| //===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the BitVector class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ADT_BITVECTOR_H |
| #define LLVM_ADT_BITVECTOR_H |
| |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <climits> |
| #include <cstdint> |
| #include <cstdlib> |
| #include <cstring> |
| #include <utility> |
| |
| namespace llvm { |
| |
| /// ForwardIterator for the bits that are set. |
| /// Iterators get invalidated when resize / reserve is called. |
| template <typename BitVectorT> class const_set_bits_iterator_impl { |
| const BitVectorT &Parent; |
| int Current = 0; |
| |
| void advance() { |
| assert(Current != -1 && "Trying to advance past end."); |
| Current = Parent.find_next(Current); |
| } |
| |
| public: |
| const_set_bits_iterator_impl(const BitVectorT &Parent, int Current) |
| : Parent(Parent), Current(Current) {} |
| explicit const_set_bits_iterator_impl(const BitVectorT &Parent) |
| : const_set_bits_iterator_impl(Parent, Parent.find_first()) {} |
| const_set_bits_iterator_impl(const const_set_bits_iterator_impl &) = default; |
| |
| const_set_bits_iterator_impl operator++(int) { |
| auto Prev = *this; |
| advance(); |
| return Prev; |
| } |
| |
| const_set_bits_iterator_impl &operator++() { |
| advance(); |
| return *this; |
| } |
| |
| unsigned operator*() const { return Current; } |
| |
| bool operator==(const const_set_bits_iterator_impl &Other) const { |
| assert(&Parent == &Other.Parent && |
| "Comparing iterators from different BitVectors"); |
| return Current == Other.Current; |
| } |
| |
| bool operator!=(const const_set_bits_iterator_impl &Other) const { |
| assert(&Parent == &Other.Parent && |
| "Comparing iterators from different BitVectors"); |
| return Current != Other.Current; |
| } |
| }; |
| |
| class BitVector { |
| typedef uintptr_t BitWord; |
| |
| enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT }; |
| |
| static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32, |
| "Unsupported word size"); |
| |
| MutableArrayRef<BitWord> Bits; // Actual bits. |
| unsigned Size; // Size of bitvector in bits. |
| |
| public: |
| typedef unsigned size_type; |
| // Encapsulation of a single bit. |
| class reference { |
| friend class BitVector; |
| |
| BitWord *WordRef; |
| unsigned BitPos; |
| |
| public: |
| reference(BitVector &b, unsigned Idx) { |
| WordRef = &b.Bits[Idx / BITWORD_SIZE]; |
| BitPos = Idx % BITWORD_SIZE; |
| } |
| |
| reference() = delete; |
| reference(const reference&) = default; |
| |
| reference &operator=(reference t) { |
| *this = bool(t); |
| return *this; |
| } |
| |
| reference& operator=(bool t) { |
| if (t) |
| *WordRef |= BitWord(1) << BitPos; |
| else |
| *WordRef &= ~(BitWord(1) << BitPos); |
| return *this; |
| } |
| |
| operator bool() const { |
| return ((*WordRef) & (BitWord(1) << BitPos)) != 0; |
| } |
| }; |
| |
| typedef const_set_bits_iterator_impl<BitVector> const_set_bits_iterator; |
| typedef const_set_bits_iterator set_iterator; |
| |
| const_set_bits_iterator set_bits_begin() const { |
| return const_set_bits_iterator(*this); |
| } |
| const_set_bits_iterator set_bits_end() const { |
| return const_set_bits_iterator(*this, -1); |
| } |
| iterator_range<const_set_bits_iterator> set_bits() const { |
| return make_range(set_bits_begin(), set_bits_end()); |
| } |
| |
| /// BitVector default ctor - Creates an empty bitvector. |
| BitVector() : Size(0) {} |
| |
| /// BitVector ctor - Creates a bitvector of specified number of bits. All |
| /// bits are initialized to the specified value. |
| explicit BitVector(unsigned s, bool t = false) : Size(s) { |
| size_t Capacity = NumBitWords(s); |
| Bits = allocate(Capacity); |
| init_words(Bits, t); |
| if (t) |
| clear_unused_bits(); |
| } |
| |
| /// BitVector copy ctor. |
| BitVector(const BitVector &RHS) : Size(RHS.size()) { |
| if (Size == 0) { |
| Bits = MutableArrayRef<BitWord>(); |
| return; |
| } |
| |
| size_t Capacity = NumBitWords(RHS.size()); |
| Bits = allocate(Capacity); |
| std::memcpy(Bits.data(), RHS.Bits.data(), Capacity * sizeof(BitWord)); |
| } |
| |
| BitVector(BitVector &&RHS) : Bits(RHS.Bits), Size(RHS.Size) { |
| RHS.Bits = MutableArrayRef<BitWord>(); |
| RHS.Size = 0; |
| } |
| |
| ~BitVector() { std::free(Bits.data()); } |
| |
| /// empty - Tests whether there are no bits in this bitvector. |
| bool empty() const { return Size == 0; } |
| |
| /// size - Returns the number of bits in this bitvector. |
| size_type size() const { return Size; } |
| |
| /// count - Returns the number of bits which are set. |
| size_type count() const { |
| unsigned NumBits = 0; |
| for (unsigned i = 0; i < NumBitWords(size()); ++i) |
| NumBits += countPopulation(Bits[i]); |
| return NumBits; |
| } |
| |
| /// any - Returns true if any bit is set. |
| bool any() const { |
| for (unsigned i = 0; i < NumBitWords(size()); ++i) |
| if (Bits[i] != 0) |
| return true; |
| return false; |
| } |
| |
| /// all - Returns true if all bits are set. |
| bool all() const { |
| for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i) |
| if (Bits[i] != ~BitWord(0)) |
| return false; |
| |
| // If bits remain check that they are ones. The unused bits are always zero. |
| if (unsigned Remainder = Size % BITWORD_SIZE) |
| return Bits[Size / BITWORD_SIZE] == (BitWord(1) << Remainder) - 1; |
| |
| return true; |
| } |
| |
| /// none - Returns true if none of the bits are set. |
| bool none() const { |
| return !any(); |
| } |
| |
| /// find_first_in - Returns the index of the first set bit in the range |
| /// [Begin, End). Returns -1 if all bits in the range are unset. |
| int find_first_in(unsigned Begin, unsigned End) const { |
| assert(Begin <= End && End <= Size); |
| if (Begin == End) |
| return -1; |
| |
| unsigned FirstWord = Begin / BITWORD_SIZE; |
| unsigned LastWord = (End - 1) / BITWORD_SIZE; |
| |
| // Check subsequent words. |
| for (unsigned i = FirstWord; i <= LastWord; ++i) { |
| BitWord Copy = Bits[i]; |
| |
| if (i == FirstWord) { |
| unsigned FirstBit = Begin % BITWORD_SIZE; |
| Copy &= maskTrailingZeros<BitWord>(FirstBit); |
| } |
| |
| if (i == LastWord) { |
| unsigned LastBit = (End - 1) % BITWORD_SIZE; |
| Copy &= maskTrailingOnes<BitWord>(LastBit + 1); |
| } |
| if (Copy != 0) |
| return i * BITWORD_SIZE + countTrailingZeros(Copy); |
| } |
| return -1; |
| } |
| |
| /// find_last_in - Returns the index of the last set bit in the range |
| /// [Begin, End). Returns -1 if all bits in the range are unset. |
| int find_last_in(unsigned Begin, unsigned End) const { |
| assert(Begin <= End && End <= Size); |
| if (Begin == End) |
| return -1; |
| |
| unsigned LastWord = (End - 1) / BITWORD_SIZE; |
| unsigned FirstWord = Begin / BITWORD_SIZE; |
| |
| for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) { |
| unsigned CurrentWord = i - 1; |
| |
| BitWord Copy = Bits[CurrentWord]; |
| if (CurrentWord == LastWord) { |
| unsigned LastBit = (End - 1) % BITWORD_SIZE; |
| Copy &= maskTrailingOnes<BitWord>(LastBit + 1); |
| } |
| |
| if (CurrentWord == FirstWord) { |
| unsigned FirstBit = Begin % BITWORD_SIZE; |
| Copy &= maskTrailingZeros<BitWord>(FirstBit); |
| } |
| |
| if (Copy != 0) |
| return (CurrentWord + 1) * BITWORD_SIZE - countLeadingZeros(Copy) - 1; |
| } |
| |
| return -1; |
| } |
| |
| /// find_first_unset_in - Returns the index of the first unset bit in the |
| /// range [Begin, End). Returns -1 if all bits in the range are set. |
| int find_first_unset_in(unsigned Begin, unsigned End) const { |
| assert(Begin <= End && End <= Size); |
| if (Begin == End) |
| return -1; |
| |
| unsigned FirstWord = Begin / BITWORD_SIZE; |
| unsigned LastWord = (End - 1) / BITWORD_SIZE; |
| |
| // Check subsequent words. |
| for (unsigned i = FirstWord; i <= LastWord; ++i) { |
| BitWord Copy = Bits[i]; |
| |
| if (i == FirstWord) { |
| unsigned FirstBit = Begin % BITWORD_SIZE; |
| Copy |= maskTrailingOnes<BitWord>(FirstBit); |
| } |
| |
| if (i == LastWord) { |
| unsigned LastBit = (End - 1) % BITWORD_SIZE; |
| Copy |= maskTrailingZeros<BitWord>(LastBit + 1); |
| } |
| if (Copy != ~BitWord(0)) { |
| unsigned Result = i * BITWORD_SIZE + countTrailingOnes(Copy); |
| return Result < size() ? Result : -1; |
| } |
| } |
| return -1; |
| } |
| |
| /// find_last_unset_in - Returns the index of the last unset bit in the |
| /// range [Begin, End). Returns -1 if all bits in the range are set. |
| int find_last_unset_in(unsigned Begin, unsigned End) const { |
| assert(Begin <= End && End <= Size); |
| if (Begin == End) |
| return -1; |
| |
| unsigned LastWord = (End - 1) / BITWORD_SIZE; |
| unsigned FirstWord = Begin / BITWORD_SIZE; |
| |
| for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) { |
| unsigned CurrentWord = i - 1; |
| |
| BitWord Copy = Bits[CurrentWord]; |
| if (CurrentWord == LastWord) { |
| unsigned LastBit = (End - 1) % BITWORD_SIZE; |
| Copy |= maskTrailingZeros<BitWord>(LastBit + 1); |
| } |
| |
| if (CurrentWord == FirstWord) { |
| unsigned FirstBit = Begin % BITWORD_SIZE; |
| Copy |= maskTrailingOnes<BitWord>(FirstBit); |
| } |
| |
| if (Copy != ~BitWord(0)) { |
| unsigned Result = |
| (CurrentWord + 1) * BITWORD_SIZE - countLeadingOnes(Copy) - 1; |
| return Result < Size ? Result : -1; |
| } |
| } |
| return -1; |
| } |
| |
| /// find_first - Returns the index of the first set bit, -1 if none |
| /// of the bits are set. |
| int find_first() const { return find_first_in(0, Size); } |
| |
| /// find_last - Returns the index of the last set bit, -1 if none of the bits |
| /// are set. |
| int find_last() const { return find_last_in(0, Size); } |
| |
| /// find_next - Returns the index of the next set bit following the |
| /// "Prev" bit. Returns -1 if the next set bit is not found. |
| int find_next(unsigned Prev) const { return find_first_in(Prev + 1, Size); } |
| |
| /// find_prev - Returns the index of the first set bit that precedes the |
| /// the bit at \p PriorTo. Returns -1 if all previous bits are unset. |
| int find_prev(unsigned PriorTo) const { return find_last_in(0, PriorTo); } |
| |
| /// find_first_unset - Returns the index of the first unset bit, -1 if all |
| /// of the bits are set. |
| int find_first_unset() const { return find_first_unset_in(0, Size); } |
| |
| /// find_next_unset - Returns the index of the next unset bit following the |
| /// "Prev" bit. Returns -1 if all remaining bits are set. |
| int find_next_unset(unsigned Prev) const { |
| return find_first_unset_in(Prev + 1, Size); |
| } |
| |
| /// find_last_unset - Returns the index of the last unset bit, -1 if all of |
| /// the bits are set. |
| int find_last_unset() const { return find_last_unset_in(0, Size); } |
| |
| /// find_prev_unset - Returns the index of the first unset bit that precedes |
| /// the bit at \p PriorTo. Returns -1 if all previous bits are set. |
| int find_prev_unset(unsigned PriorTo) { |
| return find_last_unset_in(0, PriorTo); |
| } |
| |
| /// clear - Removes all bits from the bitvector. Does not change capacity. |
| void clear() { |
| Size = 0; |
| } |
| |
| /// resize - Grow or shrink the bitvector. |
| void resize(unsigned N, bool t = false) { |
| if (N > getBitCapacity()) { |
| unsigned OldCapacity = Bits.size(); |
| grow(N); |
| init_words(Bits.drop_front(OldCapacity), t); |
| } |
| |
| // Set any old unused bits that are now included in the BitVector. This |
| // may set bits that are not included in the new vector, but we will clear |
| // them back out below. |
| if (N > Size) |
| set_unused_bits(t); |
| |
| // Update the size, and clear out any bits that are now unused |
| unsigned OldSize = Size; |
| Size = N; |
| if (t || N < OldSize) |
| clear_unused_bits(); |
| } |
| |
| void reserve(unsigned N) { |
| if (N > getBitCapacity()) |
| grow(N); |
| } |
| |
| // Set, reset, flip |
| BitVector &set() { |
| init_words(Bits, true); |
| clear_unused_bits(); |
| return *this; |
| } |
| |
| BitVector &set(unsigned Idx) { |
| assert(Bits.data() && "Bits never allocated"); |
| Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE); |
| return *this; |
| } |
| |
| /// set - Efficiently set a range of bits in [I, E) |
| BitVector &set(unsigned I, unsigned E) { |
| assert(I <= E && "Attempted to set backwards range!"); |
| assert(E <= size() && "Attempted to set out-of-bounds range!"); |
| |
| if (I == E) return *this; |
| |
| if (I / BITWORD_SIZE == E / BITWORD_SIZE) { |
| BitWord EMask = BitWord(1) << (E % BITWORD_SIZE); |
| BitWord IMask = BitWord(1) << (I % BITWORD_SIZE); |
| BitWord Mask = EMask - IMask; |
| Bits[I / BITWORD_SIZE] |= Mask; |
| return *this; |
| } |
| |
| BitWord PrefixMask = ~BitWord(0) << (I % BITWORD_SIZE); |
| Bits[I / BITWORD_SIZE] |= PrefixMask; |
| I = alignTo(I, BITWORD_SIZE); |
| |
| for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) |
| Bits[I / BITWORD_SIZE] = ~BitWord(0); |
| |
| BitWord PostfixMask = (BitWord(1) << (E % BITWORD_SIZE)) - 1; |
| if (I < E) |
| Bits[I / BITWORD_SIZE] |= PostfixMask; |
| |
| return *this; |
| } |
| |
| BitVector &reset() { |
| init_words(Bits, false); |
| return *this; |
| } |
| |
| BitVector &reset(unsigned Idx) { |
| Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE)); |
| return *this; |
| } |
| |
| /// reset - Efficiently reset a range of bits in [I, E) |
| BitVector &reset(unsigned I, unsigned E) { |
| assert(I <= E && "Attempted to reset backwards range!"); |
| assert(E <= size() && "Attempted to reset out-of-bounds range!"); |
| |
| if (I == E) return *this; |
| |
| if (I / BITWORD_SIZE == E / BITWORD_SIZE) { |
| BitWord EMask = BitWord(1) << (E % BITWORD_SIZE); |
| BitWord IMask = BitWord(1) << (I % BITWORD_SIZE); |
| BitWord Mask = EMask - IMask; |
| Bits[I / BITWORD_SIZE] &= ~Mask; |
| return *this; |
| } |
| |
| BitWord PrefixMask = ~BitWord(0) << (I % BITWORD_SIZE); |
| Bits[I / BITWORD_SIZE] &= ~PrefixMask; |
| I = alignTo(I, BITWORD_SIZE); |
| |
| for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) |
| Bits[I / BITWORD_SIZE] = BitWord(0); |
| |
| BitWord PostfixMask = (BitWord(1) << (E % BITWORD_SIZE)) - 1; |
| if (I < E) |
| Bits[I / BITWORD_SIZE] &= ~PostfixMask; |
| |
| return *this; |
| } |
| |
| BitVector &flip() { |
| for (unsigned i = 0; i < NumBitWords(size()); ++i) |
| Bits[i] = ~Bits[i]; |
| clear_unused_bits(); |
| return *this; |
| } |
| |
| BitVector &flip(unsigned Idx) { |
| Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE); |
| return *this; |
| } |
| |
| // Indexing. |
| reference operator[](unsigned Idx) { |
| assert (Idx < Size && "Out-of-bounds Bit access."); |
| return reference(*this, Idx); |
| } |
| |
| bool operator[](unsigned Idx) const { |
| assert (Idx < Size && "Out-of-bounds Bit access."); |
| BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE); |
| return (Bits[Idx / BITWORD_SIZE] & Mask) != 0; |
| } |
| |
| bool test(unsigned Idx) const { |
| return (*this)[Idx]; |
| } |
| |
| // Push single bit to end of vector. |
| void push_back(bool Val) { |
| unsigned OldSize = Size; |
| unsigned NewSize = Size + 1; |
| |
| // Resize, which will insert zeros. |
| // If we already fit then the unused bits will be already zero. |
| if (NewSize > getBitCapacity()) |
| resize(NewSize, false); |
| else |
| Size = NewSize; |
| |
| // If true, set single bit. |
| if (Val) |
| set(OldSize); |
| } |
| |
| /// Test if any common bits are set. |
| bool anyCommon(const BitVector &RHS) const { |
| unsigned ThisWords = NumBitWords(size()); |
| unsigned RHSWords = NumBitWords(RHS.size()); |
| for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i) |
| if (Bits[i] & RHS.Bits[i]) |
| return true; |
| return false; |
| } |
| |
| // Comparison operators. |
| bool operator==(const BitVector &RHS) const { |
| unsigned ThisWords = NumBitWords(size()); |
| unsigned RHSWords = NumBitWords(RHS.size()); |
| unsigned i; |
| for (i = 0; i != std::min(ThisWords, RHSWords); ++i) |
| if (Bits[i] != RHS.Bits[i]) |
| return false; |
| |
| // Verify that any extra words are all zeros. |
| if (i != ThisWords) { |
| for (; i != ThisWords; ++i) |
| if (Bits[i]) |
| return false; |
| } else if (i != RHSWords) { |
| for (; i != RHSWords; ++i) |
| if (RHS.Bits[i]) |
| return false; |
| } |
| return true; |
| } |
| |
| bool operator!=(const BitVector &RHS) const { |
| return !(*this == RHS); |
| } |
| |
| /// Intersection, union, disjoint union. |
| BitVector &operator&=(const BitVector &RHS) { |
| unsigned ThisWords = NumBitWords(size()); |
| unsigned RHSWords = NumBitWords(RHS.size()); |
| unsigned i; |
| for (i = 0; i != std::min(ThisWords, RHSWords); ++i) |
| Bits[i] &= RHS.Bits[i]; |
| |
| // Any bits that are just in this bitvector become zero, because they aren't |
| // in the RHS bit vector. Any words only in RHS are ignored because they |
| // are already zero in the LHS. |
| for (; i != ThisWords; ++i) |
| Bits[i] = 0; |
| |
| return *this; |
| } |
| |
| /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS. |
| BitVector &reset(const BitVector &RHS) { |
| unsigned ThisWords = NumBitWords(size()); |
| unsigned RHSWords = NumBitWords(RHS.size()); |
| unsigned i; |
| for (i = 0; i != std::min(ThisWords, RHSWords); ++i) |
| Bits[i] &= ~RHS.Bits[i]; |
| return *this; |
| } |
| |
| /// test - Check if (This - RHS) is zero. |
| /// This is the same as reset(RHS) and any(). |
| bool test(const BitVector &RHS) const { |
| unsigned ThisWords = NumBitWords(size()); |
| unsigned RHSWords = NumBitWords(RHS.size()); |
| unsigned i; |
| for (i = 0; i != std::min(ThisWords, RHSWords); ++i) |
| if ((Bits[i] & ~RHS.Bits[i]) != 0) |
| return true; |
| |
| for (; i != ThisWords ; ++i) |
| if (Bits[i] != 0) |
| return true; |
| |
| return false; |
| } |
| |
| BitVector &operator|=(const BitVector &RHS) { |
| if (size() < RHS.size()) |
| resize(RHS.size()); |
| for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) |
| Bits[i] |= RHS.Bits[i]; |
| return *this; |
| } |
| |
| BitVector &operator^=(const BitVector &RHS) { |
| if (size() < RHS.size()) |
| resize(RHS.size()); |
| for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) |
| Bits[i] ^= RHS.Bits[i]; |
| return *this; |
| } |
| |
| BitVector &operator>>=(unsigned N) { |
| assert(N <= Size); |
| if (LLVM_UNLIKELY(empty() || N == 0)) |
| return *this; |
| |
| unsigned NumWords = NumBitWords(Size); |
| assert(NumWords >= 1); |
| |
| wordShr(N / BITWORD_SIZE); |
| |
| unsigned BitDistance = N % BITWORD_SIZE; |
| if (BitDistance == 0) |
| return *this; |
| |
| // When the shift size is not a multiple of the word size, then we have |
| // a tricky situation where each word in succession needs to extract some |
| // of the bits from the next word and or them into this word while |
| // shifting this word to make room for the new bits. This has to be done |
| // for every word in the array. |
| |
| // Since we're shifting each word right, some bits will fall off the end |
| // of each word to the right, and empty space will be created on the left. |
| // The final word in the array will lose bits permanently, so starting at |
| // the beginning, work forwards shifting each word to the right, and |
| // OR'ing in the bits from the end of the next word to the beginning of |
| // the current word. |
| |
| // Example: |
| // Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting right |
| // by 4 bits. |
| // Step 1: Word[0] >>= 4 ; 0x0ABBCCDD |
| // Step 2: Word[0] |= 0x10000000 ; 0x1ABBCCDD |
| // Step 3: Word[1] >>= 4 ; 0x0EEFF001 |
| // Step 4: Word[1] |= 0x50000000 ; 0x5EEFF001 |
| // Step 5: Word[2] >>= 4 ; 0x02334455 |
| // Result: { 0x1ABBCCDD, 0x5EEFF001, 0x02334455 } |
| const BitWord Mask = maskTrailingOnes<BitWord>(BitDistance); |
| const unsigned LSH = BITWORD_SIZE - BitDistance; |
| |
| for (unsigned I = 0; I < NumWords - 1; ++I) { |
| Bits[I] >>= BitDistance; |
| Bits[I] |= (Bits[I + 1] & Mask) << LSH; |
| } |
| |
| Bits[NumWords - 1] >>= BitDistance; |
| |
| return *this; |
| } |
| |
| BitVector &operator<<=(unsigned N) { |
| assert(N <= Size); |
| if (LLVM_UNLIKELY(empty() || N == 0)) |
| return *this; |
| |
| unsigned NumWords = NumBitWords(Size); |
| assert(NumWords >= 1); |
| |
| wordShl(N / BITWORD_SIZE); |
| |
| unsigned BitDistance = N % BITWORD_SIZE; |
| if (BitDistance == 0) |
| return *this; |
| |
| // When the shift size is not a multiple of the word size, then we have |
| // a tricky situation where each word in succession needs to extract some |
| // of the bits from the previous word and or them into this word while |
| // shifting this word to make room for the new bits. This has to be done |
| // for every word in the array. This is similar to the algorithm outlined |
| // in operator>>=, but backwards. |
| |
| // Since we're shifting each word left, some bits will fall off the end |
| // of each word to the left, and empty space will be created on the right. |
| // The first word in the array will lose bits permanently, so starting at |
| // the end, work backwards shifting each word to the left, and OR'ing |
| // in the bits from the end of the next word to the beginning of the |
| // current word. |
| |
| // Example: |
| // Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting left |
| // by 4 bits. |
| // Step 1: Word[2] <<= 4 ; 0x23344550 |
| // Step 2: Word[2] |= 0x0000000E ; 0x2334455E |
| // Step 3: Word[1] <<= 4 ; 0xEFF00110 |
| // Step 4: Word[1] |= 0x0000000A ; 0xEFF0011A |
| // Step 5: Word[0] <<= 4 ; 0xABBCCDD0 |
| // Result: { 0xABBCCDD0, 0xEFF0011A, 0x2334455E } |
| const BitWord Mask = maskLeadingOnes<BitWord>(BitDistance); |
| const unsigned RSH = BITWORD_SIZE - BitDistance; |
| |
| for (int I = NumWords - 1; I > 0; --I) { |
| Bits[I] <<= BitDistance; |
| Bits[I] |= (Bits[I - 1] & Mask) >> RSH; |
| } |
| Bits[0] <<= BitDistance; |
| clear_unused_bits(); |
| |
| return *this; |
| } |
| |
| // Assignment operator. |
| const BitVector &operator=(const BitVector &RHS) { |
| if (this == &RHS) return *this; |
| |
| Size = RHS.size(); |
| unsigned RHSWords = NumBitWords(Size); |
| if (Size <= getBitCapacity()) { |
| if (Size) |
| std::memcpy(Bits.data(), RHS.Bits.data(), RHSWords * sizeof(BitWord)); |
| clear_unused_bits(); |
| return *this; |
| } |
| |
| // Grow the bitvector to have enough elements. |
| unsigned NewCapacity = RHSWords; |
| assert(NewCapacity > 0 && "negative capacity?"); |
| auto NewBits = allocate(NewCapacity); |
| std::memcpy(NewBits.data(), RHS.Bits.data(), NewCapacity * sizeof(BitWord)); |
| |
| // Destroy the old bits. |
| std::free(Bits.data()); |
| Bits = NewBits; |
| |
| return *this; |
| } |
| |
| const BitVector &operator=(BitVector &&RHS) { |
| if (this == &RHS) return *this; |
| |
| std::free(Bits.data()); |
| Bits = RHS.Bits; |
| Size = RHS.Size; |
| |
| RHS.Bits = MutableArrayRef<BitWord>(); |
| RHS.Size = 0; |
| |
| return *this; |
| } |
| |
| void swap(BitVector &RHS) { |
| std::swap(Bits, RHS.Bits); |
| std::swap(Size, RHS.Size); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Portable bit mask operations. |
| //===--------------------------------------------------------------------===// |
| // |
| // These methods all operate on arrays of uint32_t, each holding 32 bits. The |
| // fixed word size makes it easier to work with literal bit vector constants |
| // in portable code. |
| // |
| // The LSB in each word is the lowest numbered bit. The size of a portable |
| // bit mask is always a whole multiple of 32 bits. If no bit mask size is |
| // given, the bit mask is assumed to cover the entire BitVector. |
| |
| /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize. |
| /// This computes "*this |= Mask". |
| void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
| applyMask<true, false>(Mask, MaskWords); |
| } |
| |
| /// clearBitsInMask - Clear any bits in this vector that are set in Mask. |
| /// Don't resize. This computes "*this &= ~Mask". |
| void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
| applyMask<false, false>(Mask, MaskWords); |
| } |
| |
| /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask. |
| /// Don't resize. This computes "*this |= ~Mask". |
| void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
| applyMask<true, true>(Mask, MaskWords); |
| } |
| |
| /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask. |
| /// Don't resize. This computes "*this &= Mask". |
| void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
| applyMask<false, true>(Mask, MaskWords); |
| } |
| |
| private: |
| /// Perform a logical left shift of \p Count words by moving everything |
| /// \p Count words to the right in memory. |
| /// |
| /// While confusing, words are stored from least significant at Bits[0] to |
| /// most significant at Bits[NumWords-1]. A logical shift left, however, |
| /// moves the current least significant bit to a higher logical index, and |
| /// fills the previous least significant bits with 0. Thus, we actually |
| /// need to move the bytes of the memory to the right, not to the left. |
| /// Example: |
| /// Words = [0xBBBBAAAA, 0xDDDDFFFF, 0x00000000, 0xDDDD0000] |
| /// represents a BitVector where 0xBBBBAAAA contain the least significant |
| /// bits. So if we want to shift the BitVector left by 2 words, we need to |
| /// turn this into 0x00000000 0x00000000 0xBBBBAAAA 0xDDDDFFFF by using a |
| /// memmove which moves right, not left. |
| void wordShl(uint32_t Count) { |
| if (Count == 0) |
| return; |
| |
| uint32_t NumWords = NumBitWords(Size); |
| |
| auto Src = Bits.take_front(NumWords).drop_back(Count); |
| auto Dest = Bits.take_front(NumWords).drop_front(Count); |
| |
| // Since we always move Word-sized chunks of data with src and dest both |
| // aligned to a word-boundary, we don't need to worry about endianness |
| // here. |
| std::memmove(Dest.begin(), Src.begin(), Dest.size() * sizeof(BitWord)); |
| std::memset(Bits.data(), 0, Count * sizeof(BitWord)); |
| clear_unused_bits(); |
| } |
| |
| /// Perform a logical right shift of \p Count words by moving those |
| /// words to the left in memory. See wordShl for more information. |
| /// |
| void wordShr(uint32_t Count) { |
| if (Count == 0) |
| return; |
| |
| uint32_t NumWords = NumBitWords(Size); |
| |
| auto Src = Bits.take_front(NumWords).drop_front(Count); |
| auto Dest = Bits.take_front(NumWords).drop_back(Count); |
| assert(Dest.size() == Src.size()); |
| |
| std::memmove(Dest.begin(), Src.begin(), Dest.size() * sizeof(BitWord)); |
| std::memset(Dest.end(), 0, Count * sizeof(BitWord)); |
| } |
| |
| MutableArrayRef<BitWord> allocate(size_t NumWords) { |
| BitWord *RawBits = static_cast<BitWord *>( |
| safe_malloc(NumWords * sizeof(BitWord))); |
| return MutableArrayRef<BitWord>(RawBits, NumWords); |
| } |
| |
| int next_unset_in_word(int WordIndex, BitWord Word) const { |
| unsigned Result = WordIndex * BITWORD_SIZE + countTrailingOnes(Word); |
| return Result < size() ? Result : -1; |
| } |
| |
| unsigned NumBitWords(unsigned S) const { |
| return (S + BITWORD_SIZE-1) / BITWORD_SIZE; |
| } |
| |
| // Set the unused bits in the high words. |
| void set_unused_bits(bool t = true) { |
| // Set high words first. |
| unsigned UsedWords = NumBitWords(Size); |
| if (Bits.size() > UsedWords) |
| init_words(Bits.drop_front(UsedWords), t); |
| |
| // Then set any stray high bits of the last used word. |
| unsigned ExtraBits = Size % BITWORD_SIZE; |
| if (ExtraBits) { |
| BitWord ExtraBitMask = ~BitWord(0) << ExtraBits; |
| if (t) |
| Bits[UsedWords-1] |= ExtraBitMask; |
| else |
| Bits[UsedWords-1] &= ~ExtraBitMask; |
| } |
| } |
| |
| // Clear the unused bits in the high words. |
| void clear_unused_bits() { |
| set_unused_bits(false); |
| } |
| |
| void grow(unsigned NewSize) { |
| size_t NewCapacity = std::max<size_t>(NumBitWords(NewSize), Bits.size() * 2); |
| assert(NewCapacity > 0 && "realloc-ing zero space"); |
| BitWord *NewBits = static_cast<BitWord *>( |
| safe_realloc(Bits.data(), NewCapacity * sizeof(BitWord))); |
| Bits = MutableArrayRef<BitWord>(NewBits, NewCapacity); |
| clear_unused_bits(); |
| } |
| |
| void init_words(MutableArrayRef<BitWord> B, bool t) { |
| if (B.size() > 0) |
| memset(B.data(), 0 - (int)t, B.size() * sizeof(BitWord)); |
| } |
| |
| template<bool AddBits, bool InvertMask> |
| void applyMask(const uint32_t *Mask, unsigned MaskWords) { |
| static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size."); |
| MaskWords = std::min(MaskWords, (size() + 31) / 32); |
| const unsigned Scale = BITWORD_SIZE / 32; |
| unsigned i; |
| for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) { |
| BitWord BW = Bits[i]; |
| // This inner loop should unroll completely when BITWORD_SIZE > 32. |
| for (unsigned b = 0; b != BITWORD_SIZE; b += 32) { |
| uint32_t M = *Mask++; |
| if (InvertMask) M = ~M; |
| if (AddBits) BW |= BitWord(M) << b; |
| else BW &= ~(BitWord(M) << b); |
| } |
| Bits[i] = BW; |
| } |
| for (unsigned b = 0; MaskWords; b += 32, --MaskWords) { |
| uint32_t M = *Mask++; |
| if (InvertMask) M = ~M; |
| if (AddBits) Bits[i] |= BitWord(M) << b; |
| else Bits[i] &= ~(BitWord(M) << b); |
| } |
| if (AddBits) |
| clear_unused_bits(); |
| } |
| |
| public: |
| /// Return the size (in bytes) of the bit vector. |
| size_t getMemorySize() const { return Bits.size() * sizeof(BitWord); } |
| size_t getBitCapacity() const { return Bits.size() * BITWORD_SIZE; } |
| }; |
| |
| inline size_t capacity_in_bytes(const BitVector &X) { |
| return X.getMemorySize(); |
| } |
| |
| } // end namespace llvm |
| |
| namespace std { |
| /// Implement std::swap in terms of BitVector swap. |
| inline void |
| swap(llvm::BitVector &LHS, llvm::BitVector &RHS) { |
| LHS.swap(RHS); |
| } |
| } // end namespace std |
| |
| #endif // LLVM_ADT_BITVECTOR_H |