blob: 5a8ebc5c3107ecf1c928d166175479787b3786ec [file] [log] [blame] [edit]
// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "localintermediate.h"
#include "SymbolTable.h"
//
// Two purposes:
// 1. Show an example of how to iterate tree. Functions can
// also directly call Traverse() on children themselves to
// have finer grained control over the process than shown here.
// See the last function for how to get started.
// 2. Print out a text based description of the tree.
//
//
// Use this class to carry along data from node to node in
// the traversal
//
class TOutputTraverser : public TIntermTraverser {
public:
TOutputTraverser(TInfoSinkBase& i) : sink(i) { }
TInfoSinkBase& sink;
protected:
void visitSymbol(TIntermSymbol*);
void visitConstantUnion(TIntermConstantUnion*);
bool visitBinary(Visit visit, TIntermBinary*);
bool visitUnary(Visit visit, TIntermUnary*);
bool visitSelection(Visit visit, TIntermSelection*);
bool visitAggregate(Visit visit, TIntermAggregate*);
bool visitLoop(Visit visit, TIntermLoop*);
bool visitBranch(Visit visit, TIntermBranch*);
};
TString TType::getCompleteString() const
{
TStringStream stream;
if (qualifier != EvqTemporary && qualifier != EvqGlobal)
stream << getQualifierString() << " " << getPrecisionString() << " ";
if (array)
stream << "array of ";
if (isMatrix())
stream << static_cast<int>(primarySize) << "X" << static_cast<int>(secondarySize) << " matrix of ";
else if(primarySize > 1)
stream << static_cast<int>(primarySize) << "-component vector of ";
stream << getBasicString();
return stream.str();
}
//
// Helper functions for printing, not part of traversing.
//
void OutputTreeText(TInfoSinkBase& sink, TIntermNode* node, const int depth)
{
int i;
sink.location(node->getLine());
for (i = 0; i < depth; ++i)
sink << " ";
}
//
// The rest of the file are the traversal functions. The last one
// is the one that starts the traversal.
//
// Return true from interior nodes to have the external traversal
// continue on to children. If you process children yourself,
// return false.
//
void TOutputTraverser::visitSymbol(TIntermSymbol* node)
{
OutputTreeText(sink, node, mDepth);
sink << "'" << node->getSymbol() << "' ";
sink << "(" << node->getCompleteString() << ")\n";
}
bool TOutputTraverser::visitBinary(Visit visit, TIntermBinary* node)
{
TInfoSinkBase& out = sink;
OutputTreeText(out, node, mDepth);
switch (node->getOp()) {
case EOpAssign: out << "move second child to first child"; break;
case EOpInitialize: out << "initialize first child with second child"; break;
case EOpAddAssign: out << "add second child into first child"; break;
case EOpSubAssign: out << "subtract second child into first child"; break;
case EOpMulAssign: out << "multiply second child into first child"; break;
case EOpVectorTimesMatrixAssign: out << "matrix mult second child into first child"; break;
case EOpVectorTimesScalarAssign: out << "vector scale second child into first child"; break;
case EOpMatrixTimesScalarAssign: out << "matrix scale second child into first child"; break;
case EOpMatrixTimesMatrixAssign: out << "matrix mult second child into first child"; break;
case EOpDivAssign: out << "divide second child into first child"; break;
case EOpIModAssign: out << "modulo second child into first child"; break;
case EOpBitShiftLeftAssign: out << "bit-wise shift first child left by second child"; break;
case EOpBitShiftRightAssign: out << "bit-wise shift first child right by second child"; break;
case EOpBitwiseAndAssign: out << "bit-wise and second child into first child"; break;
case EOpBitwiseXorAssign: out << "bit-wise xor second child into first child"; break;
case EOpBitwiseOrAssign: out << "bit-wise or second child into first child"; break;
case EOpIndexDirect: out << "direct index"; break;
case EOpIndexIndirect: out << "indirect index"; break;
case EOpIndexDirectStruct: out << "direct index for structure"; break;
case EOpVectorSwizzle: out << "vector swizzle"; break;
case EOpAdd: out << "add"; break;
case EOpSub: out << "subtract"; break;
case EOpMul: out << "component-wise multiply"; break;
case EOpDiv: out << "divide"; break;
case EOpIMod: out << "modulo"; break;
case EOpBitShiftLeft: out << "bit-wise shift left"; break;
case EOpBitShiftRight: out << "bit-wise shift right"; break;
case EOpBitwiseAnd: out << "bit-wise and"; break;
case EOpBitwiseXor: out << "bit-wise xor"; break;
case EOpBitwiseOr: out << "bit-wise or"; break;
case EOpEqual: out << "Compare Equal"; break;
case EOpNotEqual: out << "Compare Not Equal"; break;
case EOpLessThan: out << "Compare Less Than"; break;
case EOpGreaterThan: out << "Compare Greater Than"; break;
case EOpLessThanEqual: out << "Compare Less Than or Equal"; break;
case EOpGreaterThanEqual: out << "Compare Greater Than or Equal"; break;
case EOpVectorTimesScalar: out << "vector-scale"; break;
case EOpVectorTimesMatrix: out << "vector-times-matrix"; break;
case EOpMatrixTimesVector: out << "matrix-times-vector"; break;
case EOpMatrixTimesScalar: out << "matrix-scale"; break;
case EOpMatrixTimesMatrix: out << "matrix-multiply"; break;
case EOpLogicalOr: out << "logical-or"; break;
case EOpLogicalXor: out << "logical-xor"; break;
case EOpLogicalAnd: out << "logical-and"; break;
default: out << "<unknown op>";
}
out << " (" << node->getCompleteString() << ")";
out << "\n";
return true;
}
bool TOutputTraverser::visitUnary(Visit visit, TIntermUnary* node)
{
TInfoSinkBase& out = sink;
OutputTreeText(out, node, mDepth);
switch (node->getOp()) {
case EOpNegative: out << "Negate value"; break;
case EOpVectorLogicalNot:
case EOpLogicalNot: out << "Negate conditional"; break;
case EOpBitwiseNot: out << "bit-wise not"; break;
case EOpPostIncrement: out << "Post-Increment"; break;
case EOpPostDecrement: out << "Post-Decrement"; break;
case EOpPreIncrement: out << "Pre-Increment"; break;
case EOpPreDecrement: out << "Pre-Decrement"; break;
case EOpRadians: out << "radians"; break;
case EOpDegrees: out << "degrees"; break;
case EOpSin: out << "sine"; break;
case EOpCos: out << "cosine"; break;
case EOpTan: out << "tangent"; break;
case EOpAsin: out << "arc sine"; break;
case EOpAcos: out << "arc cosine"; break;
case EOpAtan: out << "arc tangent"; break;
case EOpSinh: out << "hyperbolic sine"; break;
case EOpCosh: out << "hyperbolic cosine"; break;
case EOpTanh: out << "hyperbolic tangent"; break;
case EOpAsinh: out << "arc hyperbolic sine"; break;
case EOpAcosh: out << "arc hyperbolic cosine"; break;
case EOpAtanh: out << "arc hyperbolic tangent"; break;
case EOpExp: out << "exp"; break;
case EOpLog: out << "log"; break;
case EOpExp2: out << "exp2"; break;
case EOpLog2: out << "log2"; break;
case EOpSqrt: out << "sqrt"; break;
case EOpInverseSqrt: out << "inverse sqrt"; break;
case EOpAbs: out << "Absolute value"; break;
case EOpSign: out << "Sign"; break;
case EOpFloor: out << "Floor"; break;
case EOpTrunc: out << "Trunc"; break;
case EOpRound: out << "Round"; break;
case EOpRoundEven: out << "RoundEven"; break;
case EOpCeil: out << "Ceiling"; break;
case EOpFract: out << "Fraction"; break;
case EOpIsNan: out << "Is not a number"; break;
case EOpIsInf: out << "Is infinity"; break;
case EOpFloatBitsToInt: out << "float bits to int"; break;
case EOpFloatBitsToUint: out << "float bits to uint"; break;
case EOpIntBitsToFloat: out << "int bits to float"; break;
case EOpUintBitsToFloat: out << "uint bits to float"; break;
case EOpPackSnorm2x16: out << "pack Snorm 2x16"; break;
case EOpPackUnorm2x16: out << "pack Unorm 2x16"; break;
case EOpPackHalf2x16: out << "pack half 2x16"; break;
case EOpUnpackSnorm2x16: out << "unpack Snorm 2x16"; break;
case EOpUnpackUnorm2x16: out << "unpack Unorm 2x16"; break;
case EOpUnpackHalf2x16: out << "unpack half 2x16"; break;
case EOpLength: out << "length"; break;
case EOpNormalize: out << "normalize"; break;
// case EOpDPdx: out << "dPdx"; break;
// case EOpDPdy: out << "dPdy"; break;
// case EOpFwidth: out << "fwidth"; break;
case EOpDeterminant: out << "determinant"; break;
case EOpTranspose: out << "transpose"; break;
case EOpInverse: out << "inverse"; break;
case EOpAny: out << "any"; break;
case EOpAll: out << "all"; break;
default: out.message(EPrefixError, "Bad unary op");
}
out << " (" << node->getCompleteString() << ")";
out << "\n";
return true;
}
bool TOutputTraverser::visitAggregate(Visit visit, TIntermAggregate* node)
{
TInfoSinkBase& out = sink;
if (node->getOp() == EOpNull) {
out.message(EPrefixError, "node is still EOpNull!");
return true;
}
OutputTreeText(out, node, mDepth);
switch (node->getOp()) {
case EOpSequence: out << "Sequence\n"; return true;
case EOpComma: out << "Comma\n"; return true;
case EOpFunction: out << "Function Definition: " << node->getName(); break;
case EOpFunctionCall: out << "Function Call: " << node->getName(); break;
case EOpParameters: out << "Function Parameters: "; break;
case EOpConstructFloat: out << "Construct float"; break;
case EOpConstructVec2: out << "Construct vec2"; break;
case EOpConstructVec3: out << "Construct vec3"; break;
case EOpConstructVec4: out << "Construct vec4"; break;
case EOpConstructBool: out << "Construct bool"; break;
case EOpConstructBVec2: out << "Construct bvec2"; break;
case EOpConstructBVec3: out << "Construct bvec3"; break;
case EOpConstructBVec4: out << "Construct bvec4"; break;
case EOpConstructInt: out << "Construct int"; break;
case EOpConstructIVec2: out << "Construct ivec2"; break;
case EOpConstructIVec3: out << "Construct ivec3"; break;
case EOpConstructIVec4: out << "Construct ivec4"; break;
case EOpConstructUInt: out << "Construct uint"; break;
case EOpConstructUVec2: out << "Construct uvec2"; break;
case EOpConstructUVec3: out << "Construct uvec3"; break;
case EOpConstructUVec4: out << "Construct uvec4"; break;
case EOpConstructMat2: out << "Construct mat2"; break;
case EOpConstructMat2x3: out << "Construct mat2x3"; break;
case EOpConstructMat2x4: out << "Construct mat2x4"; break;
case EOpConstructMat3x2: out << "Construct mat3x2"; break;
case EOpConstructMat3: out << "Construct mat3"; break;
case EOpConstructMat3x4: out << "Construct mat3x4"; break;
case EOpConstructMat4x2: out << "Construct mat4x2"; break;
case EOpConstructMat4x3: out << "Construct mat4x3"; break;
case EOpConstructMat4: out << "Construct mat4"; break;
case EOpConstructStruct: out << "Construct structure"; break;
case EOpLessThan: out << "Compare Less Than"; break;
case EOpGreaterThan: out << "Compare Greater Than"; break;
case EOpLessThanEqual: out << "Compare Less Than or Equal"; break;
case EOpGreaterThanEqual: out << "Compare Greater Than or Equal"; break;
case EOpVectorEqual: out << "Equal"; break;
case EOpVectorNotEqual: out << "NotEqual"; break;
case EOpMod: out << "mod"; break;
case EOpModf: out << "modf"; break;
case EOpPow: out << "pow"; break;
case EOpAtan: out << "arc tangent"; break;
case EOpMin: out << "min"; break;
case EOpMax: out << "max"; break;
case EOpClamp: out << "clamp"; break;
case EOpMix: out << "mix"; break;
case EOpStep: out << "step"; break;
case EOpSmoothStep: out << "smoothstep"; break;
case EOpFloatBitsToInt: out << "floatBitsToInt"; break;
case EOpFloatBitsToUint: out << "floatBitsToUint"; break;
case EOpIntBitsToFloat: out << "intBitsToFloat"; break;
case EOpUintBitsToFloat: out << "uintBitsToFloat"; break;
case EOpDistance: out << "distance"; break;
case EOpDot: out << "dot-product"; break;
case EOpCross: out << "cross-product"; break;
case EOpFaceForward: out << "face-forward"; break;
case EOpReflect: out << "reflect"; break;
case EOpRefract: out << "refract"; break;
case EOpMul: out << "component-wise multiply"; break;
case EOpOuterProduct: out << "outer product"; break;
case EOpDeclaration: out << "Declaration"; break;
default: out.message(EPrefixError, "Bad aggregation op");
}
if (node->getOp() != EOpSequence && node->getOp() != EOpParameters)
out << " (" << node->getCompleteString() << ")";
out << "\n";
return true;
}
bool TOutputTraverser::visitSelection(Visit visit, TIntermSelection* node)
{
TInfoSinkBase& out = sink;
OutputTreeText(out, node, mDepth);
out << "Test condition and select";
out << " (" << node->getCompleteString() << ")\n";
++mDepth;
OutputTreeText(sink, node, mDepth);
out << "Condition\n";
node->getCondition()->traverse(this);
OutputTreeText(sink, node, mDepth);
if (node->getTrueBlock()) {
out << "true case\n";
node->getTrueBlock()->traverse(this);
} else
out << "true case is null\n";
if (node->getFalseBlock()) {
OutputTreeText(sink, node, mDepth);
out << "false case\n";
node->getFalseBlock()->traverse(this);
}
--mDepth;
return false;
}
void TOutputTraverser::visitConstantUnion(TIntermConstantUnion* node)
{
TInfoSinkBase& out = sink;
size_t size = node->getType().getObjectSize();
for(size_t i = 0; i < size; i++) {
OutputTreeText(out, node, mDepth);
switch (node->getUnionArrayPointer()[i].getType()) {
case EbtBool:
if (node->getUnionArrayPointer()[i].getBConst())
out << "true";
else
out << "false";
out << " (" << "const bool" << ")";
out << "\n";
break;
case EbtFloat:
out << node->getUnionArrayPointer()[i].getFConst();
out << " (const float)\n";
break;
case EbtInt:
out << node->getUnionArrayPointer()[i].getIConst();
out << " (const int)\n";
break;
case EbtUInt:
out << node->getUnionArrayPointer()[i].getUConst();
out << " (const uint)\n";
break;
default:
out.message(EPrefixInternalError, "Unknown constant", node->getLine());
break;
}
}
}
bool TOutputTraverser::visitLoop(Visit visit, TIntermLoop* node)
{
TInfoSinkBase& out = sink;
OutputTreeText(out, node, mDepth);
out << "Loop with condition ";
if (node->getType() == ELoopDoWhile)
out << "not ";
out << "tested first\n";
++mDepth;
OutputTreeText(sink, node, mDepth);
if (node->getCondition()) {
out << "Loop Condition\n";
node->getCondition()->traverse(this);
} else
out << "No loop condition\n";
OutputTreeText(sink, node, mDepth);
if (node->getBody()) {
out << "Loop Body\n";
node->getBody()->traverse(this);
} else
out << "No loop body\n";
if (node->getExpression()) {
OutputTreeText(sink, node, mDepth);
out << "Loop Terminal Expression\n";
node->getExpression()->traverse(this);
}
--mDepth;
return false;
}
bool TOutputTraverser::visitBranch(Visit visit, TIntermBranch* node)
{
TInfoSinkBase& out = sink;
OutputTreeText(out, node, mDepth);
switch (node->getFlowOp()) {
case EOpKill: out << "Branch: Kill"; break;
case EOpBreak: out << "Branch: Break"; break;
case EOpContinue: out << "Branch: Continue"; break;
case EOpReturn: out << "Branch: Return"; break;
default: out << "Branch: Unknown Branch"; break;
}
if (node->getExpression()) {
out << " with expression\n";
++mDepth;
node->getExpression()->traverse(this);
--mDepth;
} else
out << "\n";
return false;
}
//
// This function is the one to call externally to start the traversal.
// Individual functions can be initialized to 0 to skip processing of that
// type of node. It's children will still be processed.
//
void TIntermediate::outputTree(TIntermNode* root)
{
if (root == 0)
return;
TOutputTraverser it(infoSink.info);
root->traverse(&it);
}