|  | //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the primary stateless implementation of the | 
|  | // Alias Analysis interface that implements identities (two different | 
|  | // globals cannot alias, etc), but does no stateful analysis. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/Passes.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/GlobalAlias.h" | 
|  | #include "llvm/GlobalVariable.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/LLVMContext.h" | 
|  | #include "llvm/Operator.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Analysis/CaptureTracking.h" | 
|  | #include "llvm/Analysis/MemoryBuiltins.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Target/TargetLibraryInfo.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/GetElementPtrTypeIterator.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Useful predicates | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// isKnownNonNull - Return true if we know that the specified value is never | 
|  | /// null. | 
|  | static bool isKnownNonNull(const Value *V) { | 
|  | // Alloca never returns null, malloc might. | 
|  | if (isa<AllocaInst>(V)) return true; | 
|  |  | 
|  | // A byval argument is never null. | 
|  | if (const Argument *A = dyn_cast<Argument>(V)) | 
|  | return A->hasByValAttr(); | 
|  |  | 
|  | // Global values are not null unless extern weak. | 
|  | if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) | 
|  | return !GV->hasExternalWeakLinkage(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isNonEscapingLocalObject - Return true if the pointer is to a function-local | 
|  | /// object that never escapes from the function. | 
|  | static bool isNonEscapingLocalObject(const Value *V) { | 
|  | // If this is a local allocation, check to see if it escapes. | 
|  | if (isa<AllocaInst>(V) || isNoAliasCall(V)) | 
|  | // Set StoreCaptures to True so that we can assume in our callers that the | 
|  | // pointer is not the result of a load instruction. Currently | 
|  | // PointerMayBeCaptured doesn't have any special analysis for the | 
|  | // StoreCaptures=false case; if it did, our callers could be refined to be | 
|  | // more precise. | 
|  | return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); | 
|  |  | 
|  | // If this is an argument that corresponds to a byval or noalias argument, | 
|  | // then it has not escaped before entering the function.  Check if it escapes | 
|  | // inside the function. | 
|  | if (const Argument *A = dyn_cast<Argument>(V)) | 
|  | if (A->hasByValAttr() || A->hasNoAliasAttr()) { | 
|  | // Don't bother analyzing arguments already known not to escape. | 
|  | if (A->hasNoCaptureAttr()) | 
|  | return true; | 
|  | return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isEscapeSource - Return true if the pointer is one which would have | 
|  | /// been considered an escape by isNonEscapingLocalObject. | 
|  | static bool isEscapeSource(const Value *V) { | 
|  | if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) | 
|  | return true; | 
|  |  | 
|  | // The load case works because isNonEscapingLocalObject considers all | 
|  | // stores to be escapes (it passes true for the StoreCaptures argument | 
|  | // to PointerMayBeCaptured). | 
|  | if (isa<LoadInst>(V)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getObjectSize - Return the size of the object specified by V, or | 
|  | /// UnknownSize if unknown. | 
|  | static uint64_t getObjectSize(const Value *V, const TargetData &TD) { | 
|  | Type *AccessTy; | 
|  | if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { | 
|  | if (!GV->hasDefinitiveInitializer()) | 
|  | return AliasAnalysis::UnknownSize; | 
|  | AccessTy = GV->getType()->getElementType(); | 
|  | } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { | 
|  | if (!AI->isArrayAllocation()) | 
|  | AccessTy = AI->getType()->getElementType(); | 
|  | else | 
|  | return AliasAnalysis::UnknownSize; | 
|  | } else if (const CallInst* CI = extractMallocCall(V)) { | 
|  | if (!isArrayMalloc(V, &TD)) | 
|  | // The size is the argument to the malloc call. | 
|  | if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getArgOperand(0))) | 
|  | return C->getZExtValue(); | 
|  | return AliasAnalysis::UnknownSize; | 
|  | } else if (const Argument *A = dyn_cast<Argument>(V)) { | 
|  | if (A->hasByValAttr()) | 
|  | AccessTy = cast<PointerType>(A->getType())->getElementType(); | 
|  | else | 
|  | return AliasAnalysis::UnknownSize; | 
|  | } else { | 
|  | return AliasAnalysis::UnknownSize; | 
|  | } | 
|  |  | 
|  | if (AccessTy->isSized()) | 
|  | return TD.getTypeAllocSize(AccessTy); | 
|  | return AliasAnalysis::UnknownSize; | 
|  | } | 
|  |  | 
|  | /// isObjectSmallerThan - Return true if we can prove that the object specified | 
|  | /// by V is smaller than Size. | 
|  | static bool isObjectSmallerThan(const Value *V, uint64_t Size, | 
|  | const TargetData &TD) { | 
|  | uint64_t ObjectSize = getObjectSize(V, TD); | 
|  | return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size; | 
|  | } | 
|  |  | 
|  | /// isObjectSize - Return true if we can prove that the object specified | 
|  | /// by V has size Size. | 
|  | static bool isObjectSize(const Value *V, uint64_t Size, | 
|  | const TargetData &TD) { | 
|  | uint64_t ObjectSize = getObjectSize(V, TD); | 
|  | return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // GetElementPtr Instruction Decomposition and Analysis | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | enum ExtensionKind { | 
|  | EK_NotExtended, | 
|  | EK_SignExt, | 
|  | EK_ZeroExt | 
|  | }; | 
|  |  | 
|  | struct VariableGEPIndex { | 
|  | const Value *V; | 
|  | ExtensionKind Extension; | 
|  | int64_t Scale; | 
|  | }; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// GetLinearExpression - Analyze the specified value as a linear expression: | 
|  | /// "A*V + B", where A and B are constant integers.  Return the scale and offset | 
|  | /// values as APInts and return V as a Value*, and return whether we looked | 
|  | /// through any sign or zero extends.  The incoming Value is known to have | 
|  | /// IntegerType and it may already be sign or zero extended. | 
|  | /// | 
|  | /// Note that this looks through extends, so the high bits may not be | 
|  | /// represented in the result. | 
|  | static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, | 
|  | ExtensionKind &Extension, | 
|  | const TargetData &TD, unsigned Depth) { | 
|  | assert(V->getType()->isIntegerTy() && "Not an integer value"); | 
|  |  | 
|  | // Limit our recursion depth. | 
|  | if (Depth == 6) { | 
|  | Scale = 1; | 
|  | Offset = 0; | 
|  | return V; | 
|  | } | 
|  |  | 
|  | if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { | 
|  | if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { | 
|  | switch (BOp->getOpcode()) { | 
|  | default: break; | 
|  | case Instruction::Or: | 
|  | // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't | 
|  | // analyze it. | 
|  | if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD)) | 
|  | break; | 
|  | // FALL THROUGH. | 
|  | case Instruction::Add: | 
|  | V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, | 
|  | TD, Depth+1); | 
|  | Offset += RHSC->getValue(); | 
|  | return V; | 
|  | case Instruction::Mul: | 
|  | V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, | 
|  | TD, Depth+1); | 
|  | Offset *= RHSC->getValue(); | 
|  | Scale *= RHSC->getValue(); | 
|  | return V; | 
|  | case Instruction::Shl: | 
|  | V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, | 
|  | TD, Depth+1); | 
|  | Offset <<= RHSC->getValue().getLimitedValue(); | 
|  | Scale <<= RHSC->getValue().getLimitedValue(); | 
|  | return V; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Since GEP indices are sign extended anyway, we don't care about the high | 
|  | // bits of a sign or zero extended value - just scales and offsets.  The | 
|  | // extensions have to be consistent though. | 
|  | if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) || | 
|  | (isa<ZExtInst>(V) && Extension != EK_SignExt)) { | 
|  | Value *CastOp = cast<CastInst>(V)->getOperand(0); | 
|  | unsigned OldWidth = Scale.getBitWidth(); | 
|  | unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); | 
|  | Scale = Scale.trunc(SmallWidth); | 
|  | Offset = Offset.trunc(SmallWidth); | 
|  | Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt; | 
|  |  | 
|  | Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, | 
|  | TD, Depth+1); | 
|  | Scale = Scale.zext(OldWidth); | 
|  | Offset = Offset.zext(OldWidth); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | Scale = 1; | 
|  | Offset = 0; | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it | 
|  | /// into a base pointer with a constant offset and a number of scaled symbolic | 
|  | /// offsets. | 
|  | /// | 
|  | /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in | 
|  | /// the VarIndices vector) are Value*'s that are known to be scaled by the | 
|  | /// specified amount, but which may have other unrepresented high bits. As such, | 
|  | /// the gep cannot necessarily be reconstructed from its decomposed form. | 
|  | /// | 
|  | /// When TargetData is around, this function is capable of analyzing everything | 
|  | /// that GetUnderlyingObject can look through.  When not, it just looks | 
|  | /// through pointer casts. | 
|  | /// | 
|  | static const Value * | 
|  | DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, | 
|  | SmallVectorImpl<VariableGEPIndex> &VarIndices, | 
|  | const TargetData *TD) { | 
|  | // Limit recursion depth to limit compile time in crazy cases. | 
|  | unsigned MaxLookup = 6; | 
|  |  | 
|  | BaseOffs = 0; | 
|  | do { | 
|  | // See if this is a bitcast or GEP. | 
|  | const Operator *Op = dyn_cast<Operator>(V); | 
|  | if (Op == 0) { | 
|  | // The only non-operator case we can handle are GlobalAliases. | 
|  | if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { | 
|  | if (!GA->mayBeOverridden()) { | 
|  | V = GA->getAliasee(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | return V; | 
|  | } | 
|  |  | 
|  | if (Op->getOpcode() == Instruction::BitCast) { | 
|  | V = Op->getOperand(0); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); | 
|  | if (GEPOp == 0) { | 
|  | // If it's not a GEP, hand it off to SimplifyInstruction to see if it | 
|  | // can come up with something. This matches what GetUnderlyingObject does. | 
|  | if (const Instruction *I = dyn_cast<Instruction>(V)) | 
|  | // TODO: Get a DominatorTree and use it here. | 
|  | if (const Value *Simplified = | 
|  | SimplifyInstruction(const_cast<Instruction *>(I), TD)) { | 
|  | V = Simplified; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // Don't attempt to analyze GEPs over unsized objects. | 
|  | if (!cast<PointerType>(GEPOp->getOperand(0)->getType()) | 
|  | ->getElementType()->isSized()) | 
|  | return V; | 
|  |  | 
|  | // If we are lacking TargetData information, we can't compute the offets of | 
|  | // elements computed by GEPs.  However, we can handle bitcast equivalent | 
|  | // GEPs. | 
|  | if (TD == 0) { | 
|  | if (!GEPOp->hasAllZeroIndices()) | 
|  | return V; | 
|  | V = GEPOp->getOperand(0); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. | 
|  | gep_type_iterator GTI = gep_type_begin(GEPOp); | 
|  | for (User::const_op_iterator I = GEPOp->op_begin()+1, | 
|  | E = GEPOp->op_end(); I != E; ++I) { | 
|  | Value *Index = *I; | 
|  | // Compute the (potentially symbolic) offset in bytes for this index. | 
|  | if (StructType *STy = dyn_cast<StructType>(*GTI++)) { | 
|  | // For a struct, add the member offset. | 
|  | unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); | 
|  | if (FieldNo == 0) continue; | 
|  |  | 
|  | BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // For an array/pointer, add the element offset, explicitly scaled. | 
|  | if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { | 
|  | if (CIdx->isZero()) continue; | 
|  | BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | uint64_t Scale = TD->getTypeAllocSize(*GTI); | 
|  | ExtensionKind Extension = EK_NotExtended; | 
|  |  | 
|  | // If the integer type is smaller than the pointer size, it is implicitly | 
|  | // sign extended to pointer size. | 
|  | unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth(); | 
|  | if (TD->getPointerSizeInBits() > Width) | 
|  | Extension = EK_SignExt; | 
|  |  | 
|  | // Use GetLinearExpression to decompose the index into a C1*V+C2 form. | 
|  | APInt IndexScale(Width, 0), IndexOffset(Width, 0); | 
|  | Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, | 
|  | *TD, 0); | 
|  |  | 
|  | // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. | 
|  | // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. | 
|  | BaseOffs += IndexOffset.getSExtValue()*Scale; | 
|  | Scale *= IndexScale.getSExtValue(); | 
|  |  | 
|  |  | 
|  | // If we already had an occurrence of this index variable, merge this | 
|  | // scale into it.  For example, we want to handle: | 
|  | //   A[x][x] -> x*16 + x*4 -> x*20 | 
|  | // This also ensures that 'x' only appears in the index list once. | 
|  | for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { | 
|  | if (VarIndices[i].V == Index && | 
|  | VarIndices[i].Extension == Extension) { | 
|  | Scale += VarIndices[i].Scale; | 
|  | VarIndices.erase(VarIndices.begin()+i); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make sure that we have a scale that makes sense for this target's | 
|  | // pointer size. | 
|  | if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) { | 
|  | Scale <<= ShiftBits; | 
|  | Scale = (int64_t)Scale >> ShiftBits; | 
|  | } | 
|  |  | 
|  | if (Scale) { | 
|  | VariableGEPIndex Entry = {Index, Extension, | 
|  | static_cast<int64_t>(Scale)}; | 
|  | VarIndices.push_back(Entry); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Analyze the base pointer next. | 
|  | V = GEPOp->getOperand(0); | 
|  | } while (--MaxLookup); | 
|  |  | 
|  | // If the chain of expressions is too deep, just return early. | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// GetIndexDifference - Dest and Src are the variable indices from two | 
|  | /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base | 
|  | /// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic | 
|  | /// difference between the two pointers. | 
|  | static void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest, | 
|  | const SmallVectorImpl<VariableGEPIndex> &Src) { | 
|  | if (Src.empty()) return; | 
|  |  | 
|  | for (unsigned i = 0, e = Src.size(); i != e; ++i) { | 
|  | const Value *V = Src[i].V; | 
|  | ExtensionKind Extension = Src[i].Extension; | 
|  | int64_t Scale = Src[i].Scale; | 
|  |  | 
|  | // Find V in Dest.  This is N^2, but pointer indices almost never have more | 
|  | // than a few variable indexes. | 
|  | for (unsigned j = 0, e = Dest.size(); j != e; ++j) { | 
|  | if (Dest[j].V != V || Dest[j].Extension != Extension) continue; | 
|  |  | 
|  | // If we found it, subtract off Scale V's from the entry in Dest.  If it | 
|  | // goes to zero, remove the entry. | 
|  | if (Dest[j].Scale != Scale) | 
|  | Dest[j].Scale -= Scale; | 
|  | else | 
|  | Dest.erase(Dest.begin()+j); | 
|  | Scale = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we didn't consume this entry, add it to the end of the Dest list. | 
|  | if (Scale) { | 
|  | VariableGEPIndex Entry = { V, Extension, -Scale }; | 
|  | Dest.push_back(Entry); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // BasicAliasAnalysis Pass | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static const Function *getParent(const Value *V) { | 
|  | if (const Instruction *inst = dyn_cast<Instruction>(V)) | 
|  | return inst->getParent()->getParent(); | 
|  |  | 
|  | if (const Argument *arg = dyn_cast<Argument>(V)) | 
|  | return arg->getParent(); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static bool notDifferentParent(const Value *O1, const Value *O2) { | 
|  |  | 
|  | const Function *F1 = getParent(O1); | 
|  | const Function *F2 = getParent(O2); | 
|  |  | 
|  | return !F1 || !F2 || F1 == F2; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | namespace { | 
|  | /// BasicAliasAnalysis - This is the primary alias analysis implementation. | 
|  | struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis { | 
|  | static char ID; // Class identification, replacement for typeinfo | 
|  | BasicAliasAnalysis() : ImmutablePass(ID), | 
|  | // AliasCache rarely has more than 1 or 2 elements, | 
|  | // so start it off fairly small so that clear() | 
|  | // doesn't have to tromp through 64 (the default) | 
|  | // elements on each alias query. This really wants | 
|  | // something like a SmallDenseMap. | 
|  | AliasCache(8) { | 
|  | initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | virtual void initializePass() { | 
|  | InitializeAliasAnalysis(this); | 
|  | } | 
|  |  | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.addRequired<AliasAnalysis>(); | 
|  | AU.addRequired<TargetLibraryInfo>(); | 
|  | } | 
|  |  | 
|  | virtual AliasResult alias(const Location &LocA, | 
|  | const Location &LocB) { | 
|  | assert(AliasCache.empty() && "AliasCache must be cleared after use!"); | 
|  | assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && | 
|  | "BasicAliasAnalysis doesn't support interprocedural queries."); | 
|  | AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag, | 
|  | LocB.Ptr, LocB.Size, LocB.TBAATag); | 
|  | AliasCache.clear(); | 
|  | return Alias; | 
|  | } | 
|  |  | 
|  | virtual ModRefResult getModRefInfo(ImmutableCallSite CS, | 
|  | const Location &Loc); | 
|  |  | 
|  | virtual ModRefResult getModRefInfo(ImmutableCallSite CS1, | 
|  | ImmutableCallSite CS2) { | 
|  | // The AliasAnalysis base class has some smarts, lets use them. | 
|  | return AliasAnalysis::getModRefInfo(CS1, CS2); | 
|  | } | 
|  |  | 
|  | /// pointsToConstantMemory - Chase pointers until we find a (constant | 
|  | /// global) or not. | 
|  | virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal); | 
|  |  | 
|  | /// getModRefBehavior - Return the behavior when calling the given | 
|  | /// call site. | 
|  | virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS); | 
|  |  | 
|  | /// getModRefBehavior - Return the behavior when calling the given function. | 
|  | /// For use when the call site is not known. | 
|  | virtual ModRefBehavior getModRefBehavior(const Function *F); | 
|  |  | 
|  | /// getAdjustedAnalysisPointer - This method is used when a pass implements | 
|  | /// an analysis interface through multiple inheritance.  If needed, it | 
|  | /// should override this to adjust the this pointer as needed for the | 
|  | /// specified pass info. | 
|  | virtual void *getAdjustedAnalysisPointer(const void *ID) { | 
|  | if (ID == &AliasAnalysis::ID) | 
|  | return (AliasAnalysis*)this; | 
|  | return this; | 
|  | } | 
|  |  | 
|  | private: | 
|  | // AliasCache - Track alias queries to guard against recursion. | 
|  | typedef std::pair<Location, Location> LocPair; | 
|  | typedef DenseMap<LocPair, AliasResult> AliasCacheTy; | 
|  | AliasCacheTy AliasCache; | 
|  |  | 
|  | // Visited - Track instructions visited by pointsToConstantMemory. | 
|  | SmallPtrSet<const Value*, 16> Visited; | 
|  |  | 
|  | // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP | 
|  | // instruction against another. | 
|  | AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size, | 
|  | const Value *V2, uint64_t V2Size, | 
|  | const MDNode *V2TBAAInfo, | 
|  | const Value *UnderlyingV1, const Value *UnderlyingV2); | 
|  |  | 
|  | // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI | 
|  | // instruction against another. | 
|  | AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize, | 
|  | const MDNode *PNTBAAInfo, | 
|  | const Value *V2, uint64_t V2Size, | 
|  | const MDNode *V2TBAAInfo); | 
|  |  | 
|  | /// aliasSelect - Disambiguate a Select instruction against another value. | 
|  | AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize, | 
|  | const MDNode *SITBAAInfo, | 
|  | const Value *V2, uint64_t V2Size, | 
|  | const MDNode *V2TBAAInfo); | 
|  |  | 
|  | AliasResult aliasCheck(const Value *V1, uint64_t V1Size, | 
|  | const MDNode *V1TBAATag, | 
|  | const Value *V2, uint64_t V2Size, | 
|  | const MDNode *V2TBAATag); | 
|  | }; | 
|  | }  // End of anonymous namespace | 
|  |  | 
|  | // Register this pass... | 
|  | char BasicAliasAnalysis::ID = 0; | 
|  | INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa", | 
|  | "Basic Alias Analysis (stateless AA impl)", | 
|  | false, true, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) | 
|  | INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa", | 
|  | "Basic Alias Analysis (stateless AA impl)", | 
|  | false, true, false) | 
|  |  | 
|  |  | 
|  | ImmutablePass *llvm::createBasicAliasAnalysisPass() { | 
|  | return new BasicAliasAnalysis(); | 
|  | } | 
|  |  | 
|  | /// pointsToConstantMemory - Returns whether the given pointer value | 
|  | /// points to memory that is local to the function, with global constants being | 
|  | /// considered local to all functions. | 
|  | bool | 
|  | BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) { | 
|  | assert(Visited.empty() && "Visited must be cleared after use!"); | 
|  |  | 
|  | unsigned MaxLookup = 8; | 
|  | SmallVector<const Value *, 16> Worklist; | 
|  | Worklist.push_back(Loc.Ptr); | 
|  | do { | 
|  | const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), TD); | 
|  | if (!Visited.insert(V)) { | 
|  | Visited.clear(); | 
|  | return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); | 
|  | } | 
|  |  | 
|  | // An alloca instruction defines local memory. | 
|  | if (OrLocal && isa<AllocaInst>(V)) | 
|  | continue; | 
|  |  | 
|  | // A global constant counts as local memory for our purposes. | 
|  | if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { | 
|  | // Note: this doesn't require GV to be "ODR" because it isn't legal for a | 
|  | // global to be marked constant in some modules and non-constant in | 
|  | // others.  GV may even be a declaration, not a definition. | 
|  | if (!GV->isConstant()) { | 
|  | Visited.clear(); | 
|  | return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If both select values point to local memory, then so does the select. | 
|  | if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { | 
|  | Worklist.push_back(SI->getTrueValue()); | 
|  | Worklist.push_back(SI->getFalseValue()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If all values incoming to a phi node point to local memory, then so does | 
|  | // the phi. | 
|  | if (const PHINode *PN = dyn_cast<PHINode>(V)) { | 
|  | // Don't bother inspecting phi nodes with many operands. | 
|  | if (PN->getNumIncomingValues() > MaxLookup) { | 
|  | Visited.clear(); | 
|  | return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); | 
|  | } | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | Worklist.push_back(PN->getIncomingValue(i)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise be conservative. | 
|  | Visited.clear(); | 
|  | return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); | 
|  |  | 
|  | } while (!Worklist.empty() && --MaxLookup); | 
|  |  | 
|  | Visited.clear(); | 
|  | return Worklist.empty(); | 
|  | } | 
|  |  | 
|  | /// getModRefBehavior - Return the behavior when calling the given call site. | 
|  | AliasAnalysis::ModRefBehavior | 
|  | BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { | 
|  | if (CS.doesNotAccessMemory()) | 
|  | // Can't do better than this. | 
|  | return DoesNotAccessMemory; | 
|  |  | 
|  | ModRefBehavior Min = UnknownModRefBehavior; | 
|  |  | 
|  | // If the callsite knows it only reads memory, don't return worse | 
|  | // than that. | 
|  | if (CS.onlyReadsMemory()) | 
|  | Min = OnlyReadsMemory; | 
|  |  | 
|  | // The AliasAnalysis base class has some smarts, lets use them. | 
|  | return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min); | 
|  | } | 
|  |  | 
|  | /// getModRefBehavior - Return the behavior when calling the given function. | 
|  | /// For use when the call site is not known. | 
|  | AliasAnalysis::ModRefBehavior | 
|  | BasicAliasAnalysis::getModRefBehavior(const Function *F) { | 
|  | // If the function declares it doesn't access memory, we can't do better. | 
|  | if (F->doesNotAccessMemory()) | 
|  | return DoesNotAccessMemory; | 
|  |  | 
|  | // For intrinsics, we can check the table. | 
|  | if (unsigned iid = F->getIntrinsicID()) { | 
|  | #define GET_INTRINSIC_MODREF_BEHAVIOR | 
|  | #include "llvm/Intrinsics.gen" | 
|  | #undef GET_INTRINSIC_MODREF_BEHAVIOR | 
|  | } | 
|  |  | 
|  | ModRefBehavior Min = UnknownModRefBehavior; | 
|  |  | 
|  | // If the function declares it only reads memory, go with that. | 
|  | if (F->onlyReadsMemory()) | 
|  | Min = OnlyReadsMemory; | 
|  |  | 
|  | // Otherwise be conservative. | 
|  | return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min); | 
|  | } | 
|  |  | 
|  | /// getModRefInfo - Check to see if the specified callsite can clobber the | 
|  | /// specified memory object.  Since we only look at local properties of this | 
|  | /// function, we really can't say much about this query.  We do, however, use | 
|  | /// simple "address taken" analysis on local objects. | 
|  | AliasAnalysis::ModRefResult | 
|  | BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS, | 
|  | const Location &Loc) { | 
|  | assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && | 
|  | "AliasAnalysis query involving multiple functions!"); | 
|  |  | 
|  | const Value *Object = GetUnderlyingObject(Loc.Ptr, TD); | 
|  |  | 
|  | // If this is a tail call and Loc.Ptr points to a stack location, we know that | 
|  | // the tail call cannot access or modify the local stack. | 
|  | // We cannot exclude byval arguments here; these belong to the caller of | 
|  | // the current function not to the current function, and a tail callee | 
|  | // may reference them. | 
|  | if (isa<AllocaInst>(Object)) | 
|  | if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) | 
|  | if (CI->isTailCall()) | 
|  | return NoModRef; | 
|  |  | 
|  | // If the pointer is to a locally allocated object that does not escape, | 
|  | // then the call can not mod/ref the pointer unless the call takes the pointer | 
|  | // as an argument, and itself doesn't capture it. | 
|  | if (!isa<Constant>(Object) && CS.getInstruction() != Object && | 
|  | isNonEscapingLocalObject(Object)) { | 
|  | bool PassedAsArg = false; | 
|  | unsigned ArgNo = 0; | 
|  | for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); | 
|  | CI != CE; ++CI, ++ArgNo) { | 
|  | // Only look at the no-capture or byval pointer arguments.  If this | 
|  | // pointer were passed to arguments that were neither of these, then it | 
|  | // couldn't be no-capture. | 
|  | if (!(*CI)->getType()->isPointerTy() || | 
|  | (!CS.paramHasAttr(ArgNo+1, Attribute::NoCapture) && | 
|  | !CS.paramHasAttr(ArgNo+1, Attribute::ByVal))) | 
|  | continue; | 
|  |  | 
|  | // If this is a no-capture pointer argument, see if we can tell that it | 
|  | // is impossible to alias the pointer we're checking.  If not, we have to | 
|  | // assume that the call could touch the pointer, even though it doesn't | 
|  | // escape. | 
|  | if (!isNoAlias(Location(*CI), Location(Object))) { | 
|  | PassedAsArg = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!PassedAsArg) | 
|  | return NoModRef; | 
|  | } | 
|  |  | 
|  | const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>(); | 
|  | ModRefResult Min = ModRef; | 
|  |  | 
|  | // Finally, handle specific knowledge of intrinsics. | 
|  | const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); | 
|  | if (II != 0) | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: break; | 
|  | case Intrinsic::memcpy: | 
|  | case Intrinsic::memmove: { | 
|  | uint64_t Len = UnknownSize; | 
|  | if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) | 
|  | Len = LenCI->getZExtValue(); | 
|  | Value *Dest = II->getArgOperand(0); | 
|  | Value *Src = II->getArgOperand(1); | 
|  | // If it can't overlap the source dest, then it doesn't modref the loc. | 
|  | if (isNoAlias(Location(Dest, Len), Loc)) { | 
|  | if (isNoAlias(Location(Src, Len), Loc)) | 
|  | return NoModRef; | 
|  | // If it can't overlap the dest, then worst case it reads the loc. | 
|  | Min = Ref; | 
|  | } else if (isNoAlias(Location(Src, Len), Loc)) { | 
|  | // If it can't overlap the source, then worst case it mutates the loc. | 
|  | Min = Mod; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Intrinsic::memset: | 
|  | // Since memset is 'accesses arguments' only, the AliasAnalysis base class | 
|  | // will handle it for the variable length case. | 
|  | if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) { | 
|  | uint64_t Len = LenCI->getZExtValue(); | 
|  | Value *Dest = II->getArgOperand(0); | 
|  | if (isNoAlias(Location(Dest, Len), Loc)) | 
|  | return NoModRef; | 
|  | } | 
|  | // We know that memset doesn't load anything. | 
|  | Min = Mod; | 
|  | break; | 
|  | case Intrinsic::lifetime_start: | 
|  | case Intrinsic::lifetime_end: | 
|  | case Intrinsic::invariant_start: { | 
|  | uint64_t PtrSize = | 
|  | cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); | 
|  | if (isNoAlias(Location(II->getArgOperand(1), | 
|  | PtrSize, | 
|  | II->getMetadata(LLVMContext::MD_tbaa)), | 
|  | Loc)) | 
|  | return NoModRef; | 
|  | break; | 
|  | } | 
|  | case Intrinsic::invariant_end: { | 
|  | uint64_t PtrSize = | 
|  | cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(); | 
|  | if (isNoAlias(Location(II->getArgOperand(2), | 
|  | PtrSize, | 
|  | II->getMetadata(LLVMContext::MD_tbaa)), | 
|  | Loc)) | 
|  | return NoModRef; | 
|  | break; | 
|  | } | 
|  | //case Intrinsic::arm_neon_vld1: { | 
|  | //  // LLVM's vld1 and vst1 intrinsics currently only support a single | 
|  | //  // vector register. | 
|  | //  uint64_t Size = | 
|  | //    TD ? TD->getTypeStoreSize(II->getType()) : UnknownSize; | 
|  | //  if (isNoAlias(Location(II->getArgOperand(0), Size, | 
|  | //                         II->getMetadata(LLVMContext::MD_tbaa)), | 
|  | //                Loc)) | 
|  | //    return NoModRef; | 
|  | //  break; | 
|  | //} | 
|  | //case Intrinsic::arm_neon_vst1: { | 
|  | //  uint64_t Size = | 
|  | //    TD ? TD->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize; | 
|  | //  if (isNoAlias(Location(II->getArgOperand(0), Size, | 
|  | //                         II->getMetadata(LLVMContext::MD_tbaa)), | 
|  | //                Loc)) | 
|  | //    return NoModRef; | 
|  | //  break; | 
|  | //} | 
|  | } | 
|  |  | 
|  | // We can bound the aliasing properties of memset_pattern16 just as we can | 
|  | // for memcpy/memset.  This is particularly important because the | 
|  | // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 | 
|  | // whenever possible. | 
|  | else if (TLI.has(LibFunc::memset_pattern16) && | 
|  | CS.getCalledFunction() && | 
|  | CS.getCalledFunction()->getName() == "memset_pattern16") { | 
|  | const Function *MS = CS.getCalledFunction(); | 
|  | FunctionType *MemsetType = MS->getFunctionType(); | 
|  | if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 && | 
|  | isa<PointerType>(MemsetType->getParamType(0)) && | 
|  | isa<PointerType>(MemsetType->getParamType(1)) && | 
|  | isa<IntegerType>(MemsetType->getParamType(2))) { | 
|  | uint64_t Len = UnknownSize; | 
|  | if (const ConstantInt *LenCI = dyn_cast<ConstantInt>(CS.getArgument(2))) | 
|  | Len = LenCI->getZExtValue(); | 
|  | const Value *Dest = CS.getArgument(0); | 
|  | const Value *Src = CS.getArgument(1); | 
|  | // If it can't overlap the source dest, then it doesn't modref the loc. | 
|  | if (isNoAlias(Location(Dest, Len), Loc)) { | 
|  | // Always reads 16 bytes of the source. | 
|  | if (isNoAlias(Location(Src, 16), Loc)) | 
|  | return NoModRef; | 
|  | // If it can't overlap the dest, then worst case it reads the loc. | 
|  | Min = Ref; | 
|  | // Always reads 16 bytes of the source. | 
|  | } else if (isNoAlias(Location(Src, 16), Loc)) { | 
|  | // If it can't overlap the source, then worst case it mutates the loc. | 
|  | Min = Mod; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // The AliasAnalysis base class has some smarts, lets use them. | 
|  | return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min); | 
|  | } | 
|  |  | 
|  | /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction | 
|  | /// against another pointer.  We know that V1 is a GEP, but we don't know | 
|  | /// anything about V2.  UnderlyingV1 is GetUnderlyingObject(GEP1, TD), | 
|  | /// UnderlyingV2 is the same for V2. | 
|  | /// | 
|  | AliasAnalysis::AliasResult | 
|  | BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, | 
|  | const Value *V2, uint64_t V2Size, | 
|  | const MDNode *V2TBAAInfo, | 
|  | const Value *UnderlyingV1, | 
|  | const Value *UnderlyingV2) { | 
|  | int64_t GEP1BaseOffset; | 
|  | SmallVector<VariableGEPIndex, 4> GEP1VariableIndices; | 
|  |  | 
|  | // If we have two gep instructions with must-alias'ing base pointers, figure | 
|  | // out if the indexes to the GEP tell us anything about the derived pointer. | 
|  | if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { | 
|  | // Do the base pointers alias? | 
|  | AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0, | 
|  | UnderlyingV2, UnknownSize, 0); | 
|  |  | 
|  | // If we get a No or May, then return it immediately, no amount of analysis | 
|  | // will improve this situation. | 
|  | if (BaseAlias != MustAlias) return BaseAlias; | 
|  |  | 
|  | // Otherwise, we have a MustAlias.  Since the base pointers alias each other | 
|  | // exactly, see if the computed offset from the common pointer tells us | 
|  | // about the relation of the resulting pointer. | 
|  | const Value *GEP1BasePtr = | 
|  | DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); | 
|  |  | 
|  | int64_t GEP2BaseOffset; | 
|  | SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; | 
|  | const Value *GEP2BasePtr = | 
|  | DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD); | 
|  |  | 
|  | // If DecomposeGEPExpression isn't able to look all the way through the | 
|  | // addressing operation, we must not have TD and this is too complex for us | 
|  | // to handle without it. | 
|  | if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { | 
|  | assert(TD == 0 && | 
|  | "DecomposeGEPExpression and GetUnderlyingObject disagree!"); | 
|  | return MayAlias; | 
|  | } | 
|  |  | 
|  | // Subtract the GEP2 pointer from the GEP1 pointer to find out their | 
|  | // symbolic difference. | 
|  | GEP1BaseOffset -= GEP2BaseOffset; | 
|  | GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices); | 
|  |  | 
|  | } else { | 
|  | // Check to see if these two pointers are related by the getelementptr | 
|  | // instruction.  If one pointer is a GEP with a non-zero index of the other | 
|  | // pointer, we know they cannot alias. | 
|  |  | 
|  | // If both accesses are unknown size, we can't do anything useful here. | 
|  | if (V1Size == UnknownSize && V2Size == UnknownSize) | 
|  | return MayAlias; | 
|  |  | 
|  | AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0, | 
|  | V2, V2Size, V2TBAAInfo); | 
|  | if (R != MustAlias) | 
|  | // If V2 may alias GEP base pointer, conservatively returns MayAlias. | 
|  | // If V2 is known not to alias GEP base pointer, then the two values | 
|  | // cannot alias per GEP semantics: "A pointer value formed from a | 
|  | // getelementptr instruction is associated with the addresses associated | 
|  | // with the first operand of the getelementptr". | 
|  | return R; | 
|  |  | 
|  | const Value *GEP1BasePtr = | 
|  | DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); | 
|  |  | 
|  | // If DecomposeGEPExpression isn't able to look all the way through the | 
|  | // addressing operation, we must not have TD and this is too complex for us | 
|  | // to handle without it. | 
|  | if (GEP1BasePtr != UnderlyingV1) { | 
|  | assert(TD == 0 && | 
|  | "DecomposeGEPExpression and GetUnderlyingObject disagree!"); | 
|  | return MayAlias; | 
|  | } | 
|  | } | 
|  |  | 
|  | // In the two GEP Case, if there is no difference in the offsets of the | 
|  | // computed pointers, the resultant pointers are a must alias.  This | 
|  | // hapens when we have two lexically identical GEP's (for example). | 
|  | // | 
|  | // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 | 
|  | // must aliases the GEP, the end result is a must alias also. | 
|  | if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) | 
|  | return MustAlias; | 
|  |  | 
|  | // If there is a constant difference between the pointers, but the difference | 
|  | // is less than the size of the associated memory object, then we know | 
|  | // that the objects are partially overlapping.  If the difference is | 
|  | // greater, we know they do not overlap. | 
|  | if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) { | 
|  | if (GEP1BaseOffset >= 0) { | 
|  | if (V2Size != UnknownSize) { | 
|  | if ((uint64_t)GEP1BaseOffset < V2Size) | 
|  | return PartialAlias; | 
|  | return NoAlias; | 
|  | } | 
|  | } else { | 
|  | if (V1Size != UnknownSize) { | 
|  | if (-(uint64_t)GEP1BaseOffset < V1Size) | 
|  | return PartialAlias; | 
|  | return NoAlias; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to distinguish something like &A[i][1] against &A[42][0]. | 
|  | // Grab the least significant bit set in any of the scales. | 
|  | if (!GEP1VariableIndices.empty()) { | 
|  | uint64_t Modulo = 0; | 
|  | for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) | 
|  | Modulo |= (uint64_t)GEP1VariableIndices[i].Scale; | 
|  | Modulo = Modulo ^ (Modulo & (Modulo - 1)); | 
|  |  | 
|  | // We can compute the difference between the two addresses | 
|  | // mod Modulo. Check whether that difference guarantees that the | 
|  | // two locations do not alias. | 
|  | uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); | 
|  | if (V1Size != UnknownSize && V2Size != UnknownSize && | 
|  | ModOffset >= V2Size && V1Size <= Modulo - ModOffset) | 
|  | return NoAlias; | 
|  | } | 
|  |  | 
|  | // Statically, we can see that the base objects are the same, but the | 
|  | // pointers have dynamic offsets which we can't resolve. And none of our | 
|  | // little tricks above worked. | 
|  | // | 
|  | // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the | 
|  | // practical effect of this is protecting TBAA in the case of dynamic | 
|  | // indices into arrays of unions. An alternative way to solve this would | 
|  | // be to have clang emit extra metadata for unions and/or union accesses. | 
|  | // A union-specific solution wouldn't handle the problem for malloc'd | 
|  | // memory however. | 
|  | return PartialAlias; | 
|  | } | 
|  |  | 
|  | static AliasAnalysis::AliasResult | 
|  | MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) { | 
|  | // If the results agree, take it. | 
|  | if (A == B) | 
|  | return A; | 
|  | // A mix of PartialAlias and MustAlias is PartialAlias. | 
|  | if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) || | 
|  | (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias)) | 
|  | return AliasAnalysis::PartialAlias; | 
|  | // Otherwise, we don't know anything. | 
|  | return AliasAnalysis::MayAlias; | 
|  | } | 
|  |  | 
|  | /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select | 
|  | /// instruction against another. | 
|  | AliasAnalysis::AliasResult | 
|  | BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize, | 
|  | const MDNode *SITBAAInfo, | 
|  | const Value *V2, uint64_t V2Size, | 
|  | const MDNode *V2TBAAInfo) { | 
|  | // If the values are Selects with the same condition, we can do a more precise | 
|  | // check: just check for aliases between the values on corresponding arms. | 
|  | if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) | 
|  | if (SI->getCondition() == SI2->getCondition()) { | 
|  | AliasResult Alias = | 
|  | aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo, | 
|  | SI2->getTrueValue(), V2Size, V2TBAAInfo); | 
|  | if (Alias == MayAlias) | 
|  | return MayAlias; | 
|  | AliasResult ThisAlias = | 
|  | aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo, | 
|  | SI2->getFalseValue(), V2Size, V2TBAAInfo); | 
|  | return MergeAliasResults(ThisAlias, Alias); | 
|  | } | 
|  |  | 
|  | // If both arms of the Select node NoAlias or MustAlias V2, then returns | 
|  | // NoAlias / MustAlias. Otherwise, returns MayAlias. | 
|  | AliasResult Alias = | 
|  | aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo); | 
|  | if (Alias == MayAlias) | 
|  | return MayAlias; | 
|  |  | 
|  | AliasResult ThisAlias = | 
|  | aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo); | 
|  | return MergeAliasResults(ThisAlias, Alias); | 
|  | } | 
|  |  | 
|  | // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction | 
|  | // against another. | 
|  | AliasAnalysis::AliasResult | 
|  | BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize, | 
|  | const MDNode *PNTBAAInfo, | 
|  | const Value *V2, uint64_t V2Size, | 
|  | const MDNode *V2TBAAInfo) { | 
|  | // If the values are PHIs in the same block, we can do a more precise | 
|  | // as well as efficient check: just check for aliases between the values | 
|  | // on corresponding edges. | 
|  | if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) | 
|  | if (PN2->getParent() == PN->getParent()) { | 
|  | AliasResult Alias = | 
|  | aliasCheck(PN->getIncomingValue(0), PNSize, PNTBAAInfo, | 
|  | PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)), | 
|  | V2Size, V2TBAAInfo); | 
|  | if (Alias == MayAlias) | 
|  | return MayAlias; | 
|  | for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | AliasResult ThisAlias = | 
|  | aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo, | 
|  | PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), | 
|  | V2Size, V2TBAAInfo); | 
|  | Alias = MergeAliasResults(ThisAlias, Alias); | 
|  | if (Alias == MayAlias) | 
|  | break; | 
|  | } | 
|  | return Alias; | 
|  | } | 
|  |  | 
|  | SmallPtrSet<Value*, 4> UniqueSrc; | 
|  | SmallVector<Value*, 4> V1Srcs; | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | Value *PV1 = PN->getIncomingValue(i); | 
|  | if (isa<PHINode>(PV1)) | 
|  | // If any of the source itself is a PHI, return MayAlias conservatively | 
|  | // to avoid compile time explosion. The worst possible case is if both | 
|  | // sides are PHI nodes. In which case, this is O(m x n) time where 'm' | 
|  | // and 'n' are the number of PHI sources. | 
|  | return MayAlias; | 
|  | if (UniqueSrc.insert(PV1)) | 
|  | V1Srcs.push_back(PV1); | 
|  | } | 
|  |  | 
|  | AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo, | 
|  | V1Srcs[0], PNSize, PNTBAAInfo); | 
|  | // Early exit if the check of the first PHI source against V2 is MayAlias. | 
|  | // Other results are not possible. | 
|  | if (Alias == MayAlias) | 
|  | return MayAlias; | 
|  |  | 
|  | // If all sources of the PHI node NoAlias or MustAlias V2, then returns | 
|  | // NoAlias / MustAlias. Otherwise, returns MayAlias. | 
|  | for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { | 
|  | Value *V = V1Srcs[i]; | 
|  |  | 
|  | AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo, | 
|  | V, PNSize, PNTBAAInfo); | 
|  | Alias = MergeAliasResults(ThisAlias, Alias); | 
|  | if (Alias == MayAlias) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return Alias; | 
|  | } | 
|  |  | 
|  | // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases, | 
|  | // such as array references. | 
|  | // | 
|  | AliasAnalysis::AliasResult | 
|  | BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size, | 
|  | const MDNode *V1TBAAInfo, | 
|  | const Value *V2, uint64_t V2Size, | 
|  | const MDNode *V2TBAAInfo) { | 
|  | // If either of the memory references is empty, it doesn't matter what the | 
|  | // pointer values are. | 
|  | if (V1Size == 0 || V2Size == 0) | 
|  | return NoAlias; | 
|  |  | 
|  | // Strip off any casts if they exist. | 
|  | V1 = V1->stripPointerCasts(); | 
|  | V2 = V2->stripPointerCasts(); | 
|  |  | 
|  | // Are we checking for alias of the same value? | 
|  | if (V1 == V2) return MustAlias; | 
|  |  | 
|  | if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) | 
|  | return NoAlias;  // Scalars cannot alias each other | 
|  |  | 
|  | // Figure out what objects these things are pointing to if we can. | 
|  | const Value *O1 = GetUnderlyingObject(V1, TD); | 
|  | const Value *O2 = GetUnderlyingObject(V2, TD); | 
|  |  | 
|  | // Null values in the default address space don't point to any object, so they | 
|  | // don't alias any other pointer. | 
|  | if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) | 
|  | if (CPN->getType()->getAddressSpace() == 0) | 
|  | return NoAlias; | 
|  | if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) | 
|  | if (CPN->getType()->getAddressSpace() == 0) | 
|  | return NoAlias; | 
|  |  | 
|  | if (O1 != O2) { | 
|  | // If V1/V2 point to two different objects we know that we have no alias. | 
|  | if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) | 
|  | return NoAlias; | 
|  |  | 
|  | // Constant pointers can't alias with non-const isIdentifiedObject objects. | 
|  | if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || | 
|  | (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) | 
|  | return NoAlias; | 
|  |  | 
|  | // Arguments can't alias with local allocations or noalias calls | 
|  | // in the same function. | 
|  | if (((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) || | 
|  | (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1))))) | 
|  | return NoAlias; | 
|  |  | 
|  | // Most objects can't alias null. | 
|  | if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || | 
|  | (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) | 
|  | return NoAlias; | 
|  |  | 
|  | // If one pointer is the result of a call/invoke or load and the other is a | 
|  | // non-escaping local object within the same function, then we know the | 
|  | // object couldn't escape to a point where the call could return it. | 
|  | // | 
|  | // Note that if the pointers are in different functions, there are a | 
|  | // variety of complications. A call with a nocapture argument may still | 
|  | // temporary store the nocapture argument's value in a temporary memory | 
|  | // location if that memory location doesn't escape. Or it may pass a | 
|  | // nocapture value to other functions as long as they don't capture it. | 
|  | if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) | 
|  | return NoAlias; | 
|  | if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) | 
|  | return NoAlias; | 
|  | } | 
|  |  | 
|  | // If the size of one access is larger than the entire object on the other | 
|  | // side, then we know such behavior is undefined and can assume no alias. | 
|  | if (TD) | 
|  | if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD)) || | 
|  | (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD))) | 
|  | return NoAlias; | 
|  |  | 
|  | // Check the cache before climbing up use-def chains. This also terminates | 
|  | // otherwise infinitely recursive queries. | 
|  | LocPair Locs(Location(V1, V1Size, V1TBAAInfo), | 
|  | Location(V2, V2Size, V2TBAAInfo)); | 
|  | if (V1 > V2) | 
|  | std::swap(Locs.first, Locs.second); | 
|  | std::pair<AliasCacheTy::iterator, bool> Pair = | 
|  | AliasCache.insert(std::make_pair(Locs, MayAlias)); | 
|  | if (!Pair.second) | 
|  | return Pair.first->second; | 
|  |  | 
|  | // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the | 
|  | // GEP can't simplify, we don't even look at the PHI cases. | 
|  | if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { | 
|  | std::swap(V1, V2); | 
|  | std::swap(V1Size, V2Size); | 
|  | std::swap(O1, O2); | 
|  | } | 
|  | if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { | 
|  | AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, V2TBAAInfo, O1, O2); | 
|  | if (Result != MayAlias) return AliasCache[Locs] = Result; | 
|  | } | 
|  |  | 
|  | if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { | 
|  | std::swap(V1, V2); | 
|  | std::swap(V1Size, V2Size); | 
|  | } | 
|  | if (const PHINode *PN = dyn_cast<PHINode>(V1)) { | 
|  | AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo, | 
|  | V2, V2Size, V2TBAAInfo); | 
|  | if (Result != MayAlias) return AliasCache[Locs] = Result; | 
|  | } | 
|  |  | 
|  | if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { | 
|  | std::swap(V1, V2); | 
|  | std::swap(V1Size, V2Size); | 
|  | } | 
|  | if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { | 
|  | AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo, | 
|  | V2, V2Size, V2TBAAInfo); | 
|  | if (Result != MayAlias) return AliasCache[Locs] = Result; | 
|  | } | 
|  |  | 
|  | // If both pointers are pointing into the same object and one of them | 
|  | // accesses is accessing the entire object, then the accesses must | 
|  | // overlap in some way. | 
|  | if (TD && O1 == O2) | 
|  | if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *TD)) || | 
|  | (V2Size != UnknownSize && isObjectSize(O2, V2Size, *TD))) | 
|  | return AliasCache[Locs] = PartialAlias; | 
|  |  | 
|  | AliasResult Result = | 
|  | AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo), | 
|  | Location(V2, V2Size, V2TBAAInfo)); | 
|  | return AliasCache[Locs] = Result; | 
|  | } |