blob: acbdbcf6994bd91ba3e9bfae5e962e52d829e2b4 [file] [log] [blame]
// SwiftShader Software Renderer
//
// Copyright(c) 2005-2013 TransGaming Inc.
//
// All rights reserved. No part of this software may be copied, distributed, transmitted,
// transcribed, stored in a retrieval system, translated into any human or computer
// language by any means, or disclosed to third parties without the explicit written
// agreement of TransGaming Inc. Without such an agreement, no rights or licenses, express
// or implied, including but not limited to any patent rights, are granted to you.
//
#include "VertexProgram.hpp"
#include "Renderer.hpp"
#include "VertexShader.hpp"
#include "Vertex.hpp"
#include "Half.hpp"
#include "SamplerCore.hpp"
#include "Debug.hpp"
namespace sw
{
VertexProgram::VertexProgram(const VertexProcessor::State &state, const VertexShader *shader) : VertexRoutine(state, shader)
{
ifDepth = 0;
loopRepDepth = 0;
breakDepth = 0;
currentLabel = -1;
whileTest = false;
for(int i = 0; i < 2048; i++)
{
labelBlock[i] = 0;
}
}
VertexProgram::~VertexProgram()
{
for(int i = 0; i < VERTEX_TEXTURE_IMAGE_UNITS; i++)
{
delete sampler[i];
}
}
void VertexProgram::pipeline(Registers &r)
{
for(int i = 0; i < VERTEX_TEXTURE_IMAGE_UNITS; i++)
{
sampler[i] = new SamplerCore(r.constants, state.samplerState[i]);
}
if(!state.preTransformed)
{
program(r);
}
else
{
passThrough(r);
}
}
void VertexProgram::program(Registers &r)
{
// shader->print("VertexShader-%0.8X.txt", state.shaderID);
unsigned short version = shader->getVersion();
r.enableIndex = 0;
r.stackIndex = 0;
if(shader->containsLeaveInstruction())
{
r.enableLeave = Int4(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF);
}
// Create all call site return blocks up front
for(size_t i = 0; i < shader->getLength(); i++)
{
const Shader::Instruction *instruction = shader->getInstruction(i);
Shader::Opcode opcode = instruction->opcode;
if(opcode == Shader::OPCODE_CALL || opcode == Shader::OPCODE_CALLNZ)
{
const Dst &dst = instruction->dst;
ASSERT(callRetBlock[dst.label].size() == dst.callSite);
callRetBlock[dst.label].push_back(Nucleus::createBasicBlock());
}
}
for(size_t i = 0; i < shader->getLength(); i++)
{
const Shader::Instruction *instruction = shader->getInstruction(i);
Shader::Opcode opcode = instruction->opcode;
if(opcode == Shader::OPCODE_DCL || opcode == Shader::OPCODE_DEF || opcode == Shader::OPCODE_DEFI || opcode == Shader::OPCODE_DEFB)
{
continue;
}
Dst dst = instruction->dst;
Src src0 = instruction->src[0];
Src src1 = instruction->src[1];
Src src2 = instruction->src[2];
bool predicate = instruction->predicate;
int size = shader->size(opcode);
Usage usage = instruction->usage;
unsigned char usageIndex = instruction->usageIndex;
Control control = instruction->control;
bool integer = dst.type == Shader::PARAMETER_ADDR;
bool pp = dst.partialPrecision;
Vector4f d;
Vector4f s0;
Vector4f s1;
Vector4f s2;
if(src0.type != Shader::PARAMETER_VOID) s0 = fetchRegisterF(r, src0);
if(src1.type != Shader::PARAMETER_VOID) s1 = fetchRegisterF(r, src1);
if(src2.type != Shader::PARAMETER_VOID) s2 = fetchRegisterF(r, src2);
switch(opcode)
{
case Shader::OPCODE_VS_1_0: break;
case Shader::OPCODE_VS_1_1: break;
case Shader::OPCODE_VS_2_0: break;
case Shader::OPCODE_VS_2_x: break;
case Shader::OPCODE_VS_2_sw: break;
case Shader::OPCODE_VS_3_0: break;
case Shader::OPCODE_VS_3_sw: break;
case Shader::OPCODE_DCL: break;
case Shader::OPCODE_DEF: break;
case Shader::OPCODE_DEFI: break;
case Shader::OPCODE_DEFB: break;
case Shader::OPCODE_NOP: break;
case Shader::OPCODE_ABS: abs(d, s0); break;
case Shader::OPCODE_ADD: add(d, s0, s1); break;
case Shader::OPCODE_CRS: crs(d, s0, s1); break;
case Shader::OPCODE_FORWARD1: forward1(d, s0, s1, s2); break;
case Shader::OPCODE_FORWARD2: forward2(d, s0, s1, s2); break;
case Shader::OPCODE_FORWARD3: forward3(d, s0, s1, s2); break;
case Shader::OPCODE_FORWARD4: forward4(d, s0, s1, s2); break;
case Shader::OPCODE_REFLECT1: reflect1(d, s0, s1); break;
case Shader::OPCODE_REFLECT2: reflect2(d, s0, s1); break;
case Shader::OPCODE_REFLECT3: reflect3(d, s0, s1); break;
case Shader::OPCODE_REFLECT4: reflect4(d, s0, s1); break;
case Shader::OPCODE_REFRACT1: refract1(d, s0, s1, s2.x); break;
case Shader::OPCODE_REFRACT2: refract2(d, s0, s1, s2.x); break;
case Shader::OPCODE_REFRACT3: refract3(d, s0, s1, s2.x); break;
case Shader::OPCODE_REFRACT4: refract4(d, s0, s1, s2.x); break;
case Shader::OPCODE_DP1: dp1(d, s0, s1); break;
case Shader::OPCODE_DP2: dp2(d, s0, s1); break;
case Shader::OPCODE_DP3: dp3(d, s0, s1); break;
case Shader::OPCODE_DP4: dp4(d, s0, s1); break;
case Shader::OPCODE_ATT: att(d, s0, s1); break;
case Shader::OPCODE_EXP2X: exp2x(d, s0, pp); break;
case Shader::OPCODE_EXP2: exp2(d, s0, pp); break;
case Shader::OPCODE_EXPP: expp(d, s0, version); break;
case Shader::OPCODE_EXP: exp(d, s0, pp); break;
case Shader::OPCODE_FRC: frc(d, s0); break;
case Shader::OPCODE_TRUNC: trunc(d, s0); break;
case Shader::OPCODE_FLOOR: floor(d, s0); break;
case Shader::OPCODE_ROUND: round(d, s0); break;
case Shader::OPCODE_CEIL: ceil(d, s0); break;
case Shader::OPCODE_LIT: lit(d, s0); break;
case Shader::OPCODE_LOG2X: log2x(d, s0, pp); break;
case Shader::OPCODE_LOG2: log2(d, s0, pp); break;
case Shader::OPCODE_LOGP: logp(d, s0, version); break;
case Shader::OPCODE_LOG: log(d, s0, pp); break;
case Shader::OPCODE_LRP: lrp(d, s0, s1, s2); break;
case Shader::OPCODE_STEP: step(d, s0, s1); break;
case Shader::OPCODE_SMOOTH: smooth(d, s0, s1, s2); break;
case Shader::OPCODE_M3X2: M3X2(r, d, s0, src1); break;
case Shader::OPCODE_M3X3: M3X3(r, d, s0, src1); break;
case Shader::OPCODE_M3X4: M3X4(r, d, s0, src1); break;
case Shader::OPCODE_M4X3: M4X3(r, d, s0, src1); break;
case Shader::OPCODE_M4X4: M4X4(r, d, s0, src1); break;
case Shader::OPCODE_MAD: mad(d, s0, s1, s2); break;
case Shader::OPCODE_MAX: max(d, s0, s1); break;
case Shader::OPCODE_MIN: min(d, s0, s1); break;
case Shader::OPCODE_MOV: mov(d, s0, integer); break;
case Shader::OPCODE_MOVA: mov(d, s0); break;
case Shader::OPCODE_F2B: f2b(d, s0); break;
case Shader::OPCODE_B2F: b2f(d, s0); break;
case Shader::OPCODE_MUL: mul(d, s0, s1); break;
case Shader::OPCODE_NRM2: nrm2(d, s0, pp); break;
case Shader::OPCODE_NRM3: nrm3(d, s0, pp); break;
case Shader::OPCODE_NRM4: nrm4(d, s0, pp); break;
case Shader::OPCODE_POWX: powx(d, s0, s1, pp); break;
case Shader::OPCODE_POW: pow(d, s0, s1, pp); break;
case Shader::OPCODE_RCPX: rcpx(d, s0, pp); break;
case Shader::OPCODE_DIV: div(d, s0, s1); break;
case Shader::OPCODE_MOD: mod(d, s0, s1); break;
case Shader::OPCODE_RSQX: rsqx(d, s0, pp); break;
case Shader::OPCODE_SQRT: sqrt(d, s0, pp); break;
case Shader::OPCODE_RSQ: rsq(d, s0, pp); break;
case Shader::OPCODE_LEN2: len2(d.x, s0, pp); break;
case Shader::OPCODE_LEN3: len3(d.x, s0, pp); break;
case Shader::OPCODE_LEN4: len4(d.x, s0, pp); break;
case Shader::OPCODE_DIST1: dist1(d.x, s0, s1, pp); break;
case Shader::OPCODE_DIST2: dist2(d.x, s0, s1, pp); break;
case Shader::OPCODE_DIST3: dist3(d.x, s0, s1, pp); break;
case Shader::OPCODE_DIST4: dist4(d.x, s0, s1, pp); break;
case Shader::OPCODE_SGE: step(d, s1, s0); break;
case Shader::OPCODE_SGN: sgn(d, s0); break;
case Shader::OPCODE_SINCOS: sincos(d, s0, pp); break;
case Shader::OPCODE_COS: cos(d, s0, pp); break;
case Shader::OPCODE_SIN: sin(d, s0, pp); break;
case Shader::OPCODE_TAN: tan(d, s0); break;
case Shader::OPCODE_ACOS: acos(d, s0); break;
case Shader::OPCODE_ASIN: asin(d, s0); break;
case Shader::OPCODE_ATAN: atan(d, s0); break;
case Shader::OPCODE_ATAN2: atan2(d, s0, s1); break;
case Shader::OPCODE_COSH: cosh(d, s0, pp); break;
case Shader::OPCODE_SINH: sinh(d, s0, pp); break;
case Shader::OPCODE_TANH: tanh(d, s0, pp); break;
case Shader::OPCODE_ACOSH: acosh(d, s0, pp); break;
case Shader::OPCODE_ASINH: asinh(d, s0, pp); break;
case Shader::OPCODE_ATANH: atanh(d, s0, pp); break;
case Shader::OPCODE_SLT: slt(d, s0, s1); break;
case Shader::OPCODE_SUB: sub(d, s0, s1); break;
case Shader::OPCODE_BREAK: BREAK(r); break;
case Shader::OPCODE_BREAKC: BREAKC(r, s0, s1, control); break;
case Shader::OPCODE_BREAKP: BREAKP(r, src0); break;
case Shader::OPCODE_CONTINUE: CONTINUE(r); break;
case Shader::OPCODE_TEST: TEST(); break;
case Shader::OPCODE_CALL: CALL(r, dst.label, dst.callSite); break;
case Shader::OPCODE_CALLNZ: CALLNZ(r, dst.label, dst.callSite, src0); break;
case Shader::OPCODE_ELSE: ELSE(r); break;
case Shader::OPCODE_ENDIF: ENDIF(r); break;
case Shader::OPCODE_ENDLOOP: ENDLOOP(r); break;
case Shader::OPCODE_ENDREP: ENDREP(r); break;
case Shader::OPCODE_ENDWHILE: ENDWHILE(r); break;
case Shader::OPCODE_IF: IF(r, src0); break;
case Shader::OPCODE_IFC: IFC(r, s0, s1, control); break;
case Shader::OPCODE_LABEL: LABEL(dst.index); break;
case Shader::OPCODE_LOOP: LOOP(r, src1); break;
case Shader::OPCODE_REP: REP(r, src0); break;
case Shader::OPCODE_WHILE: WHILE(r, src0); break;
case Shader::OPCODE_RET: RET(r); break;
case Shader::OPCODE_LEAVE: LEAVE(r); break;
case Shader::OPCODE_CMP: cmp(d, s0, s1, control); break;
case Shader::OPCODE_ICMP: icmp(d, s0, s1, control); break;
case Shader::OPCODE_SELECT: select(d, s0, s1, s2); break;
case Shader::OPCODE_EXTRACT: extract(d.x, s0, s1.x); break;
case Shader::OPCODE_INSERT: insert(d, s0, s1.x, s2.x); break;
case Shader::OPCODE_ALL: all(d.x, s0); break;
case Shader::OPCODE_ANY: any(d.x, s0); break;
case Shader::OPCODE_NOT: not(d, s0); break;
case Shader::OPCODE_OR: or(d.x, s0.x, s1.x); break;
case Shader::OPCODE_XOR: xor(d.x, s0.x, s1.x); break;
case Shader::OPCODE_AND: and(d.x, s0.x, s1.x); break;
case Shader::OPCODE_TEXLDL: TEXLDL(r, d, s0, src1); break;
case Shader::OPCODE_TEX: TEX(r, d, s0, src1); break;
case Shader::OPCODE_END: break;
default:
ASSERT(false);
}
if(dst.type != Shader::PARAMETER_VOID && dst.type != Shader::PARAMETER_LABEL && opcode != Shader::OPCODE_NOP)
{
if(dst.integer)
{
switch(opcode)
{
case Shader::OPCODE_DIV:
if(dst.x) d.x = Trunc(d.x);
if(dst.y) d.y = Trunc(d.y);
if(dst.z) d.z = Trunc(d.z);
if(dst.w) d.w = Trunc(d.w);
break;
default:
break; // No truncation to integer required when arguments are integer
}
}
if(dst.saturate)
{
if(dst.x) d.x = Max(d.x, Float4(0.0f));
if(dst.y) d.y = Max(d.y, Float4(0.0f));
if(dst.z) d.z = Max(d.z, Float4(0.0f));
if(dst.w) d.w = Max(d.w, Float4(0.0f));
if(dst.x) d.x = Min(d.x, Float4(1.0f));
if(dst.y) d.y = Min(d.y, Float4(1.0f));
if(dst.z) d.z = Min(d.z, Float4(1.0f));
if(dst.w) d.w = Min(d.w, Float4(1.0f));
}
if(instruction->isPredicated())
{
Vector4f pDst; // FIXME: Rename
switch(dst.type)
{
case Shader::PARAMETER_VOID: break;
case Shader::PARAMETER_TEMP:
if(dst.rel.type == Shader::PARAMETER_VOID)
{
if(dst.x) pDst.x = r.r[dst.index].x;
if(dst.y) pDst.y = r.r[dst.index].y;
if(dst.z) pDst.z = r.r[dst.index].z;
if(dst.w) pDst.w = r.r[dst.index].w;
}
else
{
Int a = relativeAddress(r, dst);
if(dst.x) pDst.x = r.r[dst.index + a].x;
if(dst.y) pDst.y = r.r[dst.index + a].y;
if(dst.z) pDst.z = r.r[dst.index + a].z;
if(dst.w) pDst.w = r.r[dst.index + a].w;
}
break;
case Shader::PARAMETER_ADDR: pDst = r.a0; break;
case Shader::PARAMETER_RASTOUT:
switch(dst.index)
{
case 0:
if(dst.x) pDst.x = r.o[Pos].x;
if(dst.y) pDst.y = r.o[Pos].y;
if(dst.z) pDst.z = r.o[Pos].z;
if(dst.w) pDst.w = r.o[Pos].w;
break;
case 1:
pDst.x = r.o[Fog].x;
break;
case 2:
pDst.x = r.o[Pts].y;
break;
default:
ASSERT(false);
}
break;
case Shader::PARAMETER_ATTROUT:
if(dst.x) pDst.x = r.o[D0 + dst.index].x;
if(dst.y) pDst.y = r.o[D0 + dst.index].y;
if(dst.z) pDst.z = r.o[D0 + dst.index].z;
if(dst.w) pDst.w = r.o[D0 + dst.index].w;
break;
case Shader::PARAMETER_TEXCRDOUT:
// case Shader::PARAMETER_OUTPUT:
if(version < 0x0300)
{
if(dst.x) pDst.x = r.o[T0 + dst.index].x;
if(dst.y) pDst.y = r.o[T0 + dst.index].y;
if(dst.z) pDst.z = r.o[T0 + dst.index].z;
if(dst.w) pDst.w = r.o[T0 + dst.index].w;
}
else
{
if(dst.rel.type == Shader::PARAMETER_VOID) // Not relative
{
if(dst.x) pDst.x = r.o[dst.index].x;
if(dst.y) pDst.y = r.o[dst.index].y;
if(dst.z) pDst.z = r.o[dst.index].z;
if(dst.w) pDst.w = r.o[dst.index].w;
}
else if(dst.rel.type == Shader::PARAMETER_LOOP)
{
Int aL = r.aL[r.loopDepth];
if(dst.x) pDst.x = r.o[dst.index + aL].x;
if(dst.y) pDst.y = r.o[dst.index + aL].y;
if(dst.z) pDst.z = r.o[dst.index + aL].z;
if(dst.w) pDst.w = r.o[dst.index + aL].w;
}
else
{
Int a = relativeAddress(r, dst);
if(dst.x) pDst.x = r.o[dst.index + a].x;
if(dst.y) pDst.y = r.o[dst.index + a].y;
if(dst.z) pDst.z = r.o[dst.index + a].z;
if(dst.w) pDst.w = r.o[dst.index + a].w;
}
}
break;
case Shader::PARAMETER_LABEL: break;
case Shader::PARAMETER_PREDICATE: pDst = r.p0; break;
case Shader::PARAMETER_INPUT: break;
default:
ASSERT(false);
}
Int4 enable = enableMask(r, instruction);
Int4 xEnable = enable;
Int4 yEnable = enable;
Int4 zEnable = enable;
Int4 wEnable = enable;
if(predicate)
{
unsigned char pSwizzle = instruction->predicateSwizzle;
Float4 xPredicate = r.p0[(pSwizzle >> 0) & 0x03];
Float4 yPredicate = r.p0[(pSwizzle >> 2) & 0x03];
Float4 zPredicate = r.p0[(pSwizzle >> 4) & 0x03];
Float4 wPredicate = r.p0[(pSwizzle >> 6) & 0x03];
if(!instruction->predicateNot)
{
if(dst.x) xEnable = xEnable & As<Int4>(xPredicate);
if(dst.y) yEnable = yEnable & As<Int4>(yPredicate);
if(dst.z) zEnable = zEnable & As<Int4>(zPredicate);
if(dst.w) wEnable = wEnable & As<Int4>(wPredicate);
}
else
{
if(dst.x) xEnable = xEnable & ~As<Int4>(xPredicate);
if(dst.y) yEnable = yEnable & ~As<Int4>(yPredicate);
if(dst.z) zEnable = zEnable & ~As<Int4>(zPredicate);
if(dst.w) wEnable = wEnable & ~As<Int4>(wPredicate);
}
}
if(dst.x) d.x = As<Float4>(As<Int4>(d.x) & xEnable);
if(dst.y) d.y = As<Float4>(As<Int4>(d.y) & yEnable);
if(dst.z) d.z = As<Float4>(As<Int4>(d.z) & zEnable);
if(dst.w) d.w = As<Float4>(As<Int4>(d.w) & wEnable);
if(dst.x) d.x = As<Float4>(As<Int4>(d.x) | (As<Int4>(pDst.x) & ~xEnable));
if(dst.y) d.y = As<Float4>(As<Int4>(d.y) | (As<Int4>(pDst.y) & ~yEnable));
if(dst.z) d.z = As<Float4>(As<Int4>(d.z) | (As<Int4>(pDst.z) & ~zEnable));
if(dst.w) d.w = As<Float4>(As<Int4>(d.w) | (As<Int4>(pDst.w) & ~wEnable));
}
switch(dst.type)
{
case Shader::PARAMETER_VOID:
break;
case Shader::PARAMETER_TEMP:
if(dst.rel.type == Shader::PARAMETER_VOID)
{
if(dst.x) r.r[dst.index].x = d.x;
if(dst.y) r.r[dst.index].y = d.y;
if(dst.z) r.r[dst.index].z = d.z;
if(dst.w) r.r[dst.index].w = d.w;
}
else
{
Int a = relativeAddress(r, dst);
if(dst.x) r.r[dst.index + a].x = d.x;
if(dst.y) r.r[dst.index + a].y = d.y;
if(dst.z) r.r[dst.index + a].z = d.z;
if(dst.w) r.r[dst.index + a].w = d.w;
}
break;
case Shader::PARAMETER_ADDR:
if(dst.x) r.a0.x = d.x;
if(dst.y) r.a0.y = d.y;
if(dst.z) r.a0.z = d.z;
if(dst.w) r.a0.w = d.w;
break;
case Shader::PARAMETER_RASTOUT:
switch(dst.index)
{
case 0:
if(dst.x) r.o[Pos].x = d.x;
if(dst.y) r.o[Pos].y = d.y;
if(dst.z) r.o[Pos].z = d.z;
if(dst.w) r.o[Pos].w = d.w;
break;
case 1:
r.o[Fog].x = d.x;
break;
case 2:
r.o[Pts].y = d.x;
break;
default: ASSERT(false);
}
break;
case Shader::PARAMETER_ATTROUT:
if(dst.x) r.o[D0 + dst.index].x = d.x;
if(dst.y) r.o[D0 + dst.index].y = d.y;
if(dst.z) r.o[D0 + dst.index].z = d.z;
if(dst.w) r.o[D0 + dst.index].w = d.w;
break;
case Shader::PARAMETER_TEXCRDOUT:
// case Shader::PARAMETER_OUTPUT:
if(version < 0x0300)
{
if(dst.x) r.o[T0 + dst.index].x = d.x;
if(dst.y) r.o[T0 + dst.index].y = d.y;
if(dst.z) r.o[T0 + dst.index].z = d.z;
if(dst.w) r.o[T0 + dst.index].w = d.w;
}
else
{
if(dst.rel.type == Shader::PARAMETER_VOID) // Not relative
{
if(dst.x) r.o[dst.index].x = d.x;
if(dst.y) r.o[dst.index].y = d.y;
if(dst.z) r.o[dst.index].z = d.z;
if(dst.w) r.o[dst.index].w = d.w;
}
else if(dst.rel.type == Shader::PARAMETER_LOOP)
{
Int aL = r.aL[r.loopDepth];
if(dst.x) r.o[dst.index + aL].x = d.x;
if(dst.y) r.o[dst.index + aL].y = d.y;
if(dst.z) r.o[dst.index + aL].z = d.z;
if(dst.w) r.o[dst.index + aL].w = d.w;
}
else
{
Int a = relativeAddress(r, dst);
if(dst.x) r.o[dst.index + a].x = d.x;
if(dst.y) r.o[dst.index + a].y = d.y;
if(dst.z) r.o[dst.index + a].z = d.z;
if(dst.w) r.o[dst.index + a].w = d.w;
}
}
break;
case Shader::PARAMETER_LABEL: break;
case Shader::PARAMETER_PREDICATE: r.p0 = d; break;
case Shader::PARAMETER_INPUT: break;
default:
ASSERT(false);
}
}
}
if(currentLabel != -1)
{
Nucleus::setInsertBlock(returnBlock);
}
}
void VertexProgram::passThrough(Registers &r)
{
if(shader)
{
for(int i = 0; i < 12; i++)
{
unsigned char usage = shader->output[i][0].usage;
unsigned char index = shader->output[i][0].index;
switch(usage)
{
case 0xFF:
continue;
case Shader::USAGE_PSIZE:
r.o[i].y = r.v[i].x;
break;
case Shader::USAGE_TEXCOORD:
r.o[i].x = r.v[i].x;
r.o[i].y = r.v[i].y;
r.o[i].z = r.v[i].z;
r.o[i].w = r.v[i].w;
break;
case Shader::USAGE_POSITION:
r.o[i].x = r.v[i].x;
r.o[i].y = r.v[i].y;
r.o[i].z = r.v[i].z;
r.o[i].w = r.v[i].w;
break;
case Shader::USAGE_COLOR:
r.o[i].x = r.v[i].x;
r.o[i].y = r.v[i].y;
r.o[i].z = r.v[i].z;
r.o[i].w = r.v[i].w;
break;
case Shader::USAGE_FOG:
r.o[i].x = r.v[i].x;
break;
default:
ASSERT(false);
}
}
}
else
{
r.o[Pos].x = r.v[PositionT].x;
r.o[Pos].y = r.v[PositionT].y;
r.o[Pos].z = r.v[PositionT].z;
r.o[Pos].w = r.v[PositionT].w;
for(int i = 0; i < 2; i++)
{
r.o[D0 + i].x = r.v[Color0 + i].x;
r.o[D0 + i].y = r.v[Color0 + i].y;
r.o[D0 + i].z = r.v[Color0 + i].z;
r.o[D0 + i].w = r.v[Color0 + i].w;
}
for(int i = 0; i < 8; i++)
{
r.o[T0 + i].x = r.v[TexCoord0 + i].x;
r.o[T0 + i].y = r.v[TexCoord0 + i].y;
r.o[T0 + i].z = r.v[TexCoord0 + i].z;
r.o[T0 + i].w = r.v[TexCoord0 + i].w;
}
r.o[Pts].y = r.v[PointSize].x;
}
}
Vector4f VertexProgram::fetchRegisterF(Registers &r, const Src &src, int offset)
{
int i = src.index + offset;
Vector4f reg;
switch(src.type)
{
case Shader::PARAMETER_TEMP:
if(src.rel.type == Shader::PARAMETER_VOID)
{
reg = r.r[i];
}
else
{
reg = r.r[i + relativeAddress(r, src)];
}
break;
case Shader::PARAMETER_CONST:
reg = readConstant(r, src, offset);
break;
case Shader::PARAMETER_INPUT:
if(src.rel.type == Shader::PARAMETER_VOID)
{
reg = r.v[i];
}
else
{
reg = r.v[i + relativeAddress(r, src)];
}
break;
case Shader::PARAMETER_VOID: return r.r[0]; // Dummy
case Shader::PARAMETER_FLOAT4LITERAL:
reg.x = Float4(src.value[0]);
reg.y = Float4(src.value[1]);
reg.z = Float4(src.value[2]);
reg.w = Float4(src.value[3]);
break;
case Shader::PARAMETER_ADDR: reg = r.a0; break;
case Shader::PARAMETER_CONSTBOOL: return r.r[0]; // Dummy
case Shader::PARAMETER_CONSTINT: return r.r[0]; // Dummy
case Shader::PARAMETER_LOOP: return r.r[0]; // Dummy
case Shader::PARAMETER_PREDICATE: return r.r[0]; // Dummy
case Shader::PARAMETER_SAMPLER:
if(src.rel.type == Shader::PARAMETER_VOID)
{
reg.x = As<Float4>(Int4(i));
}
else if(src.rel.type == Shader::PARAMETER_TEMP)
{
reg.x = As<Float4>(Int4(i) + RoundInt(r.r[src.rel.index].x));
}
return reg;
case Shader::PARAMETER_OUTPUT:
if(src.rel.type == Shader::PARAMETER_VOID)
{
reg = r.o[i];
}
else
{
reg = r.o[i + relativeAddress(r, src)];
}
break;
default:
ASSERT(false);
}
const Float4 &x = reg[(src.swizzle >> 0) & 0x3];
const Float4 &y = reg[(src.swizzle >> 2) & 0x3];
const Float4 &z = reg[(src.swizzle >> 4) & 0x3];
const Float4 &w = reg[(src.swizzle >> 6) & 0x3];
Vector4f mod;
switch(src.modifier)
{
case Shader::MODIFIER_NONE:
mod.x = x;
mod.y = y;
mod.z = z;
mod.w = w;
break;
case Shader::MODIFIER_NEGATE:
mod.x = -x;
mod.y = -y;
mod.z = -z;
mod.w = -w;
break;
case Shader::MODIFIER_ABS:
mod.x = Abs(x);
mod.y = Abs(y);
mod.z = Abs(z);
mod.w = Abs(w);
break;
case Shader::MODIFIER_ABS_NEGATE:
mod.x = -Abs(x);
mod.y = -Abs(y);
mod.z = -Abs(z);
mod.w = -Abs(w);
break;
case Shader::MODIFIER_NOT:
mod.x = As<Float4>(As<Int4>(x) ^ Int4(0xFFFFFFFF));
mod.y = As<Float4>(As<Int4>(y) ^ Int4(0xFFFFFFFF));
mod.z = As<Float4>(As<Int4>(z) ^ Int4(0xFFFFFFFF));
mod.w = As<Float4>(As<Int4>(w) ^ Int4(0xFFFFFFFF));
break;
default:
ASSERT(false);
}
return mod;
}
Vector4f VertexProgram::readConstant(Registers &r, const Src &src, int offset)
{
Vector4f c;
int i = src.index + offset;
if(src.rel.type == Shader::PARAMETER_VOID) // Not relative
{
c.x = c.y = c.z = c.w = *Pointer<Float4>(r.data + OFFSET(DrawData,vs.c[i]));
c.x = c.x.xxxx;
c.y = c.y.yyyy;
c.z = c.z.zzzz;
c.w = c.w.wwww;
if(shader->containsDefineInstruction()) // Constant may be known at compile time
{
for(size_t j = 0; j < shader->getLength(); j++)
{
const Shader::Instruction &instruction = *shader->getInstruction(j);
if(instruction.opcode == Shader::OPCODE_DEF)
{
if(instruction.dst.index == i)
{
c.x = Float4(instruction.src[0].value[0]);
c.y = Float4(instruction.src[0].value[1]);
c.z = Float4(instruction.src[0].value[2]);
c.w = Float4(instruction.src[0].value[3]);
break;
}
}
}
}
}
else if(src.rel.type == Shader::PARAMETER_LOOP)
{
Int loopCounter = r.aL[r.loopDepth];
c.x = c.y = c.z = c.w = *Pointer<Float4>(r.data + OFFSET(DrawData,vs.c[i]) + loopCounter * 16);
c.x = c.x.xxxx;
c.y = c.y.yyyy;
c.z = c.z.zzzz;
c.w = c.w.wwww;
}
else
{
if(src.rel.deterministic)
{
Int a = relativeAddress(r, src);
c.x = c.y = c.z = c.w = *Pointer<Float4>(r.data + OFFSET(DrawData,vs.c[i]) + a * 16);
c.x = c.x.xxxx;
c.y = c.y.yyyy;
c.z = c.z.zzzz;
c.w = c.w.wwww;
}
else
{
int component = src.rel.swizzle & 0x03;
Float4 a;
switch(src.rel.type)
{
case Shader::PARAMETER_ADDR: a = r.a0[component]; break;
case Shader::PARAMETER_TEMP: a = r.r[src.rel.index][component]; break;
case Shader::PARAMETER_INPUT: a = r.v[src.rel.index][component]; break;
case Shader::PARAMETER_OUTPUT: a = r.o[src.rel.index][component]; break;
case Shader::PARAMETER_CONST: a = *Pointer<Float>(r.data + OFFSET(DrawData,vs.c[src.rel.index][component])); break;
default: ASSERT(false);
}
Int4 index = Int4(i) + RoundInt(a) * Int4(src.rel.scale);
index = Min(As<UInt4>(index), UInt4(256)); // Clamp to constant register range, c[256] = {0, 0, 0, 0}
Int index0 = Extract(index, 0);
Int index1 = Extract(index, 1);
Int index2 = Extract(index, 2);
Int index3 = Extract(index, 3);
c.x = *Pointer<Float4>(r.data + OFFSET(DrawData,vs.c) + index0 * 16, 16);
c.y = *Pointer<Float4>(r.data + OFFSET(DrawData,vs.c) + index1 * 16, 16);
c.z = *Pointer<Float4>(r.data + OFFSET(DrawData,vs.c) + index2 * 16, 16);
c.w = *Pointer<Float4>(r.data + OFFSET(DrawData,vs.c) + index3 * 16, 16);
transpose4x4(c.x, c.y, c.z, c.w);
}
}
return c;
}
Int VertexProgram::relativeAddress(Registers &r, const Shader::Parameter &var)
{
ASSERT(var.rel.deterministic);
if(var.rel.type == Shader::PARAMETER_TEMP)
{
return RoundInt(Extract(r.r[var.rel.index].x, 0)) * var.rel.scale;
}
else if(var.rel.type == Shader::PARAMETER_INPUT)
{
return RoundInt(Extract(r.v[var.rel.index].x, 0)) * var.rel.scale;
}
else if(var.rel.type == Shader::PARAMETER_OUTPUT)
{
return RoundInt(Extract(r.o[var.rel.index].x, 0)) * var.rel.scale;
}
else if(var.rel.type == Shader::PARAMETER_CONST)
{
RValue<Float4> c = *Pointer<Float4>(r.data + OFFSET(DrawData,vs.c[var.rel.index]));
return RoundInt(Extract(c, 0)) * var.rel.scale;
}
else ASSERT(false);
return 0;
}
Int4 VertexProgram::enableMask(Registers &r, const Shader::Instruction *instruction)
{
Int4 enable = instruction->analysisBranch ? Int4(r.enableStack[r.enableIndex]) : Int4(0xFFFFFFFF);
if(!whileTest)
{
if(shader->containsBreakInstruction() && instruction->analysisBreak)
{
enable &= r.enableBreak;
}
if(shader->containsContinueInstruction() && instruction->analysisContinue)
{
enable &= r.enableContinue;
}
if(shader->containsLeaveInstruction() && instruction->analysisLeave)
{
enable &= r.enableLeave;
}
}
return enable;
}
void VertexProgram::M3X2(Registers &r, Vector4f &dst, Vector4f &src0, Src &src1)
{
Vector4f row0 = fetchRegisterF(r, src1, 0);
Vector4f row1 = fetchRegisterF(r, src1, 1);
dst.x = dot3(src0, row0);
dst.y = dot3(src0, row1);
}
void VertexProgram::M3X3(Registers &r, Vector4f &dst, Vector4f &src0, Src &src1)
{
Vector4f row0 = fetchRegisterF(r, src1, 0);
Vector4f row1 = fetchRegisterF(r, src1, 1);
Vector4f row2 = fetchRegisterF(r, src1, 2);
dst.x = dot3(src0, row0);
dst.y = dot3(src0, row1);
dst.z = dot3(src0, row2);
}
void VertexProgram::M3X4(Registers &r, Vector4f &dst, Vector4f &src0, Src &src1)
{
Vector4f row0 = fetchRegisterF(r, src1, 0);
Vector4f row1 = fetchRegisterF(r, src1, 1);
Vector4f row2 = fetchRegisterF(r, src1, 2);
Vector4f row3 = fetchRegisterF(r, src1, 3);
dst.x = dot3(src0, row0);
dst.y = dot3(src0, row1);
dst.z = dot3(src0, row2);
dst.w = dot3(src0, row3);
}
void VertexProgram::M4X3(Registers &r, Vector4f &dst, Vector4f &src0, Src &src1)
{
Vector4f row0 = fetchRegisterF(r, src1, 0);
Vector4f row1 = fetchRegisterF(r, src1, 1);
Vector4f row2 = fetchRegisterF(r, src1, 2);
dst.x = dot4(src0, row0);
dst.y = dot4(src0, row1);
dst.z = dot4(src0, row2);
}
void VertexProgram::M4X4(Registers &r, Vector4f &dst, Vector4f &src0, Src &src1)
{
Vector4f row0 = fetchRegisterF(r, src1, 0);
Vector4f row1 = fetchRegisterF(r, src1, 1);
Vector4f row2 = fetchRegisterF(r, src1, 2);
Vector4f row3 = fetchRegisterF(r, src1, 3);
dst.x = dot4(src0, row0);
dst.y = dot4(src0, row1);
dst.z = dot4(src0, row2);
dst.w = dot4(src0, row3);
}
void VertexProgram::BREAK(Registers &r)
{
llvm::BasicBlock *deadBlock = Nucleus::createBasicBlock();
llvm::BasicBlock *endBlock = loopRepEndBlock[loopRepDepth - 1];
if(breakDepth == 0)
{
r.enableIndex = r.enableIndex - breakDepth;
Nucleus::createBr(endBlock);
}
else
{
r.enableBreak = r.enableBreak & ~r.enableStack[r.enableIndex];
Bool allBreak = SignMask(r.enableBreak) == 0x0;
r.enableIndex = r.enableIndex - breakDepth;
branch(allBreak, endBlock, deadBlock);
}
Nucleus::setInsertBlock(deadBlock);
r.enableIndex = r.enableIndex + breakDepth;
}
void VertexProgram::BREAKC(Registers &r, Vector4f &src0, Vector4f &src1, Control control)
{
Int4 condition;
switch(control)
{
case Shader::CONTROL_GT: condition = CmpNLE(src0.x, src1.x); break;
case Shader::CONTROL_EQ: condition = CmpEQ(src0.x, src1.x); break;
case Shader::CONTROL_GE: condition = CmpNLT(src0.x, src1.x); break;
case Shader::CONTROL_LT: condition = CmpLT(src0.x, src1.x); break;
case Shader::CONTROL_NE: condition = CmpNEQ(src0.x, src1.x); break;
case Shader::CONTROL_LE: condition = CmpLE(src0.x, src1.x); break;
default:
ASSERT(false);
}
BREAK(r, condition);
}
void VertexProgram::BREAKP(Registers &r, const Src &predicateRegister) // FIXME: Factor out parts common with BREAKC
{
Int4 condition = As<Int4>(r.p0[predicateRegister.swizzle & 0x3]);
if(predicateRegister.modifier == Shader::MODIFIER_NOT)
{
condition = ~condition;
}
BREAK(r, condition);
}
void VertexProgram::BREAK(Registers &r, Int4 &condition)
{
condition &= r.enableStack[r.enableIndex];
llvm::BasicBlock *continueBlock = Nucleus::createBasicBlock();
llvm::BasicBlock *endBlock = loopRepEndBlock[loopRepDepth - 1];
r.enableBreak = r.enableBreak & ~condition;
Bool allBreak = SignMask(r.enableBreak) == 0x0;
r.enableIndex = r.enableIndex - breakDepth;
branch(allBreak, endBlock, continueBlock);
Nucleus::setInsertBlock(continueBlock);
r.enableIndex = r.enableIndex + breakDepth;
}
void VertexProgram::CONTINUE(Registers &r)
{
r.enableContinue = r.enableContinue & ~r.enableStack[r.enableIndex];
}
void VertexProgram::TEST()
{
whileTest = true;
}
void VertexProgram::CALL(Registers &r, int labelIndex, int callSiteIndex)
{
if(!labelBlock[labelIndex])
{
labelBlock[labelIndex] = Nucleus::createBasicBlock();
}
if(callRetBlock[labelIndex].size() > 1)
{
r.callStack[r.stackIndex++] = UInt(callSiteIndex);
}
Int4 restoreLeave = r.enableLeave;
Nucleus::createBr(labelBlock[labelIndex]);
Nucleus::setInsertBlock(callRetBlock[labelIndex][callSiteIndex]);
r.enableLeave = restoreLeave;
}
void VertexProgram::CALLNZ(Registers &r, int labelIndex, int callSiteIndex, const Src &src)
{
if(src.type == Shader::PARAMETER_CONSTBOOL)
{
CALLNZb(r, labelIndex, callSiteIndex, src);
}
else if(src.type == Shader::PARAMETER_PREDICATE)
{
CALLNZp(r, labelIndex, callSiteIndex, src);
}
else ASSERT(false);
}
void VertexProgram::CALLNZb(Registers &r, int labelIndex, int callSiteIndex, const Src &boolRegister)
{
Bool condition = (*Pointer<Byte>(r.data + OFFSET(DrawData,vs.b[boolRegister.index])) != Byte(0)); // FIXME
if(boolRegister.modifier == Shader::MODIFIER_NOT)
{
condition = !condition;
}
if(!labelBlock[labelIndex])
{
labelBlock[labelIndex] = Nucleus::createBasicBlock();
}
if(callRetBlock[labelIndex].size() > 1)
{
r.callStack[r.stackIndex++] = UInt(callSiteIndex);
}
Int4 restoreLeave = r.enableLeave;
branch(condition, labelBlock[labelIndex], callRetBlock[labelIndex][callSiteIndex]);
Nucleus::setInsertBlock(callRetBlock[labelIndex][callSiteIndex]);
r.enableLeave = restoreLeave;
}
void VertexProgram::CALLNZp(Registers &r, int labelIndex, int callSiteIndex, const Src &predicateRegister)
{
Int4 condition = As<Int4>(r.p0[predicateRegister.swizzle & 0x3]);
if(predicateRegister.modifier == Shader::MODIFIER_NOT)
{
condition = ~condition;
}
condition &= r.enableStack[r.enableIndex];
if(!labelBlock[labelIndex])
{
labelBlock[labelIndex] = Nucleus::createBasicBlock();
}
if(callRetBlock[labelIndex].size() > 1)
{
r.callStack[r.stackIndex++] = UInt(callSiteIndex);
}
r.enableIndex++;
r.enableStack[r.enableIndex] = condition;
Int4 restoreLeave = r.enableLeave;
Bool notAllFalse = SignMask(condition) != 0;
branch(notAllFalse, labelBlock[labelIndex], callRetBlock[labelIndex][callSiteIndex]);
Nucleus::setInsertBlock(callRetBlock[labelIndex][callSiteIndex]);
r.enableIndex--;
r.enableLeave = restoreLeave;
}
void VertexProgram::ELSE(Registers &r)
{
ifDepth--;
llvm::BasicBlock *falseBlock = ifFalseBlock[ifDepth];
llvm::BasicBlock *endBlock = Nucleus::createBasicBlock();
if(isConditionalIf[ifDepth])
{
Int4 condition = ~r.enableStack[r.enableIndex] & r.enableStack[r.enableIndex - 1];
Bool notAllFalse = SignMask(condition) != 0;
branch(notAllFalse, falseBlock, endBlock);
r.enableStack[r.enableIndex] = ~r.enableStack[r.enableIndex] & r.enableStack[r.enableIndex - 1];
}
else
{
Nucleus::createBr(endBlock);
Nucleus::setInsertBlock(falseBlock);
}
ifFalseBlock[ifDepth] = endBlock;
ifDepth++;
}
void VertexProgram::ENDIF(Registers &r)
{
ifDepth--;
llvm::BasicBlock *endBlock = ifFalseBlock[ifDepth];
Nucleus::createBr(endBlock);
Nucleus::setInsertBlock(endBlock);
if(isConditionalIf[ifDepth])
{
breakDepth--;
r.enableIndex--;
}
}
void VertexProgram::ENDLOOP(Registers &r)
{
loopRepDepth--;
r.aL[r.loopDepth] = r.aL[r.loopDepth] + r.increment[r.loopDepth]; // FIXME: +=
llvm::BasicBlock *testBlock = loopRepTestBlock[loopRepDepth];
llvm::BasicBlock *endBlock = loopRepEndBlock[loopRepDepth];
Nucleus::createBr(testBlock);
Nucleus::setInsertBlock(endBlock);
r.loopDepth--;
r.enableBreak = Int4(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF);
}
void VertexProgram::ENDREP(Registers &r)
{
loopRepDepth--;
llvm::BasicBlock *testBlock = loopRepTestBlock[loopRepDepth];
llvm::BasicBlock *endBlock = loopRepEndBlock[loopRepDepth];
Nucleus::createBr(testBlock);
Nucleus::setInsertBlock(endBlock);
r.loopDepth--;
r.enableBreak = Int4(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF);
}
void VertexProgram::ENDWHILE(Registers &r)
{
loopRepDepth--;
llvm::BasicBlock *testBlock = loopRepTestBlock[loopRepDepth];
llvm::BasicBlock *endBlock = loopRepEndBlock[loopRepDepth];
Nucleus::createBr(testBlock);
Nucleus::setInsertBlock(endBlock);
r.enableIndex--;
r.enableBreak = Int4(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF);
whileTest = false;
}
void VertexProgram::IF(Registers &r, const Src &src)
{
if(src.type == Shader::PARAMETER_CONSTBOOL)
{
IFb(r, src);
}
else if(src.type == Shader::PARAMETER_PREDICATE)
{
IFp(r, src);
}
else
{
Int4 condition = As<Int4>(fetchRegisterF(r, src).x);
IF(r, condition);
}
}
void VertexProgram::IFb(Registers &r, const Src &boolRegister)
{
ASSERT(ifDepth < 24 + 4);
Bool condition = (*Pointer<Byte>(r.data + OFFSET(DrawData,vs.b[boolRegister.index])) != Byte(0)); // FIXME
if(boolRegister.modifier == Shader::MODIFIER_NOT)
{
condition = !condition;
}
llvm::BasicBlock *trueBlock = Nucleus::createBasicBlock();
llvm::BasicBlock *falseBlock = Nucleus::createBasicBlock();
branch(condition, trueBlock, falseBlock);
isConditionalIf[ifDepth] = false;
ifFalseBlock[ifDepth] = falseBlock;
ifDepth++;
}
void VertexProgram::IFp(Registers &r, const Src &predicateRegister)
{
Int4 condition = As<Int4>(r.p0[predicateRegister.swizzle & 0x3]);
if(predicateRegister.modifier == Shader::MODIFIER_NOT)
{
condition = ~condition;
}
IF(r, condition);
}
void VertexProgram::IFC(Registers &r, Vector4f &src0, Vector4f &src1, Control control)
{
Int4 condition;
switch(control)
{
case Shader::CONTROL_GT: condition = CmpNLE(src0.x, src1.x); break;
case Shader::CONTROL_EQ: condition = CmpEQ(src0.x, src1.x); break;
case Shader::CONTROL_GE: condition = CmpNLT(src0.x, src1.x); break;
case Shader::CONTROL_LT: condition = CmpLT(src0.x, src1.x); break;
case Shader::CONTROL_NE: condition = CmpNEQ(src0.x, src1.x); break;
case Shader::CONTROL_LE: condition = CmpLE(src0.x, src1.x); break;
default:
ASSERT(false);
}
IF(r, condition);
}
void VertexProgram::IF(Registers &r, Int4 &condition)
{
condition &= r.enableStack[r.enableIndex];
r.enableIndex++;
r.enableStack[r.enableIndex] = condition;
llvm::BasicBlock *trueBlock = Nucleus::createBasicBlock();
llvm::BasicBlock *falseBlock = Nucleus::createBasicBlock();
Bool notAllFalse = SignMask(condition) != 0;
branch(notAllFalse, trueBlock, falseBlock);
isConditionalIf[ifDepth] = true;
ifFalseBlock[ifDepth] = falseBlock;
ifDepth++;
breakDepth++;
}
void VertexProgram::LABEL(int labelIndex)
{
if(!labelBlock[labelIndex])
{
labelBlock[labelIndex] = Nucleus::createBasicBlock();
}
Nucleus::setInsertBlock(labelBlock[labelIndex]);
currentLabel = labelIndex;
}
void VertexProgram::LOOP(Registers &r, const Src &integerRegister)
{
r.loopDepth++;
r.iteration[r.loopDepth] = *Pointer<Int>(r.data + OFFSET(DrawData,vs.i[integerRegister.index][0]));
r.aL[r.loopDepth] = *Pointer<Int>(r.data + OFFSET(DrawData,vs.i[integerRegister.index][1]));
r.increment[r.loopDepth] = *Pointer<Int>(r.data + OFFSET(DrawData,vs.i[integerRegister.index][2]));
// FIXME: Compiles to two instructions?
If(r.increment[r.loopDepth] == 0)
{
r.increment[r.loopDepth] = 1;
}
llvm::BasicBlock *loopBlock = Nucleus::createBasicBlock();
llvm::BasicBlock *testBlock = Nucleus::createBasicBlock();
llvm::BasicBlock *endBlock = Nucleus::createBasicBlock();
loopRepTestBlock[loopRepDepth] = testBlock;
loopRepEndBlock[loopRepDepth] = endBlock;
// FIXME: jump(testBlock)
Nucleus::createBr(testBlock);
Nucleus::setInsertBlock(testBlock);
branch(r.iteration[r.loopDepth] > 0, loopBlock, endBlock);
Nucleus::setInsertBlock(loopBlock);
r.iteration[r.loopDepth] = r.iteration[r.loopDepth] - 1; // FIXME: --
loopRepDepth++;
breakDepth = 0;
}
void VertexProgram::REP(Registers &r, const Src &integerRegister)
{
r.loopDepth++;
r.iteration[r.loopDepth] = *Pointer<Int>(r.data + OFFSET(DrawData,vs.i[integerRegister.index][0]));
r.aL[r.loopDepth] = r.aL[r.loopDepth - 1];
llvm::BasicBlock *loopBlock = Nucleus::createBasicBlock();
llvm::BasicBlock *testBlock = Nucleus::createBasicBlock();
llvm::BasicBlock *endBlock = Nucleus::createBasicBlock();
loopRepTestBlock[loopRepDepth] = testBlock;
loopRepEndBlock[loopRepDepth] = endBlock;
// FIXME: jump(testBlock)
Nucleus::createBr(testBlock);
Nucleus::setInsertBlock(testBlock);
branch(r.iteration[r.loopDepth] > 0, loopBlock, endBlock);
Nucleus::setInsertBlock(loopBlock);
r.iteration[r.loopDepth] = r.iteration[r.loopDepth] - 1; // FIXME: --
loopRepDepth++;
breakDepth = 0;
}
void VertexProgram::WHILE(Registers &r, const Src &temporaryRegister)
{
r.enableIndex++;
llvm::BasicBlock *loopBlock = Nucleus::createBasicBlock();
llvm::BasicBlock *testBlock = Nucleus::createBasicBlock();
llvm::BasicBlock *endBlock = Nucleus::createBasicBlock();
loopRepTestBlock[loopRepDepth] = testBlock;
loopRepEndBlock[loopRepDepth] = endBlock;
Int4 restoreBreak = r.enableBreak;
Int4 restoreContinue = r.enableContinue;
// FIXME: jump(testBlock)
Nucleus::createBr(testBlock);
Nucleus::setInsertBlock(testBlock);
r.enableContinue = restoreContinue;
const Vector4f &src = fetchRegisterF(r, temporaryRegister);
Int4 condition = As<Int4>(src.x);
condition &= r.enableStack[r.enableIndex - 1];
r.enableStack[r.enableIndex] = condition;
Bool notAllFalse = SignMask(condition) != 0;
branch(notAllFalse, loopBlock, endBlock);
Nucleus::setInsertBlock(endBlock);
r.enableBreak = restoreBreak;
Nucleus::setInsertBlock(loopBlock);
loopRepDepth++;
breakDepth = 0;
}
void VertexProgram::RET(Registers &r)
{
if(currentLabel == -1)
{
returnBlock = Nucleus::createBasicBlock();
Nucleus::createBr(returnBlock);
}
else
{
llvm::BasicBlock *unreachableBlock = Nucleus::createBasicBlock();
if(callRetBlock[currentLabel].size() > 1) // Pop the return destination from the call stack
{
// FIXME: Encapsulate
UInt index = r.callStack[--r.stackIndex];
llvm::Value *value = index.loadValue();
llvm::Value *switchInst = Nucleus::createSwitch(value, unreachableBlock, (int)callRetBlock[currentLabel].size());
for(unsigned int i = 0; i < callRetBlock[currentLabel].size(); i++)
{
Nucleus::addSwitchCase(switchInst, i, callRetBlock[currentLabel][i]);
}
}
else if(callRetBlock[currentLabel].size() == 1) // Jump directly to the unique return destination
{
Nucleus::createBr(callRetBlock[currentLabel][0]);
}
else // Function isn't called
{
Nucleus::createBr(unreachableBlock);
}
Nucleus::setInsertBlock(unreachableBlock);
Nucleus::createUnreachable();
}
}
void VertexProgram::LEAVE(Registers &r)
{
r.enableLeave = r.enableLeave & ~r.enableStack[r.enableIndex];
// FIXME: Return from function if all instances left
// FIXME: Use enableLeave in other control-flow constructs
}
void VertexProgram::TEXLDL(Registers &r, Vector4f &dst, Vector4f &src0, const Src &src1)
{
Vector4f tmp;
sampleTexture(r, tmp, src1, src0.x, src0.y, src0.z, src0.w);
dst.x = tmp[(src1.swizzle >> 0) & 0x3];
dst.y = tmp[(src1.swizzle >> 2) & 0x3];
dst.z = tmp[(src1.swizzle >> 4) & 0x3];
dst.w = tmp[(src1.swizzle >> 6) & 0x3];
}
void VertexProgram::TEX(Registers &r, Vector4f &dst, Vector4f &src0, const Src &src1)
{
Float4 lod = Float4(0.0f);
Vector4f tmp;
sampleTexture(r, tmp, src1, src0.x, src0.y, src0.z, lod);
dst.x = tmp[(src1.swizzle >> 0) & 0x3];
dst.y = tmp[(src1.swizzle >> 2) & 0x3];
dst.z = tmp[(src1.swizzle >> 4) & 0x3];
dst.w = tmp[(src1.swizzle >> 6) & 0x3];
}
void VertexProgram::sampleTexture(Registers &r, Vector4f &c, const Src &s, Float4 &u, Float4 &v, Float4 &w, Float4 &q)
{
if(s.type == Shader::PARAMETER_SAMPLER && s.rel.type == Shader::PARAMETER_VOID)
{
Pointer<Byte> texture = r.data + OFFSET(DrawData,mipmap[16]) + s.index * sizeof(Texture);
sampler[s.index]->sampleTexture(texture, c, u, v, w, q, r.a0, r.a0, false, false, true);
}
else
{
Int index = As<Int>(Float(fetchRegisterF(r, s).x.x));
for(int i = 0; i < 16; i++)
{
if(shader->usesSampler(i))
{
If(index == i)
{
Pointer<Byte> texture = r.data + OFFSET(DrawData,mipmap[16]) + i * sizeof(Texture);
sampler[i]->sampleTexture(texture, c, u, v, w, q, r.a0, r.a0, false, false, true);
// FIXME: When the sampler states are the same, we could use one sampler and just index the texture
}
}
}
}
}
}