blob: f839d6b852e21a25977f14a301e9ed5e97eb721c [file] [log] [blame] [edit]
// Copyright 2018 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "VkDescriptorSetLayout.hpp"
#include "VkBuffer.hpp"
#include "VkBufferView.hpp"
#include "VkDescriptorSet.hpp"
#include "VkImageView.hpp"
#include "VkSampler.hpp"
#include "Reactor/Reactor.hpp"
#include <algorithm>
#include <cstddef>
#include <cstring>
namespace vk {
static bool UsesImmutableSamplers(const VkDescriptorSetLayoutBinding &binding)
{
return (((binding.descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) ||
(binding.descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)) &&
(binding.pImmutableSamplers != nullptr));
}
DescriptorSetLayout::DescriptorSetLayout(const VkDescriptorSetLayoutCreateInfo *pCreateInfo, void *mem)
: flags(pCreateInfo->flags)
, bindings(reinterpret_cast<Binding *>(mem))
{
// The highest binding number determines the size of the direct-indexed array.
bindingsArraySize = 0;
for(uint32_t i = 0; i < pCreateInfo->bindingCount; i++)
{
bindingsArraySize = std::max(bindingsArraySize, pCreateInfo->pBindings[i].binding + 1);
}
uint8_t *immutableSamplersStorage = static_cast<uint8_t *>(mem) + bindingsArraySize * sizeof(Binding);
// pCreateInfo->pBindings[] can have gaps in the binding numbers, so first initialize the entire bindings array.
// "Bindings that are not specified have a descriptorCount and stageFlags of zero, and the value of descriptorType is undefined."
for(uint32_t i = 0; i < bindingsArraySize; i++)
{
bindings[i].descriptorType = VK_DESCRIPTOR_TYPE_SAMPLER;
bindings[i].descriptorCount = 0;
bindings[i].immutableSamplers = nullptr;
}
for(uint32_t i = 0; i < pCreateInfo->bindingCount; i++)
{
const auto &srcBinding = pCreateInfo->pBindings[i];
auto &dstBinding = bindings[srcBinding.binding];
dstBinding.descriptorType = srcBinding.descriptorType;
dstBinding.descriptorCount = srcBinding.descriptorCount;
if(UsesImmutableSamplers(srcBinding))
{
size_t immutableSamplersSize = dstBinding.descriptorCount * sizeof(VkSampler);
dstBinding.immutableSamplers = reinterpret_cast<const vk::Sampler **>(immutableSamplersStorage);
immutableSamplersStorage += immutableSamplersSize;
for(uint32_t i = 0; i < dstBinding.descriptorCount; i++)
{
dstBinding.immutableSamplers[i] = vk::Cast(srcBinding.pImmutableSamplers[i]);
}
}
}
uint32_t offset = 0;
for(uint32_t i = 0; i < bindingsArraySize; i++)
{
bindings[i].offset = offset;
offset += bindings[i].descriptorCount * GetDescriptorSize(bindings[i].descriptorType);
}
ASSERT_MSG(offset == getDescriptorSetDataSize(), "offset: %d, size: %d", int(offset), int(getDescriptorSetDataSize()));
}
void DescriptorSetLayout::destroy(const VkAllocationCallbacks *pAllocator)
{
vk::freeHostMemory(bindings, pAllocator); // This allocation also contains pImmutableSamplers
}
size_t DescriptorSetLayout::ComputeRequiredAllocationSize(const VkDescriptorSetLayoutCreateInfo *pCreateInfo)
{
uint32_t bindingsArraySize = 0;
uint32_t immutableSamplerCount = 0;
for(uint32_t i = 0; i < pCreateInfo->bindingCount; i++)
{
bindingsArraySize = std::max(bindingsArraySize, pCreateInfo->pBindings[i].binding + 1);
if(UsesImmutableSamplers(pCreateInfo->pBindings[i]))
{
immutableSamplerCount += pCreateInfo->pBindings[i].descriptorCount;
}
}
return bindingsArraySize * sizeof(Binding) +
immutableSamplerCount * sizeof(VkSampler);
}
uint32_t DescriptorSetLayout::GetDescriptorSize(VkDescriptorType type)
{
switch(type)
{
case VK_DESCRIPTOR_TYPE_SAMPLER:
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
return static_cast<uint32_t>(sizeof(SampledImageDescriptor));
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
return static_cast<uint32_t>(sizeof(StorageImageDescriptor));
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
return static_cast<uint32_t>(sizeof(BufferDescriptor));
default:
UNSUPPORTED("Unsupported Descriptor Type: %d", int(type));
return 0;
}
}
bool DescriptorSetLayout::IsDescriptorDynamic(VkDescriptorType type)
{
return type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC;
}
size_t DescriptorSetLayout::getDescriptorSetAllocationSize() const
{
// vk::DescriptorSet has a header with a pointer to the layout.
return sw::align<alignof(DescriptorSet)>(OFFSET(DescriptorSet, data) + getDescriptorSetDataSize());
}
size_t DescriptorSetLayout::getDescriptorSetDataSize() const
{
size_t size = 0;
for(uint32_t i = 0; i < bindingsArraySize; i++)
{
size += bindings[i].descriptorCount * GetDescriptorSize(bindings[i].descriptorType);
}
return size;
}
void DescriptorSetLayout::initialize(DescriptorSet *descriptorSet)
{
ASSERT(descriptorSet->header.layout == nullptr);
// Use a pointer to this descriptor set layout as the descriptor set's header
descriptorSet->header.layout = this;
uint8_t *mem = descriptorSet->data;
for(uint32_t i = 0; i < bindingsArraySize; i++)
{
size_t descriptorSize = GetDescriptorSize(bindings[i].descriptorType);
if(bindings[i].immutableSamplers)
{
for(uint32_t j = 0; j < bindings[i].descriptorCount; j++)
{
SampledImageDescriptor *imageSamplerDescriptor = reinterpret_cast<SampledImageDescriptor *>(mem);
imageSamplerDescriptor->samplerId = bindings[i].immutableSamplers[j]->id;
imageSamplerDescriptor->memoryOwner = nullptr;
mem += descriptorSize;
}
}
else
{
switch(bindings[i].descriptorType)
{
case VK_DESCRIPTOR_TYPE_SAMPLER:
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
for(uint32_t j = 0; j < bindings[i].descriptorCount; j++)
{
SampledImageDescriptor *imageSamplerDescriptor = reinterpret_cast<SampledImageDescriptor *>(mem);
imageSamplerDescriptor->memoryOwner = nullptr;
mem += descriptorSize;
}
break;
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
for(uint32_t j = 0; j < bindings[i].descriptorCount; j++)
{
StorageImageDescriptor *storageImage = reinterpret_cast<StorageImageDescriptor *>(mem);
storageImage->memoryOwner = nullptr;
mem += descriptorSize;
}
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
mem += bindings[i].descriptorCount * descriptorSize;
break;
default:
UNSUPPORTED("Unsupported Descriptor Type: %d", int(bindings[i].descriptorType));
}
}
}
}
uint32_t DescriptorSetLayout::getBindingOffset(uint32_t bindingNumber) const
{
ASSERT(bindingNumber < bindingsArraySize);
return bindings[bindingNumber].offset;
}
uint32_t DescriptorSetLayout::getDescriptorCount(uint32_t bindingNumber) const
{
ASSERT(bindingNumber < bindingsArraySize);
return bindings[bindingNumber].descriptorCount;
}
uint32_t DescriptorSetLayout::getDynamicDescriptorCount() const
{
uint32_t count = 0;
for(size_t i = 0; i < bindingsArraySize; i++)
{
if(IsDescriptorDynamic(bindings[i].descriptorType))
{
count += bindings[i].descriptorCount;
}
}
return count;
}
uint32_t DescriptorSetLayout::getDynamicOffsetIndex(uint32_t bindingNumber) const
{
ASSERT(bindingNumber < bindingsArraySize);
ASSERT(IsDescriptorDynamic(bindings[bindingNumber].descriptorType));
uint32_t index = 0;
for(uint32_t i = 0; i < bindingNumber; i++)
{
if(IsDescriptorDynamic(bindings[i].descriptorType))
{
index += bindings[i].descriptorCount;
}
}
return index;
}
VkDescriptorType DescriptorSetLayout::getDescriptorType(uint32_t bindingNumber) const
{
ASSERT(bindingNumber < bindingsArraySize);
return bindings[bindingNumber].descriptorType;
}
uint8_t *DescriptorSetLayout::getDescriptorPointer(DescriptorSet *descriptorSet, uint32_t bindingNumber, uint32_t arrayElement, uint32_t count, size_t *typeSize) const
{
ASSERT(bindingNumber < bindingsArraySize);
*typeSize = GetDescriptorSize(bindings[bindingNumber].descriptorType);
size_t byteOffset = bindings[bindingNumber].offset + (*typeSize * arrayElement);
ASSERT(((*typeSize * count) + byteOffset) <= getDescriptorSetDataSize()); // Make sure the operation will not go out of bounds
return &descriptorSet->data[byteOffset];
}
void DescriptorSetLayout::WriteDescriptorSet(Device *device, DescriptorSet *dstSet, VkDescriptorUpdateTemplateEntry const &entry, char const *src)
{
DescriptorSetLayout *dstLayout = dstSet->header.layout;
auto &binding = dstLayout->bindings[entry.dstBinding];
ASSERT(dstLayout);
ASSERT(binding.descriptorType == entry.descriptorType);
size_t typeSize = 0;
uint8_t *memToWrite = dstLayout->getDescriptorPointer(dstSet, entry.dstBinding, entry.dstArrayElement, entry.descriptorCount, &typeSize);
ASSERT(reinterpret_cast<intptr_t>(memToWrite) % 16 == 0); // Each descriptor must be 16-byte aligned.
if(entry.descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER)
{
SampledImageDescriptor *sampledImage = reinterpret_cast<SampledImageDescriptor *>(memToWrite);
for(uint32_t i = 0; i < entry.descriptorCount; i++)
{
auto update = reinterpret_cast<VkDescriptorImageInfo const *>(src + entry.offset + entry.stride * i);
// "All consecutive bindings updated via a single VkWriteDescriptorSet structure, except those with a
// descriptorCount of zero, must all either use immutable samplers or must all not use immutable samplers."
if(!binding.immutableSamplers)
{
sampledImage[i].samplerId = vk::Cast(update->sampler)->id;
}
sampledImage[i].device = device;
}
}
else if(entry.descriptorType == VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER)
{
SampledImageDescriptor *sampledImage = reinterpret_cast<SampledImageDescriptor *>(memToWrite);
for(uint32_t i = 0; i < entry.descriptorCount; i++)
{
auto update = reinterpret_cast<VkBufferView const *>(src + entry.offset + entry.stride * i);
auto bufferView = vk::Cast(*update);
sampledImage[i].imageViewId = bufferView->id;
auto numElements = bufferView->getElementCount();
sampledImage[i].width = numElements;
sampledImage[i].height = 1;
sampledImage[i].depth = 1;
sampledImage[i].mipLevels = 1;
sampledImage[i].sampleCount = 1;
sampledImage[i].texture.widthWidthHeightHeight = sw::float4(static_cast<float>(numElements), static_cast<float>(numElements), 1, 1);
sampledImage[i].texture.width = sw::float4(static_cast<float>(numElements));
sampledImage[i].texture.height = sw::float4(1);
sampledImage[i].texture.depth = sw::float4(1);
sampledImage[i].device = device;
sw::Mipmap &mipmap = sampledImage[i].texture.mipmap[0];
mipmap.buffer = bufferView->getPointer();
mipmap.width[0] = mipmap.width[1] = mipmap.width[2] = mipmap.width[3] = numElements;
mipmap.height[0] = mipmap.height[1] = mipmap.height[2] = mipmap.height[3] = 1;
mipmap.depth[0] = mipmap.depth[1] = mipmap.depth[2] = mipmap.depth[3] = 1;
mipmap.pitchP.x = mipmap.pitchP.y = mipmap.pitchP.z = mipmap.pitchP.w = numElements;
mipmap.sliceP.x = mipmap.sliceP.y = mipmap.sliceP.z = mipmap.sliceP.w = 0;
mipmap.onePitchP[0] = mipmap.onePitchP[2] = 1;
mipmap.onePitchP[1] = mipmap.onePitchP[3] = 0;
}
}
else if(entry.descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
entry.descriptorType == VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE)
{
SampledImageDescriptor *sampledImage = reinterpret_cast<SampledImageDescriptor *>(memToWrite);
for(uint32_t i = 0; i < entry.descriptorCount; i++)
{
auto *update = reinterpret_cast<VkDescriptorImageInfo const *>(src + entry.offset + entry.stride * i);
vk::ImageView *imageView = vk::Cast(update->imageView);
Format format = imageView->getFormat(ImageView::SAMPLING);
sw::Texture *texture = &sampledImage[i].texture;
if(entry.descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
{
// "All consecutive bindings updated via a single VkWriteDescriptorSet structure, except those with a
// descriptorCount of zero, must all either use immutable samplers or must all not use immutable samplers."
if(!binding.immutableSamplers)
{
sampledImage[i].samplerId = vk::Cast(update->sampler)->id;
}
}
const auto &extent = imageView->getMipLevelExtent(0);
sampledImage[i].imageViewId = imageView->id;
sampledImage[i].width = extent.width;
sampledImage[i].height = extent.height;
sampledImage[i].depth = imageView->getDepthOrLayerCount(0);
sampledImage[i].mipLevels = imageView->getSubresourceRange().levelCount;
sampledImage[i].sampleCount = imageView->getSampleCount();
sampledImage[i].device = device;
sampledImage[i].memoryOwner = imageView;
auto &subresourceRange = imageView->getSubresourceRange();
if(format.isYcbcrFormat())
{
ASSERT(subresourceRange.levelCount == 1);
// YCbCr images can only have one level, so we can store parameters for the
// different planes in the descriptor's mipmap levels instead.
const int level = 0;
VkOffset3D offset = { 0, 0, 0 };
texture->mipmap[0].buffer = imageView->getOffsetPointer(offset, VK_IMAGE_ASPECT_PLANE_0_BIT, level, 0, ImageView::SAMPLING);
texture->mipmap[1].buffer = imageView->getOffsetPointer(offset, VK_IMAGE_ASPECT_PLANE_1_BIT, level, 0, ImageView::SAMPLING);
if(format.getAspects() & VK_IMAGE_ASPECT_PLANE_2_BIT)
{
texture->mipmap[2].buffer = imageView->getOffsetPointer(offset, VK_IMAGE_ASPECT_PLANE_2_BIT, level, 0, ImageView::SAMPLING);
}
VkExtent2D extent = imageView->getMipLevelExtent(0);
int width = extent.width;
int height = extent.height;
int pitchP0 = imageView->rowPitchBytes(VK_IMAGE_ASPECT_PLANE_0_BIT, level, ImageView::SAMPLING) /
imageView->getFormat(VK_IMAGE_ASPECT_PLANE_0_BIT).bytes();
// Write plane 0 parameters to mipmap level 0.
WriteTextureLevelInfo(texture, 0, width, height, 1, pitchP0, 0, 0, 0);
// Plane 2, if present, has equal parameters to plane 1, so we use mipmap level 1 for both.
int pitchP1 = imageView->rowPitchBytes(VK_IMAGE_ASPECT_PLANE_1_BIT, level, ImageView::SAMPLING) /
imageView->getFormat(VK_IMAGE_ASPECT_PLANE_1_BIT).bytes();
WriteTextureLevelInfo(texture, 1, width / 2, height / 2, 1, pitchP1, 0, 0, 0);
}
else
{
for(int mipmapLevel = 0; mipmapLevel < sw::MIPMAP_LEVELS; mipmapLevel++)
{
int level = sw::clamp(mipmapLevel, 0, (int)subresourceRange.levelCount - 1); // Level within the image view
VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(imageView->getSubresourceRange().aspectMask);
sw::Mipmap &mipmap = texture->mipmap[mipmapLevel];
if((imageView->getType() == VK_IMAGE_VIEW_TYPE_CUBE) ||
(imageView->getType() == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY))
{
// Obtain the pointer to the corner of the level including the border, for seamless sampling.
// This is taken into account in the sampling routine, which can't handle negative texel coordinates.
VkOffset3D offset = { -1, -1, 0 };
mipmap.buffer = imageView->getOffsetPointer(offset, aspect, level, 0, ImageView::SAMPLING);
}
else
{
VkOffset3D offset = { 0, 0, 0 };
mipmap.buffer = imageView->getOffsetPointer(offset, aspect, level, 0, ImageView::SAMPLING);
}
VkExtent2D extent = imageView->getMipLevelExtent(level);
int width = extent.width;
int height = extent.height;
int layerCount = imageView->getSubresourceRange().layerCount;
int depth = imageView->getDepthOrLayerCount(level);
int bytes = format.bytes();
int pitchP = imageView->rowPitchBytes(aspect, level, ImageView::SAMPLING) / bytes;
int sliceP = (layerCount > 1 ? imageView->layerPitchBytes(aspect, ImageView::SAMPLING) : imageView->slicePitchBytes(aspect, level, ImageView::SAMPLING)) / bytes;
int samplePitchP = imageView->getMipLevelSize(aspect, level, ImageView::SAMPLING) / bytes;
int sampleMax = imageView->getSampleCount() - 1;
WriteTextureLevelInfo(texture, mipmapLevel, width, height, depth, pitchP, sliceP, samplePitchP, sampleMax);
}
}
}
}
else if(entry.descriptorType == VK_DESCRIPTOR_TYPE_STORAGE_IMAGE ||
entry.descriptorType == VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT)
{
auto storageImage = reinterpret_cast<StorageImageDescriptor *>(memToWrite);
for(uint32_t i = 0; i < entry.descriptorCount; i++)
{
auto *update = reinterpret_cast<VkDescriptorImageInfo const *>(src + entry.offset + entry.stride * i);
auto *imageView = vk::Cast(update->imageView);
const auto &extent = imageView->getMipLevelExtent(0);
auto layerCount = imageView->getSubresourceRange().layerCount;
storageImage[i].ptr = imageView->getOffsetPointer({ 0, 0, 0 }, VK_IMAGE_ASPECT_COLOR_BIT, 0, 0);
storageImage[i].width = extent.width;
storageImage[i].height = extent.height;
storageImage[i].depth = imageView->getDepthOrLayerCount(0);
storageImage[i].rowPitchBytes = imageView->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0);
storageImage[i].samplePitchBytes = imageView->slicePitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0);
storageImage[i].slicePitchBytes = layerCount > 1
? imageView->layerPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT)
: imageView->slicePitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0);
storageImage[i].sampleCount = imageView->getSampleCount();
storageImage[i].sizeInBytes = static_cast<int>(imageView->getSizeInBytes());
storageImage[i].memoryOwner = imageView;
if(imageView->getFormat().isStencil())
{
storageImage[i].stencilPtr = imageView->getOffsetPointer({ 0, 0, 0 }, VK_IMAGE_ASPECT_STENCIL_BIT, 0, 0);
storageImage[i].stencilRowPitchBytes = imageView->rowPitchBytes(VK_IMAGE_ASPECT_STENCIL_BIT, 0);
storageImage[i].stencilSamplePitchBytes = imageView->slicePitchBytes(VK_IMAGE_ASPECT_STENCIL_BIT, 0);
storageImage[i].stencilSlicePitchBytes = (imageView->getSubresourceRange().layerCount > 1)
? imageView->layerPitchBytes(VK_IMAGE_ASPECT_STENCIL_BIT)
: imageView->slicePitchBytes(VK_IMAGE_ASPECT_STENCIL_BIT, 0);
}
}
}
else if(entry.descriptorType == VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER)
{
auto *storageImage = reinterpret_cast<StorageImageDescriptor *>(memToWrite);
for(uint32_t i = 0; i < entry.descriptorCount; i++)
{
auto update = reinterpret_cast<VkBufferView const *>(src + entry.offset + entry.stride * i);
auto bufferView = vk::Cast(*update);
storageImage[i].ptr = bufferView->getPointer();
storageImage[i].width = bufferView->getElementCount();
storageImage[i].height = 1;
storageImage[i].depth = 1;
storageImage[i].rowPitchBytes = 0;
storageImage[i].slicePitchBytes = 0;
storageImage[i].samplePitchBytes = 0;
storageImage[i].sampleCount = 1;
storageImage[i].sizeInBytes = bufferView->getRangeInBytes();
}
}
else if(entry.descriptorType == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER ||
entry.descriptorType == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
entry.descriptorType == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER ||
entry.descriptorType == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC)
{
auto *bufferDescriptor = reinterpret_cast<BufferDescriptor *>(memToWrite);
for(uint32_t i = 0; i < entry.descriptorCount; i++)
{
auto update = reinterpret_cast<VkDescriptorBufferInfo const *>(src + entry.offset + entry.stride * i);
auto buffer = vk::Cast(update->buffer);
bufferDescriptor[i].ptr = buffer->getOffsetPointer(update->offset);
bufferDescriptor[i].sizeInBytes = static_cast<int>((update->range == VK_WHOLE_SIZE) ? buffer->getSize() - update->offset : update->range);
// TODO(b/195684837): The spec states that "vertexBufferRangeSize is the byte size of the memory
// range bound to the vertex buffer binding", while the code below uses the full size of the buffer.
bufferDescriptor[i].robustnessSize = static_cast<int>(buffer->getSize() - update->offset);
}
}
}
void DescriptorSetLayout::WriteTextureLevelInfo(sw::Texture *texture, int level, int width, int height, int depth, int pitchP, int sliceP, int samplePitchP, int sampleMax)
{
if(level == 0)
{
texture->widthWidthHeightHeight[0] = static_cast<float>(width);
texture->widthWidthHeightHeight[1] = static_cast<float>(width);
texture->widthWidthHeightHeight[2] = static_cast<float>(height);
texture->widthWidthHeightHeight[3] = static_cast<float>(height);
texture->width = sw::float4(static_cast<float>(width));
texture->height = sw::float4(static_cast<float>(height));
texture->depth = sw::float4(static_cast<float>(depth));
}
sw::Mipmap &mipmap = texture->mipmap[level];
short halfTexelU = 0x8000 / width;
short halfTexelV = 0x8000 / height;
short halfTexelW = 0x8000 / depth;
mipmap.uHalf = sw::short4(halfTexelU);
mipmap.vHalf = sw::short4(halfTexelV);
mipmap.wHalf = sw::short4(halfTexelW);
mipmap.width = sw::int4(width);
mipmap.height = sw::int4(height);
mipmap.depth = sw::int4(depth);
mipmap.onePitchP[0] = 1;
mipmap.onePitchP[1] = static_cast<short>(pitchP);
mipmap.onePitchP[2] = 1;
mipmap.onePitchP[3] = static_cast<short>(pitchP);
mipmap.pitchP = sw::int4(pitchP);
mipmap.sliceP = sw::int4(sliceP);
mipmap.samplePitchP = sw::int4(samplePitchP);
mipmap.sampleMax = sw::int4(sampleMax);
}
void DescriptorSetLayout::WriteDescriptorSet(Device *device, const VkWriteDescriptorSet &writeDescriptorSet)
{
DescriptorSet *dstSet = vk::Cast(writeDescriptorSet.dstSet);
VkDescriptorUpdateTemplateEntry e;
e.descriptorType = writeDescriptorSet.descriptorType;
e.dstBinding = writeDescriptorSet.dstBinding;
e.dstArrayElement = writeDescriptorSet.dstArrayElement;
e.descriptorCount = writeDescriptorSet.descriptorCount;
e.offset = 0;
void const *ptr = nullptr;
switch(writeDescriptorSet.descriptorType)
{
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
ptr = writeDescriptorSet.pTexelBufferView;
e.stride = sizeof(VkBufferView);
break;
case VK_DESCRIPTOR_TYPE_SAMPLER:
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
ptr = writeDescriptorSet.pImageInfo;
e.stride = sizeof(VkDescriptorImageInfo);
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
ptr = writeDescriptorSet.pBufferInfo;
e.stride = sizeof(VkDescriptorBufferInfo);
break;
default:
UNSUPPORTED("descriptor type %u", writeDescriptorSet.descriptorType);
}
WriteDescriptorSet(device, dstSet, e, reinterpret_cast<char const *>(ptr));
}
void DescriptorSetLayout::CopyDescriptorSet(const VkCopyDescriptorSet &descriptorCopies)
{
DescriptorSet *srcSet = vk::Cast(descriptorCopies.srcSet);
DescriptorSetLayout *srcLayout = srcSet->header.layout;
ASSERT(srcLayout);
DescriptorSet *dstSet = vk::Cast(descriptorCopies.dstSet);
DescriptorSetLayout *dstLayout = dstSet->header.layout;
ASSERT(dstLayout);
size_t srcTypeSize = 0;
uint8_t *memToRead = srcLayout->getDescriptorPointer(srcSet, descriptorCopies.srcBinding, descriptorCopies.srcArrayElement, descriptorCopies.descriptorCount, &srcTypeSize);
size_t dstTypeSize = 0;
uint8_t *memToWrite = dstLayout->getDescriptorPointer(dstSet, descriptorCopies.dstBinding, descriptorCopies.dstArrayElement, descriptorCopies.descriptorCount, &dstTypeSize);
ASSERT(srcTypeSize == dstTypeSize);
size_t writeSize = dstTypeSize * descriptorCopies.descriptorCount;
memcpy(memToWrite, memToRead, writeSize);
}
} // namespace vk