blob: 5908de88aed3441d9f727fb4e1d1422c02559838 [file] [log] [blame] [edit]
// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "Renderer.hpp"
#include "Clipper.hpp"
#include "Polygon.hpp"
#include "Primitive.hpp"
#include "Vertex.hpp"
#include "Pipeline/Constants.hpp"
#include "Pipeline/SpirvShader.hpp"
#include "Reactor/Reactor.hpp"
#include "System/Debug.hpp"
#include "System/Half.hpp"
#include "System/Math.hpp"
#include "System/Memory.hpp"
#include "System/Timer.hpp"
#include "Vulkan/VkConfig.hpp"
#include "Vulkan/VkDevice.hpp"
#include "Vulkan/VkFence.hpp"
#include "Vulkan/VkImageView.hpp"
#include "Vulkan/VkQueryPool.hpp"
#include "marl/containers.h"
#include "marl/defer.h"
#include "marl/trace.h"
#undef max
#ifndef NDEBUG
unsigned int minPrimitives = 1;
unsigned int maxPrimitives = 1 << 21;
#endif
namespace sw {
template<typename T>
inline bool setBatchIndices(unsigned int batch[128][3], VkPrimitiveTopology topology, VkProvokingVertexModeEXT provokingVertexMode, T indices, unsigned int start, unsigned int triangleCount)
{
bool provokeFirst = (provokingVertexMode == VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT);
switch(topology)
{
case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
{
auto index = start;
auto pointBatch = &(batch[0][0]);
for(unsigned int i = 0; i < triangleCount; i++)
{
*pointBatch++ = indices[index++];
}
// Repeat the last index to allow for SIMD width overrun.
index--;
for(unsigned int i = 0; i < 3; i++)
{
*pointBatch++ = indices[index];
}
break;
}
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
{
auto index = 2 * start;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = indices[index + (provokeFirst ? 0 : 1)];
batch[i][1] = indices[index + (provokeFirst ? 1 : 0)];
batch[i][2] = indices[index + 1];
index += 2;
}
break;
}
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
{
auto index = start;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = indices[index + (provokeFirst ? 0 : 1)];
batch[i][1] = indices[index + (provokeFirst ? 1 : 0)];
batch[i][2] = indices[index + 1];
index += 1;
}
break;
}
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
{
auto index = 3 * start;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = indices[index + (provokeFirst ? 0 : 2)];
batch[i][1] = indices[index + (provokeFirst ? 1 : 0)];
batch[i][2] = indices[index + (provokeFirst ? 2 : 1)];
index += 3;
}
break;
}
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
{
auto index = start;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = indices[index + (provokeFirst ? 0 : 2)];
batch[i][1] = indices[index + ((start + i) & 1) + (provokeFirst ? 1 : 0)];
batch[i][2] = indices[index + (~(start + i) & 1) + (provokeFirst ? 1 : 0)];
index += 1;
}
break;
}
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
{
auto index = start + 1;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][provokeFirst ? 0 : 2] = indices[index + 0];
batch[i][provokeFirst ? 1 : 0] = indices[index + 1];
batch[i][provokeFirst ? 2 : 1] = indices[0];
index += 1;
}
break;
}
default:
ASSERT(false);
return false;
}
return true;
}
DrawCall::DrawCall()
{
data = (DrawData *)allocate(sizeof(DrawData));
data->constants = &constants;
}
DrawCall::~DrawCall()
{
deallocate(data);
}
Renderer::Renderer(vk::Device *device)
: device(device)
{
vertexProcessor.setRoutineCacheSize(1024);
pixelProcessor.setRoutineCacheSize(1024);
setupProcessor.setRoutineCacheSize(1024);
}
Renderer::~Renderer()
{
drawTickets.take().wait();
}
// Renderer objects have to be mem aligned to the alignment provided in the class declaration
void *Renderer::operator new(size_t size)
{
ASSERT(size == sizeof(Renderer)); // This operator can't be called from a derived class
return vk::allocate(sizeof(Renderer), alignof(Renderer), vk::DEVICE_MEMORY, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
}
void Renderer::operator delete(void *mem)
{
vk::deallocate(mem, vk::DEVICE_MEMORY);
}
void Renderer::draw(const sw::Context *context, VkIndexType indexType, unsigned int count, int baseVertex,
TaskEvents *events, int instanceID, int viewID, void *indexBuffer, const VkExtent3D &framebufferExtent,
PushConstantStorage const &pushConstants, bool update)
{
if(count == 0) { return; }
auto id = nextDrawID++;
MARL_SCOPED_EVENT("draw %d", id);
int ms = context->sampleCount;
if(!context->multiSampleMask)
{
return;
}
marl::Pool<sw::DrawCall>::Loan draw;
{
MARL_SCOPED_EVENT("drawCallPool.borrow()");
draw = drawCallPool.borrow();
}
draw->id = id;
if(update)
{
MARL_SCOPED_EVENT("update");
vertexState = vertexProcessor.update(context);
setupState = setupProcessor.update(context);
pixelState = pixelProcessor.update(context);
vertexRoutine = vertexProcessor.routine(vertexState, context->pipelineLayout, context->vertexShader, context->descriptorSets);
setupRoutine = setupProcessor.routine(setupState);
pixelRoutine = pixelProcessor.routine(pixelState, context->pipelineLayout, context->pixelShader, context->descriptorSets);
}
DrawCall::SetupFunction setupPrimitives = nullptr;
unsigned int numPrimitivesPerBatch = MaxBatchSize / ms;
if(context->isDrawTriangle(false))
{
switch(context->polygonMode)
{
case VK_POLYGON_MODE_FILL:
setupPrimitives = &DrawCall::setupSolidTriangles;
break;
case VK_POLYGON_MODE_LINE:
setupPrimitives = &DrawCall::setupWireframeTriangles;
numPrimitivesPerBatch /= 3;
break;
case VK_POLYGON_MODE_POINT:
setupPrimitives = &DrawCall::setupPointTriangles;
numPrimitivesPerBatch /= 3;
break;
default:
UNSUPPORTED("polygon mode: %d", int(context->polygonMode));
return;
}
}
else if(context->isDrawLine(false))
{
setupPrimitives = &DrawCall::setupLines;
}
else // Point primitive topology
{
setupPrimitives = &DrawCall::setupPoints;
}
DrawData *data = draw->data;
draw->occlusionQuery = occlusionQuery;
draw->batchDataPool = &batchDataPool;
draw->numPrimitives = count;
draw->numPrimitivesPerBatch = numPrimitivesPerBatch;
draw->numBatches = (count + draw->numPrimitivesPerBatch - 1) / draw->numPrimitivesPerBatch;
draw->topology = context->topology;
draw->provokingVertexMode = context->provokingVertexMode;
draw->indexType = indexType;
draw->lineRasterizationMode = context->lineRasterizationMode;
draw->vertexRoutine = vertexRoutine;
draw->setupRoutine = setupRoutine;
draw->pixelRoutine = pixelRoutine;
draw->setupPrimitives = setupPrimitives;
draw->setupState = setupState;
data->descriptorSets = context->descriptorSets;
data->descriptorDynamicOffsets = context->descriptorDynamicOffsets;
for(int i = 0; i < MAX_INTERFACE_COMPONENTS / 4; i++)
{
data->input[i] = context->input[i].buffer;
data->robustnessSize[i] = context->input[i].robustnessSize;
data->stride[i] = context->input[i].vertexStride;
}
data->indices = indexBuffer;
data->viewID = viewID;
data->instanceID = instanceID;
data->baseVertex = baseVertex;
if(pixelState.stencilActive)
{
data->stencil[0].set(context->frontStencil.reference, context->frontStencil.compareMask, context->frontStencil.writeMask);
data->stencil[1].set(context->backStencil.reference, context->backStencil.compareMask, context->backStencil.writeMask);
}
data->lineWidth = context->lineWidth;
data->factor = pixelProcessor.factor;
if(pixelState.alphaToCoverage)
{
if(ms == 4)
{
data->a2c0 = float4(0.2f);
data->a2c1 = float4(0.4f);
data->a2c2 = float4(0.6f);
data->a2c3 = float4(0.8f);
}
else if(ms == 2)
{
data->a2c0 = float4(0.25f);
data->a2c1 = float4(0.75f);
}
else
ASSERT(false);
}
if(pixelState.occlusionEnabled)
{
for(int cluster = 0; cluster < MaxClusterCount; cluster++)
{
data->occlusion[cluster] = 0;
}
}
// Viewport
{
float W = 0.5f * viewport.width;
float H = 0.5f * viewport.height;
float X0 = viewport.x + W;
float Y0 = viewport.y + H;
float N = viewport.minDepth;
float F = viewport.maxDepth;
float Z = F - N;
constexpr float subPixF = vk::SUBPIXEL_PRECISION_FACTOR;
if(context->isDrawTriangle(false))
{
N += context->depthBias;
}
data->WxF = float4(W * subPixF);
data->HxF = float4(H * subPixF);
data->X0xF = float4(X0 * subPixF - subPixF / 2);
data->Y0xF = float4(Y0 * subPixF - subPixF / 2);
data->halfPixelX = float4(0.5f / W);
data->halfPixelY = float4(0.5f / H);
data->viewportHeight = abs(viewport.height);
data->slopeDepthBias = context->slopeDepthBias;
data->depthRange = Z;
data->depthNear = N;
}
// Target
{
for(int index = 0; index < RENDERTARGETS; index++)
{
draw->renderTarget[index] = context->renderTarget[index];
if(draw->renderTarget[index])
{
data->colorBuffer[index] = (unsigned int *)context->renderTarget[index]->getOffsetPointer({ 0, 0, 0 }, VK_IMAGE_ASPECT_COLOR_BIT, 0, data->viewID);
data->colorPitchB[index] = context->renderTarget[index]->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0);
data->colorSliceB[index] = context->renderTarget[index]->slicePitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0);
}
}
draw->depthBuffer = context->depthBuffer;
draw->stencilBuffer = context->stencilBuffer;
if(draw->depthBuffer)
{
data->depthBuffer = (float *)context->depthBuffer->getOffsetPointer({ 0, 0, 0 }, VK_IMAGE_ASPECT_DEPTH_BIT, 0, data->viewID);
data->depthPitchB = context->depthBuffer->rowPitchBytes(VK_IMAGE_ASPECT_DEPTH_BIT, 0);
data->depthSliceB = context->depthBuffer->slicePitchBytes(VK_IMAGE_ASPECT_DEPTH_BIT, 0);
}
if(draw->stencilBuffer)
{
data->stencilBuffer = (unsigned char *)context->stencilBuffer->getOffsetPointer({ 0, 0, 0 }, VK_IMAGE_ASPECT_STENCIL_BIT, 0, data->viewID);
data->stencilPitchB = context->stencilBuffer->rowPitchBytes(VK_IMAGE_ASPECT_STENCIL_BIT, 0);
data->stencilSliceB = context->stencilBuffer->slicePitchBytes(VK_IMAGE_ASPECT_STENCIL_BIT, 0);
}
}
// Scissor
{
data->scissorX0 = clamp<int>(scissor.offset.x, 0, framebufferExtent.width);
data->scissorX1 = clamp<int>(scissor.offset.x + scissor.extent.width, 0, framebufferExtent.width);
data->scissorY0 = clamp<int>(scissor.offset.y, 0, framebufferExtent.height);
data->scissorY1 = clamp<int>(scissor.offset.y + scissor.extent.height, 0, framebufferExtent.height);
}
// Push constants
{
data->pushConstants = pushConstants;
}
draw->events = events;
DrawCall::run(draw, &drawTickets, clusterQueues);
}
void DrawCall::setup()
{
if(occlusionQuery != nullptr)
{
occlusionQuery->start();
}
if(events)
{
events->start();
}
}
void DrawCall::teardown()
{
if(events)
{
events->finish();
events = nullptr;
}
if(occlusionQuery != nullptr)
{
for(int cluster = 0; cluster < MaxClusterCount; cluster++)
{
occlusionQuery->add(data->occlusion[cluster]);
}
occlusionQuery->finish();
}
vertexRoutine = {};
setupRoutine = {};
pixelRoutine = {};
}
void DrawCall::run(const marl::Loan<DrawCall> &draw, marl::Ticket::Queue *tickets, marl::Ticket::Queue clusterQueues[MaxClusterCount])
{
draw->setup();
auto const numPrimitives = draw->numPrimitives;
auto const numPrimitivesPerBatch = draw->numPrimitivesPerBatch;
auto const numBatches = draw->numBatches;
auto ticket = tickets->take();
auto finally = marl::make_shared_finally([draw, ticket] {
MARL_SCOPED_EVENT("FINISH draw %d", draw->id);
draw->teardown();
ticket.done();
});
for(unsigned int batchId = 0; batchId < numBatches; batchId++)
{
auto batch = draw->batchDataPool->borrow();
batch->id = batchId;
batch->firstPrimitive = batch->id * numPrimitivesPerBatch;
batch->numPrimitives = std::min(batch->firstPrimitive + numPrimitivesPerBatch, numPrimitives) - batch->firstPrimitive;
for(int cluster = 0; cluster < MaxClusterCount; cluster++)
{
batch->clusterTickets[cluster] = std::move(clusterQueues[cluster].take());
}
marl::schedule([draw, batch, finally] {
processVertices(draw.get(), batch.get());
if(!draw->setupState.rasterizerDiscard)
{
processPrimitives(draw.get(), batch.get());
if(batch->numVisible > 0)
{
processPixels(draw, batch, finally);
return;
}
}
for(int cluster = 0; cluster < MaxClusterCount; cluster++)
{
batch->clusterTickets[cluster].done();
}
});
}
}
void DrawCall::processVertices(DrawCall *draw, BatchData *batch)
{
MARL_SCOPED_EVENT("VERTEX draw %d, batch %d", draw->id, batch->id);
unsigned int triangleIndices[MaxBatchSize + 1][3]; // One extra for SIMD width overrun. TODO: Adjust to dynamic batch size.
{
MARL_SCOPED_EVENT("processPrimitiveVertices");
processPrimitiveVertices(
triangleIndices,
draw->data->indices,
draw->indexType,
batch->firstPrimitive,
batch->numPrimitives,
draw->topology,
draw->provokingVertexMode);
}
auto &vertexTask = batch->vertexTask;
vertexTask.primitiveStart = batch->firstPrimitive;
// We're only using batch compaction for points, not lines
vertexTask.vertexCount = batch->numPrimitives * ((draw->topology == VK_PRIMITIVE_TOPOLOGY_POINT_LIST) ? 1 : 3);
if(vertexTask.vertexCache.drawCall != draw->id)
{
vertexTask.vertexCache.clear();
vertexTask.vertexCache.drawCall = draw->id;
}
draw->vertexRoutine(&batch->triangles.front().v0, &triangleIndices[0][0], &vertexTask, draw->data);
}
void DrawCall::processPrimitives(DrawCall *draw, BatchData *batch)
{
MARL_SCOPED_EVENT("PRIMITIVES draw %d batch %d", draw->id, batch->id);
auto triangles = &batch->triangles[0];
auto primitives = &batch->primitives[0];
batch->numVisible = draw->setupPrimitives(triangles, primitives, draw, batch->numPrimitives);
}
void DrawCall::processPixels(const marl::Loan<DrawCall> &draw, const marl::Loan<BatchData> &batch, const std::shared_ptr<marl::Finally> &finally)
{
struct Data
{
Data(const marl::Loan<DrawCall> &draw, const marl::Loan<BatchData> &batch, const std::shared_ptr<marl::Finally> &finally)
: draw(draw)
, batch(batch)
, finally(finally)
{}
marl::Loan<DrawCall> draw;
marl::Loan<BatchData> batch;
std::shared_ptr<marl::Finally> finally;
};
auto data = std::make_shared<Data>(draw, batch, finally);
for(int cluster = 0; cluster < MaxClusterCount; cluster++)
{
batch->clusterTickets[cluster].onCall([data, cluster] {
auto &draw = data->draw;
auto &batch = data->batch;
MARL_SCOPED_EVENT("PIXEL draw %d, batch %d, cluster %d", draw->id, batch->id, cluster);
draw->pixelRoutine(&batch->primitives.front(), batch->numVisible, cluster, MaxClusterCount, draw->data);
batch->clusterTickets[cluster].done();
});
}
}
void Renderer::synchronize()
{
MARL_SCOPED_EVENT("synchronize");
auto ticket = drawTickets.take();
ticket.wait();
device->updateSamplingRoutineSnapshotCache();
ticket.done();
}
void DrawCall::processPrimitiveVertices(
unsigned int triangleIndicesOut[MaxBatchSize + 1][3],
const void *primitiveIndices,
VkIndexType indexType,
unsigned int start,
unsigned int triangleCount,
VkPrimitiveTopology topology,
VkProvokingVertexModeEXT provokingVertexMode)
{
if(!primitiveIndices)
{
struct LinearIndex
{
unsigned int operator[](unsigned int i) { return i; }
};
if(!setBatchIndices(triangleIndicesOut, topology, provokingVertexMode, LinearIndex(), start, triangleCount))
{
return;
}
}
else
{
switch(indexType)
{
case VK_INDEX_TYPE_UINT16:
if(!setBatchIndices(triangleIndicesOut, topology, provokingVertexMode, static_cast<const uint16_t *>(primitiveIndices), start, triangleCount))
{
return;
}
break;
case VK_INDEX_TYPE_UINT32:
if(!setBatchIndices(triangleIndicesOut, topology, provokingVertexMode, static_cast<const uint32_t *>(primitiveIndices), start, triangleCount))
{
return;
}
break;
break;
default:
ASSERT(false);
return;
}
}
// setBatchIndices() takes care of the point case, since it's different due to the compaction
if(topology != VK_PRIMITIVE_TOPOLOGY_POINT_LIST)
{
// Repeat the last index to allow for SIMD width overrun.
triangleIndicesOut[triangleCount][0] = triangleIndicesOut[triangleCount - 1][2];
triangleIndicesOut[triangleCount][1] = triangleIndicesOut[triangleCount - 1][2];
triangleIndicesOut[triangleCount][2] = triangleIndicesOut[triangleCount - 1][2];
}
}
int DrawCall::setupSolidTriangles(Triangle *triangles, Primitive *primitives, const DrawCall *drawCall, int count)
{
auto &state = drawCall->setupState;
int ms = state.multiSampleCount;
const DrawData *data = drawCall->data;
int visible = 0;
for(int i = 0; i < count; i++, triangles++)
{
Vertex &v0 = triangles->v0;
Vertex &v1 = triangles->v1;
Vertex &v2 = triangles->v2;
Polygon polygon(&v0.position, &v1.position, &v2.position);
if((v0.cullMask | v1.cullMask | v2.cullMask) == 0)
{
continue;
}
if((v0.clipFlags & v1.clipFlags & v2.clipFlags) != Clipper::CLIP_FINITE)
{
continue;
}
int clipFlagsOr = v0.clipFlags | v1.clipFlags | v2.clipFlags;
if(clipFlagsOr != Clipper::CLIP_FINITE)
{
if(!Clipper::Clip(polygon, clipFlagsOr, *drawCall))
{
continue;
}
}
if(drawCall->setupRoutine(primitives, triangles, &polygon, data))
{
primitives += ms;
visible++;
}
}
return visible;
}
int DrawCall::setupWireframeTriangles(Triangle *triangles, Primitive *primitives, const DrawCall *drawCall, int count)
{
auto &state = drawCall->setupState;
int ms = state.multiSampleCount;
int visible = 0;
for(int i = 0; i < count; i++)
{
const Vertex &v0 = triangles[i].v0;
const Vertex &v1 = triangles[i].v1;
const Vertex &v2 = triangles[i].v2;
float d = (v0.y * v1.x - v0.x * v1.y) * v2.w +
(v0.x * v2.y - v0.y * v2.x) * v1.w +
(v2.x * v1.y - v1.x * v2.y) * v0.w;
bool frontFacing = (state.frontFace == VK_FRONT_FACE_COUNTER_CLOCKWISE) ? (d > 0) : (d < 0);
if(state.cullMode & VK_CULL_MODE_FRONT_BIT)
{
if(frontFacing) continue;
}
if(state.cullMode & VK_CULL_MODE_BACK_BIT)
{
if(!frontFacing) continue;
}
Triangle lines[3];
lines[0].v0 = v0;
lines[0].v1 = v1;
lines[1].v0 = v1;
lines[1].v1 = v2;
lines[2].v0 = v2;
lines[2].v1 = v0;
for(int i = 0; i < 3; i++)
{
if(setupLine(*primitives, lines[i], *drawCall))
{
primitives += ms;
visible++;
}
}
}
return visible;
}
int DrawCall::setupPointTriangles(Triangle *triangles, Primitive *primitives, const DrawCall *drawCall, int count)
{
auto &state = drawCall->setupState;
int ms = state.multiSampleCount;
int visible = 0;
for(int i = 0; i < count; i++)
{
const Vertex &v0 = triangles[i].v0;
const Vertex &v1 = triangles[i].v1;
const Vertex &v2 = triangles[i].v2;
float d = (v0.y * v1.x - v0.x * v1.y) * v2.w +
(v0.x * v2.y - v0.y * v2.x) * v1.w +
(v2.x * v1.y - v1.x * v2.y) * v0.w;
bool frontFacing = (state.frontFace == VK_FRONT_FACE_COUNTER_CLOCKWISE) ? (d > 0) : (d < 0);
if(state.cullMode & VK_CULL_MODE_FRONT_BIT)
{
if(frontFacing) continue;
}
if(state.cullMode & VK_CULL_MODE_BACK_BIT)
{
if(!frontFacing) continue;
}
Triangle points[3];
points[0].v0 = v0;
points[1].v0 = v1;
points[2].v0 = v2;
for(int i = 0; i < 3; i++)
{
if(setupPoint(*primitives, points[i], *drawCall))
{
primitives += ms;
visible++;
}
}
}
return visible;
}
int DrawCall::setupLines(Triangle *triangles, Primitive *primitives, const DrawCall *drawCall, int count)
{
auto &state = drawCall->setupState;
int visible = 0;
int ms = state.multiSampleCount;
for(int i = 0; i < count; i++)
{
if(setupLine(*primitives, *triangles, *drawCall))
{
primitives += ms;
visible++;
}
triangles++;
}
return visible;
}
int DrawCall::setupPoints(Triangle *triangles, Primitive *primitives, const DrawCall *drawCall, int count)
{
auto &state = drawCall->setupState;
int visible = 0;
int ms = state.multiSampleCount;
for(int i = 0; i < count; i++)
{
if(setupPoint(*primitives, *triangles, *drawCall))
{
primitives += ms;
visible++;
}
triangles++;
}
return visible;
}
bool DrawCall::setupLine(Primitive &primitive, Triangle &triangle, const DrawCall &draw)
{
const DrawData &data = *draw.data;
float lineWidth = data.lineWidth;
Vertex &v0 = triangle.v0;
Vertex &v1 = triangle.v1;
if((v0.cullMask | v1.cullMask) == 0)
{
return false;
}
const float4 &P0 = v0.position;
const float4 &P1 = v1.position;
if(P0.w <= 0 && P1.w <= 0)
{
return false;
}
constexpr float subPixF = vk::SUBPIXEL_PRECISION_FACTOR;
const float W = data.WxF[0] * (1.0f / subPixF);
const float H = data.HxF[0] * (1.0f / subPixF);
float dx = W * (P1.x / P1.w - P0.x / P0.w);
float dy = H * (P1.y / P1.w - P0.y / P0.w);
if(dx == 0 && dy == 0)
{
return false;
}
if(draw.lineRasterizationMode != VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT)
{
// Rectangle centered on the line segment
float4 P[4];
int C[4];
P[0] = P0;
P[1] = P1;
P[2] = P1;
P[3] = P0;
float scale = lineWidth * 0.5f / sqrt(dx * dx + dy * dy);
dx *= scale;
dy *= scale;
float dx0h = dx * P0.w / H;
float dy0w = dy * P0.w / W;
float dx1h = dx * P1.w / H;
float dy1w = dy * P1.w / W;
P[0].x += -dy0w;
P[0].y += +dx0h;
C[0] = Clipper::ComputeClipFlags(P[0]);
P[1].x += -dy1w;
P[1].y += +dx1h;
C[1] = Clipper::ComputeClipFlags(P[1]);
P[2].x += +dy1w;
P[2].y += -dx1h;
C[2] = Clipper::ComputeClipFlags(P[2]);
P[3].x += +dy0w;
P[3].y += -dx0h;
C[3] = Clipper::ComputeClipFlags(P[3]);
if((C[0] & C[1] & C[2] & C[3]) == Clipper::CLIP_FINITE)
{
Polygon polygon(P, 4);
int clipFlagsOr = C[0] | C[1] | C[2] | C[3];
if(clipFlagsOr != Clipper::CLIP_FINITE)
{
if(!Clipper::Clip(polygon, clipFlagsOr, draw))
{
return false;
}
}
return draw.setupRoutine(&primitive, &triangle, &polygon, &data);
}
}
else if(false) // TODO(b/80135519): Deprecate
{
// Connecting diamonds polygon
// This shape satisfies the diamond test convention, except for the exit rule part.
// Line segments with overlapping endpoints have duplicate fragments.
// The ideal algorithm requires half-open line rasterization (b/80135519).
float4 P[8];
int C[8];
P[0] = P0;
P[1] = P0;
P[2] = P0;
P[3] = P0;
P[4] = P1;
P[5] = P1;
P[6] = P1;
P[7] = P1;
float dx0 = lineWidth * 0.5f * P0.w / W;
float dy0 = lineWidth * 0.5f * P0.w / H;
float dx1 = lineWidth * 0.5f * P1.w / W;
float dy1 = lineWidth * 0.5f * P1.w / H;
P[0].x += -dx0;
C[0] = Clipper::ComputeClipFlags(P[0]);
P[1].y += +dy0;
C[1] = Clipper::ComputeClipFlags(P[1]);
P[2].x += +dx0;
C[2] = Clipper::ComputeClipFlags(P[2]);
P[3].y += -dy0;
C[3] = Clipper::ComputeClipFlags(P[3]);
P[4].x += -dx1;
C[4] = Clipper::ComputeClipFlags(P[4]);
P[5].y += +dy1;
C[5] = Clipper::ComputeClipFlags(P[5]);
P[6].x += +dx1;
C[6] = Clipper::ComputeClipFlags(P[6]);
P[7].y += -dy1;
C[7] = Clipper::ComputeClipFlags(P[7]);
if((C[0] & C[1] & C[2] & C[3] & C[4] & C[5] & C[6] & C[7]) == Clipper::CLIP_FINITE)
{
float4 L[6];
if(dx > -dy)
{
if(dx > dy) // Right
{
L[0] = P[0];
L[1] = P[1];
L[2] = P[5];
L[3] = P[6];
L[4] = P[7];
L[5] = P[3];
}
else // Down
{
L[0] = P[0];
L[1] = P[4];
L[2] = P[5];
L[3] = P[6];
L[4] = P[2];
L[5] = P[3];
}
}
else
{
if(dx > dy) // Up
{
L[0] = P[0];
L[1] = P[1];
L[2] = P[2];
L[3] = P[6];
L[4] = P[7];
L[5] = P[4];
}
else // Left
{
L[0] = P[1];
L[1] = P[2];
L[2] = P[3];
L[3] = P[7];
L[4] = P[4];
L[5] = P[5];
}
}
Polygon polygon(L, 6);
int clipFlagsOr = C[0] | C[1] | C[2] | C[3] | C[4] | C[5] | C[6] | C[7];
if(clipFlagsOr != Clipper::CLIP_FINITE)
{
if(!Clipper::Clip(polygon, clipFlagsOr, draw))
{
return false;
}
}
return draw.setupRoutine(&primitive, &triangle, &polygon, &data);
}
}
else
{
// Parallelogram approximating Bresenham line
// This algorithm does not satisfy the ideal diamond-exit rule, but does avoid the
// duplicate fragment rasterization problem and satisfies all of Vulkan's minimum
// requirements for Bresenham line segment rasterization.
float4 P[8];
P[0] = P0;
P[1] = P0;
P[2] = P0;
P[3] = P0;
P[4] = P1;
P[5] = P1;
P[6] = P1;
P[7] = P1;
float dx0 = lineWidth * 0.5f * P0.w / W;
float dy0 = lineWidth * 0.5f * P0.w / H;
float dx1 = lineWidth * 0.5f * P1.w / W;
float dy1 = lineWidth * 0.5f * P1.w / H;
P[0].x += -dx0;
P[1].y += +dy0;
P[2].x += +dx0;
P[3].y += -dy0;
P[4].x += -dx1;
P[5].y += +dy1;
P[6].x += +dx1;
P[7].y += -dy1;
float4 L[4];
if(dx > -dy)
{
if(dx > dy) // Right
{
L[0] = P[1];
L[1] = P[5];
L[2] = P[7];
L[3] = P[3];
}
else // Down
{
L[0] = P[0];
L[1] = P[4];
L[2] = P[6];
L[3] = P[2];
}
}
else
{
if(dx > dy) // Up
{
L[0] = P[0];
L[1] = P[2];
L[2] = P[6];
L[3] = P[4];
}
else // Left
{
L[0] = P[1];
L[1] = P[3];
L[2] = P[7];
L[3] = P[5];
}
}
int C0 = Clipper::ComputeClipFlags(L[0]);
int C1 = Clipper::ComputeClipFlags(L[1]);
int C2 = Clipper::ComputeClipFlags(L[2]);
int C3 = Clipper::ComputeClipFlags(L[3]);
if((C0 & C1 & C2 & C3) == Clipper::CLIP_FINITE)
{
Polygon polygon(L, 4);
int clipFlagsOr = C0 | C1 | C2 | C3;
if(clipFlagsOr != Clipper::CLIP_FINITE)
{
if(!Clipper::Clip(polygon, clipFlagsOr, draw))
{
return false;
}
}
return draw.setupRoutine(&primitive, &triangle, &polygon, &data);
}
}
return false;
}
bool DrawCall::setupPoint(Primitive &primitive, Triangle &triangle, const DrawCall &draw)
{
const DrawData &data = *draw.data;
Vertex &v = triangle.v0;
if(v.cullMask == 0)
{
return false;
}
float pSize = v.pointSize;
pSize = clamp(pSize, 1.0f, static_cast<float>(vk::MAX_POINT_SIZE));
float4 P[4];
int C[4];
P[0] = v.position;
P[1] = v.position;
P[2] = v.position;
P[3] = v.position;
const float X = pSize * P[0].w * data.halfPixelX[0];
const float Y = pSize * P[0].w * data.halfPixelY[0];
P[0].x -= X;
P[0].y += Y;
C[0] = Clipper::ComputeClipFlags(P[0]);
P[1].x += X;
P[1].y += Y;
C[1] = Clipper::ComputeClipFlags(P[1]);
P[2].x += X;
P[2].y -= Y;
C[2] = Clipper::ComputeClipFlags(P[2]);
P[3].x -= X;
P[3].y -= Y;
C[3] = Clipper::ComputeClipFlags(P[3]);
Polygon polygon(P, 4);
if((C[0] & C[1] & C[2] & C[3]) == Clipper::CLIP_FINITE)
{
int clipFlagsOr = C[0] | C[1] | C[2] | C[3];
if(clipFlagsOr != Clipper::CLIP_FINITE)
{
if(!Clipper::Clip(polygon, clipFlagsOr, draw))
{
return false;
}
}
primitive.pointSizeInv = 1.0f / pSize;
return draw.setupRoutine(&primitive, &triangle, &polygon, &data);
}
return false;
}
void Renderer::addQuery(vk::Query *query)
{
ASSERT(query->getType() == VK_QUERY_TYPE_OCCLUSION);
ASSERT(!occlusionQuery);
occlusionQuery = query;
}
void Renderer::removeQuery(vk::Query *query)
{
ASSERT(query->getType() == VK_QUERY_TYPE_OCCLUSION);
ASSERT(occlusionQuery == query);
occlusionQuery = nullptr;
}
// TODO(b/137740918): Optimize instancing to use a single draw call.
void Renderer::advanceInstanceAttributes(Stream *inputs)
{
for(uint32_t i = 0; i < vk::MAX_VERTEX_INPUT_BINDINGS; i++)
{
auto &attrib = inputs[i];
if((attrib.format != VK_FORMAT_UNDEFINED) && attrib.instanceStride && (attrib.instanceStride < attrib.robustnessSize))
{
// Under the casts: attrib.buffer += attrib.instanceStride
attrib.buffer = (void const *)((uintptr_t)attrib.buffer + attrib.instanceStride);
attrib.robustnessSize -= attrib.instanceStride;
}
}
}
void Renderer::setViewport(const VkViewport &viewport)
{
this->viewport = viewport;
}
void Renderer::setScissor(const VkRect2D &scissor)
{
this->scissor = scissor;
}
void Renderer::setBlendConstant(const float4 &blendConstant)
{
pixelProcessor.setBlendConstant(blendConstant);
}
} // namespace sw