blob: 3d73ceb86ddabc6a913ce27dccd07b4921dd31fb [file] [log] [blame]
// SwiftShader Software Renderer
//
// Copyright(c) 2005-2012 TransGaming Inc.
//
// All rights reserved. No part of this software may be copied, distributed, transmitted,
// transcribed, stored in a retrieval system, translated into any human or computer
// language by any means, or disclosed to third parties without the explicit written
// agreement of TransGaming Inc. Without such an agreement, no rights or licenses, express
// or implied, including but not limited to any patent rights, are granted to you.
//
#include "Sampler.hpp"
#include "MetaMacro.hpp"
#include "Context.hpp"
#include "Surface.hpp"
#include "CPUID.hpp"
#include "PixelRoutine.hpp"
#include "Debug.hpp"
#include <memory.h>
#include <string.h>
namespace sw
{
FilterType Sampler::maximumTextureFilterQuality = FILTER_LINEAR;
MipmapType Sampler::maximumMipmapFilterQuality = MIPMAP_POINT;
Sampler::State::State()
{
memset(this, 0, sizeof(State));
}
Sampler::Sampler()
{
// FIXME: Mipmap::init
static unsigned int zero = 0x00FF00FF;
for(int level = 0; level < MIPMAP_LEVELS; level++)
{
Mipmap &mipmap = texture.mipmap[level];
memset(&mipmap, 0, sizeof(Mipmap));
for(int face = 0; face < 6; face++)
{
mipmap.buffer[face] = &zero;
}
mipmap.uFrac = 16;
mipmap.vFrac = 16;
mipmap.wFrac = 16;
}
externalTextureFormat = FORMAT_NULL;
internalTextureFormat = FORMAT_NULL;
textureType = TEXTURE_NULL;
textureFilter = FILTER_LINEAR;
addressingModeU = ADDRESSING_WRAP;
addressingModeV = ADDRESSING_WRAP;
addressingModeW = ADDRESSING_WRAP;
mipmapFilterState = MIPMAP_NONE;
sRGB = false;
gather = false;
texture.LOD = 0.0f;
exp2LOD = 1.0f;
}
Sampler::~Sampler()
{
}
Sampler::State Sampler::samplerState() const
{
State state;
if(textureType != TEXTURE_NULL)
{
state.textureType = textureType;
state.textureFormat = internalTextureFormat;
state.textureFilter = getTextureFilter();
state.addressingModeU = getAddressingModeU();
state.addressingModeV = getAddressingModeV();
state.addressingModeW = getAddressingModeW();
state.mipmapFilter = mipmapFilter();
state.hasNPOTTexture = hasNPOTTexture();
state.sRGB = sRGB && Surface::isSRGBreadable(externalTextureFormat);
#if PERF_PROFILE
state.compressedFormat = Surface::isCompressed(externalTextureFormat);
#endif
}
return state;
}
void Sampler::setTextureLevel(int face, int level, Surface *surface, TextureType type)
{
if(surface)
{
Mipmap &mipmap = texture.mipmap[level];
mipmap.buffer[face] = surface->lockInternal(0, 0, 0, LOCK_UNLOCKED, PRIVATE);
if(face == 0)
{
externalTextureFormat = surface->getExternalFormat();
internalTextureFormat = surface->getInternalFormat();
int width = surface->getInternalWidth();
int height = surface->getInternalHeight();
int depth = surface->getInternalDepth();
int pitchP = surface->getInternalPitchP();
int sliceP = surface->getInternalSliceP();
int logWidth = log2(width);
int logHeight = log2(height);
int logDepth = log2(depth);
if(level == 0)
{
texture.widthHeightLOD[0] = width * exp2LOD;
texture.widthHeightLOD[1] = width * exp2LOD;
texture.widthHeightLOD[2] = height * exp2LOD;
texture.widthHeightLOD[3] = height * exp2LOD;
texture.widthLOD[0] = width * exp2LOD;
texture.widthLOD[1] = width * exp2LOD;
texture.widthLOD[2] = width * exp2LOD;
texture.widthLOD[3] = width * exp2LOD;
texture.heightLOD[0] = height * exp2LOD;
texture.heightLOD[1] = height * exp2LOD;
texture.heightLOD[2] = height * exp2LOD;
texture.heightLOD[3] = height * exp2LOD;
texture.depthLOD[0] = depth * exp2LOD;
texture.depthLOD[1] = depth * exp2LOD;
texture.depthLOD[2] = depth * exp2LOD;
texture.depthLOD[3] = depth * exp2LOD;
}
if(!Surface::isFloatFormat(internalTextureFormat))
{
mipmap.uInt = logWidth;
mipmap.vInt = logHeight;
mipmap.wInt = logDepth;
mipmap.uFrac = 16 - logWidth;
mipmap.vFrac = 16 - logHeight;
mipmap.wFrac = 16 - logDepth;
}
else
{
mipmap.fWidth[0] = (float)width / 65536.0f;
mipmap.fWidth[1] = (float)width / 65536.0f;
mipmap.fWidth[2] = (float)width / 65536.0f;
mipmap.fWidth[3] = (float)width / 65536.0f;
mipmap.fHeight[0] = (float)height / 65536.0f;
mipmap.fHeight[1] = (float)height / 65536.0f;
mipmap.fHeight[2] = (float)height / 65536.0f;
mipmap.fHeight[3] = (float)height / 65536.0f;
mipmap.fDepth[0] = (float)depth / 65536.0f;
mipmap.fDepth[1] = (float)depth / 65536.0f;
mipmap.fDepth[2] = (float)depth / 65536.0f;
mipmap.fDepth[3] = (float)depth / 65536.0f;
}
short halfTexelU = isPow2(width) ? 0x8000 >> logWidth : 0x8000 / width;
short halfTexelV = isPow2(height) ? 0x8000 >> logHeight : 0x8000 / height;
short halfTexelW = isPow2(depth) ? 0x8000 >> logDepth : 0x8000 / depth;
mipmap.uHalf[0] = halfTexelU;
mipmap.uHalf[1] = halfTexelU;
mipmap.uHalf[2] = halfTexelU;
mipmap.uHalf[3] = halfTexelU;
mipmap.vHalf[0] = halfTexelV;
mipmap.vHalf[1] = halfTexelV;
mipmap.vHalf[2] = halfTexelV;
mipmap.vHalf[3] = halfTexelV;
mipmap.wHalf[0] = halfTexelW;
mipmap.wHalf[1] = halfTexelW;
mipmap.wHalf[2] = halfTexelW;
mipmap.wHalf[3] = halfTexelW;
mipmap.width[0] = width;
mipmap.width[1] = width;
mipmap.width[2] = width;
mipmap.width[3] = width;
mipmap.height[0] = height;
mipmap.height[1] = height;
mipmap.height[2] = height;
mipmap.height[3] = height;
mipmap.depth[0] = depth;
mipmap.depth[1] = depth;
mipmap.depth[2] = depth;
mipmap.depth[3] = depth;
mipmap.onePitchP[0] = 1;
mipmap.onePitchP[1] = pitchP;
mipmap.onePitchP[2] = 1;
mipmap.onePitchP[3] = pitchP;
mipmap.sliceP[0] = sliceP;
mipmap.sliceP[1] = sliceP;
}
}
textureType = type;
}
void Sampler::setTextureFilter(FilterType textureFilter)
{
this->textureFilter = (FilterType)min(textureFilter, maximumTextureFilterQuality);
}
void Sampler::setMipmapFilter(MipmapType mipmapFilter)
{
mipmapFilterState = (MipmapType)min(mipmapFilter, maximumMipmapFilterQuality);
}
void Sampler::setGatherEnable(bool enable)
{
gather = enable;
}
void Sampler::setAddressingModeU(AddressingMode addressingMode)
{
addressingModeU = addressingMode;
}
void Sampler::setAddressingModeV(AddressingMode addressingMode)
{
addressingModeV = addressingMode;
}
void Sampler::setAddressingModeW(AddressingMode addressingMode)
{
addressingModeW = addressingMode;
}
void Sampler::setReadSRGB(bool sRGB)
{
this->sRGB = sRGB;
}
void Sampler::setBorderColor(const Color<float> &borderColor)
{
// FIXME: Compact into generic function // FIXME: Clamp
short r = iround(0xFFFF * borderColor.r);
short g = iround(0xFFFF * borderColor.g);
short b = iround(0xFFFF * borderColor.b);
short a = iround(0xFFFF * borderColor.a);
texture.borderColor4[0][0] = texture.borderColor4[0][1] = texture.borderColor4[0][2] = texture.borderColor4[0][3] = r;
texture.borderColor4[1][0] = texture.borderColor4[1][1] = texture.borderColor4[1][2] = texture.borderColor4[1][3] = g;
texture.borderColor4[2][0] = texture.borderColor4[2][1] = texture.borderColor4[2][2] = texture.borderColor4[2][3] = b;
texture.borderColor4[3][0] = texture.borderColor4[3][1] = texture.borderColor4[3][2] = texture.borderColor4[3][3] = a;
texture.borderColorF[0][0] = texture.borderColorF[0][1] = texture.borderColorF[0][2] = texture.borderColorF[0][3] = borderColor.r;
texture.borderColorF[1][0] = texture.borderColorF[1][1] = texture.borderColorF[1][2] = texture.borderColorF[1][3] = borderColor.g;
texture.borderColorF[2][0] = texture.borderColorF[2][1] = texture.borderColorF[2][2] = texture.borderColorF[2][3] = borderColor.b;
texture.borderColorF[3][0] = texture.borderColorF[3][1] = texture.borderColorF[3][2] = texture.borderColorF[3][3] = borderColor.a;
}
void Sampler::setMaxAnisotropy(float maxAnisotropy)
{
texture.maxAnisotropy = maxAnisotropy;
}
void Sampler::setFilterQuality(FilterType maximumFilterQuality)
{
Sampler::maximumTextureFilterQuality = maximumFilterQuality;
}
void Sampler::setMipmapQuality(MipmapType maximumFilterQuality)
{
Sampler::maximumMipmapFilterQuality = maximumFilterQuality;
}
void Sampler::setMipmapLOD(float LOD)
{
texture.LOD = LOD;
exp2LOD = exp2(LOD);
}
bool Sampler::hasTexture() const
{
return textureType != TEXTURE_NULL;
}
bool Sampler::hasUnsignedTexture() const
{
return Surface::isUnsignedComponent(internalTextureFormat, 0) &&
Surface::isUnsignedComponent(internalTextureFormat, 1) &&
Surface::isUnsignedComponent(internalTextureFormat, 2) &&
Surface::isUnsignedComponent(internalTextureFormat, 3);
}
bool Sampler::hasCubeTexture() const
{
return textureType == TEXTURE_CUBE;
}
bool Sampler::hasVolumeTexture() const
{
return textureType == TEXTURE_3D;
}
const Texture &Sampler::getTextureData()
{
return texture;
}
MipmapType Sampler::mipmapFilter() const
{
if(mipmapFilterState != MIPMAP_NONE)
{
for(int i = 1; i < MIPMAP_LEVELS; i++)
{
if(texture.mipmap[0].buffer[0] != texture.mipmap[i].buffer[0])
{
return mipmapFilterState;
}
}
}
// Only one mipmap level
return MIPMAP_NONE;
}
bool Sampler::hasNPOTTexture() const
{
if(textureType == TEXTURE_NULL)
{
return false;
}
if(texture.mipmap[0].width[0] != texture.mipmap[0].onePitchP[1])
{
return true; // Shifting of the texture coordinates doesn't yield the correct address, so using multiply by pitch
}
return !isPow2(texture.mipmap[0].width[0]) || !isPow2(texture.mipmap[0].height[0]) || !isPow2(texture.mipmap[0].depth[0]);
}
TextureType Sampler::getTextureType() const
{
return textureType;
}
FilterType Sampler::getTextureFilter() const
{
FilterType filter = textureFilter;
if(gather && Surface::componentCount(internalTextureFormat) == 1)
{
filter = FILTER_GATHER;
}
if(textureType != TEXTURE_2D || texture.maxAnisotropy == 1.0f)
{
return (FilterType)min(filter, FILTER_LINEAR);
}
return filter;
}
AddressingMode Sampler::getAddressingModeU() const
{
if(hasCubeTexture())
{
return ADDRESSING_CLAMP;
}
return addressingModeU;
}
AddressingMode Sampler::getAddressingModeV() const
{
if(hasCubeTexture())
{
return ADDRESSING_CLAMP;
}
return addressingModeV;
}
AddressingMode Sampler::getAddressingModeW() const
{
if(hasCubeTexture())
{
return ADDRESSING_CLAMP;
}
return addressingModeW;
}
}