| //===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file builds on the ADT/GraphTraits.h file to build a generic graph |
| // post order iterator. This should work over any graph type that has a |
| // GraphTraits specialization. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ADT_POSTORDERITERATOR_H |
| #define LLVM_ADT_POSTORDERITERATOR_H |
| |
| #include "llvm/ADT/GraphTraits.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include <iterator> |
| #include <set> |
| #include <utility> |
| #include <vector> |
| |
| namespace llvm { |
| |
| // The po_iterator_storage template provides access to the set of already |
| // visited nodes during the po_iterator's depth-first traversal. |
| // |
| // The default implementation simply contains a set of visited nodes, while |
| // the External=true version uses a reference to an external set. |
| // |
| // It is possible to prune the depth-first traversal in several ways: |
| // |
| // - When providing an external set that already contains some graph nodes, |
| // those nodes won't be visited again. This is useful for restarting a |
| // post-order traversal on a graph with nodes that aren't dominated by a |
| // single node. |
| // |
| // - By providing a custom SetType class, unwanted graph nodes can be excluded |
| // by having the insert() function return false. This could for example |
| // confine a CFG traversal to blocks in a specific loop. |
| // |
| // - Finally, by specializing the po_iterator_storage template itself, graph |
| // edges can be pruned by returning false in the insertEdge() function. This |
| // could be used to remove loop back-edges from the CFG seen by po_iterator. |
| // |
| // A specialized po_iterator_storage class can observe both the pre-order and |
| // the post-order. The insertEdge() function is called in a pre-order, while |
| // the finishPostorder() function is called just before the po_iterator moves |
| // on to the next node. |
| |
| /// Default po_iterator_storage implementation with an internal set object. |
| template<class SetType, bool External> |
| class po_iterator_storage { |
| SetType Visited; |
| |
| public: |
| // Return true if edge destination should be visited. |
| template <typename NodeRef> |
| bool insertEdge(Optional<NodeRef> From, NodeRef To) { |
| return Visited.insert(To).second; |
| } |
| |
| // Called after all children of BB have been visited. |
| template <typename NodeRef> void finishPostorder(NodeRef BB) {} |
| }; |
| |
| /// Specialization of po_iterator_storage that references an external set. |
| template<class SetType> |
| class po_iterator_storage<SetType, true> { |
| SetType &Visited; |
| |
| public: |
| po_iterator_storage(SetType &VSet) : Visited(VSet) {} |
| po_iterator_storage(const po_iterator_storage &S) : Visited(S.Visited) {} |
| |
| // Return true if edge destination should be visited, called with From = 0 for |
| // the root node. |
| // Graph edges can be pruned by specializing this function. |
| template <class NodeRef> bool insertEdge(Optional<NodeRef> From, NodeRef To) { |
| return Visited.insert(To).second; |
| } |
| |
| // Called after all children of BB have been visited. |
| template <class NodeRef> void finishPostorder(NodeRef BB) {} |
| }; |
| |
| template <class GraphT, |
| class SetType = |
| SmallPtrSet<typename GraphTraits<GraphT>::NodeRef, 8>, |
| bool ExtStorage = false, class GT = GraphTraits<GraphT>> |
| class po_iterator |
| : public std::iterator<std::forward_iterator_tag, typename GT::NodeRef>, |
| public po_iterator_storage<SetType, ExtStorage> { |
| using super = std::iterator<std::forward_iterator_tag, typename GT::NodeRef>; |
| using NodeRef = typename GT::NodeRef; |
| using ChildItTy = typename GT::ChildIteratorType; |
| |
| // VisitStack - Used to maintain the ordering. Top = current block |
| // First element is basic block pointer, second is the 'next child' to visit |
| std::vector<std::pair<NodeRef, ChildItTy>> VisitStack; |
| |
| po_iterator(NodeRef BB) { |
| this->insertEdge(Optional<NodeRef>(), BB); |
| VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB))); |
| traverseChild(); |
| } |
| |
| po_iterator() = default; // End is when stack is empty. |
| |
| po_iterator(NodeRef BB, SetType &S) |
| : po_iterator_storage<SetType, ExtStorage>(S) { |
| if (this->insertEdge(Optional<NodeRef>(), BB)) { |
| VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB))); |
| traverseChild(); |
| } |
| } |
| |
| po_iterator(SetType &S) |
| : po_iterator_storage<SetType, ExtStorage>(S) { |
| } // End is when stack is empty. |
| |
| void traverseChild() { |
| while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) { |
| NodeRef BB = *VisitStack.back().second++; |
| if (this->insertEdge(Optional<NodeRef>(VisitStack.back().first), BB)) { |
| // If the block is not visited... |
| VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB))); |
| } |
| } |
| } |
| |
| public: |
| using pointer = typename super::pointer; |
| |
| // Provide static "constructors"... |
| static po_iterator begin(GraphT G) { |
| return po_iterator(GT::getEntryNode(G)); |
| } |
| static po_iterator end(GraphT G) { return po_iterator(); } |
| |
| static po_iterator begin(GraphT G, SetType &S) { |
| return po_iterator(GT::getEntryNode(G), S); |
| } |
| static po_iterator end(GraphT G, SetType &S) { return po_iterator(S); } |
| |
| bool operator==(const po_iterator &x) const { |
| return VisitStack == x.VisitStack; |
| } |
| bool operator!=(const po_iterator &x) const { return !(*this == x); } |
| |
| const NodeRef &operator*() const { return VisitStack.back().first; } |
| |
| // This is a nonstandard operator-> that dereferences the pointer an extra |
| // time... so that you can actually call methods ON the BasicBlock, because |
| // the contained type is a pointer. This allows BBIt->getTerminator() f.e. |
| // |
| NodeRef operator->() const { return **this; } |
| |
| po_iterator &operator++() { // Preincrement |
| this->finishPostorder(VisitStack.back().first); |
| VisitStack.pop_back(); |
| if (!VisitStack.empty()) |
| traverseChild(); |
| return *this; |
| } |
| |
| po_iterator operator++(int) { // Postincrement |
| po_iterator tmp = *this; |
| ++*this; |
| return tmp; |
| } |
| }; |
| |
| // Provide global constructors that automatically figure out correct types... |
| // |
| template <class T> |
| po_iterator<T> po_begin(const T &G) { return po_iterator<T>::begin(G); } |
| template <class T> |
| po_iterator<T> po_end (const T &G) { return po_iterator<T>::end(G); } |
| |
| template <class T> iterator_range<po_iterator<T>> post_order(const T &G) { |
| return make_range(po_begin(G), po_end(G)); |
| } |
| |
| // Provide global definitions of external postorder iterators... |
| template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>> |
| struct po_ext_iterator : public po_iterator<T, SetType, true> { |
| po_ext_iterator(const po_iterator<T, SetType, true> &V) : |
| po_iterator<T, SetType, true>(V) {} |
| }; |
| |
| template<class T, class SetType> |
| po_ext_iterator<T, SetType> po_ext_begin(T G, SetType &S) { |
| return po_ext_iterator<T, SetType>::begin(G, S); |
| } |
| |
| template<class T, class SetType> |
| po_ext_iterator<T, SetType> po_ext_end(T G, SetType &S) { |
| return po_ext_iterator<T, SetType>::end(G, S); |
| } |
| |
| template <class T, class SetType> |
| iterator_range<po_ext_iterator<T, SetType>> post_order_ext(const T &G, SetType &S) { |
| return make_range(po_ext_begin(G, S), po_ext_end(G, S)); |
| } |
| |
| // Provide global definitions of inverse post order iterators... |
| template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>, |
| bool External = false> |
| struct ipo_iterator : public po_iterator<Inverse<T>, SetType, External> { |
| ipo_iterator(const po_iterator<Inverse<T>, SetType, External> &V) : |
| po_iterator<Inverse<T>, SetType, External> (V) {} |
| }; |
| |
| template <class T> |
| ipo_iterator<T> ipo_begin(const T &G) { |
| return ipo_iterator<T>::begin(G); |
| } |
| |
| template <class T> |
| ipo_iterator<T> ipo_end(const T &G){ |
| return ipo_iterator<T>::end(G); |
| } |
| |
| template <class T> |
| iterator_range<ipo_iterator<T>> inverse_post_order(const T &G) { |
| return make_range(ipo_begin(G), ipo_end(G)); |
| } |
| |
| // Provide global definitions of external inverse postorder iterators... |
| template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>> |
| struct ipo_ext_iterator : public ipo_iterator<T, SetType, true> { |
| ipo_ext_iterator(const ipo_iterator<T, SetType, true> &V) : |
| ipo_iterator<T, SetType, true>(V) {} |
| ipo_ext_iterator(const po_iterator<Inverse<T>, SetType, true> &V) : |
| ipo_iterator<T, SetType, true>(V) {} |
| }; |
| |
| template <class T, class SetType> |
| ipo_ext_iterator<T, SetType> ipo_ext_begin(const T &G, SetType &S) { |
| return ipo_ext_iterator<T, SetType>::begin(G, S); |
| } |
| |
| template <class T, class SetType> |
| ipo_ext_iterator<T, SetType> ipo_ext_end(const T &G, SetType &S) { |
| return ipo_ext_iterator<T, SetType>::end(G, S); |
| } |
| |
| template <class T, class SetType> |
| iterator_range<ipo_ext_iterator<T, SetType>> |
| inverse_post_order_ext(const T &G, SetType &S) { |
| return make_range(ipo_ext_begin(G, S), ipo_ext_end(G, S)); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Reverse Post Order CFG iterator code |
| //===--------------------------------------------------------------------===// |
| // |
| // This is used to visit basic blocks in a method in reverse post order. This |
| // class is awkward to use because I don't know a good incremental algorithm to |
| // computer RPO from a graph. Because of this, the construction of the |
| // ReversePostOrderTraversal object is expensive (it must walk the entire graph |
| // with a postorder iterator to build the data structures). The moral of this |
| // story is: Don't create more ReversePostOrderTraversal classes than necessary. |
| // |
| // Because it does the traversal in its constructor, it won't invalidate when |
| // BasicBlocks are removed, *but* it may contain erased blocks. Some places |
| // rely on this behavior (i.e. GVN). |
| // |
| // This class should be used like this: |
| // { |
| // ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create |
| // for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) { |
| // ... |
| // } |
| // for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) { |
| // ... |
| // } |
| // } |
| // |
| |
| template<class GraphT, class GT = GraphTraits<GraphT>> |
| class ReversePostOrderTraversal { |
| using NodeRef = typename GT::NodeRef; |
| |
| std::vector<NodeRef> Blocks; // Block list in normal PO order |
| |
| void Initialize(NodeRef BB) { |
| std::copy(po_begin(BB), po_end(BB), std::back_inserter(Blocks)); |
| } |
| |
| public: |
| using rpo_iterator = typename std::vector<NodeRef>::reverse_iterator; |
| using const_rpo_iterator = typename std::vector<NodeRef>::const_reverse_iterator; |
| |
| ReversePostOrderTraversal(GraphT G) { Initialize(GT::getEntryNode(G)); } |
| |
| // Because we want a reverse post order, use reverse iterators from the vector |
| rpo_iterator begin() { return Blocks.rbegin(); } |
| const_rpo_iterator begin() const { return Blocks.crbegin(); } |
| rpo_iterator end() { return Blocks.rend(); } |
| const_rpo_iterator end() const { return Blocks.crend(); } |
| }; |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_ADT_POSTORDERITERATOR_H |