blob: 68153a7b49fce81e3d6daa8864e5b9f8506008e5 [file] [log] [blame] [edit]
// Copyright 2020 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "LLVMReactor.hpp"
#include "Debug.hpp"
#include "ExecutableMemory.hpp"
#include "Routine.hpp"
// TODO(b/143539525): Eliminate when warning has been fixed.
#ifdef _MSC_VER
__pragma(warning(push))
__pragma(warning(disable : 4146)) // unary minus operator applied to unsigned type, result still unsigned
#endif
#include "llvm/Analysis/LoopPass.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Coroutines.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#ifdef _MSC_VER
__pragma(warning(pop))
#endif
#include <atomic>
#include <unordered_map>
#if defined(_WIN64)
extern "C" void __chkstk();
#elif defined(_WIN32)
extern "C" void _chkstk();
#endif
#if __has_feature(memory_sanitizer)
# include <sanitizer/msan_interface.h>
#endif
#ifdef __ARM_EABI__
extern "C" signed __aeabi_idivmod();
#endif
namespace {
// JITGlobals is a singleton that holds all the immutable machine specific
// information for the host device.
class JITGlobals
{
public:
using TargetMachineSPtr = std::shared_ptr<llvm::TargetMachine>;
static JITGlobals *get();
const std::string mcpu;
const std::vector<std::string> mattrs;
const char *const march;
const llvm::TargetOptions targetOptions;
const llvm::DataLayout dataLayout;
TargetMachineSPtr createTargetMachine(rr::Optimization::Level optlevel);
private:
static JITGlobals create();
static llvm::CodeGenOpt::Level toLLVM(rr::Optimization::Level level);
JITGlobals(const char *mcpu,
const std::vector<std::string> &mattrs,
const char *march,
const llvm::TargetOptions &targetOptions,
const llvm::DataLayout &dataLayout);
JITGlobals(const JITGlobals &) = default;
};
JITGlobals *JITGlobals::get()
{
static JITGlobals instance = create();
return &instance;
}
JITGlobals::TargetMachineSPtr JITGlobals::createTargetMachine(rr::Optimization::Level optlevel)
{
#ifdef ENABLE_RR_DEBUG_INFO
auto llvmOptLevel = toLLVM(rr::Optimization::Level::None);
#else // ENABLE_RR_DEBUG_INFO
auto llvmOptLevel = toLLVM(optlevel);
#endif // ENABLE_RR_DEBUG_INFO
return TargetMachineSPtr(llvm::EngineBuilder()
.setOptLevel(llvmOptLevel)
.setMCPU(mcpu)
.setMArch(march)
.setMAttrs(mattrs)
.setTargetOptions(targetOptions)
.selectTarget());
}
JITGlobals JITGlobals::create()
{
struct LLVMInitializer
{
LLVMInitializer()
{
llvm::InitializeNativeTarget();
llvm::InitializeNativeTargetAsmPrinter();
llvm::InitializeNativeTargetAsmParser();
}
};
static LLVMInitializer initializeLLVM;
auto mcpu = llvm::sys::getHostCPUName();
llvm::StringMap<bool> features;
bool ok = llvm::sys::getHostCPUFeatures(features);
#if defined(__i386__) || defined(__x86_64__) || \
(defined(__linux__) && (defined(__arm__) || defined(__aarch64__)))
ASSERT_MSG(ok, "llvm::sys::getHostCPUFeatures returned false");
#else
(void)ok; // getHostCPUFeatures always returns false on other platforms
#endif
std::vector<std::string> mattrs;
for(auto &feature : features)
{
if(feature.second) { mattrs.push_back(feature.first().str()); }
}
const char *march = nullptr;
#if defined(__x86_64__)
march = "x86-64";
#elif defined(__i386__)
march = "x86";
#elif defined(__aarch64__)
march = "arm64";
#elif defined(__arm__)
march = "arm";
#elif defined(__mips__)
# if defined(__mips64)
march = "mips64el";
# else
march = "mipsel";
# endif
#elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
march = "ppc64le";
#else
# error "unknown architecture"
#endif
llvm::TargetOptions targetOptions;
targetOptions.UnsafeFPMath = false;
auto targetMachine = std::unique_ptr<llvm::TargetMachine>(
llvm::EngineBuilder()
.setOptLevel(llvm::CodeGenOpt::None)
.setMCPU(mcpu)
.setMArch(march)
.setMAttrs(mattrs)
.setTargetOptions(targetOptions)
.selectTarget());
auto dataLayout = targetMachine->createDataLayout();
return JITGlobals(mcpu.data(), mattrs, march, targetOptions, dataLayout);
}
llvm::CodeGenOpt::Level JITGlobals::toLLVM(rr::Optimization::Level level)
{
switch(level)
{
case rr::Optimization::Level::None: return ::llvm::CodeGenOpt::None;
case rr::Optimization::Level::Less: return ::llvm::CodeGenOpt::Less;
case rr::Optimization::Level::Default: return ::llvm::CodeGenOpt::Default;
case rr::Optimization::Level::Aggressive: return ::llvm::CodeGenOpt::Aggressive;
default: UNREACHABLE("Unknown Optimization Level %d", int(level));
}
return ::llvm::CodeGenOpt::Default;
}
JITGlobals::JITGlobals(const char *mcpu,
const std::vector<std::string> &mattrs,
const char *march,
const llvm::TargetOptions &targetOptions,
const llvm::DataLayout &dataLayout)
: mcpu(mcpu)
, mattrs(mattrs)
, march(march)
, targetOptions(targetOptions)
, dataLayout(dataLayout)
{
}
class MemoryMapper final : public llvm::SectionMemoryManager::MemoryMapper
{
public:
MemoryMapper() {}
~MemoryMapper() final {}
llvm::sys::MemoryBlock allocateMappedMemory(
llvm::SectionMemoryManager::AllocationPurpose purpose,
size_t numBytes, const llvm::sys::MemoryBlock *const nearBlock,
unsigned flags, std::error_code &errorCode) final
{
errorCode = std::error_code();
// Round up numBytes to page size.
size_t pageSize = rr::memoryPageSize();
numBytes = (numBytes + pageSize - 1) & ~(pageSize - 1);
bool need_exec =
purpose == llvm::SectionMemoryManager::AllocationPurpose::Code;
void *addr = rr::allocateMemoryPages(
numBytes, flagsToPermissions(flags), need_exec);
if(!addr)
return llvm::sys::MemoryBlock();
return llvm::sys::MemoryBlock(addr, numBytes);
}
std::error_code protectMappedMemory(const llvm::sys::MemoryBlock &block,
unsigned flags)
{
// Round down base address to align with a page boundary. This matches
// DefaultMMapper behavior.
void *addr = block.base();
#if LLVM_VERSION_MAJOR >= 9
size_t size = block.allocatedSize();
#else
size_t size = block.size();
#endif
size_t pageSize = rr::memoryPageSize();
addr = reinterpret_cast<void *>(
reinterpret_cast<uintptr_t>(addr) & ~(pageSize - 1));
size += reinterpret_cast<uintptr_t>(block.base()) -
reinterpret_cast<uintptr_t>(addr);
rr::protectMemoryPages(addr, size, flagsToPermissions(flags));
return std::error_code();
}
std::error_code releaseMappedMemory(llvm::sys::MemoryBlock &block)
{
#if LLVM_VERSION_MAJOR >= 9
size_t size = block.allocatedSize();
#else
size_t size = block.size();
#endif
rr::deallocateMemoryPages(block.base(), size);
return std::error_code();
}
private:
int flagsToPermissions(unsigned flags)
{
int result = 0;
if(flags & llvm::sys::Memory::MF_READ)
{
result |= rr::PERMISSION_READ;
}
if(flags & llvm::sys::Memory::MF_WRITE)
{
result |= rr::PERMISSION_WRITE;
}
if(flags & llvm::sys::Memory::MF_EXEC)
{
result |= rr::PERMISSION_EXECUTE;
}
return result;
}
};
template<typename T>
T alignUp(T val, T alignment)
{
return alignment * ((val + alignment - 1) / alignment);
}
void *alignedAlloc(size_t size, size_t alignment)
{
ASSERT(alignment < 256);
auto allocation = new uint8_t[size + sizeof(uint8_t) + alignment];
auto aligned = allocation;
aligned += sizeof(uint8_t); // Make space for the base-address offset.
aligned = reinterpret_cast<uint8_t *>(alignUp(reinterpret_cast<uintptr_t>(aligned), alignment)); // align
auto offset = static_cast<uint8_t>(aligned - allocation);
aligned[-1] = offset;
return aligned;
}
void alignedFree(void *ptr)
{
auto aligned = reinterpret_cast<uint8_t *>(ptr);
auto offset = aligned[-1];
auto allocation = aligned - offset;
delete[] allocation;
}
template<typename T>
static void atomicLoad(void *ptr, void *ret, llvm::AtomicOrdering ordering)
{
*reinterpret_cast<T *>(ret) = std::atomic_load_explicit<T>(reinterpret_cast<std::atomic<T> *>(ptr), rr::atomicOrdering(ordering));
}
template<typename T>
static void atomicStore(void *ptr, void *val, llvm::AtomicOrdering ordering)
{
std::atomic_store_explicit<T>(reinterpret_cast<std::atomic<T> *>(ptr), *reinterpret_cast<T *>(val), rr::atomicOrdering(ordering));
}
#ifdef __ANDROID__
template<typename F>
static uint32_t sync_fetch_and_op(uint32_t volatile *ptr, uint32_t val, F f)
{
// Build an arbitrary op out of looped CAS
for(;;)
{
uint32_t expected = *ptr;
uint32_t desired = f(expected, val);
if(expected == __sync_val_compare_and_swap_4(ptr, expected, desired))
{
return expected;
}
}
}
#endif
void *resolveExternalSymbol(const char *name)
{
struct Atomic
{
static void load(size_t size, void *ptr, void *ret, llvm::AtomicOrdering ordering)
{
switch(size)
{
case 1: atomicLoad<uint8_t>(ptr, ret, ordering); break;
case 2: atomicLoad<uint16_t>(ptr, ret, ordering); break;
case 4: atomicLoad<uint32_t>(ptr, ret, ordering); break;
case 8: atomicLoad<uint64_t>(ptr, ret, ordering); break;
default:
UNIMPLEMENTED_NO_BUG("Atomic::load(size: %d)", int(size));
}
}
static void store(size_t size, void *ptr, void *ret, llvm::AtomicOrdering ordering)
{
switch(size)
{
case 1: atomicStore<uint8_t>(ptr, ret, ordering); break;
case 2: atomicStore<uint16_t>(ptr, ret, ordering); break;
case 4: atomicStore<uint32_t>(ptr, ret, ordering); break;
case 8: atomicStore<uint64_t>(ptr, ret, ordering); break;
default:
UNIMPLEMENTED_NO_BUG("Atomic::store(size: %d)", int(size));
}
}
};
struct F
{
static void nop() {}
static void neverCalled() { UNREACHABLE("Should never be called"); }
static void *coroutine_alloc_frame(size_t size) { return alignedAlloc(size, 16); }
static void coroutine_free_frame(void *ptr) { alignedFree(ptr); }
#ifdef __ANDROID__
// forwarders since we can't take address of builtins
static void sync_synchronize() { __sync_synchronize(); }
static uint32_t sync_fetch_and_add_4(uint32_t *ptr, uint32_t val) { return __sync_fetch_and_add_4(ptr, val); }
static uint32_t sync_fetch_and_and_4(uint32_t *ptr, uint32_t val) { return __sync_fetch_and_and_4(ptr, val); }
static uint32_t sync_fetch_and_or_4(uint32_t *ptr, uint32_t val) { return __sync_fetch_and_or_4(ptr, val); }
static uint32_t sync_fetch_and_xor_4(uint32_t *ptr, uint32_t val) { return __sync_fetch_and_xor_4(ptr, val); }
static uint32_t sync_fetch_and_sub_4(uint32_t *ptr, uint32_t val) { return __sync_fetch_and_sub_4(ptr, val); }
static uint32_t sync_lock_test_and_set_4(uint32_t *ptr, uint32_t val) { return __sync_lock_test_and_set_4(ptr, val); }
static uint32_t sync_val_compare_and_swap_4(uint32_t *ptr, uint32_t expected, uint32_t desired) { return __sync_val_compare_and_swap_4(ptr, expected, desired); }
static uint32_t sync_fetch_and_max_4(uint32_t *ptr, uint32_t val)
{
return sync_fetch_and_op(ptr, val, [](int32_t a, int32_t b) { return std::max(a, b); });
}
static uint32_t sync_fetch_and_min_4(uint32_t *ptr, uint32_t val)
{
return sync_fetch_and_op(ptr, val, [](int32_t a, int32_t b) { return std::min(a, b); });
}
static uint32_t sync_fetch_and_umax_4(uint32_t *ptr, uint32_t val)
{
return sync_fetch_and_op(ptr, val, [](uint32_t a, uint32_t b) { return std::max(a, b); });
}
static uint32_t sync_fetch_and_umin_4(uint32_t *ptr, uint32_t val)
{
return sync_fetch_and_op(ptr, val, [](uint32_t a, uint32_t b) { return std::min(a, b); });
}
#endif
};
class Resolver
{
public:
using FunctionMap = std::unordered_map<std::string, void *>;
FunctionMap functions;
Resolver()
{
functions.emplace("nop", reinterpret_cast<void *>(F::nop));
functions.emplace("floorf", reinterpret_cast<void *>(floorf));
functions.emplace("nearbyintf", reinterpret_cast<void *>(nearbyintf));
functions.emplace("truncf", reinterpret_cast<void *>(truncf));
functions.emplace("printf", reinterpret_cast<void *>(printf));
functions.emplace("puts", reinterpret_cast<void *>(puts));
functions.emplace("fmodf", reinterpret_cast<void *>(fmodf));
functions.emplace("sinf", reinterpret_cast<void *>(sinf));
functions.emplace("cosf", reinterpret_cast<void *>(cosf));
functions.emplace("asinf", reinterpret_cast<void *>(asinf));
functions.emplace("acosf", reinterpret_cast<void *>(acosf));
functions.emplace("atanf", reinterpret_cast<void *>(atanf));
functions.emplace("sinhf", reinterpret_cast<void *>(sinhf));
functions.emplace("coshf", reinterpret_cast<void *>(coshf));
functions.emplace("tanhf", reinterpret_cast<void *>(tanhf));
functions.emplace("asinhf", reinterpret_cast<void *>(asinhf));
functions.emplace("acoshf", reinterpret_cast<void *>(acoshf));
functions.emplace("atanhf", reinterpret_cast<void *>(atanhf));
functions.emplace("atan2f", reinterpret_cast<void *>(atan2f));
functions.emplace("powf", reinterpret_cast<void *>(powf));
functions.emplace("expf", reinterpret_cast<void *>(expf));
functions.emplace("logf", reinterpret_cast<void *>(logf));
functions.emplace("exp2f", reinterpret_cast<void *>(exp2f));
functions.emplace("log2f", reinterpret_cast<void *>(log2f));
functions.emplace("sin", reinterpret_cast<void *>(static_cast<double (*)(double)>(sin)));
functions.emplace("cos", reinterpret_cast<void *>(static_cast<double (*)(double)>(cos)));
functions.emplace("asin", reinterpret_cast<void *>(static_cast<double (*)(double)>(asin)));
functions.emplace("acos", reinterpret_cast<void *>(static_cast<double (*)(double)>(acos)));
functions.emplace("atan", reinterpret_cast<void *>(static_cast<double (*)(double)>(atan)));
functions.emplace("sinh", reinterpret_cast<void *>(static_cast<double (*)(double)>(sinh)));
functions.emplace("cosh", reinterpret_cast<void *>(static_cast<double (*)(double)>(cosh)));
functions.emplace("tanh", reinterpret_cast<void *>(static_cast<double (*)(double)>(tanh)));
functions.emplace("asinh", reinterpret_cast<void *>(static_cast<double (*)(double)>(asinh)));
functions.emplace("acosh", reinterpret_cast<void *>(static_cast<double (*)(double)>(acosh)));
functions.emplace("atanh", reinterpret_cast<void *>(static_cast<double (*)(double)>(atanh)));
functions.emplace("atan2", reinterpret_cast<void *>(static_cast<double (*)(double, double)>(atan2)));
functions.emplace("pow", reinterpret_cast<void *>(static_cast<double (*)(double, double)>(pow)));
functions.emplace("exp", reinterpret_cast<void *>(static_cast<double (*)(double)>(exp)));
functions.emplace("log", reinterpret_cast<void *>(static_cast<double (*)(double)>(log)));
functions.emplace("exp2", reinterpret_cast<void *>(static_cast<double (*)(double)>(exp2)));
functions.emplace("log2", reinterpret_cast<void *>(static_cast<double (*)(double)>(log2)));
functions.emplace("atomic_load", reinterpret_cast<void *>(Atomic::load));
functions.emplace("atomic_store", reinterpret_cast<void *>(Atomic::store));
// FIXME(b/119409619): use an allocator here so we can control all memory allocations
functions.emplace("coroutine_alloc_frame", reinterpret_cast<void *>(F::coroutine_alloc_frame));
functions.emplace("coroutine_free_frame", reinterpret_cast<void *>(F::coroutine_free_frame));
#ifdef __APPLE__
functions.emplace("sincosf_stret", reinterpret_cast<void *>(__sincosf_stret));
#elif defined(__linux__)
functions.emplace("sincosf", reinterpret_cast<void *>(sincosf));
#elif defined(_WIN64)
functions.emplace("chkstk", reinterpret_cast<void *>(__chkstk));
#elif defined(_WIN32)
functions.emplace("chkstk", reinterpret_cast<void *>(_chkstk));
#endif
#ifdef __ARM_EABI__
functions.emplace("aeabi_idivmod", reinterpret_cast<void *>(__aeabi_idivmod));
#endif
#ifdef __ANDROID__
functions.emplace("aeabi_unwind_cpp_pr0", reinterpret_cast<void *>(F::neverCalled));
functions.emplace("sync_synchronize", reinterpret_cast<void *>(F::sync_synchronize));
functions.emplace("sync_fetch_and_add_4", reinterpret_cast<void *>(F::sync_fetch_and_add_4));
functions.emplace("sync_fetch_and_and_4", reinterpret_cast<void *>(F::sync_fetch_and_and_4));
functions.emplace("sync_fetch_and_or_4", reinterpret_cast<void *>(F::sync_fetch_and_or_4));
functions.emplace("sync_fetch_and_xor_4", reinterpret_cast<void *>(F::sync_fetch_and_xor_4));
functions.emplace("sync_fetch_and_sub_4", reinterpret_cast<void *>(F::sync_fetch_and_sub_4));
functions.emplace("sync_lock_test_and_set_4", reinterpret_cast<void *>(F::sync_lock_test_and_set_4));
functions.emplace("sync_val_compare_and_swap_4", reinterpret_cast<void *>(F::sync_val_compare_and_swap_4));
functions.emplace("sync_fetch_and_max_4", reinterpret_cast<void *>(F::sync_fetch_and_max_4));
functions.emplace("sync_fetch_and_min_4", reinterpret_cast<void *>(F::sync_fetch_and_min_4));
functions.emplace("sync_fetch_and_umax_4", reinterpret_cast<void *>(F::sync_fetch_and_umax_4));
functions.emplace("sync_fetch_and_umin_4", reinterpret_cast<void *>(F::sync_fetch_and_umin_4));
#endif
#if __has_feature(memory_sanitizer)
functions.emplace("msan_unpoison", reinterpret_cast<void *>(__msan_unpoison));
#endif
}
};
static Resolver resolver;
// Trim off any underscores from the start of the symbol. LLVM likes
// to append these on macOS.
const char *trimmed = name;
while(trimmed[0] == '_') { trimmed++; }
auto it = resolver.functions.find(trimmed);
// Missing functions will likely make the module fail in exciting non-obvious ways.
ASSERT_MSG(it != resolver.functions.end(), "Missing external function: '%s'", name);
return it->second;
}
// JITRoutine is a rr::Routine that holds a LLVM JIT session, compiler and
// object layer as each routine may require different target machine
// settings and no Reactor routine directly links against another.
class JITRoutine : public rr::Routine
{
#if LLVM_VERSION_MAJOR >= 8
using ObjLayer = llvm::orc::LegacyRTDyldObjectLinkingLayer;
using CompileLayer = llvm::orc::LegacyIRCompileLayer<ObjLayer, llvm::orc::SimpleCompiler>;
#else
using ObjLayer = llvm::orc::RTDyldObjectLinkingLayer;
using CompileLayer = llvm::orc::IRCompileLayer<ObjLayer, llvm::orc::SimpleCompiler>;
#endif
public:
#if defined(__clang__)
// TODO(bclayton): Switch to new JIT
// error: 'LegacyIRCompileLayer' is deprecated: ORCv1 layers (layers with the 'Legacy' prefix) are deprecated.
// Please use the ORCv2 IRCompileLayer instead [-Werror,-Wdeprecated-declarations]
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
#elif defined(__GNUC__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
JITRoutine(
std::unique_ptr<llvm::Module> module,
llvm::Function **funcs,
size_t count,
const rr::Config &config)
: resolver(createLegacyLookupResolver(
session,
[&](const llvm::StringRef &name) {
void *func = resolveExternalSymbol(name.str().c_str());
if(func != nullptr)
{
return llvm::JITSymbol(
reinterpret_cast<uintptr_t>(func), llvm::JITSymbolFlags::Absolute);
}
return objLayer.findSymbol(name, true);
},
[](llvm::Error err) {
if(err)
{
// TODO: Log the symbol resolution errors.
return;
}
}))
, targetMachine(JITGlobals::get()->createTargetMachine(config.getOptimization().getLevel()))
, compileLayer(objLayer, llvm::orc::SimpleCompiler(*targetMachine))
, objLayer(
session,
[this](llvm::orc::VModuleKey) {
return ObjLayer::Resources{ std::make_shared<llvm::SectionMemoryManager>(&memoryMapper), resolver };
},
ObjLayer::NotifyLoadedFtor(),
[](llvm::orc::VModuleKey, const llvm::object::ObjectFile &Obj, const llvm::RuntimeDyld::LoadedObjectInfo &L) {
#ifdef ENABLE_RR_DEBUG_INFO
rr::DebugInfo::NotifyObjectEmitted(Obj, L);
#endif // ENABLE_RR_DEBUG_INFO
},
[](llvm::orc::VModuleKey, const llvm::object::ObjectFile &Obj) {
#ifdef ENABLE_RR_DEBUG_INFO
rr::DebugInfo::NotifyFreeingObject(Obj);
#endif // ENABLE_RR_DEBUG_INFO
})
, addresses(count)
{
#if defined(__clang__)
# pragma clang diagnostic pop
#elif defined(__GNUC__)
# pragma GCC diagnostic pop
#endif
std::vector<std::string> mangledNames(count);
for(size_t i = 0; i < count; i++)
{
auto func = funcs[i];
static std::atomic<size_t> numEmittedFunctions = { 0 };
std::string name = "f" + llvm::Twine(numEmittedFunctions++).str();
func->setName(name);
func->setLinkage(llvm::GlobalValue::ExternalLinkage);
func->setDoesNotThrow();
llvm::raw_string_ostream mangledNameStream(mangledNames[i]);
llvm::Mangler::getNameWithPrefix(mangledNameStream, name, JITGlobals::get()->dataLayout);
}
auto moduleKey = session.allocateVModule();
// Once the module is passed to the compileLayer, the
// llvm::Functions are freed. Make sure funcs are not referenced
// after this point.
funcs = nullptr;
llvm::cantFail(compileLayer.addModule(moduleKey, std::move(module)));
// Resolve the function addresses.
for(size_t i = 0; i < count; i++)
{
auto symbol = compileLayer.findSymbolIn(moduleKey, mangledNames[i], false);
if(auto address = symbol.getAddress())
{
addresses[i] = reinterpret_cast<void *>(static_cast<intptr_t>(address.get()));
}
}
}
const void *getEntry(int index) const override
{
return addresses[index];
}
private:
std::shared_ptr<llvm::orc::SymbolResolver> resolver;
std::shared_ptr<llvm::TargetMachine> targetMachine;
llvm::orc::ExecutionSession session;
CompileLayer compileLayer;
MemoryMapper memoryMapper;
ObjLayer objLayer;
std::vector<const void *> addresses;
};
} // anonymous namespace
namespace rr {
JITBuilder::JITBuilder(const rr::Config &config)
: config(config)
, module(new llvm::Module("", context))
, builder(new llvm::IRBuilder<>(context))
{
module->setDataLayout(JITGlobals::get()->dataLayout);
}
void JITBuilder::optimize(const rr::Config &cfg)
{
#ifdef ENABLE_RR_DEBUG_INFO
if(debugInfo != nullptr)
{
return; // Don't optimize if we're generating debug info.
}
#endif // ENABLE_RR_DEBUG_INFO
std::unique_ptr<llvm::legacy::PassManager> passManager(
new llvm::legacy::PassManager());
for(auto pass : cfg.getOptimization().getPasses())
{
switch(pass)
{
case rr::Optimization::Pass::Disabled: break;
case rr::Optimization::Pass::CFGSimplification: passManager->add(llvm::createCFGSimplificationPass()); break;
case rr::Optimization::Pass::LICM: passManager->add(llvm::createLICMPass()); break;
case rr::Optimization::Pass::AggressiveDCE: passManager->add(llvm::createAggressiveDCEPass()); break;
case rr::Optimization::Pass::GVN: passManager->add(llvm::createGVNPass()); break;
case rr::Optimization::Pass::InstructionCombining: passManager->add(llvm::createInstructionCombiningPass()); break;
case rr::Optimization::Pass::Reassociate: passManager->add(llvm::createReassociatePass()); break;
case rr::Optimization::Pass::DeadStoreElimination: passManager->add(llvm::createDeadStoreEliminationPass()); break;
case rr::Optimization::Pass::SCCP: passManager->add(llvm::createSCCPPass()); break;
case rr::Optimization::Pass::ScalarReplAggregates: passManager->add(llvm::createSROAPass()); break;
case rr::Optimization::Pass::EarlyCSEPass: passManager->add(llvm::createEarlyCSEPass()); break;
default:
UNREACHABLE("pass: %d", int(pass));
}
}
passManager->run(*module);
}
std::shared_ptr<rr::Routine> JITBuilder::acquireRoutine(llvm::Function **funcs, size_t count, const rr::Config &cfg)
{
ASSERT(module);
return std::make_shared<JITRoutine>(std::move(module), funcs, count, cfg);
}
} // namespace rr