMI), m_any_of(m_GAnyExt(m_Reg(ExtSrc)),
m_GSExt(m_Reg(ExtSrc)),
m_GZExt(m_Reg(ExtSrc)))))) {
Builder.buildInstr(ExtMI->getOpcode(), {DstReg}, {ExtSrc});
UpdatedDefs.push_back(DstReg);
markInstAndDefDead(MI, *ExtMI, DeadInsts);
return true;
}
// Try to fold aext(g_constant) when the larger constant type is legal.
// Can't use MIPattern because we don't have a specific constant in mind.
auto *SrcMI = MRI.getVRegDef(SrcReg);
if (SrcMI->getOpcode() == TargetOpcode::G_CONSTANT) {
const LLT &DstTy = MRI.getType(DstReg);
if (isInstLegal({TargetOpcode::G_CONSTANT, {DstTy}})) {
auto &CstVal = SrcMI->getOperand(1);
Builder.buildConstant(
DstReg, CstVal.getCImm()->getValue().sext(DstTy.getSizeInBits()));
UpdatedDefs.push_back(DstReg);
markInstAndDefDead(MI, *SrcMI, DeadInsts);
return true;
}
}
return tryFoldImplicitDef(MI, DeadInsts, UpdatedDefs);
}
bool tryCombineZExt(MachineInstr &MI,
SmallVectorImpl<MachineInstr *> &DeadInsts,
SmallVectorImpl<Register> &UpdatedDefs) {
assert(MI.getOpcode() == TargetOpcode::G_ZEXT);
Builder.setInstr(MI);
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = lookThroughCopyInstrs(MI.getOperand(1).getReg());
// zext(trunc x) - > and (aext/copy/trunc x), mask
Register TruncSrc;
if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) {
LLT DstTy = MRI.getType(DstReg);
if (isInstUnsupported({TargetOpcode::G_AND, {DstTy}}) ||
isConstantUnsupported(DstTy))
return false;
LLVM_DEBUG(dbgs() << ".. Combine MI: " << MI;);
LLT SrcTy = MRI.getType(SrcReg);
APInt Mask = APInt::getAllOnesValue(SrcTy.getScalarSizeInBits());
auto MIBMask = Builder.buildConstant(
DstTy, Mask.zext(DstTy.getScalarSizeInBits()));
Builder.buildAnd(DstReg, Builder.buildAnyExtOrTrunc(DstTy, TruncSrc),
MIBMask);
markInstAndDefDead(MI, *MRI.getVRegDef(SrcReg), DeadInsts);
return true;
}
// Try to fold zext(g_constant) when the larger constant type is legal.
// Can't use MIPattern because we don't have a specific constant in mind.
auto *SrcMI = MRI.getVRegDef(SrcReg);
if (SrcMI->getOpcode() == TargetOpcode::G_CONSTANT) {
const LLT &DstTy = MRI.getType(DstReg);
if (isInstLegal({TargetOpcode::G_CONSTANT, {DstTy}})) {
auto &CstVal = SrcMI->getOperand(1);
Builder.buildConstant(
DstReg, CstVal.getCImm()->getValue().zext(DstTy.getSizeInBits()));
UpdatedDefs.push_back(DstReg);
markInstAndDefDead(MI, *SrcMI, DeadInsts);
return true;
}
}
return tryFoldImplicitDef(MI, DeadInsts, UpdatedDefs);
}
bool tryCombineSExt(MachineInstr &MI,
SmallVectorImpl<MachineInstr *> &DeadInsts,
SmallVectorImpl<Register> &UpdatedDefs) {
assert(MI.getOpcode() == TargetOpcode::G_SEXT);
Builder.setInstr(MI);
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = lookThroughCopyInstrs(MI.getOperand(1).getReg());
// sext(trunc x) - > (sext_inreg (aext/copy/trunc x), c)
Register TruncSrc;
if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) {
LLT DstTy = MRI.getType(DstReg);
if (isInstUnsupported({TargetOpcode::G_SEXT_INREG, {DstTy}}))
return false;
LLVM_DEBUG(dbgs() << ".. Combine MI: " << MI;);
LLT SrcTy = MRI.getType(SrcReg);
uint64_t SizeInBits = SrcTy.getScalarSizeInBits();
Builder.buildInstr(
TargetOpcode::G_SEXT_INREG, {DstReg},
{Builder.buildAnyExtOrTrunc(DstTy, TruncSrc), SizeInBits});
markInstAndDefDead(MI, *MRI.getVRegDef(SrcReg), DeadInsts);
return true;
}
return tryFoldImplicitDef(MI, DeadInsts, UpdatedDefs);
}
bool tryCombineTrunc(MachineInstr &MI,
SmallVectorImpl<MachineInstr *> &DeadInsts,
SmallVectorImpl<Register> &UpdatedDefs) {
assert(MI.getOpcode() == TargetOpcode::G_TRUNC);
Builder.setInstr(MI);
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = lookThroughCopyInstrs(MI.getOperand(1).getReg());
// Try to fold trunc(g_constant) when the smaller constant type is legal.
// Can't use MIPattern because we don't have a specific constant in mind.
auto *SrcMI = MRI.getVRegDef(SrcReg);
if (SrcMI->getOpcode() == TargetOpcode::G_CONSTANT) {
const LLT &DstTy = MRI.getType(DstReg);
if (isInstLegal({TargetOpcode::G_CONSTANT, {DstTy}})) {
auto &CstVal = SrcMI->getOperand(1);
Builder.buildConstant(
DstReg, CstVal.getCImm()->getValue().trunc(DstTy.getSizeInBits()));
UpdatedDefs.push_back(DstReg);
markInstAndDefDead(MI, *SrcMI, DeadInsts);
return true;
}
}
return false;
}
/// Try to fold G_[ASZ]EXT (G_IMPLICIT_DEF).
bool tryFoldImplicitDef(MachineInstr &MI,
SmallVectorImpl<MachineInstr *> &DeadInsts,
SmallVectorImpl<Register> &UpdatedDefs) {
unsigned Opcode = MI.getOpcode();
assert(Opcode == TargetOpcode::G_ANYEXT || Opcode == TargetOpcode::G_ZEXT ||
Opcode == TargetOpcode::G_SEXT);
if (MachineInstr *DefMI = getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF,
MI.getOperand(1).getReg(), MRI)) {
Builder.setInstr(MI);
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
if (Opcode == TargetOpcode::G_ANYEXT) {
// G_ANYEXT (G_IMPLICIT_DEF) -> G_IMPLICIT_DEF
if (isInstUnsupported({TargetOpcode::G_IMPLICIT_DEF, {DstTy}}))
return false;
LLVM_DEBUG(dbgs() << ".. Combine G_ANYEXT(G_IMPLICIT_DEF): " << MI;);
Builder.buildInstr(TargetOpcode::G_IMPLICIT_DEF, {DstReg}, {});
UpdatedDefs.push_back(DstReg);
} else {
// G_[SZ]EXT (G_IMPLICIT_DEF) -> G_CONSTANT 0 because the top
// bits will be 0 for G_ZEXT and 0/1 for the G_SEXT.
if (isConstantUnsupported(DstTy))
return false;
LLVM_DEBUG(dbgs() << ".. Combine G_[SZ]EXT(G_IMPLICIT_DEF): " << MI;);
Builder.buildConstant(DstReg, 0);
UpdatedDefs.push_back(DstReg);
}
markInstAndDefDead(MI, *DefMI, DeadInsts);
return true;
}
return false;
}
static bool canFoldMergeOpcode(unsigned MergeOp, unsigned ConvertOp,
LLT OpTy, LLT DestTy) {
// Check if we found a definition that is like G_MERGE_VALUES.
switch (MergeOp) {
default:
return false;
case TargetOpcode::G_BUILD_VECTOR:
case TargetOpcode::G_MERGE_VALUES:
// The convert operation that we will need to insert is
// going to convert the input of that type of instruction (scalar)
// to the destination type (DestTy).
// The conversion needs to stay in the same domain (scalar to scalar
// and vector to vector), so if we were to allow to fold the merge
// we would need to insert some bitcasts.
// E.g.,
// <2 x s16> = build_vector s16, s16
// <2 x s32> = zext <2 x s16>
// <2 x s16>, <2 x s16> = unmerge <2 x s32>
//
// As is the folding would produce:
// <2 x s16> = zext s16 <-- scalar to vector
// <2 x s16> = zext s16 <-- scalar to vector
// Which is invalid.
// Instead we would want to generate:
// s32 = zext s16
// <2 x s16> = bitcast s32
// s32 = zext s16
// <2 x s16> = bitcast s32
//
// That is not done yet.
if (ConvertOp == 0)
return true;
return !DestTy.isVector();
case TargetOpcode::G_CONCAT_VECTORS: {
if (ConvertOp == 0)
return true;
if (!DestTy.isVector())
return false;
const unsigned OpEltSize = OpTy.getElementType().getSizeInBits();
// Don't handle scalarization with a cast that isn't in the same
// direction as the vector cast. This could be handled, but it would
// require more intermediate unmerges.
if (ConvertOp == TargetOpcode::G_TRUNC)
return DestTy.getSizeInBits() <= OpEltSize;
return DestTy.getSizeInBits() >= OpEltSize;
}
}
}
bool tryCombineMerges(MachineInstr &MI,
SmallVectorImpl<MachineInstr *> &DeadInsts,
SmallVectorImpl<Register> &UpdatedDefs) {
assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
unsigned NumDefs = MI.getNumOperands() - 1;
MachineInstr *SrcDef =
getDefIgnoringCopies(MI.getOperand(NumDefs).getReg(), MRI);
if (!SrcDef)
return false;
LLT OpTy = MRI.getType(MI.getOperand(NumDefs).getReg());
LLT DestTy = MRI.getType(MI.getOperand(0).getReg());
MachineInstr *MergeI = SrcDef;
unsigned ConvertOp = 0;
// Handle intermediate conversions
unsigned SrcOp = SrcDef->getOpcode();
if (isArtifactCast(SrcOp)) {
ConvertOp = SrcOp;
MergeI = getDefIgnoringCopies(SrcDef->getOperand(1).getReg(), MRI);
}
if (!MergeI || !canFoldMergeOpcode(MergeI->getOpcode(),
ConvertOp, OpTy, DestTy))
return false;
const unsigned NumMergeRegs = MergeI->getNumOperands() - 1;
if (NumMergeRegs < NumDefs) {
if (NumDefs % NumMergeRegs != 0)
return false;
Builder.setInstr(MI);
// Transform to UNMERGEs, for example
// %1 = G_MERGE_VALUES %4, %5
// %9, %10, %11, %12 = G_UNMERGE_VALUES %1
// to
// %9, %10 = G_UNMERGE_VALUES %4
// %11, %12 = G_UNMERGE_VALUES %5
const unsigned NewNumDefs = NumDefs / NumMergeRegs;
for (unsigned Idx = 0; Idx < NumMergeRegs; ++Idx) {
SmallVector<Register, 2> DstRegs;
for (unsigned j = 0, DefIdx = Idx * NewNumDefs; j < NewNumDefs;
++j, ++DefIdx)
DstRegs.push_back(MI.getOperand(DefIdx).getReg());
if (ConvertOp) {
SmallVector<Register, 2> TmpRegs;
// This is a vector that is being scalarized and casted. Extract to
// the element type, and do the conversion on the scalars.
LLT MergeEltTy =
MRI.getType(MergeI->getOperand(0).getReg()).getElementType();
for (unsigned j = 0; j < NumMergeRegs; ++j)
TmpRegs.push_back(MRI.createGenericVirtualRegister(MergeEltTy));
Builder.buildUnmerge(TmpRegs, MergeI->getOperand(Idx + 1).getReg());
for (unsigned j = 0; j < NumMergeRegs; ++j)
Builder.buildInstr(ConvertOp, {DstRegs[j]}, {TmpRegs[j]});
} else {
Builder.buildUnmerge(DstRegs, MergeI->getOperand(Idx + 1).getReg());
}
UpdatedDefs.append(DstRegs.begin(), DstRegs.end());
}
} else if (NumMergeRegs > NumDefs) {
if (ConvertOp != 0 || NumMergeRegs % NumDefs != 0)
return false;
Builder.setInstr(MI);
// Transform to MERGEs
// %6 = G_MERGE_VALUES %17, %18, %19, %20
// %7, %8 = G_UNMERGE_VALUES %6
// to
// %7 = G_MERGE_VALUES %17, %18
// %8 = G_MERGE_VALUES %19, %20
const unsigned NumRegs = NumMergeRegs / NumDefs;
for (unsigned DefIdx = 0; DefIdx < NumDefs; ++DefIdx) {
SmallVector<Register, 2> Regs;
for (unsigned j = 0, Idx = NumRegs * DefIdx + 1; j < NumRegs;
++j, ++Idx)
Regs.push_back(MergeI->getOperand(Idx).getReg());
Register DefReg = MI.getOperand(DefIdx).getReg();
Builder.buildMerge(DefReg, Regs);
UpdatedDefs.push_back(DefReg);
}
} else {
LLT MergeSrcTy = MRI.getType(MergeI->getOperand(1).getReg());
if (!ConvertOp && DestTy != MergeSrcTy)
ConvertOp = TargetOpcode::G_BITCAST;
if (ConvertOp) {
Builder.setInstr(MI);
for (unsigned Idx = 0; Idx < NumDefs; ++Idx) {
Register MergeSrc = MergeI->getOperand(Idx + 1).getReg();
Register DefReg = MI.getOperand(Idx).getReg();
Builder.buildInstr(ConvertOp, {DefReg}, {MergeSrc});
UpdatedDefs.push_back(DefReg);
}
markInstAndDefDead(MI, *MergeI, DeadInsts);
return true;
}
assert(DestTy == MergeSrcTy &&
"Bitcast and the other kinds of conversions should "
"have happened earlier");
for (unsigned Idx = 0; Idx < NumDefs; ++Idx) {
Register NewDef = MergeI->getOperand(Idx + 1).getReg();
MRI.replaceRegWith(MI.getOperand(Idx).getReg(), NewDef);
UpdatedDefs.push_back(NewDef);
}
}
markInstAndDefDead(MI, *MergeI, DeadInsts);
return true;
}
static bool isMergeLikeOpcode(unsigned Opc) {
switch (Opc) {
case TargetOpcode::G_MERGE_VALUES:
case TargetOpcode::G_BUILD_VECTOR:
case TargetOpcode::G_CONCAT_VECTORS:
return true;
default:
return false;
}
}
bool tryCombineExtract(MachineInstr &MI,
SmallVectorImpl<MachineInstr *> &DeadInsts,
SmallVectorImpl<Register> &UpdatedDefs) {
assert(MI.getOpcode() == TargetOpcode::G_EXTRACT);
// Try to use the source registers from a G_MERGE_VALUES
//
// %2 = G_MERGE_VALUES %0, %1
// %3 = G_EXTRACT %2, N
// =>
//
// for N < %2.getSizeInBits() / 2
// %3 = G_EXTRACT %0, N
//
// for N >= %2.getSizeInBits() / 2
// %3 = G_EXTRACT %1, (N - %0.getSizeInBits()
Register SrcReg = lookThroughCopyInstrs(MI.getOperand(1).getReg());
MachineInstr *MergeI = MRI.getVRegDef(SrcReg);
if (!MergeI || !isMergeLikeOpcode(MergeI->getOpcode()))
return false;
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
LLT SrcTy = MRI.getType(SrcReg);
// TODO: Do we need to check if the resulting extract is supported?
unsigned ExtractDstSize = DstTy.getSizeInBits();
unsigned Offset = MI.getOperand(2).getImm();
unsigned NumMergeSrcs = MergeI->getNumOperands() - 1;
unsigned MergeSrcSize = SrcTy.getSizeInBits() / NumMergeSrcs;
unsigned MergeSrcIdx = Offset / MergeSrcSize;
// Compute the offset of the last bit the extract needs.
unsigned EndMergeSrcIdx = (Offset + ExtractDstSize - 1) / MergeSrcSize;
// Can't handle the case where the extract spans multiple inputs.
if (MergeSrcIdx != EndMergeSrcIdx)
return false;
// TODO: We could modify MI in place in most cases.
Builder.setInstr(MI);
Builder.buildExtract(DstReg, MergeI->getOperand(MergeSrcIdx + 1).getReg(),
Offset - MergeSrcIdx * MergeSrcSize);
UpdatedDefs.push_back(DstReg);
markInstAndDefDead(MI, *MergeI, DeadInsts);
return true;
}
/// Try to combine away MI.
/// Returns true if it combined away the MI.
/// Adds instructions that are dead as a result of the combine
/// into DeadInsts, which can include MI.
bool tryCombineInstruction(MachineInstr &MI,
SmallVectorImpl<MachineInstr *> &DeadInsts,
GISelObserverWrapper &WrapperObserver) {
// This might be a recursive call, and we might have DeadInsts already
// populated. To avoid bad things happening later with multiple vreg defs
// etc, process the dead instructions now if any.
if (!DeadInsts.empty())
deleteMarkedDeadInsts(DeadInsts, WrapperObserver);
// Put here every vreg that was redefined in such a way that it's at least
// possible that one (or more) of its users (immediate or COPY-separated)
// could become artifact combinable with the new definition (or the
// instruction reachable from it through a chain of copies if any).
SmallVector<Register, 4> UpdatedDefs;
bool Changed = false;
switch (MI.getOpcode()) {
default:
return false;
case TargetOpcode::G_ANYEXT:
Changed = tryCombineAnyExt(MI, DeadInsts, UpdatedDefs);
break;
case TargetOpcode::G_ZEXT:
Changed = tryCombineZExt(MI, DeadInsts, UpdatedDefs);
break;
case TargetOpcode::G_SEXT:
Changed = tryCombineSExt(MI, DeadInsts, UpdatedDefs);
break;
case TargetOpcode::G_UNMERGE_VALUES:
Changed = tryCombineMerges(MI, DeadInsts, UpdatedDefs);
break;
case TargetOpcode::G_EXTRACT:
Changed = tryCombineExtract(MI, DeadInsts, UpdatedDefs);
break;
case TargetOpcode::G_TRUNC:
Changed = tryCombineTrunc(MI, DeadInsts, UpdatedDefs);
if (!Changed) {
// Try to combine truncates away even if they are legal. As all artifact
// combines at the moment look only "up" the def-use chains, we achieve
// that by throwing truncates' users (with look through copies) into the
// ArtifactList again.
UpdatedDefs.push_back(MI.getOperand(0).getReg());
}
break;
}
// If the main loop through the ArtifactList found at least one combinable
// pair of artifacts, not only combine it away (as done above), but also
// follow the def-use chain from there to combine everything that can be
// combined within this def-use chain of artifacts.
while (!UpdatedDefs.empty()) {
Register NewDef = UpdatedDefs.pop_back_val();
assert(NewDef.isVirtual() && "Unexpected redefinition of a physreg");
for (MachineInstr &Use : MRI.use_instructions(NewDef)) {
switch (Use.getOpcode()) {
// Keep this list in sync with the list of all artifact combines.
case TargetOpcode::G_ANYEXT:
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_SEXT:
case TargetOpcode::G_UNMERGE_VALUES:
case TargetOpcode::G_EXTRACT:
case TargetOpcode::G_TRUNC:
// Adding Use to ArtifactList.
WrapperObserver.changedInstr(Use);
break;
case TargetOpcode::COPY: {
Register Copy = Use.getOperand(0).getReg();
if (Copy.isVirtual())
UpdatedDefs.push_back(Copy);
break;
}
default:
// If we do not have an artifact combine for the opcode, there is no
// point in adding it to the ArtifactList as nothing interesting will
// be done to it anyway.
break;
}
}
}
return Changed;
}
private:
static unsigned getArtifactSrcReg(const MachineInstr &MI) {
switch (MI.getOpcode()) {
case TargetOpcode::COPY:
case TargetOpcode::G_TRUNC:
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_ANYEXT:
case TargetOpcode::G_SEXT:
case TargetOpcode::G_UNMERGE_VALUES:
return MI.getOperand(MI.getNumOperands() - 1).getReg();
case TargetOpcode::G_EXTRACT:
return MI.getOperand(1).getReg();
default:
llvm_unreachable("Not a legalization artifact happen");
}
}
/// Mark MI as dead. If a def of one of MI's operands, DefMI, would also be
/// dead due to MI being killed, then mark DefMI as dead too.
/// Some of the combines (extends(trunc)), try to walk through redundant
/// copies in between the extends and the truncs, and this attempts to collect
/// the in between copies if they're dead.
void markInstAndDefDead(MachineInstr &MI, MachineInstr &DefMI,
SmallVectorImpl<MachineInstr *> &DeadInsts) {
DeadInsts.push_back(&MI);
// Collect all the copy instructions that are made dead, due to deleting
// this instruction. Collect all of them until the Trunc(DefMI).
// Eg,
// %1(s1) = G_TRUNC %0(s32)
// %2(s1) = COPY %1(s1)
// %3(s1) = COPY %2(s1)
// %4(s32) = G_ANYEXT %3(s1)
// In this case, we would have replaced %4 with a copy of %0,
// and as a result, %3, %2, %1 are dead.
MachineInstr *PrevMI = &MI;
while (PrevMI != &DefMI) {
unsigned PrevRegSrc = getArtifactSrcReg(*PrevMI);
MachineInstr *TmpDef = MRI.getVRegDef(PrevRegSrc);
if (MRI.hasOneUse(PrevRegSrc)) {
if (TmpDef != &DefMI) {
assert((TmpDef->getOpcode() == TargetOpcode::COPY ||
isArtifactCast(TmpDef->getOpcode())) &&
"Expecting copy or artifact cast here");
DeadInsts.push_back(TmpDef);
}
} else
break;
PrevMI = TmpDef;
}
if (PrevMI == &DefMI && MRI.hasOneUse(DefMI.getOperand(0).getReg()))
DeadInsts.push_back(&DefMI);
}
/// Erase the dead instructions in the list and call the observer hooks.
/// Normally the Legalizer will deal with erasing instructions that have been
/// marked dead. However, for the trunc(ext(x)) cases we can end up trying to
/// process instructions which have been marked dead, but otherwise break the
/// MIR by introducing multiple vreg defs. For those cases, allow the combines
/// to explicitly delete the instructions before we run into trouble.
void deleteMarkedDeadInsts(SmallVectorImpl<MachineInstr *> &DeadInsts,
GISelObserverWrapper &WrapperObserver) {
for (auto *DeadMI : DeadInsts) {
LLVM_DEBUG(dbgs() << *DeadMI << "Is dead, eagerly deleting\n");
WrapperObserver.erasingInstr(*DeadMI);
DeadMI->eraseFromParentAndMarkDBGValuesForRemoval();
}
DeadInsts.clear();
}
/// Checks if the target legalizer info has specified anything about the
/// instruction, or if unsupported.
bool isInstUnsupported(const LegalityQuery &Query) const {
using namespace LegalizeActions;
auto Step = LI.getAction(Query);
return Step.Action == Unsupported || Step.Action == NotFound;
}
bool isInstLegal(const LegalityQuery &Query) const {
return LI.getAction(Query).Action == LegalizeActions::Legal;
}
bool isConstantUnsupported(LLT Ty) const {
if (!Ty.isVector())
return isInstUnsupported({TargetOpcode::G_CONSTANT, {Ty}});
LLT EltTy = Ty.getElementType();
return isInstUnsupported({TargetOpcode::G_CONSTANT, {EltTy}}) ||
isInstUnsupported({TargetOpcode::G_BUILD_VECTOR, {Ty, EltTy}});
}
/// Looks through copy instructions and returns the actual
/// source register.
unsigned lookThroughCopyInstrs(Register Reg) {
Register TmpReg;
while (mi_match(Reg, MRI, m_Copy(m_Reg(TmpReg)))) {
if (MRI.getType(TmpReg).isValid())
Reg = TmpReg;
else
break;
}
return Reg;
}
};
} // namespace llvm