| // Copyright 2019 The SwiftShader Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "SpirvShader.hpp" |
| |
| #include "SamplerCore.hpp" // TODO: Figure out what's needed. |
| #include "Device/Config.hpp" |
| #include "System/Debug.hpp" |
| #include "System/Math.hpp" |
| #include "Vulkan/VkDescriptorSetLayout.hpp" |
| #include "Vulkan/VkDevice.hpp" |
| #include "Vulkan/VkImageView.hpp" |
| #include "Vulkan/VkSampler.hpp" |
| |
| #include <spirv/unified1/spirv.hpp> |
| |
| #include <climits> |
| #include <mutex> |
| |
| namespace sw { |
| |
| SpirvShader::ImageSampler *SpirvShader::getImageSampler(const vk::Device *device, uint32_t inst, uint32_t samplerId, uint32_t imageViewId) |
| { |
| ImageInstruction instruction(inst); |
| ASSERT(imageViewId != 0 && (samplerId != 0 || instruction.samplerMethod == Fetch)); |
| ASSERT(device); |
| |
| vk::Device::SamplingRoutineCache::Key key = { inst, samplerId, imageViewId }; |
| |
| auto createSamplingRoutine = [&device](const vk::Device::SamplingRoutineCache::Key &key) { |
| ImageInstruction instruction(key.instruction); |
| const vk::Identifier::State imageViewState = vk::Identifier(key.imageView).getState(); |
| const vk::SamplerState *vkSamplerState = (key.sampler != 0) ? device->findSampler(key.sampler) : nullptr; |
| |
| auto type = imageViewState.imageViewType; |
| auto samplerMethod = static_cast<SamplerMethod>(instruction.samplerMethod); |
| |
| Sampler samplerState = {}; |
| samplerState.textureType = type; |
| samplerState.textureFormat = imageViewState.format; |
| |
| samplerState.addressingModeU = convertAddressingMode(0, vkSamplerState, type); |
| samplerState.addressingModeV = convertAddressingMode(1, vkSamplerState, type); |
| samplerState.addressingModeW = convertAddressingMode(2, vkSamplerState, type); |
| |
| samplerState.mipmapFilter = convertMipmapMode(vkSamplerState); |
| samplerState.swizzle = imageViewState.mapping; |
| samplerState.gatherComponent = instruction.gatherComponent; |
| |
| if(vkSamplerState) |
| { |
| samplerState.textureFilter = convertFilterMode(vkSamplerState, type, samplerMethod); |
| samplerState.border = vkSamplerState->borderColor; |
| samplerState.customBorder = vkSamplerState->customBorderColor; |
| |
| samplerState.mipmapFilter = convertMipmapMode(vkSamplerState); |
| samplerState.highPrecisionFiltering = (vkSamplerState->filteringPrecision == VK_SAMPLER_FILTERING_PRECISION_MODE_HIGH_GOOGLE); |
| |
| samplerState.compareEnable = (vkSamplerState->compareEnable != VK_FALSE); |
| samplerState.compareOp = vkSamplerState->compareOp; |
| samplerState.unnormalizedCoordinates = (vkSamplerState->unnormalizedCoordinates != VK_FALSE); |
| |
| samplerState.ycbcrModel = vkSamplerState->ycbcrModel; |
| samplerState.studioSwing = vkSamplerState->studioSwing; |
| samplerState.swappedChroma = vkSamplerState->swappedChroma; |
| |
| samplerState.mipLodBias = vkSamplerState->mipLodBias; |
| samplerState.maxAnisotropy = vkSamplerState->maxAnisotropy; |
| samplerState.minLod = vkSamplerState->minLod; |
| samplerState.maxLod = vkSamplerState->maxLod; |
| |
| // If there's a single mip level and filtering doesn't depend on the LOD level, |
| // the sampler will need to compute the LOD to produce the proper result. |
| // Otherwise, it can be ignored. |
| // We can skip the LOD computation for all modes, except LOD query, |
| // where we have to return the proper value even if nothing else requires it. |
| if(imageViewState.singleMipLevel && |
| (samplerState.textureFilter != FILTER_MIN_POINT_MAG_LINEAR) && |
| (samplerState.textureFilter != FILTER_MIN_LINEAR_MAG_POINT) && |
| (samplerMethod != Query)) |
| { |
| samplerState.minLod = 0.0f; |
| samplerState.maxLod = 0.0f; |
| } |
| } |
| else // Fetch |
| { |
| ASSERT(samplerMethod == Fetch); |
| |
| // OpImageFetch does not take a sampler descriptor, but for VK_EXT_image_robustness |
| // requires replacing invalid texels with zero. |
| // TODO(b/162327166): Only perform bounds checks when VK_EXT_image_robustness is enabled. |
| samplerState.border = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK; |
| |
| // If there's a single mip level we can skip LOD computation. |
| if(imageViewState.singleMipLevel) |
| { |
| samplerState.minLod = 0.0f; |
| samplerState.maxLod = 0.0f; |
| } |
| } |
| |
| return emitSamplerRoutine(instruction, samplerState); |
| }; |
| |
| vk::Device::SamplingRoutineCache *cache = device->getSamplingRoutineCache(); |
| auto routine = cache->getOrCreate(key, createSamplingRoutine); |
| |
| return (ImageSampler *)(routine->getEntry()); |
| } |
| |
| std::shared_ptr<rr::Routine> SpirvShader::emitSamplerRoutine(ImageInstruction instruction, const Sampler &samplerState) |
| { |
| // TODO(b/129523279): Hold a separate mutex lock for the sampler being built. |
| rr::Function<Void(Pointer<Byte>, Pointer<SIMD::Float>, Pointer<SIMD::Float>, Pointer<Byte>)> function; |
| { |
| Pointer<Byte> texture = function.Arg<0>(); |
| Pointer<SIMD::Float> in = function.Arg<1>(); |
| Pointer<SIMD::Float> out = function.Arg<2>(); |
| Pointer<Byte> constants = function.Arg<3>(); |
| |
| SIMD::Float uvwa[4]; |
| SIMD::Float dRef; |
| SIMD::Float lodOrBias; // Explicit level-of-detail, or bias added to the implicit level-of-detail (depending on samplerMethod). |
| Vector4f dsx; |
| Vector4f dsy; |
| Vector4i offset; |
| SIMD::Int sampleId; |
| SamplerFunction samplerFunction = instruction.getSamplerFunction(); |
| |
| uint32_t i = 0; |
| for(; i < instruction.coordinates; i++) |
| { |
| uvwa[i] = in[i]; |
| } |
| |
| if(instruction.isDref()) |
| { |
| dRef = in[i]; |
| i++; |
| } |
| |
| if(instruction.samplerMethod == Lod || instruction.samplerMethod == Bias || instruction.samplerMethod == Fetch) |
| { |
| lodOrBias = in[i]; |
| i++; |
| } |
| else if(instruction.samplerMethod == Grad) |
| { |
| for(uint32_t j = 0; j < instruction.grad; j++, i++) |
| { |
| dsx[j] = in[i]; |
| } |
| |
| for(uint32_t j = 0; j < instruction.grad; j++, i++) |
| { |
| dsy[j] = in[i]; |
| } |
| } |
| |
| for(uint32_t j = 0; j < instruction.offset; j++, i++) |
| { |
| offset[j] = As<SIMD::Int>(in[i]); |
| } |
| |
| if(instruction.sample) |
| { |
| sampleId = As<SIMD::Int>(in[i]); |
| } |
| |
| SamplerCore s(constants, samplerState); |
| |
| // For explicit-lod instructions the LOD can be different per SIMD lane. SamplerCore currently assumes |
| // a single LOD per four elements, so we sample the image again for each LOD separately. |
| // TODO(b/133868964) Pass down 4 component lodOrBias, dsx, and dsy to sampleTexture |
| if(samplerFunction.method == Lod || samplerFunction.method == Grad || |
| samplerFunction.method == Bias || samplerFunction.method == Fetch) |
| { |
| // Only perform per-lane sampling if LOD diverges or we're doing Grad sampling. |
| Bool perLaneSampling = samplerFunction.method == Grad || lodOrBias.x != lodOrBias.y || |
| lodOrBias.x != lodOrBias.z || lodOrBias.x != lodOrBias.w; |
| auto lod = Pointer<Float>(&lodOrBias); |
| Int i = 0; |
| Do |
| { |
| SIMD::Float dPdx; |
| SIMD::Float dPdy; |
| dPdx.x = Pointer<Float>(&dsx.x)[i]; |
| dPdx.y = Pointer<Float>(&dsx.y)[i]; |
| dPdx.z = Pointer<Float>(&dsx.z)[i]; |
| |
| dPdy.x = Pointer<Float>(&dsy.x)[i]; |
| dPdy.y = Pointer<Float>(&dsy.y)[i]; |
| dPdy.z = Pointer<Float>(&dsy.z)[i]; |
| |
| Vector4f sample = s.sampleTexture(texture, uvwa, dRef, lod[i], dPdx, dPdy, offset, sampleId, samplerFunction); |
| |
| If(perLaneSampling) |
| { |
| Pointer<Float> rgba = out; |
| rgba[0 * SIMD::Width + i] = Pointer<Float>(&sample.x)[i]; |
| rgba[1 * SIMD::Width + i] = Pointer<Float>(&sample.y)[i]; |
| rgba[2 * SIMD::Width + i] = Pointer<Float>(&sample.z)[i]; |
| rgba[3 * SIMD::Width + i] = Pointer<Float>(&sample.w)[i]; |
| i++; |
| } |
| Else |
| { |
| Pointer<SIMD::Float> rgba = out; |
| rgba[0] = sample.x; |
| rgba[1] = sample.y; |
| rgba[2] = sample.z; |
| rgba[3] = sample.w; |
| i = SIMD::Width; |
| } |
| } |
| Until(i == SIMD::Width); |
| } |
| else |
| { |
| Vector4f sample = s.sampleTexture(texture, uvwa, dRef, lodOrBias.x, (dsx.x), (dsy.x), offset, sampleId, samplerFunction); |
| |
| Pointer<SIMD::Float> rgba = out; |
| rgba[0] = sample.x; |
| rgba[1] = sample.y; |
| rgba[2] = sample.z; |
| rgba[3] = sample.w; |
| } |
| } |
| |
| return function("sampler"); |
| } |
| |
| sw::FilterType SpirvShader::convertFilterMode(const vk::SamplerState *samplerState, VkImageViewType imageViewType, SamplerMethod samplerMethod) |
| { |
| if(samplerMethod == Gather) |
| { |
| return FILTER_GATHER; |
| } |
| |
| if(samplerMethod == Fetch) |
| { |
| return FILTER_POINT; |
| } |
| |
| if(samplerState->anisotropyEnable != VK_FALSE) |
| { |
| if(imageViewType == VK_IMAGE_VIEW_TYPE_2D || imageViewType == VK_IMAGE_VIEW_TYPE_2D_ARRAY) |
| { |
| if(samplerMethod != Lod) // TODO(b/162926129): Support anisotropic filtering with explicit LOD. |
| { |
| return FILTER_ANISOTROPIC; |
| } |
| } |
| } |
| |
| switch(samplerState->magFilter) |
| { |
| case VK_FILTER_NEAREST: |
| switch(samplerState->minFilter) |
| { |
| case VK_FILTER_NEAREST: return FILTER_POINT; |
| case VK_FILTER_LINEAR: return FILTER_MIN_LINEAR_MAG_POINT; |
| default: |
| UNSUPPORTED("minFilter %d", samplerState->minFilter); |
| return FILTER_POINT; |
| } |
| break; |
| case VK_FILTER_LINEAR: |
| switch(samplerState->minFilter) |
| { |
| case VK_FILTER_NEAREST: return FILTER_MIN_POINT_MAG_LINEAR; |
| case VK_FILTER_LINEAR: return FILTER_LINEAR; |
| default: |
| UNSUPPORTED("minFilter %d", samplerState->minFilter); |
| return FILTER_POINT; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| UNSUPPORTED("magFilter %d", samplerState->magFilter); |
| return FILTER_POINT; |
| } |
| |
| sw::MipmapType SpirvShader::convertMipmapMode(const vk::SamplerState *samplerState) |
| { |
| if(!samplerState) |
| { |
| return MIPMAP_POINT; // Samplerless operations (OpImageFetch) can take an integer Lod operand. |
| } |
| |
| if(samplerState->ycbcrModel != VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY) |
| { |
| // TODO(b/151263485): Check image view level count instead. |
| return MIPMAP_NONE; |
| } |
| |
| switch(samplerState->mipmapMode) |
| { |
| case VK_SAMPLER_MIPMAP_MODE_NEAREST: return MIPMAP_POINT; |
| case VK_SAMPLER_MIPMAP_MODE_LINEAR: return MIPMAP_LINEAR; |
| default: |
| UNSUPPORTED("mipmapMode %d", samplerState->mipmapMode); |
| return MIPMAP_POINT; |
| } |
| } |
| |
| sw::AddressingMode SpirvShader::convertAddressingMode(int coordinateIndex, const vk::SamplerState *samplerState, VkImageViewType imageViewType) |
| { |
| switch(imageViewType) |
| { |
| case VK_IMAGE_VIEW_TYPE_1D: |
| case VK_IMAGE_VIEW_TYPE_1D_ARRAY: |
| if(coordinateIndex >= 1) |
| { |
| return ADDRESSING_UNUSED; |
| } |
| break; |
| case VK_IMAGE_VIEW_TYPE_2D: |
| case VK_IMAGE_VIEW_TYPE_2D_ARRAY: |
| if(coordinateIndex == 2) |
| { |
| return ADDRESSING_UNUSED; |
| } |
| break; |
| |
| case VK_IMAGE_VIEW_TYPE_3D: |
| break; |
| |
| case VK_IMAGE_VIEW_TYPE_CUBE: |
| case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY: |
| if(coordinateIndex <= 1) // Cube faces themselves are addressed as 2D images. |
| { |
| // Vulkan 1.1 spec: |
| // "Cube images ignore the wrap modes specified in the sampler. Instead, if VK_FILTER_NEAREST is used within a mip level then |
| // VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE is used, and if VK_FILTER_LINEAR is used within a mip level then sampling at the edges |
| // is performed as described earlier in the Cube map edge handling section." |
| // This corresponds with our 'SEAMLESS' addressing mode. |
| return ADDRESSING_SEAMLESS; |
| } |
| else // coordinateIndex == 2 |
| { |
| // The cube face is an index into 2D array layers. |
| return ADDRESSING_CUBEFACE; |
| } |
| break; |
| |
| default: |
| UNSUPPORTED("imageViewType %d", imageViewType); |
| return ADDRESSING_WRAP; |
| } |
| |
| if(!samplerState) |
| { |
| // OpImageFetch does not take a sampler descriptor, but still needs a valid |
| // addressing mode that prevents out-of-bounds accesses: |
| // "The value returned by a read of an invalid texel is undefined, unless that |
| // read operation is from a buffer resource and the robustBufferAccess feature |
| // is enabled. In that case, an invalid texel is replaced as described by the |
| // robustBufferAccess feature." - Vulkan 1.1 |
| |
| // VK_EXT_image_robustness requires nullifying out-of-bounds accesses. |
| // ADDRESSING_BORDER causes texel replacement to be performed. |
| // TODO(b/162327166): Only perform bounds checks when VK_EXT_image_robustness is enabled. |
| return ADDRESSING_BORDER; |
| } |
| |
| VkSamplerAddressMode addressMode = VK_SAMPLER_ADDRESS_MODE_REPEAT; |
| switch(coordinateIndex) |
| { |
| case 0: addressMode = samplerState->addressModeU; break; |
| case 1: addressMode = samplerState->addressModeV; break; |
| case 2: addressMode = samplerState->addressModeW; break; |
| default: UNSUPPORTED("coordinateIndex: %d", coordinateIndex); |
| } |
| |
| switch(addressMode) |
| { |
| case VK_SAMPLER_ADDRESS_MODE_REPEAT: return ADDRESSING_WRAP; |
| case VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT: return ADDRESSING_MIRROR; |
| case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE: return ADDRESSING_CLAMP; |
| case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER: return ADDRESSING_BORDER; |
| case VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE: return ADDRESSING_MIRRORONCE; |
| default: |
| UNSUPPORTED("addressMode %d", addressMode); |
| return ADDRESSING_WRAP; |
| } |
| } |
| |
| } // namespace sw |