blob: cee93c14e51dcad40668c9ed188b61a480293d78 [file] [log] [blame]
// SwiftShader Software Renderer
//
// Copyright(c) 2005-2013 TransGaming Inc.
//
// All rights reserved. No part of this software may be copied, distributed, transmitted,
// transcribed, stored in a retrieval system, translated into any human or computer
// language by any means, or disclosed to third parties without the explicit written
// agreement of TransGaming Inc. Without such an agreement, no rights or licenses, express
// or implied, including but not limited to any patent rights, are granted to you.
//
#include "SamplerCore.hpp"
#include "Constants.hpp"
#include "Debug.hpp"
namespace sw
{
SamplerCore::SamplerCore(Pointer<Byte> &constants, const Sampler::State &state) : constants(constants), state(state)
{
}
void SamplerCore::sampleTexture(Pointer<Byte> &texture, Vector4s &c, Float4 &u, Float4 &v, Float4 &w, Float4 &q, Vector4f &dsx, Vector4f &dsy, bool bias, bool gradients, bool lodProvided, bool fixed12)
{
#if PERF_PROFILE
AddAtomic(Pointer<Long>(&profiler.texOperations), 4);
if(state.compressedFormat)
{
AddAtomic(Pointer<Long>(&profiler.compressedTex), 4);
}
#endif
bool cubeTexture = state.textureType == TEXTURE_CUBE;
bool volumeTexture = state.textureType == TEXTURE_3D;
Float4 uuuu = u;
Float4 vvvv = v;
Float4 wwww = w;
if(state.textureType == TEXTURE_NULL)
{
c.x = Short4(0x0000, 0x0000, 0x0000, 0x0000);
c.y = Short4(0x0000, 0x0000, 0x0000, 0x0000);
c.z = Short4(0x0000, 0x0000, 0x0000, 0x0000);
if(fixed12) // FIXME: Convert to fixed12 at higher level, when required
{
c.w = Short4(0x1000, 0x1000, 0x1000, 0x1000);
}
else
{
c.w = Short4((short)0xFFFF, (short)0xFFFF, (short)0xFFFF, (short)0xFFFF); // FIXME
}
}
else
{
Int face[4];
Float4 lodU;
Float4 lodV;
if(cubeTexture)
{
cubeFace(face, uuuu, vvvv, lodU, lodV, u, v, w);
}
Float lod;
Float anisotropy;
Float4 uDelta;
Float4 vDelta;
if(!volumeTexture)
{
if(!cubeTexture)
{
computeLod(texture, lod, anisotropy, uDelta, vDelta, uuuu, vvvv, q.x, dsx, dsy, bias, gradients, lodProvided);
}
else
{
computeLod(texture, lod, anisotropy, uDelta, vDelta, lodU, lodV, q.x, dsx, dsy, bias, gradients, lodProvided);
}
}
else
{
computeLod3D(texture, lod, uuuu, vvvv, wwww, q.x, dsx, dsy, bias, gradients, lodProvided);
}
if(cubeTexture)
{
uuuu += Float4(0.5f);
vvvv += Float4(0.5f);
}
if(!hasFloatTexture())
{
sampleFilter(texture, c, uuuu, vvvv, wwww, lod, anisotropy, uDelta, vDelta, face, lodProvided);
}
else
{
Vector4f cf;
sampleFloatFilter(texture, cf, uuuu, vvvv, wwww, lod, anisotropy, uDelta, vDelta, face, lodProvided);
convertFixed12(c, cf);
}
if(fixed12 && !hasFloatTexture())
{
if(has16bitTextureFormat())
{
switch(state.textureFormat)
{
case FORMAT_R5G6B5:
if(state.sRGB)
{
sRGBtoLinear16_5_12(c.x);
sRGBtoLinear16_6_12(c.y);
sRGBtoLinear16_5_12(c.z);
}
else
{
c.x = MulHigh(As<UShort4>(c.x), UShort4(0x10000000 / 0xF800));
c.y = MulHigh(As<UShort4>(c.y), UShort4(0x10000000 / 0xFC00));
c.z = MulHigh(As<UShort4>(c.z), UShort4(0x10000000 / 0xF800));
}
break;
default:
ASSERT(false);
}
}
else
{
for(int component = 0; component < textureComponentCount(); component++)
{
if(state.sRGB && isRGBComponent(component))
{
sRGBtoLinear16_8_12(c[component]); // FIXME: Perform linearization at surface level for read-only textures
}
else
{
if(hasUnsignedTextureComponent(component))
{
c[component] = As<UShort4>(c[component]) >> 4;
}
else
{
c[component] = c[component] >> 3;
}
}
}
}
}
if(fixed12 && state.textureFilter != FILTER_GATHER)
{
int componentCount = textureComponentCount();
switch(state.textureFormat)
{
case FORMAT_R8:
case FORMAT_R5G6B5:
case FORMAT_X8R8G8B8:
case FORMAT_X8B8G8R8:
case FORMAT_A8R8G8B8:
case FORMAT_A8B8G8R8:
case FORMAT_V8U8:
case FORMAT_Q8W8V8U8:
case FORMAT_X8L8V8U8:
case FORMAT_V16U16:
case FORMAT_A16W16V16U16:
case FORMAT_Q16W16V16U16:
case FORMAT_G8R8:
case FORMAT_G16R16:
case FORMAT_A16B16G16R16:
if(componentCount < 2) c.y = Short4(0x1000, 0x1000, 0x1000, 0x1000);
if(componentCount < 3) c.z = Short4(0x1000, 0x1000, 0x1000, 0x1000);
if(componentCount < 4) c.w = Short4(0x1000, 0x1000, 0x1000, 0x1000);
break;
case FORMAT_A8:
c.w = c.x;
c.x = Short4(0x0000, 0x0000, 0x0000, 0x0000);
c.y = Short4(0x0000, 0x0000, 0x0000, 0x0000);
c.z = Short4(0x0000, 0x0000, 0x0000, 0x0000);
break;
case FORMAT_L8:
case FORMAT_L16:
c.y = c.x;
c.z = c.x;
c.w = Short4(0x1000, 0x1000, 0x1000, 0x1000);
break;
case FORMAT_A8L8:
c.w = c.y;
c.y = c.x;
c.z = c.x;
break;
case FORMAT_R32F:
c.y = Short4(0x1000, 0x1000, 0x1000, 0x1000);
case FORMAT_G32R32F:
c.z = Short4(0x1000, 0x1000, 0x1000, 0x1000);
c.w = Short4(0x1000, 0x1000, 0x1000, 0x1000);
case FORMAT_A32B32G32R32F:
break;
case FORMAT_D32F_LOCKABLE:
case FORMAT_D32FS8_TEXTURE:
case FORMAT_D32FS8_SHADOW:
c.y = c.x;
c.z = c.x;
c.w = c.x;
break;
default:
ASSERT(false);
}
}
}
}
void SamplerCore::sampleTexture(Pointer<Byte> &texture, Vector4f &c, Float4 &u, Float4 &v, Float4 &w, Float4 &q, Vector4f &dsx, Vector4f &dsy, bool bias, bool gradients, bool lodProvided)
{
#if PERF_PROFILE
AddAtomic(Pointer<Long>(&profiler.texOperations), 4);
if(state.compressedFormat)
{
AddAtomic(Pointer<Long>(&profiler.compressedTex), 4);
}
#endif
bool cubeTexture = state.textureType == TEXTURE_CUBE;
bool volumeTexture = state.textureType == TEXTURE_3D;
if(state.textureType == TEXTURE_NULL)
{
c.x = Float4(0.0f);
c.y = Float4(0.0f);
c.z = Float4(0.0f);
c.w = Float4(1.0f);
}
else
{
if(hasFloatTexture()) // FIXME: Mostly identical to integer sampling
{
Float4 uuuu = u;
Float4 vvvv = v;
Float4 wwww = w;
Int face[4];
Float4 lodU;
Float4 lodV;
if(cubeTexture)
{
cubeFace(face, uuuu, vvvv, lodU, lodV, u, v, w);
}
Float lod;
Float anisotropy;
Float4 uDelta;
Float4 vDelta;
if(!volumeTexture)
{
if(!cubeTexture)
{
computeLod(texture, lod, anisotropy, uDelta, vDelta, uuuu, vvvv, q.x, dsx, dsy, bias, gradients, lodProvided);
}
else
{
computeLod(texture, lod, anisotropy, uDelta, vDelta, lodU, lodV, q.x, dsx, dsy, bias, gradients, lodProvided);
}
}
else
{
computeLod3D(texture, lod, uuuu, vvvv, wwww, q.x, dsx, dsy, bias, gradients, lodProvided);
}
if(cubeTexture)
{
uuuu += Float4(0.5f);
vvvv += Float4(0.5f);
}
sampleFloatFilter(texture, c, uuuu, vvvv, wwww, lod, anisotropy, uDelta, vDelta, face, lodProvided);
}
else
{
Vector4s cs;
sampleTexture(texture, cs, u, v, w, q, dsx, dsy, bias, gradients, lodProvided, false);
for(int component = 0; component < textureComponentCount(); component++)
{
if(has16bitTextureFormat())
{
switch(state.textureFormat)
{
case FORMAT_R5G6B5:
if(state.sRGB)
{
sRGBtoLinear16_5_12(cs.x);
sRGBtoLinear16_6_12(cs.y);
sRGBtoLinear16_5_12(cs.z);
convertSigned12(c.x, cs.x);
convertSigned12(c.y, cs.y);
convertSigned12(c.z, cs.z);
}
else
{
c.x = Float4(As<UShort4>(cs.x)) * Float4(1.0f / 0xF800);
c.y = Float4(As<UShort4>(cs.y)) * Float4(1.0f / 0xFC00);
c.z = Float4(As<UShort4>(cs.z)) * Float4(1.0f / 0xF800);
}
break;
default:
ASSERT(false);
}
}
else
{
if(state.sRGB && isRGBComponent(component))
{
sRGBtoLinear16_8_12(cs[component]); // FIXME: Perform linearization at surface level for read-only textures
convertSigned12(c[component], cs[component]);
}
else
{
if(hasUnsignedTextureComponent(component))
{
convertUnsigned16(c[component], cs[component]);
}
else
{
convertSigned15(c[component], cs[component]);
}
}
}
}
}
int componentCount = textureComponentCount();
if(state.textureFilter != FILTER_GATHER)
{
switch(state.textureFormat)
{
case FORMAT_R8:
case FORMAT_R5G6B5:
case FORMAT_X8R8G8B8:
case FORMAT_X8B8G8R8:
case FORMAT_A8R8G8B8:
case FORMAT_A8B8G8R8:
case FORMAT_V8U8:
case FORMAT_Q8W8V8U8:
case FORMAT_X8L8V8U8:
case FORMAT_V16U16:
case FORMAT_A16W16V16U16:
case FORMAT_Q16W16V16U16:
case FORMAT_G8R8:
case FORMAT_G16R16:
case FORMAT_A16B16G16R16:
if(componentCount < 2) c.y = Float4(1.0f);
if(componentCount < 3) c.z = Float4(1.0f);
if(componentCount < 4) c.w = Float4(1.0f);
break;
case FORMAT_A8:
c.w = c.x;
c.x = Float4(0.0f);
c.y = Float4(0.0f);
c.z = Float4(0.0f);
break;
case FORMAT_L8:
case FORMAT_L16:
c.y = c.x;
c.z = c.x;
c.w = Float4(1.0f);
break;
case FORMAT_A8L8:
c.w = c.y;
c.y = c.x;
c.z = c.x;
break;
case FORMAT_R32F:
c.y = Float4(1.0f);
case FORMAT_G32R32F:
c.z = Float4(1.0f);
c.w = Float4(1.0f);
case FORMAT_A32B32G32R32F:
break;
case FORMAT_D32F_LOCKABLE:
case FORMAT_D32FS8_TEXTURE:
case FORMAT_D32FS8_SHADOW:
c.y = c.x;
c.z = c.x;
c.w = c.x;
break;
default:
ASSERT(false);
}
}
}
}
void SamplerCore::border(Short4 &mask, Float4 &coordinates)
{
Int4 border = As<Int4>(CmpLT(Abs(coordinates - Float4(0.5f)), Float4(0.5f)));
mask = As<Short4>(Int2(As<Int4>(Pack(border, border))));
}
void SamplerCore::border(Int4 &mask, Float4 &coordinates)
{
mask = As<Int4>(CmpLT(Abs(coordinates - Float4(0.5f)), Float4(0.5f)));
}
Short4 SamplerCore::offsetSample(Short4 &uvw, Pointer<Byte> &mipmap, int halfOffset, bool wrap, int count)
{
if(wrap)
{
switch(count)
{
case -1: return uvw - *Pointer<Short4>(mipmap + halfOffset);
case 0: return uvw;
case +1: return uvw + *Pointer<Short4>(mipmap + halfOffset);
case 2: return uvw + *Pointer<Short4>(mipmap + halfOffset) + *Pointer<Short4>(mipmap + halfOffset);
}
}
else // Clamp or mirror
{
switch(count)
{
case -1: return SubSat(As<UShort4>(uvw), *Pointer<UShort4>(mipmap + halfOffset));
case 0: return uvw;
case +1: return AddSat(As<UShort4>(uvw), *Pointer<UShort4>(mipmap + halfOffset));
case 2: return AddSat(AddSat(As<UShort4>(uvw), *Pointer<UShort4>(mipmap + halfOffset)), *Pointer<UShort4>(mipmap + halfOffset));
}
}
return uvw;
}
void SamplerCore::sampleFilter(Pointer<Byte> &texture, Vector4s &c, Float4 &u, Float4 &v, Float4 &w, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, Int face[4], bool lodProvided)
{
bool volumeTexture = state.textureType == TEXTURE_3D;
sampleAniso(texture, c, u, v, w, lod, anisotropy, uDelta, vDelta, face, false, lodProvided);
if(state.mipmapFilter > MIPMAP_POINT)
{
Vector4s cc;
sampleAniso(texture, cc, u, v, w, lod, anisotropy, uDelta, vDelta, face, true, lodProvided);
lod *= Float(1 << 16);
UShort4 utri = UShort4(Float4(lod)); // FIXME: Optimize
Short4 stri = utri >> 1; // FIXME: Optimize
if(hasUnsignedTextureComponent(0)) cc.x = MulHigh(As<UShort4>(cc.x), utri); else cc.x = MulHigh(cc.x, stri);
if(hasUnsignedTextureComponent(1)) cc.y = MulHigh(As<UShort4>(cc.y), utri); else cc.y = MulHigh(cc.y, stri);
if(hasUnsignedTextureComponent(2)) cc.z = MulHigh(As<UShort4>(cc.z), utri); else cc.z = MulHigh(cc.z, stri);
if(hasUnsignedTextureComponent(3)) cc.w = MulHigh(As<UShort4>(cc.w), utri); else cc.w = MulHigh(cc.w, stri);
utri = ~utri;
stri = Short4(0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF) - stri;
if(hasUnsignedTextureComponent(0)) c.x = MulHigh(As<UShort4>(c.x), utri); else c.x = MulHigh(c.x, stri);
if(hasUnsignedTextureComponent(1)) c.y = MulHigh(As<UShort4>(c.y), utri); else c.y = MulHigh(c.y, stri);
if(hasUnsignedTextureComponent(2)) c.z = MulHigh(As<UShort4>(c.z), utri); else c.z = MulHigh(c.z, stri);
if(hasUnsignedTextureComponent(3)) c.w = MulHigh(As<UShort4>(c.w), utri); else c.w = MulHigh(c.w, stri);
c.x += cc.x;
c.y += cc.y;
c.z += cc.z;
c.w += cc.w;
if(!hasUnsignedTextureComponent(0)) c.x += c.x;
if(!hasUnsignedTextureComponent(1)) c.y += c.y;
if(!hasUnsignedTextureComponent(2)) c.z += c.z;
if(!hasUnsignedTextureComponent(3)) c.w += c.w;
}
Short4 borderMask;
if(state.addressingModeU == ADDRESSING_BORDER)
{
Short4 u0;
border(u0, u);
borderMask = u0;
}
if(state.addressingModeV == ADDRESSING_BORDER)
{
Short4 v0;
border(v0, v);
if(state.addressingModeU == ADDRESSING_BORDER)
{
borderMask &= v0;
}
else
{
borderMask = v0;
}
}
if(state.addressingModeW == ADDRESSING_BORDER && volumeTexture)
{
Short4 s0;
border(s0, w);
if(state.addressingModeU == ADDRESSING_BORDER ||
state.addressingModeV == ADDRESSING_BORDER)
{
borderMask &= s0;
}
else
{
borderMask = s0;
}
}
if(state.addressingModeU == ADDRESSING_BORDER ||
state.addressingModeV == ADDRESSING_BORDER ||
(state.addressingModeW == ADDRESSING_BORDER && volumeTexture))
{
Short4 b;
c.x = borderMask & c.x | ~borderMask & (*Pointer<Short4>(texture + OFFSET(Texture,borderColor4[0])) >> (hasUnsignedTextureComponent(0) ? 0 : 1));
c.y = borderMask & c.y | ~borderMask & (*Pointer<Short4>(texture + OFFSET(Texture,borderColor4[1])) >> (hasUnsignedTextureComponent(1) ? 0 : 1));
c.z = borderMask & c.z | ~borderMask & (*Pointer<Short4>(texture + OFFSET(Texture,borderColor4[2])) >> (hasUnsignedTextureComponent(2) ? 0 : 1));
c.w = borderMask & c.w | ~borderMask & (*Pointer<Short4>(texture + OFFSET(Texture,borderColor4[3])) >> (hasUnsignedTextureComponent(3) ? 0 : 1));
}
}
void SamplerCore::sampleAniso(Pointer<Byte> &texture, Vector4s &c, Float4 &u, Float4 &v, Float4 &w, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, Int face[4], bool secondLOD, bool lodProvided)
{
if(state.textureFilter != FILTER_ANISOTROPIC || lodProvided)
{
sampleQuad(texture, c, u, v, w, lod, face, secondLOD);
}
else
{
Int a = RoundInt(anisotropy);
Vector4s cSum;
cSum.x = Short4(0, 0, 0, 0);
cSum.y = Short4(0, 0, 0, 0);
cSum.z = Short4(0, 0, 0, 0);
cSum.w = Short4(0, 0, 0, 0);
Float4 A = *Pointer<Float4>(constants + OFFSET(Constants,uvWeight) + 16 * a);
Float4 B = *Pointer<Float4>(constants + OFFSET(Constants,uvStart) + 16 * a);
UShort4 cw = *Pointer<UShort4>(constants + OFFSET(Constants,cWeight) + 8 * a);
Short4 sw = Short4(cw >> 1);
Float4 du = uDelta;
Float4 dv = vDelta;
Float4 u0 = u + B * du;
Float4 v0 = v + B * dv;
du *= A;
dv *= A;
Int i = 0;
Do
{
sampleQuad(texture, c, u0, v0, w, lod, face, secondLOD);
u0 += du;
v0 += dv;
if(hasUnsignedTextureComponent(0)) cSum.x += As<Short4>(MulHigh(As<UShort4>(c.x), cw)); else cSum.x += MulHigh(c.x, sw);
if(hasUnsignedTextureComponent(1)) cSum.y += As<Short4>(MulHigh(As<UShort4>(c.y), cw)); else cSum.y += MulHigh(c.y, sw);
if(hasUnsignedTextureComponent(2)) cSum.z += As<Short4>(MulHigh(As<UShort4>(c.z), cw)); else cSum.z += MulHigh(c.z, sw);
if(hasUnsignedTextureComponent(3)) cSum.w += As<Short4>(MulHigh(As<UShort4>(c.w), cw)); else cSum.w += MulHigh(c.w, sw);
i++;
}
Until(i >= a)
if(hasUnsignedTextureComponent(0)) c.x = cSum.x; else c.x = AddSat(cSum.x, cSum.x);
if(hasUnsignedTextureComponent(1)) c.y = cSum.y; else c.y = AddSat(cSum.y, cSum.y);
if(hasUnsignedTextureComponent(2)) c.z = cSum.z; else c.z = AddSat(cSum.z, cSum.z);
if(hasUnsignedTextureComponent(3)) c.w = cSum.w; else c.w = AddSat(cSum.w, cSum.w);
}
}
void SamplerCore::sampleQuad(Pointer<Byte> &texture, Vector4s &c, Float4 &u, Float4 &v, Float4 &w, Float &lod, Int face[4], bool secondLOD)
{
if(state.textureType != TEXTURE_3D)
{
sampleQuad2D(texture, c, u, v, lod, face, secondLOD);
}
else
{
sample3D(texture, c, u, v, w, lod, secondLOD);
}
}
void SamplerCore::sampleQuad2D(Pointer<Byte> &texture, Vector4s &c, Float4 &u, Float4 &v, Float &lod, Int face[4], bool secondLOD)
{
int componentCount = textureComponentCount();
bool gather = state.textureFilter == FILTER_GATHER;
Pointer<Byte> mipmap;
Pointer<Byte> buffer[4];
selectMipmap(texture, buffer, mipmap, lod, face, secondLOD);
Short4 uuuu;
Short4 vvvv;
address(uuuu, u, state.addressingModeU);
address(vvvv, v, state.addressingModeV);
if(state.textureFilter == FILTER_POINT)
{
sampleTexel(c, uuuu, vvvv, vvvv, mipmap, buffer);
}
else
{
Vector4s c0;
Vector4s c1;
Vector4s c2;
Vector4s c3;
Short4 uuuu0 = offsetSample(uuuu, mipmap, OFFSET(Mipmap,uHalf), state.addressingModeU == ADDRESSING_WRAP, gather ? 0 : -1);
Short4 vvvv0 = offsetSample(vvvv, mipmap, OFFSET(Mipmap,vHalf), state.addressingModeV == ADDRESSING_WRAP, gather ? 0 : -1);
Short4 uuuu1 = offsetSample(uuuu, mipmap, OFFSET(Mipmap,uHalf), state.addressingModeU == ADDRESSING_WRAP, gather ? 2 : +1);
Short4 vvvv1 = offsetSample(vvvv, mipmap, OFFSET(Mipmap,vHalf), state.addressingModeV == ADDRESSING_WRAP, gather ? 2 : +1);
sampleTexel(c0, uuuu0, vvvv0, vvvv0, mipmap, buffer);
sampleTexel(c1, uuuu1, vvvv0, vvvv0, mipmap, buffer);
sampleTexel(c2, uuuu0, vvvv1, vvvv1, mipmap, buffer);
sampleTexel(c3, uuuu1, vvvv1, vvvv1, mipmap, buffer);
if(!gather) // Blend
{
// Fractions
UShort4 f0u = uuuu0;
UShort4 f0v = vvvv0;
if(!state.hasNPOTTexture)
{
f0u = f0u << *Pointer<Long1>(mipmap + OFFSET(Mipmap,uInt)); // .u
f0v = f0v << *Pointer<Long1>(mipmap + OFFSET(Mipmap,vInt)); // .v
}
else
{
f0u = f0u * *Pointer<UShort4>(mipmap + OFFSET(Mipmap,width));
f0v = f0v * *Pointer<UShort4>(mipmap + OFFSET(Mipmap,height));
}
UShort4 f1u = ~f0u;
UShort4 f1v = ~f0v;
UShort4 f0u0v = MulHigh(f0u, f0v);
UShort4 f1u0v = MulHigh(f1u, f0v);
UShort4 f0u1v = MulHigh(f0u, f1v);
UShort4 f1u1v = MulHigh(f1u, f1v);
// Signed fractions
Short4 f1u1vs;
Short4 f0u1vs;
Short4 f1u0vs;
Short4 f0u0vs;
if(!hasUnsignedTextureComponent(0) || !hasUnsignedTextureComponent(1) || !hasUnsignedTextureComponent(2) || !hasUnsignedTextureComponent(3))
{
f1u1vs = f1u1v >> 1;
f0u1vs = f0u1v >> 1;
f1u0vs = f1u0v >> 1;
f0u0vs = f0u0v >> 1;
}
// Bilinear interpolation
if(componentCount >= 1)
{
if(has16bitTextureComponents() && hasUnsignedTextureComponent(0))
{
c0.x = As<UShort4>(c0.x) - MulHigh(As<UShort4>(c0.x), f0u) + MulHigh(As<UShort4>(c1.x), f0u);
c2.x = As<UShort4>(c2.x) - MulHigh(As<UShort4>(c2.x), f0u) + MulHigh(As<UShort4>(c3.x), f0u);
c.x = As<UShort4>(c0.x) - MulHigh(As<UShort4>(c0.x), f0v) + MulHigh(As<UShort4>(c2.x), f0v);
}
else
{
if(hasUnsignedTextureComponent(0))
{
c0.x = MulHigh(As<UShort4>(c0.x), f1u1v);
c1.x = MulHigh(As<UShort4>(c1.x), f0u1v);
c2.x = MulHigh(As<UShort4>(c2.x), f1u0v);
c3.x = MulHigh(As<UShort4>(c3.x), f0u0v);
}
else
{
c0.x = MulHigh(c0.x, f1u1vs);
c1.x = MulHigh(c1.x, f0u1vs);
c2.x = MulHigh(c2.x, f1u0vs);
c3.x = MulHigh(c3.x, f0u0vs);
}
c.x = (c0.x + c1.x) + (c2.x + c3.x);
if(!hasUnsignedTextureComponent(0)) c.x = AddSat(c.x, c.x); // Correct for signed fractions
}
}
if(componentCount >= 2)
{
if(has16bitTextureComponents() && hasUnsignedTextureComponent(1))
{
c0.y = As<UShort4>(c0.y) - MulHigh(As<UShort4>(c0.y), f0u) + MulHigh(As<UShort4>(c1.y), f0u);
c2.y = As<UShort4>(c2.y) - MulHigh(As<UShort4>(c2.y), f0u) + MulHigh(As<UShort4>(c3.y), f0u);
c.y = As<UShort4>(c0.y) - MulHigh(As<UShort4>(c0.y), f0v) + MulHigh(As<UShort4>(c2.y), f0v);
}
else
{
if(hasUnsignedTextureComponent(1))
{
c0.y = MulHigh(As<UShort4>(c0.y), f1u1v);
c1.y = MulHigh(As<UShort4>(c1.y), f0u1v);
c2.y = MulHigh(As<UShort4>(c2.y), f1u0v);
c3.y = MulHigh(As<UShort4>(c3.y), f0u0v);
}
else
{
c0.y = MulHigh(c0.y, f1u1vs);
c1.y = MulHigh(c1.y, f0u1vs);
c2.y = MulHigh(c2.y, f1u0vs);
c3.y = MulHigh(c3.y, f0u0vs);
}
c.y = (c0.y + c1.y) + (c2.y + c3.y);
if(!hasUnsignedTextureComponent(1)) c.y = AddSat(c.y, c.y); // Correct for signed fractions
}
}
if(componentCount >= 3)
{
if(has16bitTextureComponents() && hasUnsignedTextureComponent(2))
{
c0.z = As<UShort4>(c0.z) - MulHigh(As<UShort4>(c0.z), f0u) + MulHigh(As<UShort4>(c1.z), f0u);
c2.z = As<UShort4>(c2.z) - MulHigh(As<UShort4>(c2.z), f0u) + MulHigh(As<UShort4>(c3.z), f0u);
c.z = As<UShort4>(c0.z) - MulHigh(As<UShort4>(c0.z), f0v) + MulHigh(As<UShort4>(c2.z), f0v);
}
else
{
if(hasUnsignedTextureComponent(2))
{
c0.z = MulHigh(As<UShort4>(c0.z), f1u1v);
c1.z = MulHigh(As<UShort4>(c1.z), f0u1v);
c2.z = MulHigh(As<UShort4>(c2.z), f1u0v);
c3.z = MulHigh(As<UShort4>(c3.z), f0u0v);
}
else
{
c0.z = MulHigh(c0.z, f1u1vs);
c1.z = MulHigh(c1.z, f0u1vs);
c2.z = MulHigh(c2.z, f1u0vs);
c3.z = MulHigh(c3.z, f0u0vs);
}
c.z = (c0.z + c1.z) + (c2.z + c3.z);
if(!hasUnsignedTextureComponent(2)) c.z = AddSat(c.z, c.z); // Correct for signed fractions
}
}
if(componentCount >= 4)
{
if(has16bitTextureComponents() && hasUnsignedTextureComponent(3))
{
c0.w = As<UShort4>(c0.w) - MulHigh(As<UShort4>(c0.w), f0u) + MulHigh(As<UShort4>(c1.w), f0u);
c2.w = As<UShort4>(c2.w) - MulHigh(As<UShort4>(c2.w), f0u) + MulHigh(As<UShort4>(c3.w), f0u);
c.w = As<UShort4>(c0.w) - MulHigh(As<UShort4>(c0.w), f0v) + MulHigh(As<UShort4>(c2.w), f0v);
}
else
{
if(hasUnsignedTextureComponent(3))
{
c0.w = MulHigh(As<UShort4>(c0.w), f1u1v);
c1.w = MulHigh(As<UShort4>(c1.w), f0u1v);
c2.w = MulHigh(As<UShort4>(c2.w), f1u0v);
c3.w = MulHigh(As<UShort4>(c3.w), f0u0v);
}
else
{
c0.w = MulHigh(c0.w, f1u1vs);
c1.w = MulHigh(c1.w, f0u1vs);
c2.w = MulHigh(c2.w, f1u0vs);
c3.w = MulHigh(c3.w, f0u0vs);
}
c.w = (c0.w + c1.w) + (c2.w + c3.w);
if(!hasUnsignedTextureComponent(3)) c.w = AddSat(c.w, c.w); // Correct for signed fractions
}
}
}
else
{
c.x = c1.x;
c.y = c2.x;
c.z = c3.x;
c.w = c0.x;
}
}
}
void SamplerCore::sample3D(Pointer<Byte> &texture, Vector4s &c_, Float4 &u_, Float4 &v_, Float4 &w_, Float &lod, bool secondLOD)
{
int componentCount = textureComponentCount();
Pointer<Byte> mipmap;
Pointer<Byte> buffer[4];
Int face[4];
selectMipmap(texture, buffer, mipmap, lod, face, secondLOD);
Short4 uuuu;
Short4 vvvv;
Short4 wwww;
address(uuuu, u_, state.addressingModeU);
address(vvvv, v_, state.addressingModeV);
address(wwww, w_, state.addressingModeW);
if(state.textureFilter <= FILTER_POINT)
{
sampleTexel(c_, uuuu, vvvv, wwww, mipmap, buffer);
}
else
{
Vector4s c[2][2][2];
Short4 u[2][2][2];
Short4 v[2][2][2];
Short4 s[2][2][2];
for(int i = 0; i < 2; i++)
{
for(int j = 0; j < 2; j++)
{
for(int k = 0; k < 2; k++)
{
u[i][j][k] = offsetSample(uuuu, mipmap, OFFSET(Mipmap,uHalf), state.addressingModeU == ADDRESSING_WRAP, i * 2 - 1);
v[i][j][k] = offsetSample(vvvv, mipmap, OFFSET(Mipmap,vHalf), state.addressingModeV == ADDRESSING_WRAP, j * 2 - 1);
s[i][j][k] = offsetSample(wwww, mipmap, OFFSET(Mipmap,wHalf), state.addressingModeW == ADDRESSING_WRAP, k * 2 - 1);
}
}
}
// Fractions
UShort4 f[2][2][2];
Short4 fs[2][2][2];
UShort4 f0u;
UShort4 f0v;
UShort4 f0s;
if(!state.hasNPOTTexture)
{
f0u = As<UShort4>(u[0][0][0]) << *Pointer<Long1>(mipmap + OFFSET(Mipmap,uInt));
f0v = As<UShort4>(v[0][0][0]) << *Pointer<Long1>(mipmap + OFFSET(Mipmap,vInt));
f0s = As<UShort4>(s[0][0][0]) << *Pointer<Long1>(mipmap + OFFSET(Mipmap,wInt));
}
else
{
f0u = As<UShort4>(u[0][0][0]) * *Pointer<UShort4>(mipmap + OFFSET(Mipmap,width));
f0v = As<UShort4>(v[0][0][0]) * *Pointer<UShort4>(mipmap + OFFSET(Mipmap,height));
f0s = As<UShort4>(s[0][0][0]) * *Pointer<UShort4>(mipmap + OFFSET(Mipmap,depth));
}
UShort4 f1u = ~f0u;
UShort4 f1v = ~f0v;
UShort4 f1s = ~f0s;
f[1][1][1] = MulHigh(f1u, f1v);
f[0][1][1] = MulHigh(f0u, f1v);
f[1][0][1] = MulHigh(f1u, f0v);
f[0][0][1] = MulHigh(f0u, f0v);
f[1][1][0] = MulHigh(f1u, f1v);
f[0][1][0] = MulHigh(f0u, f1v);
f[1][0][0] = MulHigh(f1u, f0v);
f[0][0][0] = MulHigh(f0u, f0v);
f[1][1][1] = MulHigh(f[1][1][1], f1s);
f[0][1][1] = MulHigh(f[0][1][1], f1s);
f[1][0][1] = MulHigh(f[1][0][1], f1s);
f[0][0][1] = MulHigh(f[0][0][1], f1s);
f[1][1][0] = MulHigh(f[1][1][0], f0s);
f[0][1][0] = MulHigh(f[0][1][0], f0s);
f[1][0][0] = MulHigh(f[1][0][0], f0s);
f[0][0][0] = MulHigh(f[0][0][0], f0s);
// Signed fractions
if(!hasUnsignedTextureComponent(0) || !hasUnsignedTextureComponent(1) || !hasUnsignedTextureComponent(2) || !hasUnsignedTextureComponent(3))
{
fs[0][0][0] = f[0][0][0] >> 1;
fs[0][0][1] = f[0][0][1] >> 1;
fs[0][1][0] = f[0][1][0] >> 1;
fs[0][1][1] = f[0][1][1] >> 1;
fs[1][0][0] = f[1][0][0] >> 1;
fs[1][0][1] = f[1][0][1] >> 1;
fs[1][1][0] = f[1][1][0] >> 1;
fs[1][1][1] = f[1][1][1] >> 1;
}
for(int i = 0; i < 2; i++)
{
for(int j = 0; j < 2; j++)
{
for(int k = 0; k < 2; k++)
{
sampleTexel(c[i][j][k], u[i][j][k], v[i][j][k], s[i][j][k], mipmap, buffer);
if(componentCount >= 1) if(hasUnsignedTextureComponent(0)) c[i][j][k].x = MulHigh(As<UShort4>(c[i][j][k].x), f[1 - i][1 - j][1 - k]); else c[i][j][k].x = MulHigh(c[i][j][k].x, fs[1 - i][1 - j][1 - k]);
if(componentCount >= 2) if(hasUnsignedTextureComponent(1)) c[i][j][k].y = MulHigh(As<UShort4>(c[i][j][k].y), f[1 - i][1 - j][1 - k]); else c[i][j][k].y = MulHigh(c[i][j][k].y, fs[1 - i][1 - j][1 - k]);
if(componentCount >= 3) if(hasUnsignedTextureComponent(2)) c[i][j][k].z = MulHigh(As<UShort4>(c[i][j][k].z), f[1 - i][1 - j][1 - k]); else c[i][j][k].z = MulHigh(c[i][j][k].z, fs[1 - i][1 - j][1 - k]);
if(componentCount >= 4) if(hasUnsignedTextureComponent(3)) c[i][j][k].w = MulHigh(As<UShort4>(c[i][j][k].w), f[1 - i][1 - j][1 - k]); else c[i][j][k].w = MulHigh(c[i][j][k].w, fs[1 - i][1 - j][1 - k]);
if(i != 0 || j != 0 || k != 0)
{
if(componentCount >= 1) c[0][0][0].x += c[i][j][k].x;
if(componentCount >= 2) c[0][0][0].y += c[i][j][k].y;
if(componentCount >= 3) c[0][0][0].z += c[i][j][k].z;
if(componentCount >= 4) c[0][0][0].w += c[i][j][k].w;
}
}
}
}
if(componentCount >= 1) c_.x = c[0][0][0].x;
if(componentCount >= 2) c_.y = c[0][0][0].y;
if(componentCount >= 3) c_.z = c[0][0][0].z;
if(componentCount >= 4) c_.w = c[0][0][0].w;
// Correct for signed fractions
if(componentCount >= 1) if(!hasUnsignedTextureComponent(0)) c_.x = AddSat(c_.x, c_.x);
if(componentCount >= 2) if(!hasUnsignedTextureComponent(1)) c_.y = AddSat(c_.y, c_.y);
if(componentCount >= 3) if(!hasUnsignedTextureComponent(2)) c_.z = AddSat(c_.z, c_.z);
if(componentCount >= 4) if(!hasUnsignedTextureComponent(3)) c_.w = AddSat(c_.w, c_.w);
}
}
void SamplerCore::sampleFloatFilter(Pointer<Byte> &texture, Vector4f &c, Float4 &u, Float4 &v, Float4 &w, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, Int face[4], bool lodProvided)
{
bool volumeTexture = state.textureType == TEXTURE_3D;
sampleFloatAniso(texture, c, u, v, w, lod, anisotropy, uDelta, vDelta, face, false, lodProvided);
if(state.mipmapFilter > MIPMAP_POINT)
{
Vector4f cc;
sampleFloatAniso(texture, cc, u, v, w, lod, anisotropy, uDelta, vDelta, face, true, lodProvided);
Float4 lod4 = Float4(Frac(lod));
c.x = (cc.x - c.x) * lod4 + c.x;
c.y = (cc.y - c.y) * lod4 + c.y;
c.z = (cc.z - c.z) * lod4 + c.z;
c.w = (cc.w - c.w) * lod4 + c.w;
}
Int4 borderMask;
if(state.addressingModeU == ADDRESSING_BORDER)
{
Int4 u0;
border(u0, u);
borderMask = u0;
}
if(state.addressingModeV == ADDRESSING_BORDER)
{
Int4 v0;
border(v0, v);
if(state.addressingModeU == ADDRESSING_BORDER)
{
borderMask &= v0;
}
else
{
borderMask = v0;
}
}
if(state.addressingModeW == ADDRESSING_BORDER && volumeTexture)
{
Int4 s0;
border(s0, w);
if(state.addressingModeU == ADDRESSING_BORDER ||
state.addressingModeV == ADDRESSING_BORDER)
{
borderMask &= s0;
}
else
{
borderMask = s0;
}
}
if(state.addressingModeU == ADDRESSING_BORDER ||
state.addressingModeV == ADDRESSING_BORDER ||
(state.addressingModeW == ADDRESSING_BORDER && volumeTexture))
{
Int4 b;
c.x = As<Float4>(borderMask & As<Int4>(c.x) | ~borderMask & *Pointer<Int4>(texture + OFFSET(Texture,borderColorF[0])));
c.y = As<Float4>(borderMask & As<Int4>(c.y) | ~borderMask & *Pointer<Int4>(texture + OFFSET(Texture,borderColorF[1])));
c.z = As<Float4>(borderMask & As<Int4>(c.z) | ~borderMask & *Pointer<Int4>(texture + OFFSET(Texture,borderColorF[2])));
c.w = As<Float4>(borderMask & As<Int4>(c.w) | ~borderMask & *Pointer<Int4>(texture + OFFSET(Texture,borderColorF[3])));
}
}
void SamplerCore::sampleFloatAniso(Pointer<Byte> &texture, Vector4f &c, Float4 &u, Float4 &v, Float4 &w, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, Int face[4], bool secondLOD, bool lodProvided)
{
if(state.textureFilter != FILTER_ANISOTROPIC || lodProvided)
{
sampleFloat(texture, c, u, v, w, lod, face, secondLOD);
}
else
{
Int a = RoundInt(anisotropy);
Vector4f cSum;
cSum.x = Float4(0.0f);
cSum.y = Float4(0.0f);
cSum.z = Float4(0.0f);
cSum.w = Float4(0.0f);
Float4 A = *Pointer<Float4>(constants + OFFSET(Constants,uvWeight) + 16 * a);
Float4 B = *Pointer<Float4>(constants + OFFSET(Constants,uvStart) + 16 * a);
Float4 du = uDelta;
Float4 dv = vDelta;
Float4 u0 = u + B * du;
Float4 v0 = v + B * dv;
du *= A;
dv *= A;
Int i = 0;
Do
{
sampleFloat(texture, c, u0, v0, w, lod, face, secondLOD);
u0 += du;
v0 += dv;
cSum.x += c.x * A;
cSum.y += c.y * A;
cSum.z += c.z * A;
cSum.w += c.w * A;
i++;
}
Until(i >= a)
c.x = cSum.x;
c.y = cSum.y;
c.z = cSum.z;
c.w = cSum.w;
}
}
void SamplerCore::sampleFloat(Pointer<Byte> &texture, Vector4f &c, Float4 &u, Float4 &v, Float4 &w, Float &lod, Int face[4], bool secondLOD)
{
if(state.textureType != TEXTURE_3D)
{
sampleFloat2D(texture, c, u, v, w, lod, face, secondLOD);
}
else
{
sampleFloat3D(texture, c, u, v, w, lod, secondLOD);
}
}
void SamplerCore::sampleFloat2D(Pointer<Byte> &texture, Vector4f &c, Float4 &u, Float4 &v, Float4 &z, Float &lod, Int face[4], bool secondLOD)
{
int componentCount = textureComponentCount();
bool gather = state.textureFilter == FILTER_GATHER;
Pointer<Byte> mipmap;
Pointer<Byte> buffer[4];
selectMipmap(texture, buffer, mipmap, lod, face, secondLOD);
Short4 uuuu;
Short4 vvvv;
address(uuuu, u, state.addressingModeU);
address(vvvv, v, state.addressingModeV);
if(state.textureFilter == FILTER_POINT)
{
sampleTexel(c, uuuu, vvvv, vvvv, z, mipmap, buffer);
}
else
{
Vector4f c0;
Vector4f c1;
Vector4f c2;
Vector4f c3;
Short4 uuuu0 = offsetSample(uuuu, mipmap, OFFSET(Mipmap,uHalf), state.addressingModeU == ADDRESSING_WRAP, gather ? 0 : -1);
Short4 vvvv0 = offsetSample(vvvv, mipmap, OFFSET(Mipmap,vHalf), state.addressingModeV == ADDRESSING_WRAP, gather ? 0 : -1);
Short4 uuuu1 = offsetSample(uuuu, mipmap, OFFSET(Mipmap,uHalf), state.addressingModeU == ADDRESSING_WRAP, gather ? 2 : +1);
Short4 vvvv1 = offsetSample(vvvv, mipmap, OFFSET(Mipmap,vHalf), state.addressingModeV == ADDRESSING_WRAP, gather ? 2 : +1);
sampleTexel(c0, uuuu0, vvvv0, vvvv0, z, mipmap, buffer);
sampleTexel(c1, uuuu1, vvvv0, vvvv0, z, mipmap, buffer);
sampleTexel(c2, uuuu0, vvvv1, vvvv1, z, mipmap, buffer);
sampleTexel(c3, uuuu1, vvvv1, vvvv1, z, mipmap, buffer);
if(!gather) // Blend
{
// Fractions
Float4 fu = Frac(Float4(As<UShort4>(uuuu0)) * *Pointer<Float4>(mipmap + OFFSET(Mipmap,fWidth)));
Float4 fv = Frac(Float4(As<UShort4>(vvvv0)) * *Pointer<Float4>(mipmap + OFFSET(Mipmap,fHeight)));
if(componentCount >= 1) c0.x = c0.x + fu * (c1.x - c0.x);
if(componentCount >= 2) c0.y = c0.y + fu * (c1.y - c0.y);
if(componentCount >= 3) c0.z = c0.z + fu * (c1.z - c0.z);
if(componentCount >= 4) c0.w = c0.w + fu * (c1.w - c0.w);
if(componentCount >= 1) c2.x = c2.x + fu * (c3.x - c2.x);
if(componentCount >= 2) c2.y = c2.y + fu * (c3.y - c2.y);
if(componentCount >= 3) c2.z = c2.z + fu * (c3.z - c2.z);
if(componentCount >= 4) c2.w = c2.w + fu * (c3.w - c2.w);
if(componentCount >= 1) c.x = c0.x + fv * (c2.x - c0.x);
if(componentCount >= 2) c.y = c0.y + fv * (c2.y - c0.y);
if(componentCount >= 3) c.z = c0.z + fv * (c2.z - c0.z);
if(componentCount >= 4) c.w = c0.w + fv * (c2.w - c0.w);
}
else
{
c.x = c1.x;
c.y = c2.x;
c.z = c3.x;
c.w = c0.x;
}
}
}
void SamplerCore::sampleFloat3D(Pointer<Byte> &texture, Vector4f &c, Float4 &u, Float4 &v, Float4 &w, Float &lod, bool secondLOD)
{
int componentCount = textureComponentCount();
Pointer<Byte> mipmap;
Pointer<Byte> buffer[4];
Int face[4];
selectMipmap(texture, buffer, mipmap, lod, face, secondLOD);
Short4 uuuu;
Short4 vvvv;
Short4 wwww;
address(uuuu, u, state.addressingModeU);
address(vvvv, v, state.addressingModeV);
address(wwww, w, state.addressingModeW);
if(state.textureFilter <= FILTER_POINT)
{
sampleTexel(c, uuuu, vvvv, wwww, w, mipmap, buffer);
}
else
{
Vector4f &c0 = c;
Vector4f c1;
Vector4f c2;
Vector4f c3;
Vector4f c4;
Vector4f c5;
Vector4f c6;
Vector4f c7;
Short4 uuuu0 = offsetSample(uuuu, mipmap, OFFSET(Mipmap,uHalf), state.addressingModeU == ADDRESSING_WRAP, -1);
Short4 vvvv0 = offsetSample(vvvv, mipmap, OFFSET(Mipmap,vHalf), state.addressingModeV == ADDRESSING_WRAP, -1);
Short4 wwww0 = offsetSample(wwww, mipmap, OFFSET(Mipmap,wHalf), state.addressingModeW == ADDRESSING_WRAP, -1);
Short4 uuuu1 = offsetSample(uuuu, mipmap, OFFSET(Mipmap,uHalf), state.addressingModeU == ADDRESSING_WRAP, +1);
Short4 vvvv1 = offsetSample(vvvv, mipmap, OFFSET(Mipmap,vHalf), state.addressingModeV == ADDRESSING_WRAP, +1);
Short4 wwww1 = offsetSample(wwww, mipmap, OFFSET(Mipmap,wHalf), state.addressingModeW == ADDRESSING_WRAP, +1);
sampleTexel(c0, uuuu0, vvvv0, wwww0, w, mipmap, buffer);
sampleTexel(c1, uuuu1, vvvv0, wwww0, w, mipmap, buffer);
sampleTexel(c2, uuuu0, vvvv1, wwww0, w, mipmap, buffer);
sampleTexel(c3, uuuu1, vvvv1, wwww0, w, mipmap, buffer);
sampleTexel(c4, uuuu0, vvvv0, wwww1, w, mipmap, buffer);
sampleTexel(c5, uuuu1, vvvv0, wwww1, w, mipmap, buffer);
sampleTexel(c6, uuuu0, vvvv1, wwww1, w, mipmap, buffer);
sampleTexel(c7, uuuu1, vvvv1, wwww1, w, mipmap, buffer);
// Fractions
Float4 fu = Frac(Float4(As<UShort4>(uuuu0)) * *Pointer<Float4>(mipmap + OFFSET(Mipmap,fWidth)));
Float4 fv = Frac(Float4(As<UShort4>(vvvv0)) * *Pointer<Float4>(mipmap + OFFSET(Mipmap,fHeight)));
Float4 fw = Frac(Float4(As<UShort4>(wwww0)) * *Pointer<Float4>(mipmap + OFFSET(Mipmap,fDepth)));
// Blend first slice
if(componentCount >= 1) c0.x = c0.x + fu * (c1.x - c0.x);
if(componentCount >= 2) c0.y = c0.y + fu * (c1.y - c0.y);
if(componentCount >= 3) c0.z = c0.z + fu * (c1.z - c0.z);
if(componentCount >= 4) c0.w = c0.w + fu * (c1.w - c0.w);
if(componentCount >= 1) c2.x = c2.x + fu * (c3.x - c2.x);
if(componentCount >= 2) c2.y = c2.y + fu * (c3.y - c2.y);
if(componentCount >= 3) c2.z = c2.z + fu * (c3.z - c2.z);
if(componentCount >= 4) c2.w = c2.w + fu * (c3.w - c2.w);
if(componentCount >= 1) c0.x = c0.x + fv * (c2.x - c0.x);
if(componentCount >= 2) c0.y = c0.y + fv * (c2.y - c0.y);
if(componentCount >= 3) c0.z = c0.z + fv * (c2.z - c0.z);
if(componentCount >= 4) c0.w = c0.w + fv * (c2.w - c0.w);
// Blend second slice
if(componentCount >= 1) c4.x = c4.x + fu * (c5.x - c4.x);
if(componentCount >= 2) c4.y = c4.y + fu * (c5.y - c4.y);
if(componentCount >= 3) c4.z = c4.z + fu * (c5.z - c4.z);
if(componentCount >= 4) c4.w = c4.w + fu * (c5.w - c4.w);
if(componentCount >= 1) c6.x = c6.x + fu * (c7.x - c6.x);
if(componentCount >= 2) c6.y = c6.y + fu * (c7.y - c6.y);
if(componentCount >= 3) c6.z = c6.z + fu * (c7.z - c6.z);
if(componentCount >= 4) c6.w = c6.w + fu * (c7.w - c6.w);
if(componentCount >= 1) c4.x = c4.x + fv * (c6.x - c4.x);
if(componentCount >= 2) c4.y = c4.y + fv * (c6.y - c4.y);
if(componentCount >= 3) c4.z = c4.z + fv * (c6.z - c4.z);
if(componentCount >= 4) c4.w = c4.w + fv * (c6.w - c4.w);
// Blend slices
if(componentCount >= 1) c0.x = c0.x + fw * (c4.x - c0.x);
if(componentCount >= 2) c0.y = c0.y + fw * (c4.y - c0.y);
if(componentCount >= 3) c0.z = c0.z + fw * (c4.z - c0.z);
if(componentCount >= 4) c0.w = c0.w + fw * (c4.w - c0.w);
}
}
void SamplerCore::computeLod(Pointer<Byte> &texture, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, Float4 &uuuu, Float4 &vvvv, const Float &lodBias, Vector4f &dsx, Vector4f &dsy, bool bias, bool gradients, bool lodProvided)
{
if(!lodProvided)
{
Float4 duvdxy;
if(!gradients)
{
duvdxy = Float4(uuuu.yz, vvvv.yz) - Float4(uuuu.xx, vvvv.xx);
}
else
{
Float4 dudxy = Float4(dsx.x.xx, dsy.x.xx);
Float4 dvdxy = Float4(dsx.y.xx, dsy.y.xx);
duvdxy = Float4(dudxy.xz, dvdxy.xz);
}
// Scale by texture dimensions and LOD
Float4 dUVdxy = duvdxy * *Pointer<Float4>(texture + OFFSET(Texture,widthHeightLOD));
Float4 dUV2dxy = dUVdxy * dUVdxy;
Float4 dUV2 = dUV2dxy.xy + dUV2dxy.zw;
lod = Max(Float(dUV2.x), Float(dUV2.y)); // Square length of major axis
if(state.textureFilter == FILTER_ANISOTROPIC)
{
Float det = Abs(Float(dUVdxy.x) * Float(dUVdxy.w) - Float(dUVdxy.y) * Float(dUVdxy.z));
Float4 dudx = duvdxy.xxxx;
Float4 dudy = duvdxy.yyyy;
Float4 dvdx = duvdxy.zzzz;
Float4 dvdy = duvdxy.wwww;
Int4 mask = As<Int4>(CmpNLT(dUV2.x, dUV2.y));
uDelta = As<Float4>(As<Int4>(dudx) & mask | As<Int4>(dudy) & ~mask);
vDelta = As<Float4>(As<Int4>(dvdx) & mask | As<Int4>(dvdy) & ~mask);
anisotropy = lod * Rcp_pp(det);
anisotropy = Min(anisotropy, *Pointer<Float>(texture + OFFSET(Texture,maxAnisotropy)));
lod *= Rcp_pp(anisotropy * anisotropy);
}
// log2(sqrt(lod))
lod = Float(As<Int>(lod));
lod -= Float(0x3F800000);
lod *= As<Float>(Int(0x33800000));
if(bias)
{
lod += lodBias;
}
// FIXME: Hack to satisfy WHQL
if(state.textureType == TEXTURE_CUBE)
{
lod += Float(-0.15f);
}
}
else
{
lod = lodBias + *Pointer<Float>(texture + OFFSET(Texture,LOD));
}
lod = Max(lod, 0.0f);
lod = Min(lod, Float(MIPMAP_LEVELS - 2)); // Trilinear accesses lod+1
}
void SamplerCore::computeLod3D(Pointer<Byte> &texture, Float &lod, Float4 &uuuu, Float4 &vvvv, Float4 &wwww, const Float &lodBias, Vector4f &dsx, Vector4f &dsy, bool bias, bool gradients, bool lodProvided)
{
if(state.mipmapFilter == MIPMAP_NONE)
{
}
else // Point and linear filter
{
if(!lodProvided)
{
Float4 dudxy;
Float4 dvdxy;
Float4 dsdxy;
if(!gradients)
{
dudxy = uuuu.ywyw - uuuu;
dvdxy = vvvv.ywyw - vvvv;
dsdxy = wwww.ywyw - wwww;
}
else
{
dudxy = dsx.x;
dvdxy = dsx.y;
dsdxy = dsx.z;
dudxy = Float4(dudxy.xx, dsy.x.xx);
dvdxy = Float4(dvdxy.xx, dsy.y.xx);
dsdxy = Float4(dsdxy.xx, dsy.z.xx);
dudxy = Float4(dudxy.xz, dudxy.xz);
dvdxy = Float4(dvdxy.xz, dvdxy.xz);
dsdxy = Float4(dsdxy.xz, dsdxy.xz);
}
// Scale by texture dimensions and LOD
dudxy *= *Pointer<Float4>(texture + OFFSET(Texture,widthLOD));
dvdxy *= *Pointer<Float4>(texture + OFFSET(Texture,heightLOD));
dsdxy *= *Pointer<Float4>(texture + OFFSET(Texture,depthLOD));
dudxy *= dudxy;
dvdxy *= dvdxy;
dsdxy *= dsdxy;
dudxy += dvdxy;
dudxy += dsdxy;
lod = Max(Float(dudxy.x), Float(dudxy.y)); // FIXME: Max(dudxy.x, dudxy.y);
// log2(sqrt(lod))
lod = Float(As<Int>(lod));
lod -= Float(0x3F800000);
lod *= As<Float>(Int(0x33800000));
if(bias)
{
lod += lodBias;
}
}
else
{
lod = lodBias + *Pointer<Float>(texture + OFFSET(Texture,LOD));
}
lod = Max(lod, Float(0.0f)); // FIXME
lod = Min(lod, Float(MIPMAP_LEVELS - 2)); // Trilinear accesses lod+1
}
}
void SamplerCore::cubeFace(Int face[4], Float4 &U, Float4 &V, Float4 &lodU, Float4 &lodV, Float4 &x, Float4 &y, Float4 &z)
{
Int4 xp = CmpNLE(x, Float4(0.0f)); // x > 0
Int4 yp = CmpNLE(y, Float4(0.0f)); // y > 0
Int4 zp = CmpNLE(z, Float4(0.0f)); // z > 0
Float4 absX = Abs(x);
Float4 absY = Abs(y);
Float4 absZ = Abs(z);
Int4 xy = CmpNLE(absX, absY); // abs(x) > abs(y)
Int4 yz = CmpNLE(absY, absZ); // abs(y) > abs(z)
Int4 zx = CmpNLE(absZ, absX); // abs(z) > abs(x)
Int4 xyz = ~zx & xy; // abs(x) > abs(y) && abs(x) > abs(z)
Int4 yzx = ~xy & yz; // abs(y) > abs(z) && abs(y) > abs(x)
Int4 zxy = ~yz & zx; // abs(z) > abs(x) && abs(z) > abs(y)
// FACE_POSITIVE_X = 000b
// FACE_NEGATIVE_X = 001b
// FACE_POSITIVE_Y = 010b
// FACE_NEGATIVE_Y = 011b
// FACE_POSITIVE_Z = 100b
// FACE_NEGATIVE_Z = 101b
Int yAxis = SignMask(yzx);
Int zAxis = SignMask(zxy);
Int4 n = (~xp & xyz) | (~yp & yzx) | (~zp & zxy);
Int negative = SignMask(n);
face[0] = *Pointer<Int>(constants + OFFSET(Constants,transposeBit0) + negative * 4);
face[0] |= *Pointer<Int>(constants + OFFSET(Constants,transposeBit1) + yAxis * 4);
face[0] |= *Pointer<Int>(constants + OFFSET(Constants,transposeBit2) + zAxis * 4);
face[1] = (face[0] >> 4) & 0x7;
face[2] = (face[0] >> 8) & 0x7;
face[3] = (face[0] >> 12) & 0x7;
face[0] &= 0x7;
// U = xyz * -z + ~xyz * (yzx * ~yp * -x + (yzx * ~yp) * x)
U = As<Float4>((xyz & As<Int4>(-z)) | (~xyz & (((yzx & ~yp) & Int4(0x80000000, 0x80000000, 0x80000000, 0x80000000)) ^ As<Int4>(x))));
// V = yzx * z + ~yzx * (~neg * -y + neg * y)
V = As<Float4>((~yzx & ((~n & Int4(0x80000000, 0x80000000, 0x80000000, 0x80000000)) ^ As<Int4>(y))) | (yzx & As<Int4>(z)));
// M = xyz * x + yzx * y + zxy * z
Float4 M = As<Float4>((xyz & As<Int4>(x)) | (yzx & As<Int4>(y)) | (zxy & As<Int4>(z)));
M = reciprocal(M);
U *= M * Float4(0.5f);
V *= M * Float4(0.5f);
// Project coordinates onto one face for consistent LOD calculation
{
yp = Swizzle(yp, 0);
n = Swizzle(n, 0);
xyz = Swizzle(xyz, 0);
yzx = Swizzle(yzx, 0);
zxy = Swizzle(zxy, 0);
// U = xyz * -z + ~xyz * (yzx * ~yp * -x + (yzx * ~yp) * x)
lodU = As<Float4>((xyz & As<Int4>(-z)) | (~xyz & (((yzx & ~yp) & Int4(0x80000000, 0x80000000, 0x80000000, 0x80000000)) ^ As<Int4>(x))));
// V = yzx * z + ~yzx * (~neg * -y + neg * y)
lodV = As<Float4>((~yzx & ((~n & Int4(0x80000000, 0x80000000, 0x80000000, 0x80000000)) ^ As<Int4>(y))) | (yzx & As<Int4>(z)));
// M = xyz * x + yzx * y + zxy * z
Float4 M = As<Float4>((xyz & As<Int4>(x)) | (yzx & As<Int4>(y)) | (zxy & As<Int4>(z)));
M = Rcp_pp(M);
lodU *= M * Float4(0.5f);
lodV *= M * Float4(0.5f);
}
}
void SamplerCore::computeIndices(Int index[4], Short4 uuuu, Short4 vvvv, Short4 wwww, const Pointer<Byte> &mipmap)
{
Short4 uuu2;
if(!state.hasNPOTTexture && !hasFloatTexture())
{
vvvv = As<UShort4>(vvvv) >> *Pointer<Long1>(mipmap + OFFSET(Mipmap,vFrac));
uuu2 = uuuu;
uuuu = As<Short4>(UnpackLow(uuuu, vvvv));
uuu2 = As<Short4>(UnpackHigh(uuu2, vvvv));
uuuu = As<Short4>(As<UInt2>(uuuu) >> *Pointer<Long1>(mipmap + OFFSET(Mipmap,uFrac)));
uuu2 = As<Short4>(As<UInt2>(uuu2) >> *Pointer<Long1>(mipmap + OFFSET(Mipmap,uFrac)));
if(state.textureType == TEXTURE_3D)
{
wwww = As<UShort4>(wwww) >> *Pointer<Long1>(mipmap + OFFSET(Mipmap,wFrac));
Short4 www2 = wwww;
wwww = As<Short4>(UnpackLow(wwww, wwww));
www2 = As<Short4>(UnpackHigh(www2, www2));
wwww = As<Short4>(As<UInt2>(wwww) >> 16);
www2 = As<Short4>(As<UInt2>(www2) >> 16);
wwww = As<Short4>(As<Int2>(wwww) << *Pointer<Long1>(mipmap + OFFSET(Mipmap,uInt)));
www2 = As<Short4>(As<Int2>(www2) << *Pointer<Long1>(mipmap + OFFSET(Mipmap,uInt)));
wwww = As<Short4>(As<Int2>(wwww) << *Pointer<Long1>(mipmap + OFFSET(Mipmap,vInt))); // FIXME: Combine uInt and vInt shift
www2 = As<Short4>(As<Int2>(www2) << *Pointer<Long1>(mipmap + OFFSET(Mipmap,vInt)));
uuuu = As<Short4>(As<Int2>(uuuu) + As<Int2>(wwww));
uuu2 = As<Short4>(As<Int2>(uuu2) + As<Int2>(www2));
}
}
else
{
uuuu = MulHigh(As<UShort4>(uuuu), *Pointer<UShort4>(mipmap + OFFSET(Mipmap,width)));
vvvv = MulHigh(As<UShort4>(vvvv), *Pointer<UShort4>(mipmap + OFFSET(Mipmap,height)));
uuu2 = uuuu;
uuuu = As<Short4>(UnpackLow(uuuu, vvvv));
uuu2 = As<Short4>(UnpackHigh(uuu2, vvvv));
uuuu = As<Short4>(MulAdd(uuuu, *Pointer<Short4>(mipmap + OFFSET(Mipmap,onePitchP))));
uuu2 = As<Short4>(MulAdd(uuu2, *Pointer<Short4>(mipmap + OFFSET(Mipmap,onePitchP))));
if(state.textureType == TEXTURE_3D)
{
wwww = MulHigh(As<UShort4>(wwww), *Pointer<UShort4>(mipmap + OFFSET(Mipmap,depth)));
Short4 www2 = wwww;
wwww = As<Short4>(UnpackLow(wwww, Short4(0x0000, 0x0000, 0x0000, 0x0000)));
www2 = As<Short4>(UnpackHigh(www2, Short4(0x0000, 0x0000, 0x0000, 0x0000)));
wwww = As<Short4>(MulAdd(wwww, *Pointer<Short4>(mipmap + OFFSET(Mipmap,sliceP))));
www2 = As<Short4>(MulAdd(www2, *Pointer<Short4>(mipmap + OFFSET(Mipmap,sliceP))));
uuuu = As<Short4>(As<Int2>(uuuu) + As<Int2>(wwww));
uuu2 = As<Short4>(As<Int2>(uuu2) + As<Int2>(www2));
}
}
index[0] = Extract(As<Int2>(uuuu), 0);
index[1] = Extract(As<Int2>(uuuu), 1);
index[2] = Extract(As<Int2>(uuu2), 0);
index[3] = Extract(As<Int2>(uuu2), 1);
}
void SamplerCore::sampleTexel(Vector4s &c, Short4 &uuuu, Short4 &vvvv, Short4 &wwww, Pointer<Byte> &mipmap, Pointer<Byte> buffer[4])
{
Int index[4];
computeIndices(index, uuuu, vvvv, wwww, mipmap);
int f0 = state.textureType == TEXTURE_CUBE ? 0 : 0;
int f1 = state.textureType == TEXTURE_CUBE ? 1 : 0;
int f2 = state.textureType == TEXTURE_CUBE ? 2 : 0;
int f3 = state.textureType == TEXTURE_CUBE ? 3 : 0;
if(has16bitTextureFormat())
{
c.x = Insert(c.x, *Pointer<Short>(buffer[f0] + 2 * index[0]), 0);
c.x = Insert(c.x, *Pointer<Short>(buffer[f1] + 2 * index[1]), 1);
c.x = Insert(c.x, *Pointer<Short>(buffer[f2] + 2 * index[2]), 2);
c.x = Insert(c.x, *Pointer<Short>(buffer[f3] + 2 * index[3]), 3);
switch(state.textureFormat)
{
case FORMAT_R5G6B5:
c.z = (c.x & Short4(0x001Fu)) << 11;
c.y = (c.x & Short4(0x07E0u)) << 5;
c.x = (c.x & Short4(0xF800u));
break;
default:
ASSERT(false);
}
}
else if(!has16bitTextureComponents()) // 8-bit components
{
switch(textureComponentCount())
{
case 4:
{
Byte8 c0 = *Pointer<Byte8>(buffer[f0] + 4 * index[0]);
Byte8 c1 = *Pointer<Byte8>(buffer[f1] + 4 * index[1]);
Byte8 c2 = *Pointer<Byte8>(buffer[f2] + 4 * index[2]);
Byte8 c3 = *Pointer<Byte8>(buffer[f3] + 4 * index[3]);
c.x = UnpackLow(c0, c1);
c.y = UnpackLow(c2, c3);
switch(state.textureFormat)
{
case FORMAT_A8R8G8B8:
c.z = c.x;
c.z = As<Short4>(UnpackLow(c.z, c.y));
c.x = As<Short4>(UnpackHigh(c.x, c.y));
c.y = c.z;
c.w = c.x;
c.z = UnpackLow(As<Byte8>(c.z), As<Byte8>(c.z));
c.y = UnpackHigh(As<Byte8>(c.y), As<Byte8>(c.y));
c.x = UnpackLow(As<Byte8>(c.x), As<Byte8>(c.x));
c.w = UnpackHigh(As<Byte8>(c.w), As<Byte8>(c.w));
break;
case FORMAT_A8B8G8R8:
case FORMAT_Q8W8V8U8:
c.z = c.x;
c.x = As<Short4>(UnpackLow(c.x, c.y));
c.z = As<Short4>(UnpackHigh(c.z, c.y));
c.y = c.x;
c.w = c.z;
c.x = UnpackLow(As<Byte8>(c.x), As<Byte8>(c.x));
c.y = UnpackHigh(As<Byte8>(c.y), As<Byte8>(c.y));
c.z = UnpackLow(As<Byte8>(c.z), As<Byte8>(c.z));
c.w = UnpackHigh(As<Byte8>(c.w), As<Byte8>(c.w));
break;
default:
ASSERT(false);
}
}
break;
case 3:
{
Byte8 c0 = *Pointer<Byte8>(buffer[f0] + 4 * index[0]);
Byte8 c1 = *Pointer<Byte8>(buffer[f1] + 4 * index[1]);
Byte8 c2 = *Pointer<Byte8>(buffer[f2] + 4 * index[2]);
Byte8 c3 = *Pointer<Byte8>(buffer[f3] + 4 * index[3]);
c.x = UnpackLow(c0, c1);
c.y = UnpackLow(c2, c3);
switch(state.textureFormat)
{
case FORMAT_X8R8G8B8:
c.z = c.x;
c.z = As<Short4>(UnpackLow(c.z, c.y));
c.x = As<Short4>(UnpackHigh(c.x, c.y));
c.y = c.z;
c.z = UnpackLow(As<Byte8>(c.z), As<Byte8>(c.z));
c.y = UnpackHigh(As<Byte8>(c.y), As<Byte8>(c.y));
c.x = UnpackLow(As<Byte8>(c.x), As<Byte8>(c.x));
break;
case FORMAT_X8B8G8R8:
case FORMAT_X8L8V8U8:
c.z = c.x;
c.x = As<Short4>(UnpackLow(c.x, c.y));
c.z = As<Short4>(UnpackHigh(c.z, c.y));
c.y = c.x;
c.x = UnpackLow(As<Byte8>(c.x), As<Byte8>(c.x));
c.y = UnpackHigh(As<Byte8>(c.y), As<Byte8>(c.y));
c.z = UnpackLow(As<Byte8>(c.z), As<Byte8>(c.z));
break;
default:
ASSERT(false);
}
}
break;
case 2:
c.x = Insert(c.x, *Pointer<Short>(buffer[f0] + 2 * index[0]), 0);
c.x = Insert(c.x, *Pointer<Short>(buffer[f1] + 2 * index[1]), 1);
c.x = Insert(c.x, *Pointer<Short>(buffer[f2] + 2 * index[2]), 2);
c.x = Insert(c.x, *Pointer<Short>(buffer[f3] + 2 * index[3]), 3);
switch(state.textureFormat)
{
case FORMAT_G8R8:
case FORMAT_V8U8:
case FORMAT_A8L8:
c.y = (c.x & Short4(0xFF00u, 0xFF00u, 0xFF00u, 0xFF00u)) | As<Short4>(As<UShort4>(c.x) >> 8);
c.x = (c.x & Short4(0x00FFu, 0x00FFu, 0x00FFu, 0x00FFu)) | (c.x << 8);
break;
default:
ASSERT(false);
}
break;
case 1:
{
Int c0 = Int(*Pointer<Byte>(buffer[f0] + index[0]));
Int c1 = Int(*Pointer<Byte>(buffer[f1] + index[1]));
Int c2 = Int(*Pointer<Byte>(buffer[f2] + index[2]));
Int c3 = Int(*Pointer<Byte>(buffer[f3] + index[3]));
c0 = c0 | (c1 << 8) | (c2 << 16) | (c3 << 24);
c.x = Unpack(As<Byte4>(c0));
}
break;
default:
ASSERT(false);
}
}
else // 16-bit components
{
switch(textureComponentCount())
{
case 4:
c.x = *Pointer<Short4>(buffer[f0] + 8 * index[0]);
c.y = *Pointer<Short4>(buffer[f1] + 8 * index[1]);
c.z = *Pointer<Short4>(buffer[f2] + 8 * index[2]);
c.w = *Pointer<Short4>(buffer[f3] + 8 * index[3]);
transpose4x4(c.x, c.y, c.z, c.w);
break;
case 2:
c.x = *Pointer<Short4>(buffer[f0] + 4 * index[0]);
c.x = As<Short4>(UnpackLow(c.x, *Pointer<Short4>(buffer[f1] + 4 * index[1])));
c.z = *Pointer<Short4>(buffer[f2] + 4 * index[2]);
c.z = As<Short4>(UnpackLow(c.z, *Pointer<Short4>(buffer[f3] + 4 * index[3])));
c.y = c.x;
c.x = As<Short4>(UnpackLow(As<Int2>(c.x), As<Int2>(c.z)));
c.y = As<Short4>(UnpackHigh(As<Int2>(c.y), As<Int2>(c.z)));
break;
case 1:
c.x = Insert(c.x, *Pointer<Short>(buffer[f0] + 2 * index[0]), 0);
c.x = Insert(c.x, *Pointer<Short>(buffer[f1] + 2 * index[1]), 1);
c.x = Insert(c.x, *Pointer<Short>(buffer[f2] + 2 * index[2]), 2);
c.x = Insert(c.x, *Pointer<Short>(buffer[f3] + 2 * index[3]), 3);
break;
default:
ASSERT(false);
}
}
}
void SamplerCore::sampleTexel(Vector4f &c, Short4 &uuuu, Short4 &vvvv, Short4 &wwww, Float4 &z, Pointer<Byte> &mipmap, Pointer<Byte> buffer[4])
{
Int index[4];
computeIndices(index, uuuu, vvvv, wwww, mipmap);
int f0 = state.textureType == TEXTURE_CUBE ? 0 : 0;
int f1 = state.textureType == TEXTURE_CUBE ? 1 : 0;
int f2 = state.textureType == TEXTURE_CUBE ? 2 : 0;
int f3 = state.textureType == TEXTURE_CUBE ? 3 : 0;
// Read texels
switch(textureComponentCount())
{
case 4:
c.x = *Pointer<Float4>(buffer[f0] + index[0] * 16, 16);
c.y = *Pointer<Float4>(buffer[f1] + index[1] * 16, 16);
c.z = *Pointer<Float4>(buffer[f2] + index[2] * 16, 16);
c.w = *Pointer<Float4>(buffer[f3] + index[3] * 16, 16);
transpose4x4(c.x, c.y, c.z, c.w);
break;
case 2:
// FIXME: Optimal shuffling?
c.x.xy = *Pointer<Float4>(buffer[f0] + index[0] * 8);
c.x.zw = *Pointer<Float4>(buffer[f1] + index[1] * 8 - 8);
c.z.xy = *Pointer<Float4>(buffer[f2] + index[2] * 8);
c.z.zw = *Pointer<Float4>(buffer[f3] + index[3] * 8 - 8);
c.y = c.x;
c.x = Float4(c.x.xz, c.z.xz);
c.y = Float4(c.y.yw, c.z.yw);
break;
case 1:
// FIXME: Optimal shuffling?
c.x.x = *Pointer<Float>(buffer[f0] + index[0] * 4);
c.x.y = *Pointer<Float>(buffer[f1] + index[1] * 4);
c.x.z = *Pointer<Float>(buffer[f2] + index[2] * 4);
c.x.w = *Pointer<Float>(buffer[f3] + index[3] * 4);
if(state.textureFormat == FORMAT_D32FS8_SHADOW && state.textureFilter != FILTER_GATHER)
{
Float4 d = Min(Max(z, Float4(0.0f)), Float4(1.0f));
c.x = As<Float4>(As<Int4>(CmpNLT(c.x, d)) & As<Int4>(Float4(1.0f))); // FIXME: Only less-equal?
}
break;
default:
ASSERT(false);
}
}
void SamplerCore::selectMipmap(Pointer<Byte> &texture, Pointer<Byte> buffer[4], Pointer<Byte> &mipmap, Float &lod, Int face[4], bool secondLOD)
{
if(state.mipmapFilter < MIPMAP_POINT)
{
mipmap = texture + OFFSET(Texture,mipmap[0]);
}
else
{
Int ilod;
if(state.mipmapFilter == MIPMAP_POINT)
{
ilod = RoundInt(lod);
}
else // Linear
{
ilod = Int(lod);
}
mipmap = texture + OFFSET(Texture,mipmap) + ilod * sizeof(Mipmap) + secondLOD * sizeof(Mipmap);
}
if(state.textureType != TEXTURE_CUBE)
{
buffer[0] = *Pointer<Pointer<Byte> >(mipmap + OFFSET(Mipmap,buffer[0]));
}
else
{
for(int i = 0; i < 4; i++)
{
buffer[i] = *Pointer<Pointer<Byte> >(mipmap + OFFSET(Mipmap,buffer) + face[i] * sizeof(void*));
}
}
}
void SamplerCore::address(Short4 &uuuu, Float4 &uw, AddressingMode addressingMode)
{
if(addressingMode == ADDRESSING_CLAMP)
{
Float4 clamp = Min(Max(uw, Float4(0.0f)), Float4(65535.0f / 65536.0f));
uuuu = Short4(Int4(clamp * Float4(1 << 16)));
}
else if(addressingMode == ADDRESSING_MIRROR)
{
Int4 convert = Int4(uw * Float4(1 << 16));
Int4 mirror = (convert << 15) >> 31;
convert ^= mirror;
uuuu = Short4(convert);
}
else if(addressingMode == ADDRESSING_MIRRORONCE)
{
// Absolute value
Int4 convert = Int4(Abs(uw * Float4(1 << 16)));
// Clamp
convert -= Int4(0x00008000, 0x00008000, 0x00008000, 0x00008000);
convert = As<Int4>(Pack(convert, convert));
uuuu = As<Short4>(Int2(convert)) + Short4((short)0x8000, (short)0x8000, (short)0x8000, (short)0x8000);
}
else // Wrap (or border)
{
uuuu = Short4(Int4(uw * Float4(1 << 16)));
}
}
void SamplerCore::convertFixed12(Short4 &cs, Float4 &cf)
{
cs = RoundShort4(cf * Float4(0x1000));
}
void SamplerCore::convertFixed12(Vector4s &cs, Vector4f &cf)
{
convertFixed12(cs.x, cf.x);
convertFixed12(cs.y, cf.y);
convertFixed12(cs.z, cf.z);
convertFixed12(cs.w, cf.w);
}
void SamplerCore::convertSigned12(Float4 &cf, Short4 &cs)
{
cf = Float4(cs) * Float4(1.0f / 0x0FFE);
}
// void SamplerCore::convertSigned12(Vector4f &cf, Vector4s &cs)
// {
// convertSigned12(cf.x, cs.x);
// convertSigned12(cf.y, cs.y);
// convertSigned12(cf.z, cs.z);
// convertSigned12(cf.w, cs.w);
// }
void SamplerCore::convertSigned15(Float4 &cf, Short4 &cs)
{
cf = Float4(cs) * Float4(1.0f / 0x7FFF);
}
void SamplerCore::convertUnsigned16(Float4 &cf, Short4 &cs)
{
cf = Float4(As<UShort4>(cs)) * Float4(1.0f / 0xFFFF);
}
void SamplerCore::sRGBtoLinear16_8_12(Short4 &c)
{
c = As<UShort4>(c) >> 8;
Pointer<Byte> LUT = Pointer<Byte>(constants + OFFSET(Constants,sRGBtoLinear8_12));
c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 0))), 0);
c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 1))), 1);
c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 2))), 2);
c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 3))), 3);
}
void SamplerCore::sRGBtoLinear16_6_12(Short4 &c)
{
c = As<UShort4>(c) >> 10;
Pointer<Byte> LUT = Pointer<Byte>(constants + OFFSET(Constants,sRGBtoLinear6_12));
c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 0))), 0);
c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 1))), 1);
c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 2))), 2);
c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 3))), 3);
}
void SamplerCore::sRGBtoLinear16_5_12(Short4 &c)
{
c = As<UShort4>(c) >> 11;
Pointer<Byte> LUT = Pointer<Byte>(constants + OFFSET(Constants,sRGBtoLinear5_12));
c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 0))), 0);
c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 1))), 1);
c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 2))), 2);
c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 3))), 3);
}
bool SamplerCore::hasFloatTexture() const
{
return Surface::isFloatFormat(state.textureFormat);
}
bool SamplerCore::hasUnsignedTextureComponent(int component) const
{
return Surface::isUnsignedComponent(state.textureFormat, component);
}
int SamplerCore::textureComponentCount() const
{
return Surface::componentCount(state.textureFormat);
}
bool SamplerCore::has16bitTextureFormat() const
{
switch(state.textureFormat)
{
case FORMAT_R5G6B5:
return true;
case FORMAT_G8R8:
case FORMAT_X8R8G8B8:
case FORMAT_X8B8G8R8:
case FORMAT_A8R8G8B8:
case FORMAT_A8B8G8R8:
case FORMAT_V8U8:
case FORMAT_Q8W8V8U8:
case FORMAT_X8L8V8U8:
case FORMAT_R32F:
case FORMAT_G32R32F:
case FORMAT_A32B32G32R32F:
case FORMAT_A8:
case FORMAT_R8:
case FORMAT_L8:
case FORMAT_A8L8:
case FORMAT_D32F_LOCKABLE:
case FORMAT_D32FS8_TEXTURE:
case FORMAT_D32FS8_SHADOW:
case FORMAT_L16:
case FORMAT_G16R16:
case FORMAT_A16B16G16R16:
case FORMAT_V16U16:
case FORMAT_A16W16V16U16:
case FORMAT_Q16W16V16U16:
return false;
default:
ASSERT(false);
}
return false;
}
bool SamplerCore::has16bitTextureComponents() const
{
switch(state.textureFormat)
{
case FORMAT_R5G6B5:
case FORMAT_G8R8:
case FORMAT_X8R8G8B8:
case FORMAT_X8B8G8R8:
case FORMAT_A8R8G8B8:
case FORMAT_A8B8G8R8:
case FORMAT_V8U8:
case FORMAT_Q8W8V8U8:
case FORMAT_X8L8V8U8:
case FORMAT_R32F:
case FORMAT_G32R32F:
case FORMAT_A32B32G32R32F:
case FORMAT_A8:
case FORMAT_R8:
case FORMAT_L8:
case FORMAT_A8L8:
case FORMAT_D32F_LOCKABLE:
case FORMAT_D32FS8_TEXTURE:
case FORMAT_D32FS8_SHADOW:
return false;
case FORMAT_L16:
case FORMAT_G16R16:
case FORMAT_A16B16G16R16:
case FORMAT_V16U16:
case FORMAT_A16W16V16U16:
case FORMAT_Q16W16V16U16:
return true;
default:
ASSERT(false);
}
return false;
}
bool SamplerCore::isRGBComponent(int component) const
{
switch(state.textureFormat)
{
case FORMAT_R5G6B5: return component < 3;
case FORMAT_G8R8: return component < 2;
case FORMAT_X8R8G8B8: return component < 3;
case FORMAT_X8B8G8R8: return component < 3;
case FORMAT_A8R8G8B8: return component < 3;
case FORMAT_A8B8G8R8: return component < 3;
case FORMAT_V8U8: return false;
case FORMAT_Q8W8V8U8: return false;
case FORMAT_X8L8V8U8: return false;
case FORMAT_R32F: return component < 1;
case FORMAT_G32R32F: return component < 2;
case FORMAT_A32B32G32R32F: return component < 3;
case FORMAT_A8: return false;
case FORMAT_R8: return component < 1;
case FORMAT_L8: return component < 1;
case FORMAT_A8L8: return component < 1;
case FORMAT_D32F_LOCKABLE: return false;
case FORMAT_D32FS8_TEXTURE: return false;
case FORMAT_D32FS8_SHADOW: return false;
case FORMAT_L16: return component < 1;
case FORMAT_G16R16: return component < 2;
case FORMAT_A16B16G16R16: return component < 3;
case FORMAT_V16U16: return false;
case FORMAT_A16W16V16U16: return false;
case FORMAT_Q16W16V16U16: return false;
default:
ASSERT(false);
}
return false;
}
}