| //===- llvm/ADT/SparseMultiSet.h - Sparse multiset --------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the SparseMultiSet class, which adds multiset behavior to |
| // the SparseSet. |
| // |
| // A sparse multiset holds a small number of objects identified by integer keys |
| // from a moderately sized universe. The sparse multiset uses more memory than |
| // other containers in order to provide faster operations. Any key can map to |
| // multiple values. A SparseMultiSetNode class is provided, which serves as a |
| // convenient base class for the contents of a SparseMultiSet. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ADT_SPARSEMULTISET_H |
| #define LLVM_ADT_SPARSEMULTISET_H |
| |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/SparseSet.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <cstdlib> |
| #include <iterator> |
| #include <limits> |
| #include <utility> |
| |
| namespace llvm { |
| |
| /// Fast multiset implementation for objects that can be identified by small |
| /// unsigned keys. |
| /// |
| /// SparseMultiSet allocates memory proportional to the size of the key |
| /// universe, so it is not recommended for building composite data structures. |
| /// It is useful for algorithms that require a single set with fast operations. |
| /// |
| /// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time |
| /// fast clear() as fast as a vector. The find(), insert(), and erase() |
| /// operations are all constant time, and typically faster than a hash table. |
| /// The iteration order doesn't depend on numerical key values, it only depends |
| /// on the order of insert() and erase() operations. Iteration order is the |
| /// insertion order. Iteration is only provided over elements of equivalent |
| /// keys, but iterators are bidirectional. |
| /// |
| /// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but |
| /// offers constant-time clear() and size() operations as well as fast iteration |
| /// independent on the size of the universe. |
| /// |
| /// SparseMultiSet contains a dense vector holding all the objects and a sparse |
| /// array holding indexes into the dense vector. Most of the memory is used by |
| /// the sparse array which is the size of the key universe. The SparseT template |
| /// parameter provides a space/speed tradeoff for sets holding many elements. |
| /// |
| /// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the |
| /// sparse array uses 4 x Universe bytes. |
| /// |
| /// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache |
| /// lines, but the sparse array is 4x smaller. N is the number of elements in |
| /// the set. |
| /// |
| /// For sets that may grow to thousands of elements, SparseT should be set to |
| /// uint16_t or uint32_t. |
| /// |
| /// Multiset behavior is provided by providing doubly linked lists for values |
| /// that are inlined in the dense vector. SparseMultiSet is a good choice when |
| /// one desires a growable number of entries per key, as it will retain the |
| /// SparseSet algorithmic properties despite being growable. Thus, it is often a |
| /// better choice than a SparseSet of growable containers or a vector of |
| /// vectors. SparseMultiSet also keeps iterators valid after erasure (provided |
| /// the iterators don't point to the element erased), allowing for more |
| /// intuitive and fast removal. |
| /// |
| /// @tparam ValueT The type of objects in the set. |
| /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT. |
| /// @tparam SparseT An unsigned integer type. See above. |
| /// |
| template<typename ValueT, |
| typename KeyFunctorT = identity<unsigned>, |
| typename SparseT = uint8_t> |
| class SparseMultiSet { |
| static_assert(std::numeric_limits<SparseT>::is_integer && |
| !std::numeric_limits<SparseT>::is_signed, |
| "SparseT must be an unsigned integer type"); |
| |
| /// The actual data that's stored, as a doubly-linked list implemented via |
| /// indices into the DenseVector. The doubly linked list is implemented |
| /// circular in Prev indices, and INVALID-terminated in Next indices. This |
| /// provides efficient access to list tails. These nodes can also be |
| /// tombstones, in which case they are actually nodes in a single-linked |
| /// freelist of recyclable slots. |
| struct SMSNode { |
| static const unsigned INVALID = ~0U; |
| |
| ValueT Data; |
| unsigned Prev; |
| unsigned Next; |
| |
| SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) {} |
| |
| /// List tails have invalid Nexts. |
| bool isTail() const { |
| return Next == INVALID; |
| } |
| |
| /// Whether this node is a tombstone node, and thus is in our freelist. |
| bool isTombstone() const { |
| return Prev == INVALID; |
| } |
| |
| /// Since the list is circular in Prev, all non-tombstone nodes have a valid |
| /// Prev. |
| bool isValid() const { return Prev != INVALID; } |
| }; |
| |
| using KeyT = typename KeyFunctorT::argument_type; |
| using DenseT = SmallVector<SMSNode, 8>; |
| DenseT Dense; |
| SparseT *Sparse = nullptr; |
| unsigned Universe = 0; |
| KeyFunctorT KeyIndexOf; |
| SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf; |
| |
| /// We have a built-in recycler for reusing tombstone slots. This recycler |
| /// puts a singly-linked free list into tombstone slots, allowing us quick |
| /// erasure, iterator preservation, and dense size. |
| unsigned FreelistIdx = SMSNode::INVALID; |
| unsigned NumFree = 0; |
| |
| unsigned sparseIndex(const ValueT &Val) const { |
| assert(ValIndexOf(Val) < Universe && |
| "Invalid key in set. Did object mutate?"); |
| return ValIndexOf(Val); |
| } |
| unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); } |
| |
| /// Whether the given entry is the head of the list. List heads's previous |
| /// pointers are to the tail of the list, allowing for efficient access to the |
| /// list tail. D must be a valid entry node. |
| bool isHead(const SMSNode &D) const { |
| assert(D.isValid() && "Invalid node for head"); |
| return Dense[D.Prev].isTail(); |
| } |
| |
| /// Whether the given entry is a singleton entry, i.e. the only entry with |
| /// that key. |
| bool isSingleton(const SMSNode &N) const { |
| assert(N.isValid() && "Invalid node for singleton"); |
| // Is N its own predecessor? |
| return &Dense[N.Prev] == &N; |
| } |
| |
| /// Add in the given SMSNode. Uses a free entry in our freelist if |
| /// available. Returns the index of the added node. |
| unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) { |
| if (NumFree == 0) { |
| Dense.push_back(SMSNode(V, Prev, Next)); |
| return Dense.size() - 1; |
| } |
| |
| // Peel off a free slot |
| unsigned Idx = FreelistIdx; |
| unsigned NextFree = Dense[Idx].Next; |
| assert(Dense[Idx].isTombstone() && "Non-tombstone free?"); |
| |
| Dense[Idx] = SMSNode(V, Prev, Next); |
| FreelistIdx = NextFree; |
| --NumFree; |
| return Idx; |
| } |
| |
| /// Make the current index a new tombstone. Pushes it onto the freelist. |
| void makeTombstone(unsigned Idx) { |
| Dense[Idx].Prev = SMSNode::INVALID; |
| Dense[Idx].Next = FreelistIdx; |
| FreelistIdx = Idx; |
| ++NumFree; |
| } |
| |
| public: |
| using value_type = ValueT; |
| using reference = ValueT &; |
| using const_reference = const ValueT &; |
| using pointer = ValueT *; |
| using const_pointer = const ValueT *; |
| using size_type = unsigned; |
| |
| SparseMultiSet() = default; |
| SparseMultiSet(const SparseMultiSet &) = delete; |
| SparseMultiSet &operator=(const SparseMultiSet &) = delete; |
| ~SparseMultiSet() { free(Sparse); } |
| |
| /// Set the universe size which determines the largest key the set can hold. |
| /// The universe must be sized before any elements can be added. |
| /// |
| /// @param U Universe size. All object keys must be less than U. |
| /// |
| void setUniverse(unsigned U) { |
| // It's not hard to resize the universe on a non-empty set, but it doesn't |
| // seem like a likely use case, so we can add that code when we need it. |
| assert(empty() && "Can only resize universe on an empty map"); |
| // Hysteresis prevents needless reallocations. |
| if (U >= Universe/4 && U <= Universe) |
| return; |
| free(Sparse); |
| // The Sparse array doesn't actually need to be initialized, so malloc |
| // would be enough here, but that will cause tools like valgrind to |
| // complain about branching on uninitialized data. |
| Sparse = static_cast<SparseT*>(safe_calloc(U, sizeof(SparseT))); |
| Universe = U; |
| } |
| |
| /// Our iterators are iterators over the collection of objects that share a |
| /// key. |
| template<typename SMSPtrTy> |
| class iterator_base : public std::iterator<std::bidirectional_iterator_tag, |
| ValueT> { |
| friend class SparseMultiSet; |
| |
| SMSPtrTy SMS; |
| unsigned Idx; |
| unsigned SparseIdx; |
| |
| iterator_base(SMSPtrTy P, unsigned I, unsigned SI) |
| : SMS(P), Idx(I), SparseIdx(SI) {} |
| |
| /// Whether our iterator has fallen outside our dense vector. |
| bool isEnd() const { |
| if (Idx == SMSNode::INVALID) |
| return true; |
| |
| assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?"); |
| return false; |
| } |
| |
| /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid |
| bool isKeyed() const { return SparseIdx < SMS->Universe; } |
| |
| unsigned Prev() const { return SMS->Dense[Idx].Prev; } |
| unsigned Next() const { return SMS->Dense[Idx].Next; } |
| |
| void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; } |
| void setNext(unsigned N) { SMS->Dense[Idx].Next = N; } |
| |
| public: |
| using super = std::iterator<std::bidirectional_iterator_tag, ValueT>; |
| using value_type = typename super::value_type; |
| using difference_type = typename super::difference_type; |
| using pointer = typename super::pointer; |
| using reference = typename super::reference; |
| |
| reference operator*() const { |
| assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx && |
| "Dereferencing iterator of invalid key or index"); |
| |
| return SMS->Dense[Idx].Data; |
| } |
| pointer operator->() const { return &operator*(); } |
| |
| /// Comparison operators |
| bool operator==(const iterator_base &RHS) const { |
| // end compares equal |
| if (SMS == RHS.SMS && Idx == RHS.Idx) { |
| assert((isEnd() || SparseIdx == RHS.SparseIdx) && |
| "Same dense entry, but different keys?"); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool operator!=(const iterator_base &RHS) const { |
| return !operator==(RHS); |
| } |
| |
| /// Increment and decrement operators |
| iterator_base &operator--() { // predecrement - Back up |
| assert(isKeyed() && "Decrementing an invalid iterator"); |
| assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) && |
| "Decrementing head of list"); |
| |
| // If we're at the end, then issue a new find() |
| if (isEnd()) |
| Idx = SMS->findIndex(SparseIdx).Prev(); |
| else |
| Idx = Prev(); |
| |
| return *this; |
| } |
| iterator_base &operator++() { // preincrement - Advance |
| assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator"); |
| Idx = Next(); |
| return *this; |
| } |
| iterator_base operator--(int) { // postdecrement |
| iterator_base I(*this); |
| --*this; |
| return I; |
| } |
| iterator_base operator++(int) { // postincrement |
| iterator_base I(*this); |
| ++*this; |
| return I; |
| } |
| }; |
| |
| using iterator = iterator_base<SparseMultiSet *>; |
| using const_iterator = iterator_base<const SparseMultiSet *>; |
| |
| // Convenience types |
| using RangePair = std::pair<iterator, iterator>; |
| |
| /// Returns an iterator past this container. Note that such an iterator cannot |
| /// be decremented, but will compare equal to other end iterators. |
| iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); } |
| const_iterator end() const { |
| return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID); |
| } |
| |
| /// Returns true if the set is empty. |
| /// |
| /// This is not the same as BitVector::empty(). |
| /// |
| bool empty() const { return size() == 0; } |
| |
| /// Returns the number of elements in the set. |
| /// |
| /// This is not the same as BitVector::size() which returns the size of the |
| /// universe. |
| /// |
| size_type size() const { |
| assert(NumFree <= Dense.size() && "Out-of-bounds free entries"); |
| return Dense.size() - NumFree; |
| } |
| |
| /// Clears the set. This is a very fast constant time operation. |
| /// |
| void clear() { |
| // Sparse does not need to be cleared, see find(). |
| Dense.clear(); |
| NumFree = 0; |
| FreelistIdx = SMSNode::INVALID; |
| } |
| |
| /// Find an element by its index. |
| /// |
| /// @param Idx A valid index to find. |
| /// @returns An iterator to the element identified by key, or end(). |
| /// |
| iterator findIndex(unsigned Idx) { |
| assert(Idx < Universe && "Key out of range"); |
| const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u; |
| for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) { |
| const unsigned FoundIdx = sparseIndex(Dense[i]); |
| // Check that we're pointing at the correct entry and that it is the head |
| // of a valid list. |
| if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i])) |
| return iterator(this, i, Idx); |
| // Stride is 0 when SparseT >= unsigned. We don't need to loop. |
| if (!Stride) |
| break; |
| } |
| return end(); |
| } |
| |
| /// Find an element by its key. |
| /// |
| /// @param Key A valid key to find. |
| /// @returns An iterator to the element identified by key, or end(). |
| /// |
| iterator find(const KeyT &Key) { |
| return findIndex(KeyIndexOf(Key)); |
| } |
| |
| const_iterator find(const KeyT &Key) const { |
| iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key)); |
| return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key)); |
| } |
| |
| /// Returns the number of elements identified by Key. This will be linear in |
| /// the number of elements of that key. |
| size_type count(const KeyT &Key) const { |
| unsigned Ret = 0; |
| for (const_iterator It = find(Key); It != end(); ++It) |
| ++Ret; |
| |
| return Ret; |
| } |
| |
| /// Returns true if this set contains an element identified by Key. |
| bool contains(const KeyT &Key) const { |
| return find(Key) != end(); |
| } |
| |
| /// Return the head and tail of the subset's list, otherwise returns end(). |
| iterator getHead(const KeyT &Key) { return find(Key); } |
| iterator getTail(const KeyT &Key) { |
| iterator I = find(Key); |
| if (I != end()) |
| I = iterator(this, I.Prev(), KeyIndexOf(Key)); |
| return I; |
| } |
| |
| /// The bounds of the range of items sharing Key K. First member is the head |
| /// of the list, and the second member is a decrementable end iterator for |
| /// that key. |
| RangePair equal_range(const KeyT &K) { |
| iterator B = find(K); |
| iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx); |
| return make_pair(B, E); |
| } |
| |
| /// Insert a new element at the tail of the subset list. Returns an iterator |
| /// to the newly added entry. |
| iterator insert(const ValueT &Val) { |
| unsigned Idx = sparseIndex(Val); |
| iterator I = findIndex(Idx); |
| |
| unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID); |
| |
| if (I == end()) { |
| // Make a singleton list |
| Sparse[Idx] = NodeIdx; |
| Dense[NodeIdx].Prev = NodeIdx; |
| return iterator(this, NodeIdx, Idx); |
| } |
| |
| // Stick it at the end. |
| unsigned HeadIdx = I.Idx; |
| unsigned TailIdx = I.Prev(); |
| Dense[TailIdx].Next = NodeIdx; |
| Dense[HeadIdx].Prev = NodeIdx; |
| Dense[NodeIdx].Prev = TailIdx; |
| |
| return iterator(this, NodeIdx, Idx); |
| } |
| |
| /// Erases an existing element identified by a valid iterator. |
| /// |
| /// This invalidates iterators pointing at the same entry, but erase() returns |
| /// an iterator pointing to the next element in the subset's list. This makes |
| /// it possible to erase selected elements while iterating over the subset: |
| /// |
| /// tie(I, E) = Set.equal_range(Key); |
| /// while (I != E) |
| /// if (test(*I)) |
| /// I = Set.erase(I); |
| /// else |
| /// ++I; |
| /// |
| /// Note that if the last element in the subset list is erased, this will |
| /// return an end iterator which can be decremented to get the new tail (if it |
| /// exists): |
| /// |
| /// tie(B, I) = Set.equal_range(Key); |
| /// for (bool isBegin = B == I; !isBegin; /* empty */) { |
| /// isBegin = (--I) == B; |
| /// if (test(I)) |
| /// break; |
| /// I = erase(I); |
| /// } |
| iterator erase(iterator I) { |
| assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() && |
| "erasing invalid/end/tombstone iterator"); |
| |
| // First, unlink the node from its list. Then swap the node out with the |
| // dense vector's last entry |
| iterator NextI = unlink(Dense[I.Idx]); |
| |
| // Put in a tombstone. |
| makeTombstone(I.Idx); |
| |
| return NextI; |
| } |
| |
| /// Erase all elements with the given key. This invalidates all |
| /// iterators of that key. |
| void eraseAll(const KeyT &K) { |
| for (iterator I = find(K); I != end(); /* empty */) |
| I = erase(I); |
| } |
| |
| private: |
| /// Unlink the node from its list. Returns the next node in the list. |
| iterator unlink(const SMSNode &N) { |
| if (isSingleton(N)) { |
| // Singleton is already unlinked |
| assert(N.Next == SMSNode::INVALID && "Singleton has next?"); |
| return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data)); |
| } |
| |
| if (isHead(N)) { |
| // If we're the head, then update the sparse array and our next. |
| Sparse[sparseIndex(N)] = N.Next; |
| Dense[N.Next].Prev = N.Prev; |
| return iterator(this, N.Next, ValIndexOf(N.Data)); |
| } |
| |
| if (N.isTail()) { |
| // If we're the tail, then update our head and our previous. |
| findIndex(sparseIndex(N)).setPrev(N.Prev); |
| Dense[N.Prev].Next = N.Next; |
| |
| // Give back an end iterator that can be decremented |
| iterator I(this, N.Prev, ValIndexOf(N.Data)); |
| return ++I; |
| } |
| |
| // Otherwise, just drop us |
| Dense[N.Next].Prev = N.Prev; |
| Dense[N.Prev].Next = N.Next; |
| return iterator(this, N.Next, ValIndexOf(N.Data)); |
| } |
| }; |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_ADT_SPARSEMULTISET_H |