blob: 8b0d85fb19bb78be80d0994bd868565862867b36 [file] [log] [blame]
//
// Copyright (c) 2002-2011 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Program.cpp: Implements the Program class. Implements GL program objects
// and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28.
#include "Program.h"
#include "main.h"
#include "Shader.h"
#include "utilities.h"
#include "common/debug.h"
#include "Shader/PixelShader.hpp"
#include "Shader/VertexShader.hpp"
#include <string>
#if !defined(ANGLE_COMPILE_OPTIMIZATION_LEVEL)
#define ANGLE_COMPILE_OPTIMIZATION_LEVEL D3DCOMPILE_OPTIMIZATION_LEVEL3
#endif
namespace gl
{
unsigned int Program::mCurrentSerial = 1;
const char *fakepath = "C:\\fakepath";
std::string str(int i)
{
char buffer[20];
sprintf(buffer, "%d", i);
return buffer;
}
Uniform::Uniform(GLenum type, const std::string &_name, unsigned int arraySize) : type(type), _name(_name), name(Program::undecorateUniform(_name)), arraySize(arraySize)
{
int bytes = UniformTypeSize(type) * arraySize;
data = new unsigned char[bytes];
memset(data, 0, bytes);
dirty = true;
handlesSet = false;
}
Uniform::~Uniform()
{
delete[] data;
}
bool Uniform::isArray()
{
return _name.compare(0, 3, "ar_") == 0;
}
UniformLocation::UniformLocation(const std::string &_name, unsigned int element, unsigned int index)
: name(Program::undecorateUniform(_name)), element(element), index(index)
{
}
Program::Program(ResourceManager *manager, GLuint handle) : mResourceManager(manager), mHandle(handle), mSerial(issueSerial())
{
mFragmentShader = NULL;
mVertexShader = NULL;
mPixelExecutable = NULL;
mVertexExecutable = NULL;
mConstantTablePS = NULL;
mConstantTableVS = NULL;
mInfoLog = NULL;
mValidated = false;
unlink();
mDeleteStatus = false;
mRefCount = 0;
}
Program::~Program()
{
unlink(true);
if(mVertexShader != NULL)
{
mVertexShader->release();
}
if(mFragmentShader != NULL)
{
mFragmentShader->release();
}
}
bool Program::attachShader(Shader *shader)
{
if(shader->getType() == GL_VERTEX_SHADER)
{
if(mVertexShader)
{
return false;
}
mVertexShader = (VertexShader*)shader;
mVertexShader->addRef();
}
else if(shader->getType() == GL_FRAGMENT_SHADER)
{
if(mFragmentShader)
{
return false;
}
mFragmentShader = (FragmentShader*)shader;
mFragmentShader->addRef();
}
else UNREACHABLE();
return true;
}
bool Program::detachShader(Shader *shader)
{
if(shader->getType() == GL_VERTEX_SHADER)
{
if(mVertexShader != shader)
{
return false;
}
mVertexShader->release();
mVertexShader = NULL;
}
else if(shader->getType() == GL_FRAGMENT_SHADER)
{
if(mFragmentShader != shader)
{
return false;
}
mFragmentShader->release();
mFragmentShader = NULL;
}
else UNREACHABLE();
return true;
}
int Program::getAttachedShadersCount() const
{
return (mVertexShader ? 1 : 0) + (mFragmentShader ? 1 : 0);
}
sw::PixelShader *Program::getPixelShader()
{
return mPixelExecutable;
}
sw::VertexShader *Program::getVertexShader()
{
return mVertexExecutable;
}
void Program::bindAttributeLocation(GLuint index, const char *name)
{
if(index < MAX_VERTEX_ATTRIBS)
{
for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
mAttributeBinding[i].erase(name);
}
mAttributeBinding[index].insert(name);
}
}
GLuint Program::getAttributeLocation(const char *name)
{
if(name)
{
for(int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
{
if(mLinkedAttribute[index].name == std::string(name))
{
return index;
}
}
}
return -1;
}
int Program::getSemanticIndex(int attributeIndex)
{
ASSERT(attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS);
return mSemanticIndex[attributeIndex];
}
// Returns the index of the texture image unit (0-19) corresponding to a Direct3D 9 sampler
// index (0-15 for the pixel shader and 0-3 for the vertex shader).
GLint Program::getSamplerMapping(sw::SamplerType type, unsigned int samplerIndex)
{
GLuint logicalTextureUnit = -1;
switch(type)
{
case sw::SAMPLER_PIXEL:
ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0]));
if(mSamplersPS[samplerIndex].active)
{
logicalTextureUnit = mSamplersPS[samplerIndex].logicalTextureUnit;
}
break;
case sw::SAMPLER_VERTEX:
ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0]));
if(mSamplersVS[samplerIndex].active)
{
logicalTextureUnit = mSamplersVS[samplerIndex].logicalTextureUnit;
}
break;
default: UNREACHABLE();
}
if(logicalTextureUnit >= 0 && logicalTextureUnit < MAX_COMBINED_TEXTURE_IMAGE_UNITS)
{
return logicalTextureUnit;
}
return -1;
}
// Returns the texture type for a given Direct3D 9 sampler type and
// index (0-15 for the pixel shader and 0-3 for the vertex shader).
TextureType Program::getSamplerTextureType(sw::SamplerType type, unsigned int samplerIndex)
{
switch(type)
{
case sw::SAMPLER_PIXEL:
ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0]));
ASSERT(mSamplersPS[samplerIndex].active);
return mSamplersPS[samplerIndex].textureType;
case sw::SAMPLER_VERTEX:
ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0]));
ASSERT(mSamplersVS[samplerIndex].active);
return mSamplersVS[samplerIndex].textureType;
default: UNREACHABLE();
}
return TEXTURE_2D;
}
GLint Program::getUniformLocation(std::string name)
{
int subscript = 0;
// Strip any trailing array operator and retrieve the subscript
size_t open = name.find_last_of('[');
size_t close = name.find_last_of(']');
if(open != std::string::npos && close == name.length() - 1)
{
subscript = atoi(name.substr(open + 1).c_str());
name.erase(open);
}
unsigned int numUniforms = mUniformIndex.size();
for(unsigned int location = 0; location < numUniforms; location++)
{
if(mUniformIndex[location].name == name &&
mUniformIndex[location].element == subscript)
{
return location;
}
}
return -1;
}
bool Program::setUniform1fv(GLint location, GLsizei count, const GLfloat* v)
{
if(location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if(targetUniform->type == GL_FLOAT)
{
int arraySize = targetUniform->arraySize;
if(arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat),
v, sizeof(GLfloat) * count);
}
else if(targetUniform->type == GL_BOOL)
{
int arraySize = targetUniform->arraySize;
if(arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = new GLboolean[count];
for(int i = 0; i < count; ++i)
{
if(v[i] == 0.0f)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean),
boolParams, sizeof(GLboolean) * count);
delete [] boolParams;
}
else
{
return false;
}
return true;
}
bool Program::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
{
if(location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if(targetUniform->type == GL_FLOAT_VEC2)
{
int arraySize = targetUniform->arraySize;
if(arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 2,
v, 2 * sizeof(GLfloat) * count);
}
else if(targetUniform->type == GL_BOOL_VEC2)
{
int arraySize = targetUniform->arraySize;
if(arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = new GLboolean[count * 2];
for(int i = 0; i < count * 2; ++i)
{
if(v[i] == 0.0f)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean) * 2,
boolParams, 2 * sizeof(GLboolean) * count);
delete [] boolParams;
}
else
{
return false;
}
return true;
}
bool Program::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
{
if(location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if(targetUniform->type == GL_FLOAT_VEC3)
{
int arraySize = targetUniform->arraySize;
if(arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 3,
v, 3 * sizeof(GLfloat) * count);
}
else if(targetUniform->type == GL_BOOL_VEC3)
{
int arraySize = targetUniform->arraySize;
if(arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = new GLboolean[count * 3];
for(int i = 0; i < count * 3; ++i)
{
if(v[i] == 0.0f)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean) * 3,
boolParams, 3 * sizeof(GLboolean) * count);
delete [] boolParams;
}
else
{
return false;
}
return true;
}
bool Program::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
{
if(location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if(targetUniform->type == GL_FLOAT_VEC4)
{
int arraySize = targetUniform->arraySize;
if(arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 4,
v, 4 * sizeof(GLfloat) * count);
}
else if(targetUniform->type == GL_BOOL_VEC4)
{
int arraySize = targetUniform->arraySize;
if(arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = new GLboolean[count * 4];
for(int i = 0; i < count * 4; ++i)
{
if(v[i] == 0.0f)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean) * 4,
boolParams, 4 * sizeof(GLboolean) * count);
delete [] boolParams;
}
else
{
return false;
}
return true;
}
bool Program::setUniformMatrix2fv(GLint location, GLsizei count, const GLfloat *value)
{
if(location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if(targetUniform->type != GL_FLOAT_MAT2)
{
return false;
}
int arraySize = targetUniform->arraySize;
if(arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 4,
value, 4 * sizeof(GLfloat) * count);
return true;
}
bool Program::setUniformMatrix3fv(GLint location, GLsizei count, const GLfloat *value)
{
if(location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if(targetUniform->type != GL_FLOAT_MAT3)
{
return false;
}
int arraySize = targetUniform->arraySize;
if(arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 9,
value, 9 * sizeof(GLfloat) * count);
return true;
}
bool Program::setUniformMatrix4fv(GLint location, GLsizei count, const GLfloat *value)
{
if(location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if(targetUniform->type != GL_FLOAT_MAT4)
{
return false;
}
int arraySize = targetUniform->arraySize;
if(arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 16,
value, 16 * sizeof(GLfloat) * count);
return true;
}
bool Program::setUniform1iv(GLint location, GLsizei count, const GLint *v)
{
if(location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if(targetUniform->type == GL_INT ||
targetUniform->type == GL_SAMPLER_2D ||
targetUniform->type == GL_SAMPLER_CUBE)
{
int arraySize = targetUniform->arraySize;
if(arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint),
v, sizeof(GLint) * count);
}
else if(targetUniform->type == GL_BOOL)
{
int arraySize = targetUniform->arraySize;
if(arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = new GLboolean[count];
for(int i = 0; i < count; ++i)
{
if(v[i] == 0)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean),
boolParams, sizeof(GLboolean) * count);
delete [] boolParams;
}
else
{
return false;
}
return true;
}
bool Program::setUniform2iv(GLint location, GLsizei count, const GLint *v)
{
if(location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if(targetUniform->type == GL_INT_VEC2)
{
int arraySize = targetUniform->arraySize;
if(arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 2,
v, 2 * sizeof(GLint) * count);
}
else if(targetUniform->type == GL_BOOL_VEC2)
{
int arraySize = targetUniform->arraySize;
if(arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = new GLboolean[count * 2];
for(int i = 0; i < count * 2; ++i)
{
if(v[i] == 0)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean) * 2,
boolParams, 2 * sizeof(GLboolean) * count);
delete [] boolParams;
}
else
{
return false;
}
return true;
}
bool Program::setUniform3iv(GLint location, GLsizei count, const GLint *v)
{
if(location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if(targetUniform->type == GL_INT_VEC3)
{
int arraySize = targetUniform->arraySize;
if(arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 3,
v, 3 * sizeof(GLint) * count);
}
else if(targetUniform->type == GL_BOOL_VEC3)
{
int arraySize = targetUniform->arraySize;
if(arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = new GLboolean[count * 3];
for(int i = 0; i < count * 3; ++i)
{
if(v[i] == 0)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean) * 3,
boolParams, 3 * sizeof(GLboolean) * count);
delete [] boolParams;
}
else
{
return false;
}
return true;
}
bool Program::setUniform4iv(GLint location, GLsizei count, const GLint *v)
{
if(location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if(targetUniform->type == GL_INT_VEC4)
{
int arraySize = targetUniform->arraySize;
if(arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 4,
v, 4 * sizeof(GLint) * count);
}
else if(targetUniform->type == GL_BOOL_VEC4)
{
int arraySize = targetUniform->arraySize;
if(arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = new GLboolean[count * 4];
for(int i = 0; i < count * 4; ++i)
{
if(v[i] == 0)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean) * 4,
boolParams, 4 * sizeof(GLboolean) * count);
delete [] boolParams;
}
else
{
return false;
}
return true;
}
bool Program::getUniformfv(GLint location, GLfloat *params)
{
if(location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
unsigned int count = UniformComponentCount(targetUniform->type);
switch (UniformComponentType(targetUniform->type))
{
case GL_BOOL:
{
GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * count;
for(unsigned int i = 0; i < count; ++i)
{
params[i] = (boolParams[i] == GL_FALSE) ? 0.0f : 1.0f;
}
}
break;
case GL_FLOAT:
memcpy(params, targetUniform->data + mUniformIndex[location].element * count * sizeof(GLfloat),
count * sizeof(GLfloat));
break;
case GL_INT:
{
GLint *intParams = (GLint*)targetUniform->data + mUniformIndex[location].element * count;
for(unsigned int i = 0; i < count; ++i)
{
params[i] = (float)intParams[i];
}
}
break;
default: UNREACHABLE();
}
return true;
}
bool Program::getUniformiv(GLint location, GLint *params)
{
if(location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
unsigned int count = UniformComponentCount(targetUniform->type);
switch (UniformComponentType(targetUniform->type))
{
case GL_BOOL:
{
GLboolean *boolParams = targetUniform->data + mUniformIndex[location].element * count;
for(unsigned int i = 0; i < count; ++i)
{
params[i] = (GLint)boolParams[i];
}
}
break;
case GL_FLOAT:
{
GLfloat *floatParams = (GLfloat*)targetUniform->data + mUniformIndex[location].element * count;
for(unsigned int i = 0; i < count; ++i)
{
params[i] = (GLint)floatParams[i];
}
}
break;
case GL_INT:
memcpy(params, targetUniform->data + mUniformIndex[location].element * count * sizeof(GLint),
count * sizeof(GLint));
break;
default: UNREACHABLE();
}
return true;
}
void Program::dirtyAllUniforms()
{
unsigned int numUniforms = mUniforms.size();
for(unsigned int index = 0; index < numUniforms; index++)
{
mUniforms[index]->dirty = true;
}
}
// Applies all the uniforms set for this program object to the Direct3D 9 device
void Program::applyUniforms()
{
unsigned int numUniforms = mUniformIndex.size();
for(unsigned int location = 0; location < numUniforms; location++)
{
if(mUniformIndex[location].element != 0)
{
continue;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
if(targetUniform->dirty)
{
int arraySize = targetUniform->arraySize;
GLfloat *f = (GLfloat*)targetUniform->data;
GLint *i = (GLint*)targetUniform->data;
GLboolean *b = (GLboolean*)targetUniform->data;
switch (targetUniform->type)
{
case GL_BOOL: applyUniform1bv(location, arraySize, b); break;
case GL_BOOL_VEC2: applyUniform2bv(location, arraySize, b); break;
case GL_BOOL_VEC3: applyUniform3bv(location, arraySize, b); break;
case GL_BOOL_VEC4: applyUniform4bv(location, arraySize, b); break;
case GL_FLOAT: applyUniform1fv(location, arraySize, f); break;
case GL_FLOAT_VEC2: applyUniform2fv(location, arraySize, f); break;
case GL_FLOAT_VEC3: applyUniform3fv(location, arraySize, f); break;
case GL_FLOAT_VEC4: applyUniform4fv(location, arraySize, f); break;
case GL_FLOAT_MAT2: applyUniformMatrix2fv(location, arraySize, f); break;
case GL_FLOAT_MAT3: applyUniformMatrix3fv(location, arraySize, f); break;
case GL_FLOAT_MAT4: applyUniformMatrix4fv(location, arraySize, f); break;
case GL_SAMPLER_2D:
case GL_SAMPLER_CUBE:
case GL_INT: applyUniform1iv(location, arraySize, i); break;
case GL_INT_VEC2: applyUniform2iv(location, arraySize, i); break;
case GL_INT_VEC3: applyUniform3iv(location, arraySize, i); break;
case GL_INT_VEC4: applyUniform4iv(location, arraySize, i); break;
default:
UNREACHABLE();
}
targetUniform->dirty = false;
}
}
}
// Compiles the HLSL code of the attached shaders into executable binaries
ID3D10Blob *Program::compileToBinary(const char *hlsl, const char *profile, ID3DXConstantTable **constantTable)
{
if(!hlsl)
{
return NULL;
}
UINT flags = ANGLE_COMPILE_OPTIMIZATION_LEVEL;
ID3D10Blob *binary = NULL;
ID3D10Blob *errorMessage = NULL;
HRESULT result = D3DCompile(hlsl, strlen(hlsl), fakepath, NULL, NULL, "main", profile, flags, 0, &binary, &errorMessage);
if(errorMessage)
{
const char *message = (const char*)errorMessage->GetBufferPointer();
appendToInfoLogSanitized(message);
TRACE("\n%s", hlsl);
TRACE("\n%s", message);
errorMessage->Release();
errorMessage = NULL;
}
if(FAILED(result))
{
if(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY)
{
error(GL_OUT_OF_MEMORY);
}
return NULL;
}
result = D3DXGetShaderConstantTable(static_cast<const DWORD*>(binary->GetBufferPointer()), constantTable);
if(FAILED(result))
{
if(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY)
{
error(GL_OUT_OF_MEMORY);
}
binary->Release();
return NULL;
}
return binary;
}
// Packs varyings into generic varying registers, using the algorithm from [OpenGL ES Shading Language 1.00 rev. 17] appendix A section 7 page 111
// Returns the number of used varying registers, or -1 if unsuccesful
int Program::packVaryings(const Varying *packing[][4])
{
Context *context = getContext();
for(VaryingList::iterator varying = mFragmentShader->varyings.begin(); varying != mFragmentShader->varyings.end(); varying++)
{
int n = VariableRowCount(varying->type) * varying->size;
int m = VariableColumnCount(varying->type);
bool success = false;
if(m == 2 || m == 3 || m == 4)
{
for(int r = 0; r <= MAX_VARYING_VECTORS - n && !success; r++)
{
bool available = true;
for(int y = 0; y < n && available; y++)
{
for(int x = 0; x < m && available; x++)
{
if(packing[r + y][x])
{
available = false;
}
}
}
if(available)
{
varying->reg = r;
varying->col = 0;
for(int y = 0; y < n; y++)
{
for(int x = 0; x < m; x++)
{
packing[r + y][x] = &*varying;
}
}
success = true;
}
}
if(!success && m == 2)
{
for(int r = MAX_VARYING_VECTORS - n; r >= 0 && !success; r--)
{
bool available = true;
for(int y = 0; y < n && available; y++)
{
for(int x = 2; x < 4 && available; x++)
{
if(packing[r + y][x])
{
available = false;
}
}
}
if(available)
{
varying->reg = r;
varying->col = 2;
for(int y = 0; y < n; y++)
{
for(int x = 2; x < 4; x++)
{
packing[r + y][x] = &*varying;
}
}
success = true;
}
}
}
}
else if(m == 1)
{
int space[4] = {0};
for(int y = 0; y < MAX_VARYING_VECTORS; y++)
{
for(int x = 0; x < 4; x++)
{
space[x] += packing[y][x] ? 0 : 1;
}
}
int column = 0;
for(int x = 0; x < 4; x++)
{
if(space[x] >= n && space[x] < space[column])
{
column = x;
}
}
if(space[column] >= n)
{
for(int r = 0; r < MAX_VARYING_VECTORS; r++)
{
if(!packing[r][column])
{
varying->reg = r;
for(int y = r; y < r + n; y++)
{
packing[y][column] = &*varying;
}
break;
}
}
varying->col = column;
success = true;
}
}
else UNREACHABLE();
if(!success)
{
appendToInfoLog("Could not pack varying %s", varying->name.c_str());
return -1;
}
}
// Return the number of used registers
int registers = 0;
for(int r = 0; r < MAX_VARYING_VECTORS; r++)
{
if(packing[r][0] || packing[r][1] || packing[r][2] || packing[r][3])
{
registers++;
}
}
return registers;
}
bool Program::linkVaryings()
{
if(mPixelHLSL.empty() || mVertexHLSL.empty())
{
return false;
}
// Reset the varying register assignments
for(VaryingList::iterator fragVar = mFragmentShader->varyings.begin(); fragVar != mFragmentShader->varyings.end(); fragVar++)
{
fragVar->reg = -1;
fragVar->col = -1;
}
for(VaryingList::iterator vtxVar = mVertexShader->varyings.begin(); vtxVar != mVertexShader->varyings.end(); vtxVar++)
{
vtxVar->reg = -1;
vtxVar->col = -1;
}
// Map the varyings to the register file
const Varying *packing[MAX_VARYING_VECTORS][4] = {NULL};
int registers = packVaryings(packing);
if(registers < 0)
{
return false;
}
// Write the HLSL input/output declarations
Context *context = getContext();
if(registers == MAX_VARYING_VECTORS && mFragmentShader->mUsesFragCoord)
{
appendToInfoLog("No varying registers left to support gl_FragCoord");
return false;
}
for(VaryingList::iterator input = mFragmentShader->varyings.begin(); input != mFragmentShader->varyings.end(); input++)
{
bool matched = false;
for(VaryingList::iterator output = mVertexShader->varyings.begin(); output != mVertexShader->varyings.end(); output++)
{
if(output->name == input->name)
{
if(output->type != input->type || output->size != input->size)
{
appendToInfoLog("Type of vertex varying %s does not match that of the fragment varying", output->name.c_str());
return false;
}
output->reg = input->reg;
output->col = input->col;
matched = true;
break;
}
}
if(!matched)
{
appendToInfoLog("Fragment varying %s does not match any vertex varying", input->name.c_str());
return false;
}
}
mVertexHLSL += "struct VS_INPUT\n"
"{\n";
int semanticIndex = 0;
for(AttributeArray::iterator attribute = mVertexShader->mAttributes.begin(); attribute != mVertexShader->mAttributes.end(); attribute++)
{
switch (attribute->type)
{
case GL_FLOAT: mVertexHLSL += " float "; break;
case GL_FLOAT_VEC2: mVertexHLSL += " float2 "; break;
case GL_FLOAT_VEC3: mVertexHLSL += " float3 "; break;
case GL_FLOAT_VEC4: mVertexHLSL += " float4 "; break;
case GL_FLOAT_MAT2: mVertexHLSL += " float2x2 "; break;
case GL_FLOAT_MAT3: mVertexHLSL += " float3x3 "; break;
case GL_FLOAT_MAT4: mVertexHLSL += " float4x4 "; break;
default: UNREACHABLE();
}
mVertexHLSL += decorateAttribute(attribute->name) + " : TEXCOORD" + str(semanticIndex) + ";\n";
semanticIndex += VariableRowCount(attribute->type);
}
mVertexHLSL += "};\n"
"\n"
"struct VS_OUTPUT\n"
"{\n"
" float4 gl_Position : POSITION;\n";
for(int r = 0; r < registers; r++)
{
int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1));
mVertexHLSL += " float" + str(registerSize) + " v" + str(r) + " : COLOR" + str(r) + ";\n";
}
if(mFragmentShader->mUsesFragCoord)
{
mVertexHLSL += " float4 gl_FragCoord : COLOR" + str(registers) + ";\n";
}
if(mVertexShader->mUsesPointSize)
{
mVertexHLSL += " float gl_PointSize : PSIZE;\n";
}
mVertexHLSL += "};\n"
"\n"
"VS_OUTPUT main(VS_INPUT input)\n"
"{\n";
for(AttributeArray::iterator attribute = mVertexShader->mAttributes.begin(); attribute != mVertexShader->mAttributes.end(); attribute++)
{
mVertexHLSL += " " + decorateAttribute(attribute->name) + " = ";
if(VariableRowCount(attribute->type) > 1) // Matrix
{
mVertexHLSL += "transpose";
}
mVertexHLSL += "(input." + decorateAttribute(attribute->name) + ");\n";
}
mVertexHLSL += "\n"
" gl_main();\n"
"\n"
" VS_OUTPUT output;\n"
" output.gl_Position.x = gl_Position.x - dx_HalfPixelSize.x * gl_Position.w;\n"
" output.gl_Position.y = gl_Position.y - dx_HalfPixelSize.y * gl_Position.w;\n"
" output.gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n"
" output.gl_Position.w = gl_Position.w;\n";
if(mVertexShader->mUsesPointSize)
{
mVertexHLSL += " output.gl_PointSize = clamp(gl_PointSize, 1.0, " + str((int)ALIASED_POINT_SIZE_RANGE_MAX) + ");\n";
}
if(mFragmentShader->mUsesFragCoord)
{
mVertexHLSL += " output.gl_FragCoord = gl_Position;\n";
}
for(VaryingList::iterator varying = mVertexShader->varyings.begin(); varying != mVertexShader->varyings.end(); varying++)
{
if(varying->reg >= 0)
{
for(int i = 0; i < varying->size; i++)
{
int rows = VariableRowCount(varying->type);
for(int j = 0; j < rows; j++)
{
int r = varying->reg + i * rows + j;
mVertexHLSL += " output.v" + str(r);
bool sharedRegister = false; // Register used by multiple varyings
for(int x = 0; x < 4; x++)
{
if(packing[r][x] && packing[r][x] != packing[r][0])
{
sharedRegister = true;
break;
}
}
if(sharedRegister)
{
mVertexHLSL += ".";
for(int x = 0; x < 4; x++)
{
if(packing[r][x] == &*varying)
{
switch(x)
{
case 0: mVertexHLSL += "x"; break;
case 1: mVertexHLSL += "y"; break;
case 2: mVertexHLSL += "z"; break;
case 3: mVertexHLSL += "w"; break;
}
}
}
}
mVertexHLSL += " = " + varying->name;
if(varying->array)
{
mVertexHLSL += "[" + str(i) + "]";
}
if(rows > 1)
{
mVertexHLSL += "[" + str(j) + "]";
}
mVertexHLSL += ";\n";
}
}
}
}
mVertexHLSL += "\n"
" return output;\n"
"}\n";
mPixelHLSL += "struct PS_INPUT\n"
"{\n";
for(VaryingList::iterator varying = mFragmentShader->varyings.begin(); varying != mFragmentShader->varyings.end(); varying++)
{
if(varying->reg >= 0)
{
for(int i = 0; i < varying->size; i++)
{
int rows = VariableRowCount(varying->type);
for(int j = 0; j < rows; j++)
{
std::string n = str(varying->reg + i * rows + j);
mPixelHLSL += " float4 v" + n + " : COLOR" + n + ";\n";
}
}
}
else UNREACHABLE();
}
if(mFragmentShader->mUsesFragCoord)
{
mPixelHLSL += " float4 gl_FragCoord : COLOR" + str(registers) + ";\n";
mPixelHLSL += " float2 dx_VPos : VPOS;\n";
}
if(mFragmentShader->mUsesPointCoord)
{
mPixelHLSL += " float2 gl_PointCoord : TEXCOORD0;\n";
}
if(mFragmentShader->mUsesFrontFacing)
{
mPixelHLSL += " float vFace : VFACE;\n";
}
mPixelHLSL += "};\n"
"\n"
"struct PS_OUTPUT\n"
"{\n"
" float4 gl_Color[1] : COLOR;\n"
"};\n"
"\n"
"PS_OUTPUT main(PS_INPUT input)\n"
"{\n";
if(mFragmentShader->mUsesFragCoord)
{
mPixelHLSL += " float rhw = 1.0 / input.gl_FragCoord.w;\n";
mPixelHLSL += " gl_FragCoord.x = input.dx_VPos.x + 0.5;\n"
" gl_FragCoord.y = 2.0 * dx_Viewport.y - input.dx_VPos.y - 0.5;\n";
mPixelHLSL += " gl_FragCoord.z = (input.gl_FragCoord.z * rhw) * dx_Depth.x + dx_Depth.y;\n"
" gl_FragCoord.w = rhw;\n";
}
if(mFragmentShader->mUsesPointCoord)
{
mPixelHLSL += " gl_PointCoord = input.gl_PointCoord;\n";
}
if(mFragmentShader->mUsesFrontFacing)
{
mPixelHLSL += " gl_FrontFacing = dx_PointsOrLines || (dx_FrontCCW ? (input.vFace >= 0.0) : (input.vFace <= 0.0));\n";
}
for(VaryingList::iterator varying = mFragmentShader->varyings.begin(); varying != mFragmentShader->varyings.end(); varying++)
{
if(varying->reg >= 0)
{
for(int i = 0; i < varying->size; i++)
{
int rows = VariableRowCount(varying->type);
for(int j = 0; j < rows; j++)
{
std::string n = str(varying->reg + i * rows + j);
mPixelHLSL += " " + varying->name;
if(varying->array)
{
mPixelHLSL += "[" + str(i) + "]";
}
if(rows > 1)
{
mPixelHLSL += "[" + str(j) + "]";
}
mPixelHLSL += " = input.v" + n + ";\n";
}
}
}
else UNREACHABLE();
}
mPixelHLSL += "\n"
" gl_main();\n"
"\n"
" PS_OUTPUT output;\n"
" output.gl_Color[0] = gl_Color[0];\n"
"\n"
" return output;\n"
"}\n";
return true;
}
// Links the HLSL code of the vertex and pixel shader by matching up their varyings,
// compiling them into binaries, determining the attribute mappings, and collecting
// a list of uniforms
void Program::link()
{
unlink();
if(!mFragmentShader || !mFragmentShader->isCompiled())
{
return;
}
if(!mVertexShader || !mVertexShader->isCompiled())
{
return;
}
mPixelHLSL = mFragmentShader->getHLSL();
mVertexHLSL = mVertexShader->getHLSL();
if(!linkVaryings())
{
return;
}
Context *context = getContext();
ID3D10Blob *vertexBinary = compileToBinary(mVertexHLSL.c_str(), "vs_3_0", &mConstantTableVS);
ID3D10Blob *pixelBinary = compileToBinary(mPixelHLSL.c_str(), "ps_3_0", &mConstantTablePS);
if(vertexBinary && pixelBinary)
{
Device *device = getDevice();
mVertexExecutable = new sw::VertexShader((unsigned long*)vertexBinary->GetBufferPointer());
mPixelExecutable = new sw::PixelShader((unsigned long*)pixelBinary->GetBufferPointer());
if(!mVertexExecutable || !mPixelExecutable)
{
return error(GL_OUT_OF_MEMORY);
}
vertexBinary->Release();
pixelBinary->Release();
vertexBinary = NULL;
pixelBinary = NULL;
if(mVertexExecutable && mPixelExecutable)
{
if(!linkAttributes())
{
return;
}
if(!linkUniforms(mConstantTablePS))
{
return;
}
if(!linkUniforms(mConstantTableVS))
{
return;
}
// these uniforms are searched as already-decorated because gl_ and dx_
// are reserved prefixes, and do not receive additional decoration
mDxDepthRangeLocation = getUniformLocation("dx_DepthRange");
mDxDepthLocation = getUniformLocation("dx_Depth");
mDxViewportLocation = getUniformLocation("dx_Viewport");
mDxHalfPixelSizeLocation = getUniformLocation("dx_HalfPixelSize");
mDxFrontCCWLocation = getUniformLocation("dx_FrontCCW");
mDxPointsOrLinesLocation = getUniformLocation("dx_PointsOrLines");
mLinked = true; // Success
}
}
}
// Determines the mapping between GL attributes and Direct3D 9 vertex stream usage indices
bool Program::linkAttributes()
{
unsigned int usedLocations = 0;
// Link attributes that have a binding location
for(AttributeArray::iterator attribute = mVertexShader->mAttributes.begin(); attribute != mVertexShader->mAttributes.end(); attribute++)
{
int location = getAttributeBinding(attribute->name);
if(location != -1) // Set by glBindAttribLocation
{
if(!mLinkedAttribute[location].name.empty())
{
// Multiple active attributes bound to the same location; not an error
}
mLinkedAttribute[location] = *attribute;
int rows = VariableRowCount(attribute->type);
if(rows + location > MAX_VERTEX_ATTRIBS)
{
appendToInfoLog("Active attribute (%s) at location %d is too big to fit", attribute->name.c_str(), location);
return false;
}
for(int i = 0; i < rows; i++)
{
usedLocations |= 1 << (location + i);
}
}
}
// Link attributes that don't have a binding location
for(AttributeArray::iterator attribute = mVertexShader->mAttributes.begin(); attribute != mVertexShader->mAttributes.end(); attribute++)
{
int location = getAttributeBinding(attribute->name);
if(location == -1) // Not set by glBindAttribLocation
{
int rows = VariableRowCount(attribute->type);
int availableIndex = AllocateFirstFreeBits(&usedLocations, rows, MAX_VERTEX_ATTRIBS);
if(availableIndex == -1 || availableIndex + rows > MAX_VERTEX_ATTRIBS)
{
appendToInfoLog("Too many active attributes (%s)", attribute->name.c_str());
return false; // Fail to link
}
mLinkedAttribute[availableIndex] = *attribute;
}
}
for(int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; )
{
int index = mVertexShader->getSemanticIndex(mLinkedAttribute[attributeIndex].name);
int rows = std::max(VariableRowCount(mLinkedAttribute[attributeIndex].type), 1);
for(int r = 0; r < rows; r++)
{
mSemanticIndex[attributeIndex++] = index++;
}
}
return true;
}
int Program::getAttributeBinding(const std::string &name)
{
for(int location = 0; location < MAX_VERTEX_ATTRIBS; location++)
{
if(mAttributeBinding[location].find(name) != mAttributeBinding[location].end())
{
return location;
}
}
return -1;
}
bool Program::linkUniforms(ID3DXConstantTable *constantTable)
{
D3DXCONSTANTTABLE_DESC constantTableDescription;
D3DXCONSTANT_DESC constantDescription;
UINT descriptionCount = 1;
constantTable->GetDesc(&constantTableDescription);
for(unsigned int constantIndex = 0; constantIndex < constantTableDescription.Constants; constantIndex++)
{
D3DXHANDLE constantHandle = constantTable->GetConstant(0, constantIndex);
HRESULT result = constantTable->GetConstantDesc(constantHandle, &constantDescription, &descriptionCount);
ASSERT(SUCCEEDED(result));
if(!defineUniform(constantHandle, constantDescription))
{
return false;
}
}
return true;
}
// Adds the description of a constant found in the binary shader to the list of uniforms
// Returns true if succesful (uniform not already defined)
bool Program::defineUniform(const D3DXHANDLE &constantHandle, const D3DXCONSTANT_DESC &constantDescription, std::string name)
{
if(constantDescription.RegisterSet == D3DXRS_SAMPLER)
{
for(unsigned int samplerIndex = constantDescription.RegisterIndex; samplerIndex < constantDescription.RegisterIndex + constantDescription.RegisterCount; samplerIndex++)
{
if(mConstantTablePS->GetConstantByName(NULL, constantDescription.Name) != NULL)
{
if(samplerIndex < MAX_TEXTURE_IMAGE_UNITS)
{
mSamplersPS[samplerIndex].active = true;
mSamplersPS[samplerIndex].textureType = (constantDescription.Type == D3DXPT_SAMPLERCUBE) ? TEXTURE_CUBE : TEXTURE_2D;
mSamplersPS[samplerIndex].logicalTextureUnit = 0;
}
else
{
appendToInfoLog("Pixel shader sampler count exceeds MAX_TEXTURE_IMAGE_UNITS (%d).", MAX_TEXTURE_IMAGE_UNITS);
return false;
}
}
if(mConstantTableVS->GetConstantByName(NULL, constantDescription.Name) != NULL)
{
if(samplerIndex < MAX_VERTEX_TEXTURE_IMAGE_UNITS)
{
mSamplersVS[samplerIndex].active = true;
mSamplersVS[samplerIndex].textureType = (constantDescription.Type == D3DXPT_SAMPLERCUBE) ? TEXTURE_CUBE : TEXTURE_2D;
mSamplersVS[samplerIndex].logicalTextureUnit = 0;
}
else
{
appendToInfoLog("Vertex shader sampler count exceeds MAX_VERTEX_TEXTURE_IMAGE_UNITS (%d).", MAX_VERTEX_TEXTURE_IMAGE_UNITS);
return false;
}
}
}
}
switch(constantDescription.Class)
{
case D3DXPC_STRUCT:
{
for(unsigned int arrayIndex = 0; arrayIndex < constantDescription.Elements; arrayIndex++)
{
for(unsigned int field = 0; field < constantDescription.StructMembers; field++)
{
D3DXHANDLE fieldHandle = mConstantTablePS->GetConstant(constantHandle, field);
D3DXCONSTANT_DESC fieldDescription;
UINT descriptionCount = 1;
HRESULT result = mConstantTablePS->GetConstantDesc(fieldHandle, &fieldDescription, &descriptionCount);
ASSERT(SUCCEEDED(result));
std::string structIndex = (constantDescription.Elements > 1) ? ("[" + str(arrayIndex) + "]") : "";
if(!defineUniform(fieldHandle, fieldDescription, name + constantDescription.Name + structIndex + "."))
{
return false;
}
}
}
return true;
}
case D3DXPC_SCALAR:
case D3DXPC_VECTOR:
case D3DXPC_MATRIX_COLUMNS:
case D3DXPC_OBJECT:
return defineUniform(constantDescription, name + constantDescription.Name);
default:
UNREACHABLE();
return false;
}
}
bool Program::defineUniform(const D3DXCONSTANT_DESC &constantDescription, std::string &_name)
{
Uniform *uniform = createUniform(constantDescription, _name);
if(!uniform)
{
return false;
}
// Check if already defined
GLint location = getUniformLocation(uniform->name);
GLenum type = uniform->type;
if(location >= 0)
{
delete uniform;
if(mUniforms[mUniformIndex[location].index]->type != type)
{
return false;
}
else
{
return true;
}
}
mUniforms.push_back(uniform);
unsigned int uniformIndex = mUniforms.size() - 1;
for(unsigned int i = 0; i < uniform->arraySize; ++i)
{
mUniformIndex.push_back(UniformLocation(_name, i, uniformIndex));
}
return true;
}
Uniform *Program::createUniform(const D3DXCONSTANT_DESC &constantDescription, std::string &_name)
{
if(constantDescription.Rows == 1) // Vectors and scalars
{
switch (constantDescription.Type)
{
case D3DXPT_SAMPLER2D:
switch (constantDescription.Columns)
{
case 1: return new Uniform(GL_SAMPLER_2D, _name, constantDescription.Elements);
default: UNREACHABLE();
}
break;
case D3DXPT_SAMPLERCUBE:
switch (constantDescription.Columns)
{
case 1: return new Uniform(GL_SAMPLER_CUBE, _name, constantDescription.Elements);
default: UNREACHABLE();
}
break;
case D3DXPT_BOOL:
switch (constantDescription.Columns)
{
case 1: return new Uniform(GL_BOOL, _name, constantDescription.Elements);
case 2: return new Uniform(GL_BOOL_VEC2, _name, constantDescription.Elements);
case 3: return new Uniform(GL_BOOL_VEC3, _name, constantDescription.Elements);
case 4: return new Uniform(GL_BOOL_VEC4, _name, constantDescription.Elements);
default: UNREACHABLE();
}
break;
case D3DXPT_INT:
switch (constantDescription.Columns)
{
case 1: return new Uniform(GL_INT, _name, constantDescription.Elements);
case 2: return new Uniform(GL_INT_VEC2, _name, constantDescription.Elements);
case 3: return new Uniform(GL_INT_VEC3, _name, constantDescription.Elements);
case 4: return new Uniform(GL_INT_VEC4, _name, constantDescription.Elements);
default: UNREACHABLE();
}
break;
case D3DXPT_FLOAT:
switch (constantDescription.Columns)
{
case 1: return new Uniform(GL_FLOAT, _name, constantDescription.Elements);
case 2: return new Uniform(GL_FLOAT_VEC2, _name, constantDescription.Elements);
case 3: return new Uniform(GL_FLOAT_VEC3, _name, constantDescription.Elements);
case 4: return new Uniform(GL_FLOAT_VEC4, _name, constantDescription.Elements);
default: UNREACHABLE();
}
break;
default:
UNREACHABLE();
}
}
else if(constantDescription.Rows == constantDescription.Columns) // Square matrices
{
switch (constantDescription.Type)
{
case D3DXPT_FLOAT:
switch (constantDescription.Rows)
{
case 2: return new Uniform(GL_FLOAT_MAT2, _name, constantDescription.Elements);
case 3: return new Uniform(GL_FLOAT_MAT3, _name, constantDescription.Elements);
case 4: return new Uniform(GL_FLOAT_MAT4, _name, constantDescription.Elements);
default: UNREACHABLE();
}
break;
default: UNREACHABLE();
}
}
else UNREACHABLE();
return 0;
}
// This method needs to match OutputHLSL::decorate
std::string Program::decorateAttribute(const std::string &name)
{
if(name.compare(0, 3, "gl_") != 0 && name.compare(0, 3, "dx_") != 0)
{
return "_" + name;
}
return name;
}
std::string Program::undecorateUniform(const std::string &_name)
{
if(_name[0] == '_')
{
return _name.substr(1);
}
else if(_name.compare(0, 3, "ar_") == 0)
{
return _name.substr(3);
}
return _name;
}
bool Program::applyUniform1bv(GLint location, GLsizei count, const GLboolean *v)
{
float (*vector)[4] = new float[count][4];
for(int i = 0; i < count; i++)
{
vector[i][0] = (v[0] == GL_FALSE ? 0.0f : 1.0f);
vector[i][1] = 0;
vector[i][2] = 0;
vector[i][3] = 0;
v += 1;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
Device *device = getDevice();
D3DXCONSTANT_DESC constantDescription;
UINT descriptionCount = 1;
if(constantPS)
{
mConstantTablePS->GetConstantDesc(constantPS, &constantDescription, &descriptionCount);
if(constantDescription.RegisterSet == D3DXRS_FLOAT4)
{
device->setPixelShaderConstantF(constantDescription.RegisterIndex, (float*)vector, constantDescription.RegisterCount);
}
else if(constantDescription.RegisterSet == D3DXRS_BOOL)
{
device->setPixelShaderConstantB(constantDescription.RegisterIndex, (int*)vector, constantDescription.RegisterCount);
}
else UNREACHABLE();
}
if(constantVS)
{
mConstantTableVS->GetConstantDesc(constantVS, &constantDescription, &descriptionCount);
if(constantDescription.RegisterSet == D3DXRS_FLOAT4)
{
device->setVertexShaderConstantF(constantDescription.RegisterIndex, (float*)vector, constantDescription.RegisterCount);
}
else if(constantDescription.RegisterSet == D3DXRS_BOOL)
{
device->setVertexShaderConstantB(constantDescription.RegisterIndex, (int*)vector, constantDescription.RegisterCount);
}
else UNREACHABLE();
}
delete [] vector;
return true;
}
bool Program::applyUniform2bv(GLint location, GLsizei count, const GLboolean *v)
{
float (*vector)[4] = new float[count][4];
for(int i = 0; i < count; i++)
{
vector[i][0] = (v[0] == GL_FALSE ? 0.0f : 1.0f);
vector[i][1] = (v[1] == GL_FALSE ? 0.0f : 1.0f);
vector[i][2] = 0;
vector[i][3] = 0;
v += 2;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
Device *device = getDevice();
D3DXCONSTANT_DESC constantDescription;
UINT descriptionCount = 1;
if(constantPS)
{
mConstantTablePS->GetConstantDesc(constantPS, &constantDescription, &descriptionCount);
ASSERT(constantDescription.RegisterSet == D3DXRS_FLOAT4);
device->setPixelShaderConstantF(constantDescription.RegisterIndex, (float*)vector, constantDescription.RegisterCount);
}
if(constantVS)
{
mConstantTableVS->GetConstantDesc(constantVS, &constantDescription, &descriptionCount);
ASSERT(constantDescription.RegisterSet == D3DXRS_FLOAT4);
device->setVertexShaderConstantF(constantDescription.RegisterIndex, (float*)vector, constantDescription.RegisterCount);
}
delete[] vector;
return true;
}
bool Program::applyUniform3bv(GLint location, GLsizei count, const GLboolean *v)
{
float (*vector)[4] = new float[count][4];
for(int i = 0; i < count; i++)
{
vector[i][0] = (v[0] == GL_FALSE ? 0.0f : 1.0f);
vector[i][1] = (v[1] == GL_FALSE ? 0.0f : 1.0f);
vector[i][2] = (v[2] == GL_FALSE ? 0.0f : 1.0f);
vector[i][3] = 0;
v += 3;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
Device *device = getDevice();
D3DXCONSTANT_DESC constantDescription;
UINT descriptionCount = 1;
if(constantPS)
{
mConstantTablePS->GetConstantDesc(constantPS, &constantDescription, &descriptionCount);
ASSERT(constantDescription.RegisterSet == D3DXRS_FLOAT4);
device->setPixelShaderConstantF(constantDescription.RegisterIndex, (float*)vector, constantDescription.RegisterCount);
}
if(constantVS)
{
mConstantTableVS->GetConstantDesc(constantVS, &constantDescription, &descriptionCount);
ASSERT(constantDescription.RegisterSet == D3DXRS_FLOAT4);
device->setVertexShaderConstantF(constantDescription.RegisterIndex, (float*)vector, constantDescription.RegisterCount);
}
delete[] vector;
return true;
}
bool Program::applyUniform4bv(GLint location, GLsizei count, const GLboolean *v)
{
float (*vector)[4] = new float[count][4];
for(int i = 0; i < count; i++)
{
vector[i][0] = (v[0] == GL_FALSE ? 0.0f : 1.0f);
vector[i][1] = (v[1] == GL_FALSE ? 0.0f : 1.0f);
vector[i][2] = (v[2] == GL_FALSE ? 0.0f : 1.0f);
vector[i][3] = (v[3] == GL_FALSE ? 0.0f : 1.0f);
v += 4;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
Device *device = getDevice();
D3DXCONSTANT_DESC constantDescription;
UINT descriptionCount = 1;
if(constantPS)
{
mConstantTablePS->GetConstantDesc(constantPS, &constantDescription, &descriptionCount);
ASSERT(constantDescription.RegisterSet == D3DXRS_FLOAT4);
device->setPixelShaderConstantF(constantDescription.RegisterIndex, (float*)vector, constantDescription.RegisterCount);
}
if(constantVS)
{
mConstantTableVS->GetConstantDesc(constantVS, &constantDescription, &descriptionCount);
ASSERT(constantDescription.RegisterSet == D3DXRS_FLOAT4);
device->setVertexShaderConstantF(constantDescription.RegisterIndex, (float*)vector, constantDescription.RegisterCount);
}
delete [] vector;
return true;
}
bool Program::applyUniform1fv(GLint location, GLsizei count, const GLfloat *v)
{
float (*vector)[4] = new float[count][4];
for(int i = 0; i < count; i++)
{
vector[i][0] = v[0];
vector[i][1] = 0;
vector[i][2] = 0;
vector[i][3] = 0;
v += 1;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
Device *device = getDevice();
D3DXCONSTANT_DESC constantDescription;
UINT descriptionCount = 1;
if(constantPS)
{
mConstantTablePS->GetConstantDesc(constantPS, &constantDescription, &descriptionCount);
device->setPixelShaderConstantF(constantDescription.RegisterIndex, (float*)vector, constantDescription.RegisterCount);
}
if(constantVS)
{
mConstantTableVS->GetConstantDesc(constantVS, &constantDescription, &descriptionCount);
device->setVertexShaderConstantF(constantDescription.RegisterIndex, (float*)vector, constantDescription.RegisterCount);
}
delete[] vector;
return true;
}
bool Program::applyUniform2fv(GLint location, GLsizei count, const GLfloat *v)
{
float (*vector)[4] = new float[count][4];
for(int i = 0; i < count; i++)
{
vector[i][0] = v[0];
vector[i][1] = v[1];
vector[i][2] = 0;
vector[i][3] = 0;
v += 2;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
Device *device = getDevice();
D3DXCONSTANT_DESC constantDescription;
UINT descriptionCount = 1;
if(constantPS)
{
mConstantTablePS->GetConstantDesc(constantPS, &constantDescription, &descriptionCount);
device->setPixelShaderConstantF(constantDescription.RegisterIndex, (float*)vector, constantDescription.RegisterCount);
}
if(constantVS)
{
mConstantTableVS->GetConstantDesc(constantVS, &constantDescription, &descriptionCount);
device->setVertexShaderConstantF(constantDescription.RegisterIndex, (float*)vector, constantDescription.RegisterCount);
}
delete[] vector;
return true;
}
bool Program::applyUniform3fv(GLint location, GLsizei count, const GLfloat *v)
{
float (*vector)[4] = new float[count][4];
for(int i = 0; i < count; i++)
{
vector[i][0] = v[0];
vector[i][1] = v[1];
vector[i][2] = v[2];
vector[i][3] = 0;
v += 3;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
Device *device = getDevice();
D3DXCONSTANT_DESC constantDescription;
UINT descriptionCount = 1;
if(constantPS)
{
mConstantTablePS->GetConstantDesc(constantPS, &constantDescription, &descriptionCount);
device->setPixelShaderConstantF(constantDescription.RegisterIndex, (float*)vector, constantDescription.RegisterCount);
}
if(constantVS)
{
mConstantTableVS->GetConstantDesc(constantVS, &constantDescription, &descriptionCount);
device->setVertexShaderConstantF(constantDescription.RegisterIndex, (float*)vector, constantDescription.RegisterCount);
}
delete[] vector;
return true;
}
bool Program::applyUniform4fv(GLint location, GLsizei count, const GLfloat *v)
{
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
Device *device = getDevice();
D3DXCONSTANT_DESC constantDescription;
UINT descriptionCount = 1;
if(constantPS)
{
mConstantTablePS->GetConstantDesc(constantPS, &constantDescription, &descriptionCount);
device->setPixelShaderConstantF(constantDescription.RegisterIndex, (float*)v, constantDescription.RegisterCount);
}
if(constantVS)
{
mConstantTableVS->GetConstantDesc(constantVS, &constantDescription, &descriptionCount);
device->setVertexShaderConstantF(constantDescription.RegisterIndex, (float*)v, constantDescription.RegisterCount);
}
return true;
}
bool Program::applyUniformMatrix2fv(GLint location, GLsizei count, const GLfloat *value)
{
float (*matrix)[2][4] = new float[count][2][4];
for(int i = 0; i < count; i++)
{
matrix[i][0][0] = value[0]; matrix[i][0][1] = value[2]; matrix[i][0][2] = 0; matrix[i][0][3] = 0;
matrix[i][1][0] = value[1]; matrix[i][1][1] = value[3]; matrix[i][1][2] = 0; matrix[i][1][3] = 0;
value += 4;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
Device *device = getDevice();
D3DXCONSTANT_DESC constantDescription;
UINT descriptionCount = 1;
if(constantPS)
{
mConstantTablePS->GetConstantDesc(constantPS, &constantDescription, &descriptionCount);
device->setPixelShaderConstantF(constantDescription.RegisterIndex, (float*)matrix, constantDescription.RegisterCount);
}
if(constantVS)
{
mConstantTableVS->GetConstantDesc(constantVS, &constantDescription, &descriptionCount);
device->setVertexShaderConstantF(constantDescription.RegisterIndex, (float*)matrix, constantDescription.RegisterCount);
}
delete[] matrix;
return true;
}
bool Program::applyUniformMatrix3fv(GLint location, GLsizei count, const GLfloat *value)
{
float (*matrix)[3][4] = new float[count][3][4];
for(int i = 0; i < count; i++)
{
matrix[i][0][0] = value[0]; matrix[i][0][1] = value[3]; matrix[i][0][2] = value[6]; matrix[i][0][3] = 0;
matrix[i][1][0] = value[1]; matrix[i][1][1] = value[4]; matrix[i][1][2] = value[7]; matrix[i][1][3] = 0;
matrix[i][2][0] = value[2]; matrix[i][2][1] = value[5]; matrix[i][2][2] = value[8]; matrix[i][2][3] = 0;
value += 9;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
Device *device = getDevice();
D3DXCONSTANT_DESC constantDescription;
UINT descriptionCount = 1;
if(constantPS)
{
mConstantTablePS->GetConstantDesc(constantPS, &constantDescription, &descriptionCount);
device->setPixelShaderConstantF(constantDescription.RegisterIndex, (float*)matrix, constantDescription.RegisterCount);
}
if(constantVS)
{
mConstantTableVS->GetConstantDesc(constantVS, &constantDescription, &descriptionCount);
device->setVertexShaderConstantF(constantDescription.RegisterIndex, (float*)matrix, constantDescription.RegisterCount);
}
delete[] matrix;
return true;
}
bool Program::applyUniformMatrix4fv(GLint location, GLsizei count, const GLfloat *value)
{
float (*matrix)[4][4] = new float[count][4][4];
for(int i = 0; i < count; i++)
{
matrix[i][0][0] = value[0]; matrix[i][0][1] = value[4]; matrix[i][0][2] = value[8]; matrix[i][0][3] = value[12];
matrix[i][1][0] = value[1]; matrix[i][1][1] = value[5]; matrix[i][1][2] = value[9]; matrix[i][1][3] = value[13];
matrix[i][2][0] = value[2]; matrix[i][2][1] = value[6]; matrix[i][2][2] = value[10]; matrix[i][2][3] = value[14];
matrix[i][3][0] = value[3]; matrix[i][3][1] = value[7]; matrix[i][3][2] = value[11]; matrix[i][3][3] = value[15];
value += 16;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
Device *device = getDevice();
D3DXCONSTANT_DESC constantDescription;
UINT descriptionCount = 1;
if(constantPS)
{
mConstantTablePS->GetConstantDesc(constantPS, &constantDescription, &descriptionCount);
device->setPixelShaderConstantF(constantDescription.RegisterIndex, (float*)matrix, constantDescription.RegisterCount);
}
if(constantVS)
{
mConstantTableVS->GetConstantDesc(constantVS, &constantDescription, &descriptionCount);
device->setVertexShaderConstantF(constantDescription.RegisterIndex, (float*)matrix, constantDescription.RegisterCount);
}
delete[] matrix;
return true;
}
bool Program::applyUniform1iv(GLint location, GLsizei count, const GLint *v)
{
float (*vector)[4] = new float[count][4];
for(int i = 0; i < count; i++)
{
vector[i][0] = (float)v[i];
vector[i][1] = 0;
vector[i][2] = 0;
vector[i][3] = 0;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
Device *device = getDevice();
if(constantPS)
{
D3DXCONSTANT_DESC constantDescription;
UINT descriptionCount = 1;
HRESULT result = mConstantTablePS->GetConstantDesc(constantPS, &constantDescription, &descriptionCount);
ASSERT(SUCCEEDED(result));
if(constantDescription.RegisterSet == D3DXRS_SAMPLER)
{
unsigned int firstIndex = mConstantTablePS->GetSamplerIndex(constantPS);
for(int i = 0; i < count; i++)
{
unsigned int samplerIndex = firstIndex + i;
if(samplerIndex < MAX_TEXTURE_IMAGE_UNITS)
{
ASSERT(mSamplersPS[samplerIndex].active);
mSamplersPS[samplerIndex].logicalTextureUnit = v[i];
}
}
}
else
{
ASSERT(constantDescription.RegisterSet == D3DXRS_FLOAT4);
device->setPixelShaderConstantF(constantDescription.RegisterIndex, (float*)vector, constantDescription.RegisterCount);
}
}
if(constantVS)
{
D3DXCONSTANT_DESC constantDescription;
UINT descriptionCount = 1;
HRESULT result = mConstantTableVS->GetConstantDesc(constantVS, &constantDescription, &descriptionCount);
ASSERT(SUCCEEDED(result));
if(constantDescription.RegisterSet == D3DXRS_SAMPLER)
{
unsigned int firstIndex = mConstantTableVS->GetSamplerIndex(constantVS);
for(int i = 0; i < count; i++)
{
unsigned int samplerIndex = firstIndex + i;
if(samplerIndex < MAX_VERTEX_TEXTURE_IMAGE_UNITS)
{
ASSERT(mSamplersVS[samplerIndex].active);
mSamplersVS[samplerIndex].logicalTextureUnit = v[i];
}
}
}
else
{
ASSERT(constantDescription.RegisterSet == D3DXRS_FLOAT4);
device->setVertexShaderConstantF(constantDescription.RegisterIndex, (float*)vector, constantDescription.RegisterCount);
}
}
delete[] vector;
return true;
}
bool Program::applyUniform2iv(GLint location, GLsizei count, const GLint *v)
{
float (*vector)[4] = new float[count][4];
for(int i = 0; i < count; i++)
{
vector[i][0] = (float)v[0];
vector[i][1] = (float)v[1];
vector[i][2] = 0;
vector[i][3] = 0;
v += 2;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
Device *device = getDevice();
D3DXCONSTANT_DESC constantDescription;
UINT descriptionCount = 1;
if(constantPS)
{
mConstantTablePS->GetConstantDesc(constantPS, &constantDescription, &descriptionCount);
ASSERT(constantDescription.RegisterSet == D3DXRS_FLOAT4);
device->setPixelShaderConstantF(constantDescription.RegisterIndex, (float*)vector, constantDescription.RegisterCount);
}
if(constantVS)
{
mConstantTableVS->GetConstantDesc(constantVS, &constantDescription, &descriptionCount);
ASSERT(constantDescription.RegisterSet == D3DXRS_FLOAT4);
device->setVertexShaderConstantF(constantDescription.RegisterIndex, (float*)vector, constantDescription.RegisterCount);
}
delete[] vector;
return true;
}
bool Program::applyUniform3iv(GLint location, GLsizei count, const GLint *v)
{
float (*vector)[4] = new float[count][4];
for(int i = 0; i < count; i++)
{
vector[i][0] = (float)v[0];
vector[i][1] = (float)v[1];
vector[i][2] = (float)v[2];
vector[i][3] = 0;
v += 3;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
Device *device = getDevice();
D3DXCONSTANT_DESC constantDescription;
UINT descriptionCount = 1;
if(constantPS)
{
mConstantTablePS->GetConstantDesc(constantPS, &constantDescription, &descriptionCount);
ASSERT(constantDescription.RegisterSet == D3DXRS_FLOAT4);
device->setPixelShaderConstantF(constantDescription.RegisterIndex, (float*)vector, constantDescription.RegisterCount);
}
if(constantVS)
{
mConstantTableVS->GetConstantDesc(constantVS, &constantDescription, &descriptionCount);
ASSERT(constantDescription.RegisterSet == D3DXRS_FLOAT4);
device->setVertexShaderConstantF(constantDescription.RegisterIndex, (float*)vector, constantDescription.RegisterCount);
}
delete[] vector;
return true;
}
bool Program::applyUniform4iv(GLint location, GLsizei count, const GLint *v)
{
float (*vector)[4] = new float[count][4];
for(int i = 0; i < count; i++)
{
vector[i][0] = (float)v[0];
vector[i][1] = (float)v[1];
vector[i][2] = (float)v[2];
vector[i][3] = (float)v[3];
v += 4;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
Device *device = getDevice();
D3DXCONSTANT_DESC constantDescription;
UINT descriptionCount = 1;
if(constantPS)
{
mConstantTablePS->GetConstantDesc(constantPS, &constantDescription, &descriptionCount);
device->setPixelShaderConstantF(constantDescription.RegisterIndex, (float*)vector, constantDescription.RegisterCount);
}
if(constantVS)
{
mConstantTableVS->GetConstantDesc(constantVS, &constantDescription, &descriptionCount);
device->setVertexShaderConstantF(constantDescription.RegisterIndex, (float*)vector, constantDescription.RegisterCount);
}
delete [] vector;
return true;
}
// append a santized message to the program info log.
// The D3D compiler includes a fake file path in some of the warning or error
// messages, so lets remove all occurrences of this fake file path from the log.
void Program::appendToInfoLogSanitized(const char *message)
{
std::string msg(message);
size_t found;
do
{
found = msg.find(fakepath);
if(found != std::string::npos)
{
msg.erase(found, strlen(fakepath));
}
}
while(found != std::string::npos);
appendToInfoLog("%s\n", msg.c_str());
}
void Program::appendToInfoLog(const char *format, ...)
{
if(!format)
{
return;
}
char info[1024];
va_list vararg;
va_start(vararg, format);
vsnprintf(info, sizeof(info), format, vararg);
va_end(vararg);
size_t infoLength = strlen(info);
if(!mInfoLog)
{
mInfoLog = new char[infoLength + 1];
strcpy(mInfoLog, info);
}
else
{
size_t logLength = strlen(mInfoLog);
char *newLog = new char[logLength + infoLength + 1];
strcpy(newLog, mInfoLog);
strcpy(newLog + logLength, info);
delete[] mInfoLog;
mInfoLog = newLog;
}
}
void Program::resetInfoLog()
{
if(mInfoLog)
{
delete [] mInfoLog;
mInfoLog = NULL;
}
}
// Returns the program object to an unlinked state, before re-linking, or at destruction
void Program::unlink(bool destroy)
{
if(destroy) // Object being destructed
{
if(mFragmentShader)
{
mFragmentShader->release();
mFragmentShader = NULL;
}
if(mVertexShader)
{
mVertexShader->release();
mVertexShader = NULL;
}
}
delete mPixelExecutable;
mPixelExecutable = NULL;
delete mVertexExecutable;
mVertexExecutable = NULL;
if(mConstantTablePS)
{
mConstantTablePS->Release();
mConstantTablePS = NULL;
}
if(mConstantTableVS)
{
mConstantTableVS->Release();
mConstantTableVS = NULL;
}
for(int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
{
mLinkedAttribute[index].name.clear();
mSemanticIndex[index] = -1;
}
for(int index = 0; index < MAX_TEXTURE_IMAGE_UNITS; index++)
{
mSamplersPS[index].active = false;
}
for(int index = 0; index < MAX_VERTEX_TEXTURE_IMAGE_UNITS; index++)
{
mSamplersVS[index].active = false;
}
while(!mUniforms.empty())
{
delete mUniforms.back();
mUniforms.pop_back();
}
mDxDepthRangeLocation = -1;
mDxDepthLocation = -1;
mDxViewportLocation = -1;
mDxHalfPixelSizeLocation = -1;
mDxFrontCCWLocation = -1;
mDxPointsOrLinesLocation = -1;
mUniformIndex.clear();
mPixelHLSL.clear();
mVertexHLSL.clear();
delete[] mInfoLog;
mInfoLog = NULL;
mLinked = false;
}
bool Program::isLinked()
{
return mLinked;
}
bool Program::isValidated() const
{
return mValidated;
}
void Program::release()
{
mRefCount--;
if(mRefCount == 0 && mDeleteStatus)
{
mResourceManager->deleteProgram(mHandle);
}
}
void Program::addRef()
{
mRefCount++;
}
unsigned int Program::getRefCount() const
{
return mRefCount;
}
unsigned int Program::getSerial() const
{
return mSerial;
}
unsigned int Program::issueSerial()
{
return mCurrentSerial++;
}
int Program::getInfoLogLength() const
{
if(!mInfoLog)
{
return 0;
}
else
{
return strlen(mInfoLog) + 1;
}
}
void Program::getInfoLog(GLsizei bufSize, GLsizei *length, char *infoLog)
{
int index = 0;
if(mInfoLog)
{
while(index < bufSize - 1 && index < (int)strlen(mInfoLog))
{
infoLog[index] = mInfoLog[index];
index++;
}
}
if(bufSize)
{
infoLog[index] = '\0';
}
if(length)
{
*length = index;
}
}
void Program::getAttachedShaders(GLsizei maxCount, GLsizei *count, GLuint *shaders)
{
int total = 0;
if(mVertexShader)
{
if(total < maxCount)
{
shaders[total] = mVertexShader->getHandle();
}
total++;
}
if(mFragmentShader)
{
if(total < maxCount)
{
shaders[total] = mFragmentShader->getHandle();
}
total++;
}
if(count)
{
*count = total;
}
}
void Program::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name)
{
// Skip over inactive attributes
unsigned int activeAttribute = 0;
unsigned int attribute;
for(attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++)
{
if(mLinkedAttribute[attribute].name.empty())
{
continue;
}
if(activeAttribute == index)
{
break;
}
activeAttribute++;
}
if(bufsize > 0)
{
const char *string = mLinkedAttribute[attribute].name.c_str();
strncpy(name, string, bufsize);
name[bufsize - 1] = '\0';
if(length)
{
*length = strlen(name);
}
}
*size = 1; // Always a single 'type' instance
*type = mLinkedAttribute[attribute].type;
}
GLint Program::getActiveAttributeCount()
{
int count = 0;
for(int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
{
if(!mLinkedAttribute[attributeIndex].name.empty())
{
count++;
}
}
return count;
}
GLint Program::getActiveAttributeMaxLength()
{
int maxLength = 0;
for(int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
{
if(!mLinkedAttribute[attributeIndex].name.empty())
{
maxLength = std::max((int)(mLinkedAttribute[attributeIndex].name.length() + 1), maxLength);
}
}
return maxLength;
}
void Program::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name)
{
// Skip over internal uniforms
unsigned int activeUniform = 0;
unsigned int uniform;
for(uniform = 0; uniform < mUniforms.size(); uniform++)
{
if(mUniforms[uniform]->name.compare(0, 3, "dx_") == 0)
{
continue;
}
if(activeUniform == index)
{
break;
}
activeUniform++;
}
ASSERT(uniform < mUniforms.size()); // index must be smaller than getActiveUniformCount()
if(bufsize > 0)
{
std::string string = mUniforms[uniform]->name;
if(mUniforms[uniform]->isArray())
{
string += "[0]";
}
strncpy(name, string.c_str(), bufsize);
name[bufsize - 1] = '\0';
if(length)
{
*length = strlen(name);
}
}
*size = mUniforms[uniform]->arraySize;
*type = mUniforms[uniform]->type;
}
GLint Program::getActiveUniformCount()
{
int count = 0;
unsigned int numUniforms = mUniforms.size();
for(unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++)
{
if(mUniforms[uniformIndex]->name.compare(0, 3, "dx_") != 0)
{
count++;
}
}
return count;
}
GLint Program::getActiveUniformMaxLength()
{
int maxLength = 0;
unsigned int numUniforms = mUniforms.size();
for(unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++)
{
if(!mUniforms[uniformIndex]->name.empty() && mUniforms[uniformIndex]->name.compare(0, 3, "dx_") != 0)
{
int length = (int)(mUniforms[uniformIndex]->name.length() + 1);
if(mUniforms[uniformIndex]->isArray())
{
length += 3; // Counting in "[0]".
}
maxLength = std::max(length, maxLength);
}
}
return maxLength;
}
void Program::flagForDeletion()
{
mDeleteStatus = true;
}
bool Program::isFlaggedForDeletion() const
{
return mDeleteStatus;
}
void Program::validate()
{
resetInfoLog();
if(!isLinked())
{
appendToInfoLog("Program has not been successfully linked.");
mValidated = false;
}
else
{
applyUniforms();
if(!validateSamplers(true))
{
mValidated = false;
}
else
{
mValidated = true;
}
}
}
bool Program::validateSamplers(bool logErrors)
{
// if any two active samplers in a program are of different types, but refer to the same
// texture image unit, and this is the current program, then ValidateProgram will fail, and
// DrawArrays and DrawElements will issue the INVALID_OPERATION error.
TextureType textureUnitType[MAX_COMBINED_TEXTURE_IMAGE_UNITS];
for(unsigned int i = 0; i < MAX_COMBINED_TEXTURE_IMAGE_UNITS; ++i)
{
textureUnitType[i] = TEXTURE_UNKNOWN;
}
for(unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; ++i)
{
if(mSamplersPS[i].active)
{
unsigned int unit = mSamplersPS[i].logicalTextureUnit;
if(unit >= MAX_COMBINED_TEXTURE_IMAGE_UNITS)
{
if(logErrors)
{
appendToInfoLog("Sampler uniform (%d) exceeds MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, MAX_COMBINED_TEXTURE_IMAGE_UNITS);
}
return false;
}
if(textureUnitType[unit] != TEXTURE_UNKNOWN)
{
if(mSamplersPS[i].textureType != textureUnitType[unit])
{
if(logErrors)
{
appendToInfoLog("Samplers of conflicting types refer to the same texture image unit (%d).", unit);
}
return false;
}
}
else
{
textureUnitType[unit] = mSamplersPS[i].textureType;
}
}
}
for(unsigned int i = 0; i < MAX_VERTEX_TEXTURE_IMAGE_UNITS; ++i)
{
if(mSamplersVS[i].active)
{
unsigned int unit = mSamplersVS[i].logicalTextureUnit;
if(unit >= MAX_COMBINED_TEXTURE_IMAGE_UNITS)
{
if(logErrors)
{
appendToInfoLog("Sampler uniform (%d) exceeds MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, MAX_COMBINED_TEXTURE_IMAGE_UNITS);
}
return false;
}
if(textureUnitType[unit] != TEXTURE_UNKNOWN)
{
if(mSamplersVS[i].textureType != textureUnitType[unit])
{
if(logErrors)
{
appendToInfoLog("Samplers of conflicting types refer to the same texture image unit (%d).", unit);
}
return false;
}
}
else
{
textureUnitType[unit] = mSamplersVS[i].textureType;
}
}
}
return true;
}
void Program::getConstantHandles(Uniform *targetUniform, D3DXHANDLE *constantPS, D3DXHANDLE *constantVS)
{
if(!targetUniform->handlesSet)
{
targetUniform->psHandle = mConstantTablePS->GetConstantByName(0, targetUniform->_name.c_str());
targetUniform->vsHandle = mConstantTableVS->GetConstantByName(0, targetUniform->_name.c_str());
targetUniform->handlesSet = true;
}
*constantPS = targetUniform->psHandle;
*constantVS = targetUniform->vsHandle;
}
GLint Program::getDxDepthRangeLocation() const
{
return mDxDepthRangeLocation;
}
GLint Program::getDxDepthLocation() const
{
return mDxDepthLocation;
}
GLint Program::getDxViewportLocation() const
{
return mDxViewportLocation;
}
GLint Program::getDxHalfPixelSizeLocation() const
{
return mDxHalfPixelSizeLocation;
}
GLint Program::getDxFrontCCWLocation() const
{
return mDxFrontCCWLocation;
}
GLint Program::getDxPointsOrLinesLocation() const
{
return mDxPointsOrLinesLocation;
}
}