blob: 959e63e2ccc3e6d2055a9db1bda6e59993d94300 [file] [log] [blame] [edit]
// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "PixelProgram.hpp"
#include "SamplerCore.hpp"
#include "Renderer/Primitive.hpp"
#include "Renderer/Renderer.hpp"
namespace sw
{
extern bool postBlendSRGB;
extern bool booleanFaceRegister;
extern bool halfIntegerCoordinates; // Pixel centers are not at integer coordinates
extern bool fullPixelPositionRegister;
PixelProgram::PixelProgram(const PixelProcessor::State &state, const PixelShader *shader) :
PixelRoutine(state, shader),
r(shader->indirectAddressableTemporaries),
aL(shader->getLimits().loops),
increment(shader->getLimits().loops),
iteration(shader->getLimits().loops),
callStack(shader->getLimits().stack)
{
auto limits = shader->getLimits();
ifFalseBlock.resize(limits.ifs);
loopRepTestBlock.resize(limits.loops);
loopRepEndBlock.resize(limits.loops);
labelBlock.resize(limits.maxLabel + 1);
isConditionalIf.resize(limits.ifs);
loopDepth = -1;
enableStack[0] = Int4(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF);
if(shader->containsBreakInstruction())
{
enableBreak = Int4(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF);
}
if(shader->containsContinueInstruction())
{
enableContinue = Int4(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF);
}
}
void PixelProgram::setBuiltins(Int &x, Int &y, Float4(&z)[4], Float4 &w)
{
if(shader->getShaderModel() >= 0x0300)
{
if(shader->isVPosDeclared())
{
if(!halfIntegerCoordinates)
{
vPos.x = Float4(Float(x)) + Float4(0, 1, 0, 1);
vPos.y = Float4(Float(y)) + Float4(0, 0, 1, 1);
}
else
{
vPos.x = Float4(Float(x)) + Float4(0.5f, 1.5f, 0.5f, 1.5f);
vPos.y = Float4(Float(y)) + Float4(0.5f, 0.5f, 1.5f, 1.5f);
}
if(fullPixelPositionRegister)
{
vPos.z = z[0]; // FIXME: Centroid?
vPos.w = w; // FIXME: Centroid?
}
}
if(shader->isVFaceDeclared())
{
Float4 face = *Pointer<Float>(primitive + OFFSET(Primitive, area));
if(booleanFaceRegister)
{
face = As<Float4>(state.frontFaceCCW ? CmpNLT(face, Float4(0.0f)) : CmpLT(face, Float4(0.0f)));
}
vFace.x = face;
vFace.y = face;
vFace.z = face;
vFace.w = face;
}
}
}
void PixelProgram::applyShader(Int cMask[4])
{
enableIndex = 0;
stackIndex = 0;
if(shader->containsLeaveInstruction())
{
enableLeave = Int4(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF);
}
for(int i = 0; i < RENDERTARGETS; i++)
{
if(state.targetFormat[i] != FORMAT_NULL)
{
oC[i] = Vector4f(0.0f, 0.0f, 0.0f, 0.0f);
}
}
// Create all call site return blocks up front
for(size_t i = 0; i < shader->getLength(); i++)
{
const Shader::Instruction *instruction = shader->getInstruction(i);
Shader::Opcode opcode = instruction->opcode;
if(opcode == Shader::OPCODE_CALL || opcode == Shader::OPCODE_CALLNZ)
{
const Dst &dst = instruction->dst;
ASSERT(callRetBlock[dst.label].size() == dst.callSite);
callRetBlock[dst.label].push_back(Nucleus::createBasicBlock());
}
}
bool broadcastColor0 = true;
for(size_t i = 0; i < shader->getLength(); i++)
{
const Shader::Instruction *instruction = shader->getInstruction(i);
Shader::Opcode opcode = instruction->opcode;
if(opcode == Shader::OPCODE_DCL || opcode == Shader::OPCODE_DEF || opcode == Shader::OPCODE_DEFI || opcode == Shader::OPCODE_DEFB)
{
continue;
}
const Dst &dst = instruction->dst;
const Src &src0 = instruction->src[0];
const Src &src1 = instruction->src[1];
const Src &src2 = instruction->src[2];
const Src &src3 = instruction->src[3];
const Src &src4 = instruction->src[4];
bool predicate = instruction->predicate;
Control control = instruction->control;
bool pp = dst.partialPrecision;
bool project = instruction->project;
bool bias = instruction->bias;
Vector4f d;
Vector4f s0;
Vector4f s1;
Vector4f s2;
Vector4f s3;
Vector4f s4;
if(opcode == Shader::OPCODE_TEXKILL) // Takes destination as input
{
if(dst.type == Shader::PARAMETER_TEXTURE)
{
d.x = v[2 + dst.index].x;
d.y = v[2 + dst.index].y;
d.z = v[2 + dst.index].z;
d.w = v[2 + dst.index].w;
}
else
{
d = r[dst.index];
}
}
if(src0.type != Shader::PARAMETER_VOID) s0 = fetchRegister(src0);
if(src1.type != Shader::PARAMETER_VOID) s1 = fetchRegister(src1);
if(src2.type != Shader::PARAMETER_VOID) s2 = fetchRegister(src2);
if(src3.type != Shader::PARAMETER_VOID) s3 = fetchRegister(src3);
if(src4.type != Shader::PARAMETER_VOID) s4 = fetchRegister(src4);
switch(opcode)
{
case Shader::OPCODE_PS_2_0: break;
case Shader::OPCODE_PS_2_x: break;
case Shader::OPCODE_PS_3_0: break;
case Shader::OPCODE_DEF: break;
case Shader::OPCODE_DCL: break;
case Shader::OPCODE_NOP: break;
case Shader::OPCODE_MOV: mov(d, s0); break;
case Shader::OPCODE_NEG: neg(d, s0); break;
case Shader::OPCODE_INEG: ineg(d, s0); break;
case Shader::OPCODE_F2B: f2b(d, s0); break;
case Shader::OPCODE_B2F: b2f(d, s0); break;
case Shader::OPCODE_F2I: f2i(d, s0); break;
case Shader::OPCODE_I2F: i2f(d, s0); break;
case Shader::OPCODE_F2U: f2u(d, s0); break;
case Shader::OPCODE_U2F: u2f(d, s0); break;
case Shader::OPCODE_I2B: i2b(d, s0); break;
case Shader::OPCODE_B2I: b2i(d, s0); break;
case Shader::OPCODE_ADD: add(d, s0, s1); break;
case Shader::OPCODE_IADD: iadd(d, s0, s1); break;
case Shader::OPCODE_SUB: sub(d, s0, s1); break;
case Shader::OPCODE_ISUB: isub(d, s0, s1); break;
case Shader::OPCODE_MUL: mul(d, s0, s1); break;
case Shader::OPCODE_IMUL: imul(d, s0, s1); break;
case Shader::OPCODE_MAD: mad(d, s0, s1, s2); break;
case Shader::OPCODE_IMAD: imad(d, s0, s1, s2); break;
case Shader::OPCODE_DP1: dp1(d, s0, s1); break;
case Shader::OPCODE_DP2: dp2(d, s0, s1); break;
case Shader::OPCODE_DP2ADD: dp2add(d, s0, s1, s2); break;
case Shader::OPCODE_DP3: dp3(d, s0, s1); break;
case Shader::OPCODE_DP4: dp4(d, s0, s1); break;
case Shader::OPCODE_DET2: det2(d, s0, s1); break;
case Shader::OPCODE_DET3: det3(d, s0, s1, s2); break;
case Shader::OPCODE_DET4: det4(d, s0, s1, s2, s3); break;
case Shader::OPCODE_CMP0: cmp0(d, s0, s1, s2); break;
case Shader::OPCODE_ICMP: icmp(d, s0, s1, control); break;
case Shader::OPCODE_UCMP: ucmp(d, s0, s1, control); break;
case Shader::OPCODE_SELECT: select(d, s0, s1, s2); break;
case Shader::OPCODE_EXTRACT: extract(d.x, s0, s1.x); break;
case Shader::OPCODE_INSERT: insert(d, s0, s1.x, s2.x); break;
case Shader::OPCODE_FRC: frc(d, s0); break;
case Shader::OPCODE_TRUNC: trunc(d, s0); break;
case Shader::OPCODE_FLOOR: floor(d, s0); break;
case Shader::OPCODE_ROUND: round(d, s0); break;
case Shader::OPCODE_ROUNDEVEN: roundEven(d, s0); break;
case Shader::OPCODE_CEIL: ceil(d, s0); break;
case Shader::OPCODE_EXP2X: exp2x(d, s0, pp); break;
case Shader::OPCODE_EXP2: exp2(d, s0, pp); break;
case Shader::OPCODE_LOG2X: log2x(d, s0, pp); break;
case Shader::OPCODE_LOG2: log2(d, s0, pp); break;
case Shader::OPCODE_EXP: exp(d, s0, pp); break;
case Shader::OPCODE_LOG: log(d, s0, pp); break;
case Shader::OPCODE_RCPX: rcpx(d, s0, pp); break;
case Shader::OPCODE_DIV: div(d, s0, s1); break;
case Shader::OPCODE_IDIV: idiv(d, s0, s1); break;
case Shader::OPCODE_UDIV: udiv(d, s0, s1); break;
case Shader::OPCODE_MOD: mod(d, s0, s1); break;
case Shader::OPCODE_IMOD: imod(d, s0, s1); break;
case Shader::OPCODE_UMOD: umod(d, s0, s1); break;
case Shader::OPCODE_SHL: shl(d, s0, s1); break;
case Shader::OPCODE_ISHR: ishr(d, s0, s1); break;
case Shader::OPCODE_USHR: ushr(d, s0, s1); break;
case Shader::OPCODE_RSQX: rsqx(d, s0, pp); break;
case Shader::OPCODE_SQRT: sqrt(d, s0, pp); break;
case Shader::OPCODE_RSQ: rsq(d, s0, pp); break;
case Shader::OPCODE_LEN2: len2(d.x, s0, pp); break;
case Shader::OPCODE_LEN3: len3(d.x, s0, pp); break;
case Shader::OPCODE_LEN4: len4(d.x, s0, pp); break;
case Shader::OPCODE_DIST1: dist1(d.x, s0, s1, pp); break;
case Shader::OPCODE_DIST2: dist2(d.x, s0, s1, pp); break;
case Shader::OPCODE_DIST3: dist3(d.x, s0, s1, pp); break;
case Shader::OPCODE_DIST4: dist4(d.x, s0, s1, pp); break;
case Shader::OPCODE_MIN: min(d, s0, s1); break;
case Shader::OPCODE_IMIN: imin(d, s0, s1); break;
case Shader::OPCODE_UMIN: umin(d, s0, s1); break;
case Shader::OPCODE_MAX: max(d, s0, s1); break;
case Shader::OPCODE_IMAX: imax(d, s0, s1); break;
case Shader::OPCODE_UMAX: umax(d, s0, s1); break;
case Shader::OPCODE_LRP: lrp(d, s0, s1, s2); break;
case Shader::OPCODE_STEP: step(d, s0, s1); break;
case Shader::OPCODE_SMOOTH: smooth(d, s0, s1, s2); break;
case Shader::OPCODE_ISINF: isinf(d, s0); break;
case Shader::OPCODE_ISNAN: isnan(d, s0); break;
case Shader::OPCODE_FLOATBITSTOINT:
case Shader::OPCODE_FLOATBITSTOUINT:
case Shader::OPCODE_INTBITSTOFLOAT:
case Shader::OPCODE_UINTBITSTOFLOAT: d = s0; break;
case Shader::OPCODE_PACKSNORM2x16: packSnorm2x16(d, s0); break;
case Shader::OPCODE_PACKUNORM2x16: packUnorm2x16(d, s0); break;
case Shader::OPCODE_PACKHALF2x16: packHalf2x16(d, s0); break;
case Shader::OPCODE_UNPACKSNORM2x16: unpackSnorm2x16(d, s0); break;
case Shader::OPCODE_UNPACKUNORM2x16: unpackUnorm2x16(d, s0); break;
case Shader::OPCODE_UNPACKHALF2x16: unpackHalf2x16(d, s0); break;
case Shader::OPCODE_POWX: powx(d, s0, s1, pp); break;
case Shader::OPCODE_POW: pow(d, s0, s1, pp); break;
case Shader::OPCODE_SGN: sgn(d, s0); break;
case Shader::OPCODE_ISGN: isgn(d, s0); break;
case Shader::OPCODE_CRS: crs(d, s0, s1); break;
case Shader::OPCODE_FORWARD1: forward1(d, s0, s1, s2); break;
case Shader::OPCODE_FORWARD2: forward2(d, s0, s1, s2); break;
case Shader::OPCODE_FORWARD3: forward3(d, s0, s1, s2); break;
case Shader::OPCODE_FORWARD4: forward4(d, s0, s1, s2); break;
case Shader::OPCODE_REFLECT1: reflect1(d, s0, s1); break;
case Shader::OPCODE_REFLECT2: reflect2(d, s0, s1); break;
case Shader::OPCODE_REFLECT3: reflect3(d, s0, s1); break;
case Shader::OPCODE_REFLECT4: reflect4(d, s0, s1); break;
case Shader::OPCODE_REFRACT1: refract1(d, s0, s1, s2.x); break;
case Shader::OPCODE_REFRACT2: refract2(d, s0, s1, s2.x); break;
case Shader::OPCODE_REFRACT3: refract3(d, s0, s1, s2.x); break;
case Shader::OPCODE_REFRACT4: refract4(d, s0, s1, s2.x); break;
case Shader::OPCODE_NRM2: nrm2(d, s0, pp); break;
case Shader::OPCODE_NRM3: nrm3(d, s0, pp); break;
case Shader::OPCODE_NRM4: nrm4(d, s0, pp); break;
case Shader::OPCODE_ABS: abs(d, s0); break;
case Shader::OPCODE_IABS: iabs(d, s0); break;
case Shader::OPCODE_SINCOS: sincos(d, s0, pp); break;
case Shader::OPCODE_COS: cos(d, s0, pp); break;
case Shader::OPCODE_SIN: sin(d, s0, pp); break;
case Shader::OPCODE_TAN: tan(d, s0, pp); break;
case Shader::OPCODE_ACOS: acos(d, s0, pp); break;
case Shader::OPCODE_ASIN: asin(d, s0, pp); break;
case Shader::OPCODE_ATAN: atan(d, s0, pp); break;
case Shader::OPCODE_ATAN2: atan2(d, s0, s1, pp); break;
case Shader::OPCODE_COSH: cosh(d, s0, pp); break;
case Shader::OPCODE_SINH: sinh(d, s0, pp); break;
case Shader::OPCODE_TANH: tanh(d, s0, pp); break;
case Shader::OPCODE_ACOSH: acosh(d, s0, pp); break;
case Shader::OPCODE_ASINH: asinh(d, s0, pp); break;
case Shader::OPCODE_ATANH: atanh(d, s0, pp); break;
case Shader::OPCODE_M4X4: M4X4(d, s0, src1); break;
case Shader::OPCODE_M4X3: M4X3(d, s0, src1); break;
case Shader::OPCODE_M3X4: M3X4(d, s0, src1); break;
case Shader::OPCODE_M3X3: M3X3(d, s0, src1); break;
case Shader::OPCODE_M3X2: M3X2(d, s0, src1); break;
case Shader::OPCODE_TEX: TEX(d, s0, src1, project, bias); break;
case Shader::OPCODE_TEXLDD: TEXGRAD(d, s0, src1, s2, s3); break;
case Shader::OPCODE_TEXLDL: TEXLOD(d, s0, src1, s0.w); break;
case Shader::OPCODE_TEXLOD: TEXLOD(d, s0, src1, s2.x); break;
case Shader::OPCODE_TEXSIZE: TEXSIZE(d, s0.x, src1); break;
case Shader::OPCODE_TEXKILL: TEXKILL(cMask, d, dst.mask); break;
case Shader::OPCODE_TEXOFFSET: TEXOFFSET(d, s0, src1, s2); break;
case Shader::OPCODE_TEXLODOFFSET: TEXLODOFFSET(d, s0, src1, s2, s3.x); break;
case Shader::OPCODE_TEXELFETCH: TEXELFETCH(d, s0, src1, s2.x); break;
case Shader::OPCODE_TEXELFETCHOFFSET: TEXELFETCHOFFSET(d, s0, src1, s2, s3.x); break;
case Shader::OPCODE_TEXGRAD: TEXGRAD(d, s0, src1, s2, s3); break;
case Shader::OPCODE_TEXGRADOFFSET: TEXGRADOFFSET(d, s0, src1, s2, s3, s4); break;
case Shader::OPCODE_TEXBIAS: TEXBIAS(d, s0, src1, s2.x); break;
case Shader::OPCODE_TEXOFFSETBIAS: TEXOFFSETBIAS(d, s0, src1, s2, s3.x); break;
case Shader::OPCODE_DISCARD: DISCARD(cMask, instruction); break;
case Shader::OPCODE_DFDX: DFDX(d, s0); break;
case Shader::OPCODE_DFDY: DFDY(d, s0); break;
case Shader::OPCODE_FWIDTH: FWIDTH(d, s0); break;
case Shader::OPCODE_BREAK: BREAK(); break;
case Shader::OPCODE_BREAKC: BREAKC(s0, s1, control); break;
case Shader::OPCODE_BREAKP: BREAKP(src0); break;
case Shader::OPCODE_CONTINUE: CONTINUE(); break;
case Shader::OPCODE_TEST: TEST(); break;
case Shader::OPCODE_SCALAR: SCALAR(); break;
case Shader::OPCODE_CALL: CALL(dst.label, dst.callSite); break;
case Shader::OPCODE_CALLNZ: CALLNZ(dst.label, dst.callSite, src0); break;
case Shader::OPCODE_ELSE: ELSE(); break;
case Shader::OPCODE_ENDIF: ENDIF(); break;
case Shader::OPCODE_ENDLOOP: ENDLOOP(); break;
case Shader::OPCODE_ENDREP: ENDREP(); break;
case Shader::OPCODE_ENDWHILE: ENDWHILE(); break;
case Shader::OPCODE_ENDSWITCH: ENDSWITCH(); break;
case Shader::OPCODE_IF: IF(src0); break;
case Shader::OPCODE_IFC: IFC(s0, s1, control); break;
case Shader::OPCODE_LABEL: LABEL(dst.index); break;
case Shader::OPCODE_LOOP: LOOP(src1); break;
case Shader::OPCODE_REP: REP(src0); break;
case Shader::OPCODE_WHILE: WHILE(src0); break;
case Shader::OPCODE_SWITCH: SWITCH(); break;
case Shader::OPCODE_RET: RET(); break;
case Shader::OPCODE_LEAVE: LEAVE(); break;
case Shader::OPCODE_CMP: cmp(d, s0, s1, control); break;
case Shader::OPCODE_ALL: all(d.x, s0); break;
case Shader::OPCODE_ANY: any(d.x, s0); break;
case Shader::OPCODE_NOT: bitwise_not(d, s0); break;
case Shader::OPCODE_OR: bitwise_or(d, s0, s1); break;
case Shader::OPCODE_XOR: bitwise_xor(d, s0, s1); break;
case Shader::OPCODE_AND: bitwise_and(d, s0, s1); break;
case Shader::OPCODE_EQ: equal(d, s0, s1); break;
case Shader::OPCODE_NE: notEqual(d, s0, s1); break;
case Shader::OPCODE_END: break;
default:
ASSERT(false);
}
if(dst.type != Shader::PARAMETER_VOID && dst.type != Shader::PARAMETER_LABEL && opcode != Shader::OPCODE_TEXKILL && opcode != Shader::OPCODE_NOP)
{
if(dst.saturate)
{
if(dst.x) d.x = Max(d.x, Float4(0.0f));
if(dst.y) d.y = Max(d.y, Float4(0.0f));
if(dst.z) d.z = Max(d.z, Float4(0.0f));
if(dst.w) d.w = Max(d.w, Float4(0.0f));
if(dst.x) d.x = Min(d.x, Float4(1.0f));
if(dst.y) d.y = Min(d.y, Float4(1.0f));
if(dst.z) d.z = Min(d.z, Float4(1.0f));
if(dst.w) d.w = Min(d.w, Float4(1.0f));
}
if(instruction->isPredicated())
{
Vector4f pDst; // FIXME: Rename
switch(dst.type)
{
case Shader::PARAMETER_TEMP:
if(dst.rel.type == Shader::PARAMETER_VOID)
{
if(dst.x) pDst.x = r[dst.index].x;
if(dst.y) pDst.y = r[dst.index].y;
if(dst.z) pDst.z = r[dst.index].z;
if(dst.w) pDst.w = r[dst.index].w;
}
else if(!dst.rel.dynamic)
{
Int a = dst.index + relativeAddress(dst.rel);
if(dst.x) pDst.x = r[a].x;
if(dst.y) pDst.y = r[a].y;
if(dst.z) pDst.z = r[a].z;
if(dst.w) pDst.w = r[a].w;
}
else
{
Int4 a = dst.index + dynamicAddress(dst.rel);
if(dst.x) pDst.x = r[a].x;
if(dst.y) pDst.y = r[a].y;
if(dst.z) pDst.z = r[a].z;
if(dst.w) pDst.w = r[a].w;
}
break;
case Shader::PARAMETER_COLOROUT:
if(dst.rel.type == Shader::PARAMETER_VOID)
{
if(dst.x) pDst.x = oC[dst.index].x;
if(dst.y) pDst.y = oC[dst.index].y;
if(dst.z) pDst.z = oC[dst.index].z;
if(dst.w) pDst.w = oC[dst.index].w;
}
else if(!dst.rel.dynamic)
{
Int a = dst.index + relativeAddress(dst.rel);
if(dst.x) pDst.x = oC[a].x;
if(dst.y) pDst.y = oC[a].y;
if(dst.z) pDst.z = oC[a].z;
if(dst.w) pDst.w = oC[a].w;
}
else
{
Int4 a = dst.index + dynamicAddress(dst.rel);
if(dst.x) pDst.x = oC[a].x;
if(dst.y) pDst.y = oC[a].y;
if(dst.z) pDst.z = oC[a].z;
if(dst.w) pDst.w = oC[a].w;
}
break;
case Shader::PARAMETER_PREDICATE:
if(dst.x) pDst.x = p0.x;
if(dst.y) pDst.y = p0.y;
if(dst.z) pDst.z = p0.z;
if(dst.w) pDst.w = p0.w;
break;
case Shader::PARAMETER_DEPTHOUT:
pDst.x = oDepth;
break;
default:
ASSERT(false);
}
Int4 enable = enableMask(instruction);
Int4 xEnable = enable;
Int4 yEnable = enable;
Int4 zEnable = enable;
Int4 wEnable = enable;
if(predicate)
{
unsigned char pSwizzle = instruction->predicateSwizzle;
Float4 xPredicate = p0[(pSwizzle >> 0) & 0x03];
Float4 yPredicate = p0[(pSwizzle >> 2) & 0x03];
Float4 zPredicate = p0[(pSwizzle >> 4) & 0x03];
Float4 wPredicate = p0[(pSwizzle >> 6) & 0x03];
if(!instruction->predicateNot)
{
if(dst.x) xEnable = xEnable & As<Int4>(xPredicate);
if(dst.y) yEnable = yEnable & As<Int4>(yPredicate);
if(dst.z) zEnable = zEnable & As<Int4>(zPredicate);
if(dst.w) wEnable = wEnable & As<Int4>(wPredicate);
}
else
{
if(dst.x) xEnable = xEnable & ~As<Int4>(xPredicate);
if(dst.y) yEnable = yEnable & ~As<Int4>(yPredicate);
if(dst.z) zEnable = zEnable & ~As<Int4>(zPredicate);
if(dst.w) wEnable = wEnable & ~As<Int4>(wPredicate);
}
}
if(dst.x) d.x = As<Float4>(As<Int4>(d.x) & xEnable);
if(dst.y) d.y = As<Float4>(As<Int4>(d.y) & yEnable);
if(dst.z) d.z = As<Float4>(As<Int4>(d.z) & zEnable);
if(dst.w) d.w = As<Float4>(As<Int4>(d.w) & wEnable);
if(dst.x) d.x = As<Float4>(As<Int4>(d.x) | (As<Int4>(pDst.x) & ~xEnable));
if(dst.y) d.y = As<Float4>(As<Int4>(d.y) | (As<Int4>(pDst.y) & ~yEnable));
if(dst.z) d.z = As<Float4>(As<Int4>(d.z) | (As<Int4>(pDst.z) & ~zEnable));
if(dst.w) d.w = As<Float4>(As<Int4>(d.w) | (As<Int4>(pDst.w) & ~wEnable));
}
switch(dst.type)
{
case Shader::PARAMETER_TEMP:
if(dst.rel.type == Shader::PARAMETER_VOID)
{
if(dst.x) r[dst.index].x = d.x;
if(dst.y) r[dst.index].y = d.y;
if(dst.z) r[dst.index].z = d.z;
if(dst.w) r[dst.index].w = d.w;
}
else if(!dst.rel.dynamic)
{
Int a = dst.index + relativeAddress(dst.rel);
if(dst.x) r[a].x = d.x;
if(dst.y) r[a].y = d.y;
if(dst.z) r[a].z = d.z;
if(dst.w) r[a].w = d.w;
}
else
{
Int4 a = dst.index + dynamicAddress(dst.rel);
if(dst.x) r.scatter_x(a, d.x);
if(dst.y) r.scatter_y(a, d.y);
if(dst.z) r.scatter_z(a, d.z);
if(dst.w) r.scatter_w(a, d.w);
}
break;
case Shader::PARAMETER_COLOROUT:
if(dst.rel.type == Shader::PARAMETER_VOID)
{
broadcastColor0 = (dst.index == 0) && broadcastColor0;
if(dst.x) oC[dst.index].x = d.x;
if(dst.y) oC[dst.index].y = d.y;
if(dst.z) oC[dst.index].z = d.z;
if(dst.w) oC[dst.index].w = d.w;
}
else if(!dst.rel.dynamic)
{
broadcastColor0 = false;
Int a = dst.index + relativeAddress(dst.rel);
if(dst.x) oC[a].x = d.x;
if(dst.y) oC[a].y = d.y;
if(dst.z) oC[a].z = d.z;
if(dst.w) oC[a].w = d.w;
}
else
{
broadcastColor0 = false;
Int4 a = dst.index + dynamicAddress(dst.rel);
if(dst.x) oC.scatter_x(a, d.x);
if(dst.y) oC.scatter_y(a, d.y);
if(dst.z) oC.scatter_z(a, d.z);
if(dst.w) oC.scatter_w(a, d.w);
}
break;
case Shader::PARAMETER_PREDICATE:
if(dst.x) p0.x = d.x;
if(dst.y) p0.y = d.y;
if(dst.z) p0.z = d.z;
if(dst.w) p0.w = d.w;
break;
case Shader::PARAMETER_DEPTHOUT:
oDepth = d.x;
break;
default:
ASSERT(false);
}
}
}
if(currentLabel != -1)
{
Nucleus::setInsertBlock(returnBlock);
}
if(broadcastColor0)
{
for(int i = 0; i < RENDERTARGETS; i++)
{
c[i] = oC[0];
}
}
else
{
for(int i = 0; i < RENDERTARGETS; i++)
{
c[i] = oC[i];
}
}
clampColor(c);
if(state.depthOverride)
{
oDepth = Min(Max(oDepth, Float4(0.0f)), Float4(1.0f));
}
}
Bool PixelProgram::alphaTest(Int cMask[4])
{
if(!state.alphaTestActive())
{
return true;
}
Int aMask;
if(state.transparencyAntialiasing == TRANSPARENCY_NONE)
{
Short4 alpha = RoundShort4(c[0].w * Float4(0x1000));
PixelRoutine::alphaTest(aMask, alpha);
for(unsigned int q = 0; q < state.multiSample; q++)
{
cMask[q] &= aMask;
}
}
else if(state.transparencyAntialiasing == TRANSPARENCY_ALPHA_TO_COVERAGE)
{
alphaToCoverage(cMask, c[0].w);
}
else ASSERT(false);
Int pass = cMask[0];
for(unsigned int q = 1; q < state.multiSample; q++)
{
pass = pass | cMask[q];
}
return pass != 0x0;
}
void PixelProgram::rasterOperation(Float4 &fog, Pointer<Byte> cBuffer[4], Int &x, Int sMask[4], Int zMask[4], Int cMask[4])
{
for(int index = 0; index < RENDERTARGETS; index++)
{
if(!state.colorWriteActive(index))
{
continue;
}
if(!postBlendSRGB && state.writeSRGB && !isSRGB(index))
{
c[index].x = linearToSRGB(c[index].x);
c[index].y = linearToSRGB(c[index].y);
c[index].z = linearToSRGB(c[index].z);
}
if(index == 0)
{
fogBlend(c[index], fog);
}
switch(state.targetFormat[index])
{
case FORMAT_R5G6B5:
case FORMAT_X8R8G8B8:
case FORMAT_X8B8G8R8:
case FORMAT_A8R8G8B8:
case FORMAT_A8B8G8R8:
case FORMAT_SRGB8_X8:
case FORMAT_SRGB8_A8:
case FORMAT_G8R8:
case FORMAT_R8:
case FORMAT_A8:
case FORMAT_G16R16:
case FORMAT_A16B16G16R16:
for(unsigned int q = 0; q < state.multiSample; q++)
{
Pointer<Byte> buffer = cBuffer[index] + q * *Pointer<Int>(data + OFFSET(DrawData, colorSliceB[index]));
Vector4s color;
if(state.targetFormat[index] == FORMAT_R5G6B5)
{
color.x = UShort4(c[index].x * Float4(0xFBFF), false);
color.y = UShort4(c[index].y * Float4(0xFDFF), false);
color.z = UShort4(c[index].z * Float4(0xFBFF), false);
color.w = UShort4(c[index].w * Float4(0xFFFF), false);
}
else
{
color.x = convertFixed16(c[index].x, false);
color.y = convertFixed16(c[index].y, false);
color.z = convertFixed16(c[index].z, false);
color.w = convertFixed16(c[index].w, false);
}
if(state.multiSampleMask & (1 << q))
{
alphaBlend(index, buffer, color, x);
logicOperation(index, buffer, color, x);
writeColor(index, buffer, x, color, sMask[q], zMask[q], cMask[q]);
}
}
break;
case FORMAT_R32F:
case FORMAT_G32R32F:
case FORMAT_X32B32G32R32F:
case FORMAT_A32B32G32R32F:
case FORMAT_X32B32G32R32F_UNSIGNED:
case FORMAT_R32I:
case FORMAT_G32R32I:
case FORMAT_A32B32G32R32I:
case FORMAT_R32UI:
case FORMAT_G32R32UI:
case FORMAT_A32B32G32R32UI:
case FORMAT_R16I:
case FORMAT_G16R16I:
case FORMAT_A16B16G16R16I:
case FORMAT_R16UI:
case FORMAT_G16R16UI:
case FORMAT_A16B16G16R16UI:
case FORMAT_R8I:
case FORMAT_G8R8I:
case FORMAT_A8B8G8R8I:
case FORMAT_R8UI:
case FORMAT_G8R8UI:
case FORMAT_A8B8G8R8UI:
for(unsigned int q = 0; q < state.multiSample; q++)
{
Pointer<Byte> buffer = cBuffer[index] + q * *Pointer<Int>(data + OFFSET(DrawData, colorSliceB[index]));
Vector4f color = c[index];
if(state.multiSampleMask & (1 << q))
{
alphaBlend(index, buffer, color, x);
writeColor(index, buffer, x, color, sMask[q], zMask[q], cMask[q]);
}
}
break;
default:
ASSERT(false);
}
}
}
Vector4f PixelProgram::sampleTexture(const Src &sampler, Vector4f &uvwq, Float4 &bias, Vector4f &dsx, Vector4f &dsy, Vector4f &offset, SamplerFunction function)
{
Vector4f tmp;
if(sampler.type == Shader::PARAMETER_SAMPLER && sampler.rel.type == Shader::PARAMETER_VOID)
{
tmp = sampleTexture(sampler.index, uvwq, bias, dsx, dsy, offset, function);
}
else
{
Int index = As<Int>(Float(fetchRegister(sampler).x.x));
for(int i = 0; i < TEXTURE_IMAGE_UNITS; i++)
{
if(shader->usesSampler(i))
{
If(index == i)
{
tmp = sampleTexture(i, uvwq, bias, dsx, dsy, offset, function);
// FIXME: When the sampler states are the same, we could use one sampler and just index the texture
}
}
}
}
Vector4f c;
c.x = tmp[(sampler.swizzle >> 0) & 0x3];
c.y = tmp[(sampler.swizzle >> 2) & 0x3];
c.z = tmp[(sampler.swizzle >> 4) & 0x3];
c.w = tmp[(sampler.swizzle >> 6) & 0x3];
return c;
}
Vector4f PixelProgram::sampleTexture(int samplerIndex, Vector4f &uvwq, Float4 &bias, Vector4f &dsx, Vector4f &dsy, Vector4f &offset, SamplerFunction function)
{
#if PERF_PROFILE
Long texTime = Ticks();
#endif
Pointer<Byte> texture = data + OFFSET(DrawData, mipmap) + samplerIndex * sizeof(Texture);
Vector4f c = SamplerCore(constants, state.sampler[samplerIndex]).sampleTexture(texture, uvwq.x, uvwq.y, uvwq.z, uvwq.w, bias, dsx, dsy, offset, function);
#if PERF_PROFILE
cycles[PERF_TEX] += Ticks() - texTime;
#endif
return c;
}
void PixelProgram::clampColor(Vector4f oC[RENDERTARGETS])
{
for(int index = 0; index < RENDERTARGETS; index++)
{
if(!state.colorWriteActive(index) && !(index == 0 && state.alphaTestActive()))
{
continue;
}
switch(state.targetFormat[index])
{
case FORMAT_NULL:
break;
case FORMAT_R5G6B5:
case FORMAT_A8R8G8B8:
case FORMAT_A8B8G8R8:
case FORMAT_X8R8G8B8:
case FORMAT_X8B8G8R8:
case FORMAT_SRGB8_X8:
case FORMAT_SRGB8_A8:
case FORMAT_G8R8:
case FORMAT_R8:
case FORMAT_A8:
case FORMAT_G16R16:
case FORMAT_A16B16G16R16:
oC[index].x = Max(oC[index].x, Float4(0.0f)); oC[index].x = Min(oC[index].x, Float4(1.0f));
oC[index].y = Max(oC[index].y, Float4(0.0f)); oC[index].y = Min(oC[index].y, Float4(1.0f));
oC[index].z = Max(oC[index].z, Float4(0.0f)); oC[index].z = Min(oC[index].z, Float4(1.0f));
oC[index].w = Max(oC[index].w, Float4(0.0f)); oC[index].w = Min(oC[index].w, Float4(1.0f));
break;
case FORMAT_R32F:
case FORMAT_G32R32F:
case FORMAT_X32B32G32R32F:
case FORMAT_A32B32G32R32F:
case FORMAT_R32I:
case FORMAT_G32R32I:
case FORMAT_A32B32G32R32I:
case FORMAT_R32UI:
case FORMAT_G32R32UI:
case FORMAT_A32B32G32R32UI:
case FORMAT_R16I:
case FORMAT_G16R16I:
case FORMAT_A16B16G16R16I:
case FORMAT_R16UI:
case FORMAT_G16R16UI:
case FORMAT_A16B16G16R16UI:
case FORMAT_R8I:
case FORMAT_G8R8I:
case FORMAT_A8B8G8R8I:
case FORMAT_R8UI:
case FORMAT_G8R8UI:
case FORMAT_A8B8G8R8UI:
break;
case FORMAT_X32B32G32R32F_UNSIGNED:
oC[index].x = Max(oC[index].x, Float4(0.0f));
oC[index].y = Max(oC[index].y, Float4(0.0f));
oC[index].z = Max(oC[index].z, Float4(0.0f));
oC[index].w = Max(oC[index].w, Float4(0.0f));
break;
default:
ASSERT(false);
}
}
}
Int4 PixelProgram::enableMask(const Shader::Instruction *instruction)
{
if(scalar)
{
return Int4(0xFFFFFFFF);
}
Int4 enable = instruction->analysisBranch ? Int4(enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))]) : Int4(0xFFFFFFFF);
if(shader->containsBreakInstruction() && instruction->analysisBreak)
{
enable &= enableBreak;
}
if(shader->containsContinueInstruction() && instruction->analysisContinue)
{
enable &= enableContinue;
}
if(shader->containsLeaveInstruction() && instruction->analysisLeave)
{
enable &= enableLeave;
}
return enable;
}
Vector4f PixelProgram::fetchRegister(const Src &src, unsigned int offset)
{
Vector4f reg;
unsigned int i = src.index + offset;
switch(src.type)
{
case Shader::PARAMETER_TEMP:
if(src.rel.type == Shader::PARAMETER_VOID)
{
reg = r[i];
}
else if(!src.rel.dynamic)
{
reg = r[i + relativeAddress(src.rel, src.bufferIndex)];
}
else
{
reg = r[i + dynamicAddress(src.rel)];
}
break;
case Shader::PARAMETER_INPUT:
if(src.rel.type == Shader::PARAMETER_VOID) // Not relative
{
reg = v[i];
}
else if(!src.rel.dynamic)
{
reg = v[i + relativeAddress(src.rel, src.bufferIndex)];
}
else
{
reg = v[i + dynamicAddress(src.rel)];
}
break;
case Shader::PARAMETER_CONST:
reg = readConstant(src, offset);
break;
case Shader::PARAMETER_TEXTURE:
reg = v[2 + i];
break;
case Shader::PARAMETER_MISCTYPE:
if(src.index == Shader::VPosIndex) reg = vPos;
if(src.index == Shader::VFaceIndex) reg = vFace;
break;
case Shader::PARAMETER_SAMPLER:
if(src.rel.type == Shader::PARAMETER_VOID)
{
reg.x = As<Float4>(Int4(i));
}
else if(src.rel.type == Shader::PARAMETER_TEMP)
{
reg.x = As<Float4>(Int4(i) + As<Int4>(r[src.rel.index].x));
}
return reg;
case Shader::PARAMETER_PREDICATE: return reg; // Dummy
case Shader::PARAMETER_VOID: return reg; // Dummy
case Shader::PARAMETER_FLOAT4LITERAL:
// This is used for all literal types, and since Reactor doesn't guarantee
// preserving the bit pattern of float constants, we must construct them
// as integer constants and bitcast.
reg.x = As<Float4>(Int4(src.integer[0]));
reg.y = As<Float4>(Int4(src.integer[1]));
reg.z = As<Float4>(Int4(src.integer[2]));
reg.w = As<Float4>(Int4(src.integer[3]));
break;
case Shader::PARAMETER_CONSTINT: return reg; // Dummy
case Shader::PARAMETER_CONSTBOOL: return reg; // Dummy
case Shader::PARAMETER_LOOP: return reg; // Dummy
case Shader::PARAMETER_COLOROUT:
if(src.rel.type == Shader::PARAMETER_VOID) // Not relative
{
reg = oC[i];
}
else if(!src.rel.dynamic)
{
reg = oC[i + relativeAddress(src.rel, src.bufferIndex)];
}
else
{
reg = oC[i + dynamicAddress(src.rel)];
}
break;
case Shader::PARAMETER_DEPTHOUT:
reg.x = oDepth;
break;
default:
ASSERT(false);
}
const Float4 &x = reg[(src.swizzle >> 0) & 0x3];
const Float4 &y = reg[(src.swizzle >> 2) & 0x3];
const Float4 &z = reg[(src.swizzle >> 4) & 0x3];
const Float4 &w = reg[(src.swizzle >> 6) & 0x3];
Vector4f mod;
switch(src.modifier)
{
case Shader::MODIFIER_NONE:
mod.x = x;
mod.y = y;
mod.z = z;
mod.w = w;
break;
case Shader::MODIFIER_NEGATE:
mod.x = -x;
mod.y = -y;
mod.z = -z;
mod.w = -w;
break;
case Shader::MODIFIER_ABS:
mod.x = Abs(x);
mod.y = Abs(y);
mod.z = Abs(z);
mod.w = Abs(w);
break;
case Shader::MODIFIER_ABS_NEGATE:
mod.x = -Abs(x);
mod.y = -Abs(y);
mod.z = -Abs(z);
mod.w = -Abs(w);
break;
case Shader::MODIFIER_NOT:
mod.x = As<Float4>(As<Int4>(x) ^ Int4(0xFFFFFFFF));
mod.y = As<Float4>(As<Int4>(y) ^ Int4(0xFFFFFFFF));
mod.z = As<Float4>(As<Int4>(z) ^ Int4(0xFFFFFFFF));
mod.w = As<Float4>(As<Int4>(w) ^ Int4(0xFFFFFFFF));
break;
default:
ASSERT(false);
}
return mod;
}
RValue<Pointer<Byte>> PixelProgram::uniformAddress(int bufferIndex, unsigned int index)
{
if(bufferIndex == -1)
{
return data + OFFSET(DrawData, ps.c[index]);
}
else
{
return *Pointer<Pointer<Byte>>(data + OFFSET(DrawData, ps.u[bufferIndex])) + index;
}
}
RValue<Pointer<Byte>> PixelProgram::uniformAddress(int bufferIndex, unsigned int index, Int& offset)
{
return uniformAddress(bufferIndex, index) + offset * sizeof(float4);
}
Vector4f PixelProgram::readConstant(const Src &src, unsigned int offset)
{
Vector4f c;
unsigned int i = src.index + offset;
if(src.rel.type == Shader::PARAMETER_VOID) // Not relative
{
c.x = c.y = c.z = c.w = *Pointer<Float4>(uniformAddress(src.bufferIndex, i));
c.x = c.x.xxxx;
c.y = c.y.yyyy;
c.z = c.z.zzzz;
c.w = c.w.wwww;
if(shader->containsDefineInstruction()) // Constant may be known at compile time
{
for(size_t j = 0; j < shader->getLength(); j++)
{
const Shader::Instruction &instruction = *shader->getInstruction(j);
if(instruction.opcode == Shader::OPCODE_DEF)
{
if(instruction.dst.index == i)
{
c.x = Float4(instruction.src[0].value[0]);
c.y = Float4(instruction.src[0].value[1]);
c.z = Float4(instruction.src[0].value[2]);
c.w = Float4(instruction.src[0].value[3]);
break;
}
}
}
}
}
else if(!src.rel.dynamic || src.rel.type == Shader::PARAMETER_LOOP)
{
Int a = relativeAddress(src.rel, src.bufferIndex);
c.x = c.y = c.z = c.w = *Pointer<Float4>(uniformAddress(src.bufferIndex, i, a));
c.x = c.x.xxxx;
c.y = c.y.yyyy;
c.z = c.z.zzzz;
c.w = c.w.wwww;
}
else
{
int component = src.rel.swizzle & 0x03;
Float4 a;
switch(src.rel.type)
{
case Shader::PARAMETER_TEMP: a = r[src.rel.index][component]; break;
case Shader::PARAMETER_INPUT: a = v[src.rel.index][component]; break;
case Shader::PARAMETER_OUTPUT: a = oC[src.rel.index][component]; break;
case Shader::PARAMETER_CONST: a = *Pointer<Float>(uniformAddress(src.bufferIndex, src.rel.index) + component * sizeof(float)); break;
case Shader::PARAMETER_MISCTYPE:
switch(src.rel.index)
{
case Shader::VPosIndex: a = vPos.x; break;
case Shader::VFaceIndex: a = vFace.x; break;
default: ASSERT(false);
}
break;
default: ASSERT(false);
}
Int4 index = Int4(i) + As<Int4>(a) * Int4(src.rel.scale);
if (src.bufferIndex == -1)
{
index = Min(As<UInt4>(index), UInt4(VERTEX_UNIFORM_VECTORS)); // Clamp to constant register range, c[VERTEX_UNIFORM_VECTORS] = {0, 0, 0, 0}
}
Int index0 = Extract(index, 0);
Int index1 = Extract(index, 1);
Int index2 = Extract(index, 2);
Int index3 = Extract(index, 3);
c.x = *Pointer<Float4>(uniformAddress(src.bufferIndex, 0, index0), 16);
c.y = *Pointer<Float4>(uniformAddress(src.bufferIndex, 0, index1), 16);
c.z = *Pointer<Float4>(uniformAddress(src.bufferIndex, 0, index2), 16);
c.w = *Pointer<Float4>(uniformAddress(src.bufferIndex, 0, index3), 16);
transpose4x4(c.x, c.y, c.z, c.w);
}
return c;
}
Int PixelProgram::relativeAddress(const Shader::Relative &rel, int bufferIndex)
{
ASSERT(!rel.dynamic);
if(rel.type == Shader::PARAMETER_TEMP)
{
return As<Int>(Extract(r[rel.index].x, 0)) * rel.scale;
}
else if(rel.type == Shader::PARAMETER_INPUT)
{
return As<Int>(Extract(v[rel.index].x, 0)) * rel.scale;
}
else if(rel.type == Shader::PARAMETER_OUTPUT)
{
return As<Int>(Extract(oC[rel.index].x, 0)) * rel.scale;
}
else if(rel.type == Shader::PARAMETER_CONST)
{
return *Pointer<Int>(uniformAddress(bufferIndex, rel.index)) * rel.scale;
}
else if(rel.type == Shader::PARAMETER_LOOP)
{
return aL[loopDepth];
}
else ASSERT(false);
return 0;
}
Int4 PixelProgram::dynamicAddress(const Shader::Relative &rel)
{
int component = rel.swizzle & 0x03;
Float4 a;
switch(rel.type)
{
case Shader::PARAMETER_TEMP: a = r[rel.index][component]; break;
case Shader::PARAMETER_INPUT: a = v[rel.index][component]; break;
case Shader::PARAMETER_OUTPUT: a = oC[rel.index][component]; break;
case Shader::PARAMETER_MISCTYPE:
switch(rel.index)
{
case Shader::VPosIndex: a = vPos.x; break;
case Shader::VFaceIndex: a = vFace.x; break;
default: ASSERT(false);
}
break;
default: ASSERT(false);
}
return As<Int4>(a) * Int4(rel.scale);
}
Float4 PixelProgram::linearToSRGB(const Float4 &x) // Approximates x^(1.0/2.2)
{
Float4 sqrtx = Rcp_pp(RcpSqrt_pp(x));
Float4 sRGB = sqrtx * Float4(1.14f) - x * Float4(0.14f);
return Min(Max(sRGB, Float4(0.0f)), Float4(1.0f));
}
void PixelProgram::M3X2(Vector4f &dst, Vector4f &src0, const Src &src1)
{
Vector4f row0 = fetchRegister(src1, 0);
Vector4f row1 = fetchRegister(src1, 1);
dst.x = dot3(src0, row0);
dst.y = dot3(src0, row1);
}
void PixelProgram::M3X3(Vector4f &dst, Vector4f &src0, const Src &src1)
{
Vector4f row0 = fetchRegister(src1, 0);
Vector4f row1 = fetchRegister(src1, 1);
Vector4f row2 = fetchRegister(src1, 2);
dst.x = dot3(src0, row0);
dst.y = dot3(src0, row1);
dst.z = dot3(src0, row2);
}
void PixelProgram::M3X4(Vector4f &dst, Vector4f &src0, const Src &src1)
{
Vector4f row0 = fetchRegister(src1, 0);
Vector4f row1 = fetchRegister(src1, 1);
Vector4f row2 = fetchRegister(src1, 2);
Vector4f row3 = fetchRegister(src1, 3);
dst.x = dot3(src0, row0);
dst.y = dot3(src0, row1);
dst.z = dot3(src0, row2);
dst.w = dot3(src0, row3);
}
void PixelProgram::M4X3(Vector4f &dst, Vector4f &src0, const Src &src1)
{
Vector4f row0 = fetchRegister(src1, 0);
Vector4f row1 = fetchRegister(src1, 1);
Vector4f row2 = fetchRegister(src1, 2);
dst.x = dot4(src0, row0);
dst.y = dot4(src0, row1);
dst.z = dot4(src0, row2);
}
void PixelProgram::M4X4(Vector4f &dst, Vector4f &src0, const Src &src1)
{
Vector4f row0 = fetchRegister(src1, 0);
Vector4f row1 = fetchRegister(src1, 1);
Vector4f row2 = fetchRegister(src1, 2);
Vector4f row3 = fetchRegister(src1, 3);
dst.x = dot4(src0, row0);
dst.y = dot4(src0, row1);
dst.z = dot4(src0, row2);
dst.w = dot4(src0, row3);
}
void PixelProgram::TEX(Vector4f &dst, Vector4f &src0, const Src &src1, bool project, bool bias)
{
if(project)
{
Vector4f proj;
Float4 rw = reciprocal(src0.w);
proj.x = src0.x * rw;
proj.y = src0.y * rw;
proj.z = src0.z * rw;
dst = sampleTexture(src1, proj, src0.x, (src0), (src0), (src0), Implicit);
}
else
{
dst = sampleTexture(src1, src0, src0.x, (src0), (src0), (src0), bias ? Bias : Implicit);
}
}
void PixelProgram::TEXOFFSET(Vector4f &dst, Vector4f &src0, const Src &src1, Vector4f &offset)
{
dst = sampleTexture(src1, src0, (src0.x), (src0), (src0), offset, {Implicit, Offset});
}
void PixelProgram::TEXLODOFFSET(Vector4f &dst, Vector4f &src0, const Src &src1, Vector4f &offset, Float4 &lod)
{
dst = sampleTexture(src1, src0, lod, (src0), (src0), offset, {Lod, Offset});
}
void PixelProgram::TEXBIAS(Vector4f &dst, Vector4f &src0, const Src &src1, Float4 &bias)
{
dst = sampleTexture(src1, src0, bias, (src0), (src0), (src0), Bias);
}
void PixelProgram::TEXOFFSETBIAS(Vector4f &dst, Vector4f &src0, const Src &src1, Vector4f &offset, Float4 &bias)
{
dst = sampleTexture(src1, src0, bias, (src0), (src0), offset, {Bias, Offset});
}
void PixelProgram::TEXELFETCH(Vector4f &dst, Vector4f &src0, const Src& src1, Float4 &lod)
{
dst = sampleTexture(src1, src0, lod, (src0), (src0), (src0), Fetch);
}
void PixelProgram::TEXELFETCHOFFSET(Vector4f &dst, Vector4f &src0, const Src& src1, Vector4f &offset, Float4 &lod)
{
dst = sampleTexture(src1, src0, lod, (src0), (src0), offset, {Fetch, Offset});
}
void PixelProgram::TEXGRAD(Vector4f &dst, Vector4f &src0, const Src& src1, Vector4f &dsx, Vector4f &dsy)
{
dst = sampleTexture(src1, src0, (src0.x), dsx, dsy, (src0), Grad);
}
void PixelProgram::TEXGRADOFFSET(Vector4f &dst, Vector4f &src0, const Src& src1, Vector4f &dsx, Vector4f &dsy, Vector4f &offset)
{
dst = sampleTexture(src1, src0, (src0.x), dsx, dsy, offset, {Grad, Offset});
}
void PixelProgram::TEXLOD(Vector4f &dst, Vector4f &src0, const Src &src1, Float4 &lod)
{
dst = sampleTexture(src1, src0, lod, (src0), (src0), (src0), Lod);
}
void PixelProgram::TEXSIZE(Vector4f &dst, Float4 &lod, const Src &src1)
{
bool uniformSampler = (src1.type == Shader::PARAMETER_SAMPLER && src1.rel.type == Shader::PARAMETER_VOID);
Int offset = uniformSampler ? src1.index * sizeof(Texture) : As<Int>(Float(fetchRegister(src1).x.x)) * sizeof(Texture);
Pointer<Byte> texture = data + OFFSET(DrawData, mipmap) + offset;
dst = SamplerCore::textureSize(texture, lod);
}
void PixelProgram::TEXKILL(Int cMask[4], Vector4f &src, unsigned char mask)
{
Int kill = -1;
if(mask & 0x1) kill &= SignMask(CmpNLT(src.x, Float4(0.0f)));
if(mask & 0x2) kill &= SignMask(CmpNLT(src.y, Float4(0.0f)));
if(mask & 0x4) kill &= SignMask(CmpNLT(src.z, Float4(0.0f)));
if(mask & 0x8) kill &= SignMask(CmpNLT(src.w, Float4(0.0f)));
// FIXME: Dynamic branching affects TEXKILL?
// if(shader->containsDynamicBranching())
// {
// kill = ~SignMask(enableMask());
// }
for(unsigned int q = 0; q < state.multiSample; q++)
{
cMask[q] &= kill;
}
// FIXME: Branch to end of shader if all killed?
}
void PixelProgram::DISCARD(Int cMask[4], const Shader::Instruction *instruction)
{
Int kill = 0;
if(shader->containsDynamicBranching())
{
kill = ~SignMask(enableMask(instruction));
}
for(unsigned int q = 0; q < state.multiSample; q++)
{
cMask[q] &= kill;
}
// FIXME: Branch to end of shader if all killed?
}
void PixelProgram::DFDX(Vector4f &dst, Vector4f &src)
{
dst.x = src.x.yyww - src.x.xxzz;
dst.y = src.y.yyww - src.y.xxzz;
dst.z = src.z.yyww - src.z.xxzz;
dst.w = src.w.yyww - src.w.xxzz;
}
void PixelProgram::DFDY(Vector4f &dst, Vector4f &src)
{
dst.x = src.x.zwzw - src.x.xyxy;
dst.y = src.y.zwzw - src.y.xyxy;
dst.z = src.z.zwzw - src.z.xyxy;
dst.w = src.w.zwzw - src.w.xyxy;
}
void PixelProgram::FWIDTH(Vector4f &dst, Vector4f &src)
{
// abs(dFdx(src)) + abs(dFdy(src));
dst.x = Abs(src.x.yyww - src.x.xxzz) + Abs(src.x.zwzw - src.x.xyxy);
dst.y = Abs(src.y.yyww - src.y.xxzz) + Abs(src.y.zwzw - src.y.xyxy);
dst.z = Abs(src.z.yyww - src.z.xxzz) + Abs(src.z.zwzw - src.z.xyxy);
dst.w = Abs(src.w.yyww - src.w.xxzz) + Abs(src.w.zwzw - src.w.xyxy);
}
void PixelProgram::BREAK()
{
enableBreak = enableBreak & ~enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))];
}
void PixelProgram::BREAKC(Vector4f &src0, Vector4f &src1, Control control)
{
Int4 condition;
switch(control)
{
case Shader::CONTROL_GT: condition = CmpNLE(src0.x, src1.x); break;
case Shader::CONTROL_EQ: condition = CmpEQ(src0.x, src1.x); break;
case Shader::CONTROL_GE: condition = CmpNLT(src0.x, src1.x); break;
case Shader::CONTROL_LT: condition = CmpLT(src0.x, src1.x); break;
case Shader::CONTROL_NE: condition = CmpNEQ(src0.x, src1.x); break;
case Shader::CONTROL_LE: condition = CmpLE(src0.x, src1.x); break;
default:
ASSERT(false);
}
BREAK(condition);
}
void PixelProgram::BREAKP(const Src &predicateRegister) // FIXME: Factor out parts common with BREAKC
{
Int4 condition = As<Int4>(p0[predicateRegister.swizzle & 0x3]);
if(predicateRegister.modifier == Shader::MODIFIER_NOT)
{
condition = ~condition;
}
BREAK(condition);
}
void PixelProgram::BREAK(Int4 &condition)
{
condition &= enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))];
enableBreak = enableBreak & ~condition;
}
void PixelProgram::CONTINUE()
{
enableContinue = enableContinue & ~enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))];
}
void PixelProgram::TEST()
{
enableContinue = restoreContinue.back();
restoreContinue.pop_back();
}
void PixelProgram::SCALAR()
{
scalar = true;
}
void PixelProgram::CALL(int labelIndex, int callSiteIndex)
{
if(!labelBlock[labelIndex])
{
labelBlock[labelIndex] = Nucleus::createBasicBlock();
}
if(callRetBlock[labelIndex].size() > 1)
{
callStack[stackIndex++] = UInt(callSiteIndex);
}
Int4 restoreLeave = enableLeave;
Nucleus::createBr(labelBlock[labelIndex]);
Nucleus::setInsertBlock(callRetBlock[labelIndex][callSiteIndex]);
enableLeave = restoreLeave;
}
void PixelProgram::CALLNZ(int labelIndex, int callSiteIndex, const Src &src)
{
if(src.type == Shader::PARAMETER_CONSTBOOL)
{
CALLNZb(labelIndex, callSiteIndex, src);
}
else if(src.type == Shader::PARAMETER_PREDICATE)
{
CALLNZp(labelIndex, callSiteIndex, src);
}
else ASSERT(false);
}
void PixelProgram::CALLNZb(int labelIndex, int callSiteIndex, const Src &boolRegister)
{
Bool condition = (*Pointer<Byte>(data + OFFSET(DrawData, ps.b[boolRegister.index])) != Byte(0)); // FIXME
if(boolRegister.modifier == Shader::MODIFIER_NOT)
{
condition = !condition;
}
if(!labelBlock[labelIndex])
{
labelBlock[labelIndex] = Nucleus::createBasicBlock();
}
if(callRetBlock[labelIndex].size() > 1)
{
callStack[stackIndex++] = UInt(callSiteIndex);
}
Int4 restoreLeave = enableLeave;
branch(condition, labelBlock[labelIndex], callRetBlock[labelIndex][callSiteIndex]);
Nucleus::setInsertBlock(callRetBlock[labelIndex][callSiteIndex]);
enableLeave = restoreLeave;
}
void PixelProgram::CALLNZp(int labelIndex, int callSiteIndex, const Src &predicateRegister)
{
Int4 condition = As<Int4>(p0[predicateRegister.swizzle & 0x3]);
if(predicateRegister.modifier == Shader::MODIFIER_NOT)
{
condition = ~condition;
}
condition &= enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))];
if(!labelBlock[labelIndex])
{
labelBlock[labelIndex] = Nucleus::createBasicBlock();
}
if(callRetBlock[labelIndex].size() > 1)
{
callStack[stackIndex++] = UInt(callSiteIndex);
}
enableIndex++;
enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))] = condition;
Int4 restoreLeave = enableLeave;
Bool notAllFalse = SignMask(condition) != 0;
branch(notAllFalse, labelBlock[labelIndex], callRetBlock[labelIndex][callSiteIndex]);
Nucleus::setInsertBlock(callRetBlock[labelIndex][callSiteIndex]);
enableIndex--;
enableLeave = restoreLeave;
}
void PixelProgram::ELSE()
{
ifDepth--;
BasicBlock *falseBlock = ifFalseBlock[ifDepth];
BasicBlock *endBlock = Nucleus::createBasicBlock();
if(isConditionalIf[ifDepth])
{
Int4 condition = ~enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))] & enableStack[Min(enableIndex - 1, Int(MAX_SHADER_ENABLE_STACK_SIZE))];
Bool notAllFalse = SignMask(condition) != 0;
branch(notAllFalse, falseBlock, endBlock);
enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))] = ~enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))] & enableStack[Min(enableIndex - 1, Int(MAX_SHADER_ENABLE_STACK_SIZE))];
}
else
{
Nucleus::createBr(endBlock);
Nucleus::setInsertBlock(falseBlock);
}
ifFalseBlock[ifDepth] = endBlock;
ifDepth++;
}
void PixelProgram::ENDIF()
{
ifDepth--;
BasicBlock *endBlock = ifFalseBlock[ifDepth];
Nucleus::createBr(endBlock);
Nucleus::setInsertBlock(endBlock);
if(isConditionalIf[ifDepth])
{
enableIndex--;
}
}
void PixelProgram::ENDLOOP()
{
loopRepDepth--;
aL[loopDepth] = aL[loopDepth] + increment[loopDepth]; // FIXME: +=
BasicBlock *testBlock = loopRepTestBlock[loopRepDepth];
BasicBlock *endBlock = loopRepEndBlock[loopRepDepth];
Nucleus::createBr(testBlock);
Nucleus::setInsertBlock(endBlock);
loopDepth--;
enableBreak = Int4(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF);
}
void PixelProgram::ENDREP()
{
loopRepDepth--;
BasicBlock *testBlock = loopRepTestBlock[loopRepDepth];
BasicBlock *endBlock = loopRepEndBlock[loopRepDepth];
Nucleus::createBr(testBlock);
Nucleus::setInsertBlock(endBlock);
loopDepth--;
enableBreak = Int4(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF);
}
void PixelProgram::ENDWHILE()
{
loopRepDepth--;
BasicBlock *testBlock = loopRepTestBlock[loopRepDepth];
BasicBlock *endBlock = loopRepEndBlock[loopRepDepth];
Nucleus::createBr(testBlock);
Nucleus::setInsertBlock(endBlock);
enableIndex--;
scalar = false;
}
void PixelProgram::ENDSWITCH()
{
loopRepDepth--;
BasicBlock *endBlock = loopRepEndBlock[loopRepDepth];
Nucleus::createBr(endBlock);
Nucleus::setInsertBlock(endBlock);
}
void PixelProgram::IF(const Src &src)
{
if(src.type == Shader::PARAMETER_CONSTBOOL)
{
IFb(src);
}
else if(src.type == Shader::PARAMETER_PREDICATE)
{
IFp(src);
}
else
{
Int4 condition = As<Int4>(fetchRegister(src).x);
IF(condition);
}
}
void PixelProgram::IFb(const Src &boolRegister)
{
ASSERT(ifDepth < 24 + 4);
Bool condition = (*Pointer<Byte>(data + OFFSET(DrawData, ps.b[boolRegister.index])) != Byte(0)); // FIXME
if(boolRegister.modifier == Shader::MODIFIER_NOT)
{
condition = !condition;
}
BasicBlock *trueBlock = Nucleus::createBasicBlock();
BasicBlock *falseBlock = Nucleus::createBasicBlock();
branch(condition, trueBlock, falseBlock);
isConditionalIf[ifDepth] = false;
ifFalseBlock[ifDepth] = falseBlock;
ifDepth++;
}
void PixelProgram::IFp(const Src &predicateRegister)
{
Int4 condition = As<Int4>(p0[predicateRegister.swizzle & 0x3]);
if(predicateRegister.modifier == Shader::MODIFIER_NOT)
{
condition = ~condition;
}
IF(condition);
}
void PixelProgram::IFC(Vector4f &src0, Vector4f &src1, Control control)
{
Int4 condition;
switch(control)
{
case Shader::CONTROL_GT: condition = CmpNLE(src0.x, src1.x); break;
case Shader::CONTROL_EQ: condition = CmpEQ(src0.x, src1.x); break;
case Shader::CONTROL_GE: condition = CmpNLT(src0.x, src1.x); break;
case Shader::CONTROL_LT: condition = CmpLT(src0.x, src1.x); break;
case Shader::CONTROL_NE: condition = CmpNEQ(src0.x, src1.x); break;
case Shader::CONTROL_LE: condition = CmpLE(src0.x, src1.x); break;
default:
ASSERT(false);
}
IF(condition);
}
void PixelProgram::IF(Int4 &condition)
{
condition &= enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))];
enableIndex++;
enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))] = condition;
BasicBlock *trueBlock = Nucleus::createBasicBlock();
BasicBlock *falseBlock = Nucleus::createBasicBlock();
Bool notAllFalse = SignMask(condition) != 0;
branch(notAllFalse, trueBlock, falseBlock);
isConditionalIf[ifDepth] = true;
ifFalseBlock[ifDepth] = falseBlock;
ifDepth++;
}
void PixelProgram::LABEL(int labelIndex)
{
if(!labelBlock[labelIndex])
{
labelBlock[labelIndex] = Nucleus::createBasicBlock();
}
Nucleus::setInsertBlock(labelBlock[labelIndex]);
currentLabel = labelIndex;
}
void PixelProgram::LOOP(const Src &integerRegister)
{
loopDepth++;
iteration[loopDepth] = *Pointer<Int>(data + OFFSET(DrawData, ps.i[integerRegister.index][0]));
aL[loopDepth] = *Pointer<Int>(data + OFFSET(DrawData, ps.i[integerRegister.index][1]));
increment[loopDepth] = *Pointer<Int>(data + OFFSET(DrawData, ps.i[integerRegister.index][2]));
// If(increment[loopDepth] == 0)
// {
// increment[loopDepth] = 1;
// }
BasicBlock *loopBlock = Nucleus::createBasicBlock();
BasicBlock *testBlock = Nucleus::createBasicBlock();
BasicBlock *endBlock = Nucleus::createBasicBlock();
loopRepTestBlock[loopRepDepth] = testBlock;
loopRepEndBlock[loopRepDepth] = endBlock;
// FIXME: jump(testBlock)
Nucleus::createBr(testBlock);
Nucleus::setInsertBlock(testBlock);
branch(iteration[loopDepth] > 0, loopBlock, endBlock);
Nucleus::setInsertBlock(loopBlock);
iteration[loopDepth] = iteration[loopDepth] - 1; // FIXME: --
loopRepDepth++;
}
void PixelProgram::REP(const Src &integerRegister)
{
loopDepth++;
iteration[loopDepth] = *Pointer<Int>(data + OFFSET(DrawData, ps.i[integerRegister.index][0]));
aL[loopDepth] = aL[loopDepth - 1];
BasicBlock *loopBlock = Nucleus::createBasicBlock();
BasicBlock *testBlock = Nucleus::createBasicBlock();
BasicBlock *endBlock = Nucleus::createBasicBlock();
loopRepTestBlock[loopRepDepth] = testBlock;
loopRepEndBlock[loopRepDepth] = endBlock;
// FIXME: jump(testBlock)
Nucleus::createBr(testBlock);
Nucleus::setInsertBlock(testBlock);
branch(iteration[loopDepth] > 0, loopBlock, endBlock);
Nucleus::setInsertBlock(loopBlock);
iteration[loopDepth] = iteration[loopDepth] - 1; // FIXME: --
loopRepDepth++;
}
void PixelProgram::WHILE(const Src &temporaryRegister)
{
enableIndex++;
BasicBlock *loopBlock = Nucleus::createBasicBlock();
BasicBlock *testBlock = Nucleus::createBasicBlock();
BasicBlock *endBlock = Nucleus::createBasicBlock();
loopRepTestBlock[loopRepDepth] = testBlock;
loopRepEndBlock[loopRepDepth] = endBlock;
Int4 restoreBreak = enableBreak;
restoreContinue.push_back(enableContinue);
// TODO: jump(testBlock)
Nucleus::createBr(testBlock);
Nucleus::setInsertBlock(testBlock);
const Vector4f &src = fetchRegister(temporaryRegister);
Int4 condition = As<Int4>(src.x);
condition &= enableStack[Min(enableIndex - 1, Int(MAX_SHADER_ENABLE_STACK_SIZE))];
if(shader->containsLeaveInstruction()) condition &= enableLeave;
if(shader->containsBreakInstruction()) condition &= enableBreak;
enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))] = condition;
Bool notAllFalse = SignMask(condition) != 0;
branch(notAllFalse, loopBlock, endBlock);
Nucleus::setInsertBlock(endBlock);
enableBreak = restoreBreak;
Nucleus::setInsertBlock(loopBlock);
loopRepDepth++;
scalar = false;
}
void PixelProgram::SWITCH()
{
BasicBlock *endBlock = Nucleus::createBasicBlock();
loopRepTestBlock[loopRepDepth] = nullptr;
loopRepEndBlock[loopRepDepth] = endBlock;
Int4 restoreBreak = enableBreak;
BasicBlock *currentBlock = Nucleus::getInsertBlock();
Nucleus::setInsertBlock(endBlock);
enableBreak = restoreBreak;
Nucleus::setInsertBlock(currentBlock);
loopRepDepth++;
}
void PixelProgram::RET()
{
if(currentLabel == -1)
{
returnBlock = Nucleus::createBasicBlock();
Nucleus::createBr(returnBlock);
}
else
{
BasicBlock *unreachableBlock = Nucleus::createBasicBlock();
if(callRetBlock[currentLabel].size() > 1) // Pop the return destination from the call stack
{
// FIXME: Encapsulate
UInt index = callStack[--stackIndex];
Value *value = index.loadValue();
SwitchCases *switchCases = Nucleus::createSwitch(value, unreachableBlock, (int)callRetBlock[currentLabel].size());
for(unsigned int i = 0; i < callRetBlock[currentLabel].size(); i++)
{
Nucleus::addSwitchCase(switchCases, i, callRetBlock[currentLabel][i]);
}
}
else if(callRetBlock[currentLabel].size() == 1) // Jump directly to the unique return destination
{
Nucleus::createBr(callRetBlock[currentLabel][0]);
}
else // Function isn't called
{
Nucleus::createBr(unreachableBlock);
}
Nucleus::setInsertBlock(unreachableBlock);
Nucleus::createUnreachable();
}
}
void PixelProgram::LEAVE()
{
enableLeave = enableLeave & ~enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))];
// FIXME: Return from function if all instances left
// FIXME: Use enableLeave in other control-flow constructs
}
}