blob: 3861dc5de6916a46ff9492d3edd1f513c4a9603e [file] [log] [blame]
// SwiftShader Software Renderer
//
// Copyright(c) 2005-2013 TransGaming Inc.
//
// All rights reserved. No part of this software may be copied, distributed, transmitted,
// transcribed, stored in a retrieval system, translated into any human or computer
// language by any means, or disclosed to third parties without the explicit written
// agreement of TransGaming Inc. Without such an agreement, no rights or licenses, express
// or implied, including but not limited to any patent rights, are granted to you.
//
// Context.cpp: Implements the es2::Context class, managing all GL state and performing
// rendering operations. It is the GLES2 specific implementation of EGLContext.
#include "Context.h"
#include "main.h"
#include "mathutil.h"
#include "utilities.h"
#include "Fence.h"
#include "Program.h"
#include "Shader.h"
#include "Texture.h"
#include "Display.h"
#include "Surface.h"
#include "Common/Half.hpp"
#include <EGL/eglext.h>
#undef near
#undef far
namespace es2
{
int VertexAttribute::typeSize() const
{
switch (mType)
{
case GL_BYTE: return mSize * sizeof(GLbyte);
case GL_UNSIGNED_BYTE: return mSize * sizeof(GLubyte);
case GL_SHORT: return mSize * sizeof(GLshort);
case GL_UNSIGNED_SHORT: return mSize * sizeof(GLushort);
case GL_FIXED: return mSize * sizeof(GLfixed);
case GL_FLOAT: return mSize * sizeof(GLfloat);
default: UNREACHABLE(); return mSize * sizeof(GLfloat);
}
}
Context::Context(const egl::Config *config, const Context *shareContext) : mConfig(config)
{
sw::Context *context = new sw::Context();
device = new es2::Device(context);
setClearColor(0.0f, 0.0f, 0.0f, 0.0f);
mState.depthClearValue = 1.0f;
mState.stencilClearValue = 0;
mState.cullFace = false;
mState.cullMode = GL_BACK;
mState.frontFace = GL_CCW;
mState.depthTest = false;
mState.depthFunc = GL_LESS;
mState.blend = false;
mState.sourceBlendRGB = GL_ONE;
mState.sourceBlendAlpha = GL_ONE;
mState.destBlendRGB = GL_ZERO;
mState.destBlendAlpha = GL_ZERO;
mState.blendEquationRGB = GL_FUNC_ADD;
mState.blendEquationAlpha = GL_FUNC_ADD;
mState.blendColor.red = 0;
mState.blendColor.green = 0;
mState.blendColor.blue = 0;
mState.blendColor.alpha = 0;
mState.stencilTest = false;
mState.stencilFunc = GL_ALWAYS;
mState.stencilRef = 0;
mState.stencilMask = -1;
mState.stencilWritemask = -1;
mState.stencilBackFunc = GL_ALWAYS;
mState.stencilBackRef = 0;
mState.stencilBackMask = - 1;
mState.stencilBackWritemask = -1;
mState.stencilFail = GL_KEEP;
mState.stencilPassDepthFail = GL_KEEP;
mState.stencilPassDepthPass = GL_KEEP;
mState.stencilBackFail = GL_KEEP;
mState.stencilBackPassDepthFail = GL_KEEP;
mState.stencilBackPassDepthPass = GL_KEEP;
mState.polygonOffsetFill = false;
mState.polygonOffsetFactor = 0.0f;
mState.polygonOffsetUnits = 0.0f;
mState.sampleAlphaToCoverage = false;
mState.sampleCoverage = false;
mState.sampleCoverageValue = 1.0f;
mState.sampleCoverageInvert = false;
mState.scissorTest = false;
mState.dither = true;
mState.generateMipmapHint = GL_DONT_CARE;
mState.fragmentShaderDerivativeHint = GL_DONT_CARE;
mState.lineWidth = 1.0f;
mState.viewportX = 0;
mState.viewportY = 0;
mState.viewportWidth = config->mDisplayMode.width;
mState.viewportHeight = config->mDisplayMode.height;
mState.zNear = 0.0f;
mState.zFar = 1.0f;
mState.scissorX = 0;
mState.scissorY = 0;
mState.scissorWidth = config->mDisplayMode.width;
mState.scissorHeight = config->mDisplayMode.height;
mState.colorMaskRed = true;
mState.colorMaskGreen = true;
mState.colorMaskBlue = true;
mState.colorMaskAlpha = true;
mState.depthMask = true;
mState.activeSampler = 0;
mState.elementArrayBuffer = 0;
mState.packAlignment = 4;
mState.unpackAlignment = 4;
mState.program = 0;
mState.colorBuffer = 0;
mState.depthBuffer = 0;
mState.stencilBuffer = 0;
mInvalidEnum = false;
mInvalidValue = false;
mInvalidOperation = false;
mOutOfMemory = false;
mInvalidFramebufferOperation = false;
mHasBeenCurrent = false;
markAllStateDirty();
}
Context::~Context()
{
}
void Context::makeCurrent(egl::Surface *surface)
{
if(!mHasBeenCurrent)
{
mState.viewportX = 0;
mState.viewportY = 0;
mState.viewportWidth = surface->getWidth();
mState.viewportHeight = surface->getHeight();
mState.scissorX = 0;
mState.scissorY = 0;
mState.scissorWidth = surface->getWidth();
mState.scissorHeight = surface->getHeight();
mHasBeenCurrent = true;
}
markAllStateDirty();
}
void Context::destroy()
{
delete this;
}
int Context::getClientVersion()
{
return 2;
}
// This function will set all of the state-related dirty flags, so that all state is set during next pre-draw.
void Context::markAllStateDirty()
{
mAppliedProgramSerial = 0;
mDepthStateDirty = true;
mMaskStateDirty = true;
mBlendStateDirty = true;
mStencilStateDirty = true;
mPolygonOffsetStateDirty = true;
mSampleStateDirty = true;
mDitherStateDirty = true;
mFrontFaceDirty = true;
}
void Context::setClearColor(float red, float green, float blue, float alpha)
{
mState.colorClearValue.red = red;
mState.colorClearValue.green = green;
mState.colorClearValue.blue = blue;
mState.colorClearValue.alpha = alpha;
}
void Context::setClearDepth(float depth)
{
mState.depthClearValue = depth;
}
void Context::setClearStencil(int stencil)
{
mState.stencilClearValue = stencil;
}
void Context::setCullFace(bool enabled)
{
mState.cullFace = enabled;
}
bool Context::isCullFaceEnabled() const
{
return mState.cullFace;
}
void Context::setCullMode(GLenum mode)
{
mState.cullMode = mode;
}
void Context::setFrontFace(GLenum front)
{
if(mState.frontFace != front)
{
mState.frontFace = front;
mFrontFaceDirty = true;
}
}
void Context::setDepthTest(bool enabled)
{
if(mState.depthTest != enabled)
{
mState.depthTest = enabled;
mDepthStateDirty = true;
}
}
bool Context::isDepthTestEnabled() const
{
return mState.depthTest;
}
void Context::setDepthFunc(GLenum depthFunc)
{
if(mState.depthFunc != depthFunc)
{
mState.depthFunc = depthFunc;
mDepthStateDirty = true;
}
}
void Context::setDepthRange(float zNear, float zFar)
{
mState.zNear = zNear;
mState.zFar = zFar;
}
void Context::setBlend(bool enabled)
{
if(mState.blend != enabled)
{
mState.blend = enabled;
mBlendStateDirty = true;
}
}
bool Context::isBlendEnabled() const
{
return mState.blend;
}
void Context::setBlendFactors(GLenum sourceRGB, GLenum destRGB, GLenum sourceAlpha, GLenum destAlpha)
{
if(mState.sourceBlendRGB != sourceRGB ||
mState.sourceBlendAlpha != sourceAlpha ||
mState.destBlendRGB != destRGB ||
mState.destBlendAlpha != destAlpha)
{
mState.sourceBlendRGB = sourceRGB;
mState.destBlendRGB = destRGB;
mState.sourceBlendAlpha = sourceAlpha;
mState.destBlendAlpha = destAlpha;
mBlendStateDirty = true;
}
}
void Context::setBlendColor(float red, float green, float blue, float alpha)
{
if(mState.blendColor.red != red ||
mState.blendColor.green != green ||
mState.blendColor.blue != blue ||
mState.blendColor.alpha != alpha)
{
mState.blendColor.red = red;
mState.blendColor.green = green;
mState.blendColor.blue = blue;
mState.blendColor.alpha = alpha;
mBlendStateDirty = true;
}
}
void Context::setBlendEquation(GLenum rgbEquation, GLenum alphaEquation)
{
if(mState.blendEquationRGB != rgbEquation ||
mState.blendEquationAlpha != alphaEquation)
{
mState.blendEquationRGB = rgbEquation;
mState.blendEquationAlpha = alphaEquation;
mBlendStateDirty = true;
}
}
void Context::setStencilTest(bool enabled)
{
if(mState.stencilTest != enabled)
{
mState.stencilTest = enabled;
mStencilStateDirty = true;
}
}
bool Context::isStencilTestEnabled() const
{
return mState.stencilTest;
}
void Context::setStencilParams(GLenum stencilFunc, GLint stencilRef, GLuint stencilMask)
{
if(mState.stencilFunc != stencilFunc ||
mState.stencilRef != stencilRef ||
mState.stencilMask != stencilMask)
{
mState.stencilFunc = stencilFunc;
mState.stencilRef = (stencilRef > 0) ? stencilRef : 0;
mState.stencilMask = stencilMask;
mStencilStateDirty = true;
}
}
void Context::setStencilBackParams(GLenum stencilBackFunc, GLint stencilBackRef, GLuint stencilBackMask)
{
if(mState.stencilBackFunc != stencilBackFunc ||
mState.stencilBackRef != stencilBackRef ||
mState.stencilBackMask != stencilBackMask)
{
mState.stencilBackFunc = stencilBackFunc;
mState.stencilBackRef = (stencilBackRef > 0) ? stencilBackRef : 0;
mState.stencilBackMask = stencilBackMask;
mStencilStateDirty = true;
}
}
void Context::setStencilWritemask(GLuint stencilWritemask)
{
if(mState.stencilWritemask != stencilWritemask)
{
mState.stencilWritemask = stencilWritemask;
mStencilStateDirty = true;
}
}
void Context::setStencilBackWritemask(GLuint stencilBackWritemask)
{
if(mState.stencilBackWritemask != stencilBackWritemask)
{
mState.stencilBackWritemask = stencilBackWritemask;
mStencilStateDirty = true;
}
}
void Context::setStencilOperations(GLenum stencilFail, GLenum stencilPassDepthFail, GLenum stencilPassDepthPass)
{
if(mState.stencilFail != stencilFail ||
mState.stencilPassDepthFail != stencilPassDepthFail ||
mState.stencilPassDepthPass != stencilPassDepthPass)
{
mState.stencilFail = stencilFail;
mState.stencilPassDepthFail = stencilPassDepthFail;
mState.stencilPassDepthPass = stencilPassDepthPass;
mStencilStateDirty = true;
}
}
void Context::setStencilBackOperations(GLenum stencilBackFail, GLenum stencilBackPassDepthFail, GLenum stencilBackPassDepthPass)
{
if(mState.stencilBackFail != stencilBackFail ||
mState.stencilBackPassDepthFail != stencilBackPassDepthFail ||
mState.stencilBackPassDepthPass != stencilBackPassDepthPass)
{
mState.stencilBackFail = stencilBackFail;
mState.stencilBackPassDepthFail = stencilBackPassDepthFail;
mState.stencilBackPassDepthPass = stencilBackPassDepthPass;
mStencilStateDirty = true;
}
}
void Context::setPolygonOffsetFill(bool enabled)
{
if(mState.polygonOffsetFill != enabled)
{
mState.polygonOffsetFill = enabled;
mPolygonOffsetStateDirty = true;
}
}
bool Context::isPolygonOffsetFillEnabled() const
{
return mState.polygonOffsetFill;
}
void Context::setPolygonOffsetParams(GLfloat factor, GLfloat units)
{
if(mState.polygonOffsetFactor != factor ||
mState.polygonOffsetUnits != units)
{
mState.polygonOffsetFactor = factor;
mState.polygonOffsetUnits = units;
mPolygonOffsetStateDirty = true;
}
}
void Context::setSampleAlphaToCoverage(bool enabled)
{
if(mState.sampleAlphaToCoverage != enabled)
{
mState.sampleAlphaToCoverage = enabled;
mSampleStateDirty = true;
}
}
bool Context::isSampleAlphaToCoverageEnabled() const
{
return mState.sampleAlphaToCoverage;
}
void Context::setSampleCoverage(bool enabled)
{
if(mState.sampleCoverage != enabled)
{
mState.sampleCoverage = enabled;
mSampleStateDirty = true;
}
}
bool Context::isSampleCoverageEnabled() const
{
return mState.sampleCoverage;
}
void Context::setSampleCoverageParams(GLclampf value, bool invert)
{
if(mState.sampleCoverageValue != value ||
mState.sampleCoverageInvert != invert)
{
mState.sampleCoverageValue = value;
mState.sampleCoverageInvert = invert;
mSampleStateDirty = true;
}
}
void Context::setScissorTest(bool enabled)
{
mState.scissorTest = enabled;
}
bool Context::isScissorTestEnabled() const
{
return mState.scissorTest;
}
void Context::setDither(bool enabled)
{
if(mState.dither != enabled)
{
mState.dither = enabled;
mDitherStateDirty = true;
}
}
bool Context::isDitherEnabled() const
{
return mState.dither;
}
void Context::setLineWidth(GLfloat width)
{
mState.lineWidth = width;
device->setLineWidth(clamp(width, ALIASED_LINE_WIDTH_RANGE_MIN, ALIASED_LINE_WIDTH_RANGE_MAX));
}
void Context::setGenerateMipmapHint(GLenum hint)
{
mState.generateMipmapHint = hint;
}
void Context::setFragmentShaderDerivativeHint(GLenum hint)
{
mState.fragmentShaderDerivativeHint = hint;
// TODO: Propagate the hint to shader translator so we can write
// ddx, ddx_coarse, or ddx_fine depending on the hint.
// Ignore for now. It is valid for implementations to ignore hint.
}
void Context::setViewportParams(GLint x, GLint y, GLsizei width, GLsizei height)
{
mState.viewportX = x;
mState.viewportY = y;
mState.viewportWidth = width;
mState.viewportHeight = height;
}
void Context::setScissorParams(GLint x, GLint y, GLsizei width, GLsizei height)
{
mState.scissorX = x;
mState.scissorY = y;
mState.scissorWidth = width;
mState.scissorHeight = height;
}
void Context::setColorMask(bool red, bool green, bool blue, bool alpha)
{
if(mState.colorMaskRed != red || mState.colorMaskGreen != green ||
mState.colorMaskBlue != blue || mState.colorMaskAlpha != alpha)
{
mState.colorMaskRed = red;
mState.colorMaskGreen = green;
mState.colorMaskBlue = blue;
mState.colorMaskAlpha = alpha;
mMaskStateDirty = true;
}
}
void Context::setDepthMask(bool mask)
{
if(mState.depthMask != mask)
{
mState.depthMask = mask;
mMaskStateDirty = true;
}
}
void Context::setActiveSampler(unsigned int active)
{
mState.activeSampler = active;
}
void Context::setEnableVertexAttribArray(unsigned int attribNum, bool enabled)
{
mState.vertexAttribute[attribNum].mArrayEnabled = enabled;
}
const VertexAttribute &Context::getVertexAttribState(unsigned int attribNum)
{
return mState.vertexAttribute[attribNum];
}
void Context::setVertexAttribState(unsigned int attribNum, sw::Resource *buffer, GLint size, GLenum type, bool normalized,
GLsizei stride, intptr_t offset)
{
mState.vertexAttribute[attribNum].buffer = buffer;
mState.vertexAttribute[attribNum].mSize = size;
mState.vertexAttribute[attribNum].mType = type;
mState.vertexAttribute[attribNum].mNormalized = normalized;
mState.vertexAttribute[attribNum].mStride = stride;
mState.vertexAttribute[attribNum].mOffset = offset;
}
void Context::setPackAlignment(GLint alignment)
{
mState.packAlignment = alignment;
}
GLint Context::getPackAlignment() const
{
return mState.packAlignment;
}
void Context::setUnpackAlignment(GLint alignment)
{
mState.unpackAlignment = alignment;
}
GLint Context::getUnpackAlignment() const
{
return mState.unpackAlignment;
}
// Applies the render target surface, depth stencil surface, viewport rectangle and scissor rectangle
bool Context::applyRenderTarget()
{
egl::Image *renderTarget = mState.colorBuffer;//framebuffer->getRenderTarget();
device->setRenderTarget(renderTarget);
//if(renderTarget) renderTarget->release();
egl::Image *depthStencil = mState.depthBuffer;//framebuffer->getDepthStencil();
device->setDepthStencilSurface(depthStencil);
//if(depthStencil) depthStencil->release();
Viewport viewport;
float zNear = clamp01(mState.zNear);
float zFar = clamp01(mState.zFar);
viewport.x0 = mState.viewportX;
viewport.y0 = mState.viewportY;
viewport.width = mState.viewportWidth;
viewport.height = mState.viewportHeight;
viewport.minZ = zNear;
viewport.maxZ = zFar;
device->setViewport(viewport);
if(mState.scissorTest)
{
sw::Rect scissor = {mState.scissorX, mState.scissorY, mState.scissorX + mState.scissorWidth, mState.scissorY + mState.scissorHeight};
scissor.clip(0, 0, renderTarget->getWidth(), renderTarget->getHeight());
device->setScissorRect(scissor);
device->setScissorEnable(true);
}
else
{
device->setScissorEnable(false);
}
Program *program = mState.program;
if(program)
{
GLfloat nearFarDiff[3] = {zNear, zFar, zFar - zNear};
program->setUniform1fv(program->getUniformLocation("gl_DepthRange.near"), 1, &nearFarDiff[0]);
program->setUniform1fv(program->getUniformLocation("gl_DepthRange.far"), 1, &nearFarDiff[1]);
program->setUniform1fv(program->getUniformLocation("gl_DepthRange.diff"), 1, &nearFarDiff[2]);
}
return true;
}
// Applies the fixed-function state (culling, depth test, alpha blending, stenciling, etc)
void Context::applyState(GLenum drawMode)
{
if(mState.cullFace)
{
device->setCullMode(rad2sw::ConvertCullMode(mState.cullMode, mState.frontFace));
}
else
{
device->setCullMode(sw::CULL_NONE);
}
if(mDepthStateDirty)
{
if(mState.depthTest)
{
device->setDepthBufferEnable(true);
device->setDepthCompare(rad2sw::ConvertDepthComparison(mState.depthFunc));
}
else
{
device->setDepthBufferEnable(false);
}
mDepthStateDirty = false;
}
if(mBlendStateDirty)
{
if(mState.blend)
{
device->setAlphaBlendEnable(true);
device->setSeparateAlphaBlendEnable(true);
device->setBlendConstant(rad2sw::ConvertColor(mState.blendColor));
device->setSourceBlendFactor(rad2sw::ConvertBlendFunc(mState.sourceBlendRGB));
device->setDestBlendFactor(rad2sw::ConvertBlendFunc(mState.destBlendRGB));
device->setBlendOperation(rad2sw::ConvertBlendOp(mState.blendEquationRGB));
device->setSourceBlendFactorAlpha(rad2sw::ConvertBlendFunc(mState.sourceBlendAlpha));
device->setDestBlendFactorAlpha(rad2sw::ConvertBlendFunc(mState.destBlendAlpha));
device->setBlendOperationAlpha(rad2sw::ConvertBlendOp(mState.blendEquationAlpha));
}
else
{
device->setAlphaBlendEnable(false);
}
mBlendStateDirty = false;
}
if(mStencilStateDirty || mFrontFaceDirty)
{
if(mState.stencilTest && mState.stencilBuffer)
{
device->setStencilEnable(true);
device->setTwoSidedStencil(true);
if(mState.stencilWritemask != mState.stencilBackWritemask ||
mState.stencilRef != mState.stencilBackRef ||
mState.stencilMask != mState.stencilBackMask)
{
ERR("Separate front/back stencil writemasks, reference values, or stencil mask values are invalid under WebGL.");
return rad::error(GL_INVALID_OPERATION);
}
// get the maximum size of the stencil ref
egl::Image *stencilbuffer = mState.stencilBuffer;
GLuint maxStencil = (1 << sw2rad::GetStencilSize(stencilbuffer->getInternalFormat())) - 1;
if(mState.frontFace == GL_CCW)
{
device->setStencilWriteMask(mState.stencilWritemask);
device->setStencilCompare(rad2sw::ConvertStencilComparison(mState.stencilFunc));
device->setStencilReference((mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil);
device->setStencilMask(mState.stencilMask);
device->setStencilFailOperation(rad2sw::ConvertStencilOp(mState.stencilFail));
device->setStencilZFailOperation(rad2sw::ConvertStencilOp(mState.stencilPassDepthFail));
device->setStencilPassOperation(rad2sw::ConvertStencilOp(mState.stencilPassDepthPass));
device->setStencilWriteMaskCCW(mState.stencilBackWritemask);
device->setStencilCompareCCW(rad2sw::ConvertStencilComparison(mState.stencilBackFunc));
device->setStencilReferenceCCW((mState.stencilBackRef < (GLint)maxStencil) ? mState.stencilBackRef : maxStencil);
device->setStencilMaskCCW(mState.stencilBackMask);
device->setStencilFailOperationCCW(rad2sw::ConvertStencilOp(mState.stencilBackFail));
device->setStencilZFailOperationCCW(rad2sw::ConvertStencilOp(mState.stencilBackPassDepthFail));
device->setStencilPassOperationCCW(rad2sw::ConvertStencilOp(mState.stencilBackPassDepthPass));
}
else
{
device->setStencilWriteMaskCCW(mState.stencilWritemask);
device->setStencilCompareCCW(rad2sw::ConvertStencilComparison(mState.stencilFunc));
device->setStencilReferenceCCW((mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil);
device->setStencilMaskCCW(mState.stencilMask);
device->setStencilFailOperationCCW(rad2sw::ConvertStencilOp(mState.stencilFail));
device->setStencilZFailOperationCCW(rad2sw::ConvertStencilOp(mState.stencilPassDepthFail));
device->setStencilPassOperationCCW(rad2sw::ConvertStencilOp(mState.stencilPassDepthPass));
device->setStencilWriteMask(mState.stencilBackWritemask);
device->setStencilCompare(rad2sw::ConvertStencilComparison(mState.stencilBackFunc));
device->setStencilReference((mState.stencilBackRef < (GLint)maxStencil) ? mState.stencilBackRef : maxStencil);
device->setStencilMask(mState.stencilBackMask);
device->setStencilFailOperation(rad2sw::ConvertStencilOp(mState.stencilBackFail));
device->setStencilZFailOperation(rad2sw::ConvertStencilOp(mState.stencilBackPassDepthFail));
device->setStencilPassOperation(rad2sw::ConvertStencilOp(mState.stencilBackPassDepthPass));
}
}
else
{
device->setStencilEnable(false);
}
mStencilStateDirty = false;
mFrontFaceDirty = false;
}
if(mMaskStateDirty)
{
device->setColorWriteMask(0, rad2sw::ConvertColorMask(mState.colorMaskRed, mState.colorMaskGreen, mState.colorMaskBlue, mState.colorMaskAlpha));
device->setDepthWriteEnable(mState.depthMask);
mMaskStateDirty = false;
}
if(mPolygonOffsetStateDirty)
{
if(mState.polygonOffsetFill)
{
egl::Image *depthbuffer = mState.depthBuffer;
if(depthbuffer)
{
device->setSlopeDepthBias(mState.polygonOffsetFactor);
float depthBias = ldexp(mState.polygonOffsetUnits, -(int)(sw2rad::GetDepthSize(depthbuffer->getInternalFormat())));
device->setDepthBias(depthBias);
}
}
else
{
device->setSlopeDepthBias(0);
device->setDepthBias(0);
}
mPolygonOffsetStateDirty = false;
}
if(mSampleStateDirty)
{
if(mState.sampleAlphaToCoverage)
{
device->setTransparencyAntialiasing(sw::TRANSPARENCY_ALPHA_TO_COVERAGE);
}
else
{
device->setTransparencyAntialiasing(sw::TRANSPARENCY_NONE);
}
if(mState.sampleCoverage)
{
unsigned int mask = 0;
if(mState.sampleCoverageValue != 0)
{
int width = mState.colorBuffer->getWidth();
int height = mState.colorBuffer->getHeight();
int samples = mState.colorBuffer->getMultiSampleDepth();
float threshold = 0.5f;
for(int i = 0; i < samples; i++)
{
mask <<= 1;
if((i + 1) * mState.sampleCoverageValue >= threshold)
{
threshold += 1.0f;
mask |= 1;
}
}
}
if(mState.sampleCoverageInvert)
{
mask = ~mask;
}
device->setMultiSampleMask(mask);
}
else
{
device->setMultiSampleMask(0xFFFFFFFF);
}
mSampleStateDirty = false;
}
if(mDitherStateDirty)
{
// UNIMPLEMENTED(); // FIXME
mDitherStateDirty = false;
}
}
struct TranslatedAttribute
{
sw::StreamType type;
int count;
bool normalized;
unsigned int offset;
unsigned int stride; // 0 means not to advance the read pointer at all
sw::Resource *vertexBuffer;
};
GLenum Context::applyVertexBuffer(GLint base, GLint first)
{
const VertexAttributeArray &attribs = mState.vertexAttribute;
Program *program = mState.program;
device->resetInputStreams(false);
for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
if(program->getAttributeStream(i) != -1 && attribs[i].mArrayEnabled)
{
unsigned int offset = first * attribs[i].stride() + attribs[i].mOffset;
unsigned int stride = attribs[i].stride();
sw::StreamType type;
switch(attribs[i].mType)
{
case GL_BYTE: type = sw::STREAMTYPE_SBYTE; break;
case GL_UNSIGNED_BYTE: type = sw::STREAMTYPE_BYTE; break;
case GL_SHORT: type = sw::STREAMTYPE_SHORT; break;
case GL_UNSIGNED_SHORT: type = sw::STREAMTYPE_USHORT; break;
case GL_FIXED: type = sw::STREAMTYPE_FIXED; break;
case GL_FLOAT: type = sw::STREAMTYPE_FLOAT; break;
default: UNREACHABLE(); type = sw::STREAMTYPE_FLOAT; break;
}
sw::Resource *resource = attribs[i].buffer;
const void *buffer = (char*)resource->data() + offset;
buffer = (char*)buffer + stride * base;
sw::Stream attribute(resource, buffer, stride);
attribute.type = type;
attribute.count = attribs[i].mSize;
attribute.normalized = attribs[i].mNormalized;
int stream = program->getAttributeStream(i);
device->setInputStream(stream, attribute);
}
}
return GL_NO_ERROR;
}
void Context::applyIndexBuffer()
{
device->setIndexBuffer(mState.elementArrayBuffer);
}
// Applies the shaders and shader constants
void Context::applyShaders()
{
Program *programObject = mState.program;
sw::VertexShader *vertexShader = programObject->getVertexShader();
sw::PixelShader *pixelShader = programObject->getPixelShader();
device->setVertexShader(vertexShader);
device->setPixelShader(pixelShader);
if(programObject->getSerial() != mAppliedProgramSerial)
{
programObject->dirtyAllUniforms();
mAppliedProgramSerial = programObject->getSerial();
}
programObject->applyUniforms();
}
void Context::applyTexture(sw::SamplerType type, int index, Texture *baseTexture)
{
//Program *program = mState.program;
int sampler = (type == sw::SAMPLER_PIXEL) ? index : 16 + index;
bool textureUsed = true;
//if(type == sw::SAMPLER_PIXEL)
//{
// textureUsed = program->getPixelShader()->usesSampler(index);
//}
//else if(type == sw::SAMPLER_VERTEX)
//{
// textureUsed = program->getVertexShader()->usesSampler(index);
//}
//else UNREACHABLE();
// GLenum wrapS = baseTexture->getWrapS();
// GLenum wrapT = baseTexture->getWrapT();
// GLenum texFilter = baseTexture->getMinFilter();
// GLenum magFilter = baseTexture->getMagFilter();
// GLenum maxAnisotropy = baseTexture->getMaxAnisotropy();
//
// device->setAddressingModeU(type, index, rad2sw::ConvertTextureWrap(wrapS));
// device->setAddressingModeV(type, index, rad2sw::ConvertTextureWrap(wrapT));
//
// sw::FilterType minFilter;
// sw::MipmapType mipFilter;
// rad2sw::ConvertMinFilter(texFilter, &minFilter, &mipFilter, maxAnisotropy);
//// ASSERT(minFilter == rad2sw::ConvertMagFilter(magFilter));
device->setTextureFilter(type, index, sw::FILTER_LINEAR);
// device->setTextureFilter(type, index, rad2sw::ConvertMagFilter(magFilter));
device->setMipmapFilter(type, index, sw::MIPMAP_NONE);
device->setMaxAnisotropy(type, index, 1.0f);
sw::Resource *resource = 0;
if(baseTexture && textureUsed)
{
resource = baseTexture->getResource();
}
device->setTextureResource(sampler, resource);
if(baseTexture && textureUsed)
{
int levelCount = baseTexture->getLevelCount();
if(baseTexture->getTarget() == GL_TEXTURE_2D || baseTexture->getTarget() == GL_TEXTURE_EXTERNAL_OES)
{
Texture2D *texture = static_cast<Texture2D*>(baseTexture);
for(int mipmapLevel = 0; mipmapLevel < MIPMAP_LEVELS; mipmapLevel++)
{
int surfaceLevel = mipmapLevel;
if(surfaceLevel < 0)
{
surfaceLevel = 0;
}
else if(surfaceLevel >= levelCount)
{
surfaceLevel = levelCount - 1;
}
egl::Image *surface = texture->getImage(surfaceLevel);
device->setTextureLevel(sampler, 0, mipmapLevel, surface, sw::TEXTURE_2D);
}
}
else if(baseTexture->getTarget() == GL_TEXTURE_CUBE_MAP)
{
for(int face = 0; face < 6; face++)
{
TextureCubeMap *cubeTexture = static_cast<TextureCubeMap*>(baseTexture);
for(int mipmapLevel = 0; mipmapLevel < MIPMAP_LEVELS; mipmapLevel++)
{
int surfaceLevel = mipmapLevel;
if(surfaceLevel < 0)
{
surfaceLevel = 0;
}
else if(surfaceLevel >= levelCount)
{
surfaceLevel = levelCount - 1;
}
egl::Image *surface = cubeTexture->getImage(face, surfaceLevel);
device->setTextureLevel(sampler, face, mipmapLevel, surface, sw::TEXTURE_CUBE);
}
}
}
else UNIMPLEMENTED();
}
else
{
device->setTextureLevel(sampler, 0, 0, 0, sw::TEXTURE_NULL);
}
}
static std::size_t typeSize(GLenum type)
{
switch(type)
{
case GL_UNSIGNED_INT: return sizeof(GLuint);
case GL_UNSIGNED_SHORT: return sizeof(GLushort);
case GL_UNSIGNED_BYTE: return sizeof(GLubyte);
default: UNREACHABLE(); return sizeof(GLushort);
}
}
void Context::drawArrays(GLenum mode, GLint first, GLsizei count)
{
if(!mState.program)
{
return rad::error(GL_INVALID_OPERATION);
}
PrimitiveType primitiveType;
int primitiveCount;
if(!rad2sw::ConvertPrimitiveType(mode, count, primitiveType, primitiveCount))
return rad::error(GL_INVALID_ENUM);
if(primitiveCount <= 0)
{
return;
}
if(!applyRenderTarget())
{
return;
}
applyState(mode);
GLenum err = applyVertexBuffer(0, first);
if(err != GL_NO_ERROR)
{
return rad::error(err);
}
applyShaders();
if(!mState.program->validateSamplers(false))
{
return rad::error(GL_INVALID_OPERATION);
}
if(!cullSkipsDraw(mode))
{
device->drawPrimitive(primitiveType, primitiveCount);
}
}
void Context::drawElements(GLenum mode, GLsizei count, GLenum type, intptr_t offset)
{
if(!mState.program || !mState.elementArrayBuffer)
{
return rad::error(GL_INVALID_OPERATION);
}
PrimitiveType primitiveType;
int primitiveCount;
if(!rad2sw::ConvertPrimitiveType(mode, count, primitiveType, primitiveCount))
return rad::error(GL_INVALID_ENUM);
if(primitiveCount <= 0)
{
return;
}
if(!applyRenderTarget())
{
return;
}
applyState(mode);
applyIndexBuffer();
GLenum err = applyVertexBuffer(0, 0);
if(err != GL_NO_ERROR)
{
return rad::error(err);
}
applyShaders();
//applyTextures();
if(!mState.program->validateSamplers(false))
{
return rad::error(GL_INVALID_OPERATION);
}
if(!cullSkipsDraw(mode))
{
device->drawIndexedPrimitive(primitiveType, offset, primitiveCount, typeSize(type));
}
}
void Context::finish()
{
device->finish();
}
void Context::flush()
{
// We don't queue anything without processing it as fast as possible
}
void Context::recordInvalidEnum()
{
mInvalidEnum = true;
}
void Context::recordInvalidValue()
{
mInvalidValue = true;
}
void Context::recordInvalidOperation()
{
mInvalidOperation = true;
}
void Context::recordOutOfMemory()
{
mOutOfMemory = true;
}
void Context::recordInvalidFramebufferOperation()
{
mInvalidFramebufferOperation = true;
}
// Get one of the recorded errors and clear its flag, if any.
// [OpenGL ES 2.0.24] section 2.5 page 13.
GLenum Context::getError()
{
if(mInvalidEnum)
{
mInvalidEnum = false;
return GL_INVALID_ENUM;
}
if(mInvalidValue)
{
mInvalidValue = false;
return GL_INVALID_VALUE;
}
if(mInvalidOperation)
{
mInvalidOperation = false;
return GL_INVALID_OPERATION;
}
if(mOutOfMemory)
{
mOutOfMemory = false;
return GL_OUT_OF_MEMORY;
}
if(mInvalidFramebufferOperation)
{
mInvalidFramebufferOperation = false;
return GL_INVALID_FRAMEBUFFER_OPERATION;
}
return GL_NO_ERROR;
}
int Context::getSupportedMultiSampleDepth(sw::Format format, int requested)
{
if(requested <= 1)
{
return 1;
}
if(requested == 2)
{
return 2;
}
return 4;
}
bool Context::cullSkipsDraw(GLenum drawMode)
{
return mState.cullFace && mState.cullMode == GL_FRONT_AND_BACK && isTriangleMode(drawMode);
}
bool Context::isTriangleMode(GLenum drawMode)
{
switch (drawMode)
{
case GL_TRIANGLES:
case GL_TRIANGLE_FAN:
case GL_TRIANGLE_STRIP:
return true;
case GL_POINTS:
case GL_LINES:
case GL_LINE_LOOP:
case GL_LINE_STRIP:
return false;
default: UNREACHABLE();
}
return false;
}
Device *Context::getDevice()
{
return device;
}
}