| //===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the DAG Matcher optimizer. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "isel-opt" |
| #include "DAGISelMatcher.h" |
| #include "CodeGenDAGPatterns.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/StringSet.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| /// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record' |
| /// into single compound nodes like RecordChild. |
| static void ContractNodes(OwningPtr<Matcher> &MatcherPtr, |
| const CodeGenDAGPatterns &CGP) { |
| // If we reached the end of the chain, we're done. |
| Matcher *N = MatcherPtr.get(); |
| if (N == 0) return; |
| |
| // If we have a scope node, walk down all of the children. |
| if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) { |
| for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { |
| OwningPtr<Matcher> Child(Scope->takeChild(i)); |
| ContractNodes(Child, CGP); |
| Scope->resetChild(i, Child.take()); |
| } |
| return; |
| } |
| |
| // If we found a movechild node with a node that comes in a 'foochild' form, |
| // transform it. |
| if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) { |
| Matcher *New = 0; |
| if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext())) |
| if (MC->getChildNo() < 8) // Only have RecordChild0...7 |
| New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(), |
| RM->getResultNo()); |
| |
| if (CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(MC->getNext())) |
| if (MC->getChildNo() < 8 && // Only have CheckChildType0...7 |
| CT->getResNo() == 0) // CheckChildType checks res #0 |
| New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType()); |
| |
| if (New) { |
| // Insert the new node. |
| New->setNext(MatcherPtr.take()); |
| MatcherPtr.reset(New); |
| // Remove the old one. |
| MC->setNext(MC->getNext()->takeNext()); |
| return ContractNodes(MatcherPtr, CGP); |
| } |
| } |
| |
| // Zap movechild -> moveparent. |
| if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) |
| if (MoveParentMatcher *MP = |
| dyn_cast<MoveParentMatcher>(MC->getNext())) { |
| MatcherPtr.reset(MP->takeNext()); |
| return ContractNodes(MatcherPtr, CGP); |
| } |
| |
| // Turn EmitNode->MarkFlagResults->CompleteMatch into |
| // MarkFlagResults->EmitNode->CompleteMatch when we can to encourage |
| // MorphNodeTo formation. This is safe because MarkFlagResults never refers |
| // to the root of the pattern. |
| if (isa<EmitNodeMatcher>(N) && isa<MarkGlueResultsMatcher>(N->getNext()) && |
| isa<CompleteMatchMatcher>(N->getNext()->getNext())) { |
| // Unlink the two nodes from the list. |
| Matcher *EmitNode = MatcherPtr.take(); |
| Matcher *MFR = EmitNode->takeNext(); |
| Matcher *Tail = MFR->takeNext(); |
| |
| // Relink them. |
| MatcherPtr.reset(MFR); |
| MFR->setNext(EmitNode); |
| EmitNode->setNext(Tail); |
| return ContractNodes(MatcherPtr, CGP); |
| } |
| |
| // Turn EmitNode->CompleteMatch into MorphNodeTo if we can. |
| if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N)) |
| if (CompleteMatchMatcher *CM = |
| dyn_cast<CompleteMatchMatcher>(EN->getNext())) { |
| // We can only use MorphNodeTo if the result values match up. |
| unsigned RootResultFirst = EN->getFirstResultSlot(); |
| bool ResultsMatch = true; |
| for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i) |
| if (CM->getResult(i) != RootResultFirst+i) |
| ResultsMatch = false; |
| |
| // If the selected node defines a subset of the glue/chain results, we |
| // can't use MorphNodeTo. For example, we can't use MorphNodeTo if the |
| // matched pattern has a chain but the root node doesn't. |
| const PatternToMatch &Pattern = CM->getPattern(); |
| |
| if (!EN->hasChain() && |
| Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP)) |
| ResultsMatch = false; |
| |
| // If the matched node has glue and the output root doesn't, we can't |
| // use MorphNodeTo. |
| // |
| // NOTE: Strictly speaking, we don't have to check for glue here |
| // because the code in the pattern generator doesn't handle it right. We |
| // do it anyway for thoroughness. |
| if (!EN->hasOutFlag() && |
| Pattern.getSrcPattern()->NodeHasProperty(SDNPOutGlue, CGP)) |
| ResultsMatch = false; |
| |
| |
| // If the root result node defines more results than the source root node |
| // *and* has a chain or glue input, then we can't match it because it |
| // would end up replacing the extra result with the chain/glue. |
| #if 0 |
| if ((EN->hasGlue() || EN->hasChain()) && |
| EN->getNumNonChainGlueVTs() > ... need to get no results reliably ...) |
| ResultMatch = false; |
| #endif |
| |
| if (ResultsMatch) { |
| const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList(); |
| const SmallVectorImpl<unsigned> &Operands = EN->getOperandList(); |
| MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(), |
| VTs.data(), VTs.size(), |
| Operands.data(),Operands.size(), |
| EN->hasChain(), EN->hasInFlag(), |
| EN->hasOutFlag(), |
| EN->hasMemRefs(), |
| EN->getNumFixedArityOperands(), |
| Pattern)); |
| return; |
| } |
| |
| // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode |
| // variants. |
| } |
| |
| ContractNodes(N->getNextPtr(), CGP); |
| |
| |
| // If we have a CheckType/CheckChildType/Record node followed by a |
| // CheckOpcode, invert the two nodes. We prefer to do structural checks |
| // before type checks, as this opens opportunities for factoring on targets |
| // like X86 where many operations are valid on multiple types. |
| if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) || |
| isa<RecordMatcher>(N)) && |
| isa<CheckOpcodeMatcher>(N->getNext())) { |
| // Unlink the two nodes from the list. |
| Matcher *CheckType = MatcherPtr.take(); |
| Matcher *CheckOpcode = CheckType->takeNext(); |
| Matcher *Tail = CheckOpcode->takeNext(); |
| |
| // Relink them. |
| MatcherPtr.reset(CheckOpcode); |
| CheckOpcode->setNext(CheckType); |
| CheckType->setNext(Tail); |
| return ContractNodes(MatcherPtr, CGP); |
| } |
| } |
| |
| /// SinkPatternPredicates - Pattern predicates can be checked at any level of |
| /// the matching tree. The generator dumps them at the top level of the pattern |
| /// though, which prevents factoring from being able to see past them. This |
| /// optimization sinks them as far down into the pattern as possible. |
| /// |
| /// Conceptually, we'd like to sink these predicates all the way to the last |
| /// matcher predicate in the series. However, it turns out that some |
| /// ComplexPatterns have side effects on the graph, so we really don't want to |
| /// run a the complex pattern if the pattern predicate will fail. For this |
| /// reason, we refuse to sink the pattern predicate past a ComplexPattern. |
| /// |
| static void SinkPatternPredicates(OwningPtr<Matcher> &MatcherPtr) { |
| // Recursively scan for a PatternPredicate. |
| // If we reached the end of the chain, we're done. |
| Matcher *N = MatcherPtr.get(); |
| if (N == 0) return; |
| |
| // Walk down all members of a scope node. |
| if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) { |
| for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { |
| OwningPtr<Matcher> Child(Scope->takeChild(i)); |
| SinkPatternPredicates(Child); |
| Scope->resetChild(i, Child.take()); |
| } |
| return; |
| } |
| |
| // If this node isn't a CheckPatternPredicateMatcher we keep scanning until |
| // we find one. |
| CheckPatternPredicateMatcher *CPPM =dyn_cast<CheckPatternPredicateMatcher>(N); |
| if (CPPM == 0) |
| return SinkPatternPredicates(N->getNextPtr()); |
| |
| // Ok, we found one, lets try to sink it. Check if we can sink it past the |
| // next node in the chain. If not, we won't be able to change anything and |
| // might as well bail. |
| if (!CPPM->getNext()->isSafeToReorderWithPatternPredicate()) |
| return; |
| |
| // Okay, we know we can sink it past at least one node. Unlink it from the |
| // chain and scan for the new insertion point. |
| MatcherPtr.take(); // Don't delete CPPM. |
| MatcherPtr.reset(CPPM->takeNext()); |
| |
| N = MatcherPtr.get(); |
| while (N->getNext()->isSafeToReorderWithPatternPredicate()) |
| N = N->getNext(); |
| |
| // At this point, we want to insert CPPM after N. |
| CPPM->setNext(N->takeNext()); |
| N->setNext(CPPM); |
| } |
| |
| /// FindNodeWithKind - Scan a series of matchers looking for a matcher with a |
| /// specified kind. Return null if we didn't find one otherwise return the |
| /// matcher. |
| static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) { |
| for (; M; M = M->getNext()) |
| if (M->getKind() == Kind) |
| return M; |
| return 0; |
| } |
| |
| |
| /// FactorNodes - Turn matches like this: |
| /// Scope |
| /// OPC_CheckType i32 |
| /// ABC |
| /// OPC_CheckType i32 |
| /// XYZ |
| /// into: |
| /// OPC_CheckType i32 |
| /// Scope |
| /// ABC |
| /// XYZ |
| /// |
| static void FactorNodes(OwningPtr<Matcher> &MatcherPtr) { |
| // If we reached the end of the chain, we're done. |
| Matcher *N = MatcherPtr.get(); |
| if (N == 0) return; |
| |
| // If this is not a push node, just scan for one. |
| ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N); |
| if (Scope == 0) |
| return FactorNodes(N->getNextPtr()); |
| |
| // Okay, pull together the children of the scope node into a vector so we can |
| // inspect it more easily. While we're at it, bucket them up by the hash |
| // code of their first predicate. |
| SmallVector<Matcher*, 32> OptionsToMatch; |
| |
| for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { |
| // Factor the subexpression. |
| OwningPtr<Matcher> Child(Scope->takeChild(i)); |
| FactorNodes(Child); |
| |
| if (Matcher *N = Child.take()) |
| OptionsToMatch.push_back(N); |
| } |
| |
| SmallVector<Matcher*, 32> NewOptionsToMatch; |
| |
| // Loop over options to match, merging neighboring patterns with identical |
| // starting nodes into a shared matcher. |
| for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) { |
| // Find the set of matchers that start with this node. |
| Matcher *Optn = OptionsToMatch[OptionIdx++]; |
| |
| if (OptionIdx == e) { |
| NewOptionsToMatch.push_back(Optn); |
| continue; |
| } |
| |
| // See if the next option starts with the same matcher. If the two |
| // neighbors *do* start with the same matcher, we can factor the matcher out |
| // of at least these two patterns. See what the maximal set we can merge |
| // together is. |
| SmallVector<Matcher*, 8> EqualMatchers; |
| EqualMatchers.push_back(Optn); |
| |
| // Factor all of the known-equal matchers after this one into the same |
| // group. |
| while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn)) |
| EqualMatchers.push_back(OptionsToMatch[OptionIdx++]); |
| |
| // If we found a non-equal matcher, see if it is contradictory with the |
| // current node. If so, we know that the ordering relation between the |
| // current sets of nodes and this node don't matter. Look past it to see if |
| // we can merge anything else into this matching group. |
| unsigned Scan = OptionIdx; |
| while (1) { |
| // If we ran out of stuff to scan, we're done. |
| if (Scan == e) break; |
| |
| Matcher *ScanMatcher = OptionsToMatch[Scan]; |
| |
| // If we found an entry that matches out matcher, merge it into the set to |
| // handle. |
| if (Optn->isEqual(ScanMatcher)) { |
| // If is equal after all, add the option to EqualMatchers and remove it |
| // from OptionsToMatch. |
| EqualMatchers.push_back(ScanMatcher); |
| OptionsToMatch.erase(OptionsToMatch.begin()+Scan); |
| --e; |
| continue; |
| } |
| |
| // If the option we're checking for contradicts the start of the list, |
| // skip over it. |
| if (Optn->isContradictory(ScanMatcher)) { |
| ++Scan; |
| continue; |
| } |
| |
| // If we're scanning for a simple node, see if it occurs later in the |
| // sequence. If so, and if we can move it up, it might be contradictory |
| // or the same as what we're looking for. If so, reorder it. |
| if (Optn->isSimplePredicateOrRecordNode()) { |
| Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind()); |
| if (M2 != 0 && M2 != ScanMatcher && |
| M2->canMoveBefore(ScanMatcher) && |
| (M2->isEqual(Optn) || M2->isContradictory(Optn))) { |
| Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2); |
| M2->setNext(MatcherWithoutM2); |
| OptionsToMatch[Scan] = M2; |
| continue; |
| } |
| } |
| |
| // Otherwise, we don't know how to handle this entry, we have to bail. |
| break; |
| } |
| |
| if (Scan != e && |
| // Don't print it's obvious nothing extra could be merged anyway. |
| Scan+1 != e) { |
| DEBUG(errs() << "Couldn't merge this:\n"; |
| Optn->print(errs(), 4); |
| errs() << "into this:\n"; |
| OptionsToMatch[Scan]->print(errs(), 4); |
| if (Scan+1 != e) |
| OptionsToMatch[Scan+1]->printOne(errs()); |
| if (Scan+2 < e) |
| OptionsToMatch[Scan+2]->printOne(errs()); |
| errs() << "\n"); |
| } |
| |
| // If we only found one option starting with this matcher, no factoring is |
| // possible. |
| if (EqualMatchers.size() == 1) { |
| NewOptionsToMatch.push_back(EqualMatchers[0]); |
| continue; |
| } |
| |
| // Factor these checks by pulling the first node off each entry and |
| // discarding it. Take the first one off the first entry to reuse. |
| Matcher *Shared = Optn; |
| Optn = Optn->takeNext(); |
| EqualMatchers[0] = Optn; |
| |
| // Remove and delete the first node from the other matchers we're factoring. |
| for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) { |
| Matcher *Tmp = EqualMatchers[i]->takeNext(); |
| delete EqualMatchers[i]; |
| EqualMatchers[i] = Tmp; |
| } |
| |
| Shared->setNext(new ScopeMatcher(&EqualMatchers[0], EqualMatchers.size())); |
| |
| // Recursively factor the newly created node. |
| FactorNodes(Shared->getNextPtr()); |
| |
| NewOptionsToMatch.push_back(Shared); |
| } |
| |
| // If we're down to a single pattern to match, then we don't need this scope |
| // anymore. |
| if (NewOptionsToMatch.size() == 1) { |
| MatcherPtr.reset(NewOptionsToMatch[0]); |
| return; |
| } |
| |
| if (NewOptionsToMatch.empty()) { |
| MatcherPtr.reset(0); |
| return; |
| } |
| |
| // If our factoring failed (didn't achieve anything) see if we can simplify in |
| // other ways. |
| |
| // Check to see if all of the leading entries are now opcode checks. If so, |
| // we can convert this Scope to be a OpcodeSwitch instead. |
| bool AllOpcodeChecks = true, AllTypeChecks = true; |
| for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) { |
| // Check to see if this breaks a series of CheckOpcodeMatchers. |
| if (AllOpcodeChecks && |
| !isa<CheckOpcodeMatcher>(NewOptionsToMatch[i])) { |
| #if 0 |
| if (i > 3) { |
| errs() << "FAILING OPC #" << i << "\n"; |
| NewOptionsToMatch[i]->dump(); |
| } |
| #endif |
| AllOpcodeChecks = false; |
| } |
| |
| // Check to see if this breaks a series of CheckTypeMatcher's. |
| if (AllTypeChecks) { |
| CheckTypeMatcher *CTM = |
| cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i], |
| Matcher::CheckType)); |
| if (CTM == 0 || |
| // iPTR checks could alias any other case without us knowing, don't |
| // bother with them. |
| CTM->getType() == MVT::iPTR || |
| // SwitchType only works for result #0. |
| CTM->getResNo() != 0 || |
| // If the CheckType isn't at the start of the list, see if we can move |
| // it there. |
| !CTM->canMoveBefore(NewOptionsToMatch[i])) { |
| #if 0 |
| if (i > 3 && AllTypeChecks) { |
| errs() << "FAILING TYPE #" << i << "\n"; |
| NewOptionsToMatch[i]->dump(); |
| } |
| #endif |
| AllTypeChecks = false; |
| } |
| } |
| } |
| |
| // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot. |
| if (AllOpcodeChecks) { |
| StringSet<> Opcodes; |
| SmallVector<std::pair<const SDNodeInfo*, Matcher*>, 8> Cases; |
| for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) { |
| CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(NewOptionsToMatch[i]); |
| assert(Opcodes.insert(COM->getOpcode().getEnumName()) && |
| "Duplicate opcodes not factored?"); |
| Cases.push_back(std::make_pair(&COM->getOpcode(), COM->getNext())); |
| } |
| |
| MatcherPtr.reset(new SwitchOpcodeMatcher(&Cases[0], Cases.size())); |
| return; |
| } |
| |
| // If all the options are CheckType's, we can form the SwitchType, woot. |
| if (AllTypeChecks) { |
| DenseMap<unsigned, unsigned> TypeEntry; |
| SmallVector<std::pair<MVT::SimpleValueType, Matcher*>, 8> Cases; |
| for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) { |
| CheckTypeMatcher *CTM = |
| cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i], |
| Matcher::CheckType)); |
| Matcher *MatcherWithoutCTM = NewOptionsToMatch[i]->unlinkNode(CTM); |
| MVT::SimpleValueType CTMTy = CTM->getType(); |
| delete CTM; |
| |
| unsigned &Entry = TypeEntry[CTMTy]; |
| if (Entry != 0) { |
| // If we have unfactored duplicate types, then we should factor them. |
| Matcher *PrevMatcher = Cases[Entry-1].second; |
| if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(PrevMatcher)) { |
| SM->setNumChildren(SM->getNumChildren()+1); |
| SM->resetChild(SM->getNumChildren()-1, MatcherWithoutCTM); |
| continue; |
| } |
| |
| Matcher *Entries[2] = { PrevMatcher, MatcherWithoutCTM }; |
| Cases[Entry-1].second = new ScopeMatcher(Entries, 2); |
| continue; |
| } |
| |
| Entry = Cases.size()+1; |
| Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM)); |
| } |
| |
| if (Cases.size() != 1) { |
| MatcherPtr.reset(new SwitchTypeMatcher(&Cases[0], Cases.size())); |
| } else { |
| // If we factored and ended up with one case, create it now. |
| MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0)); |
| MatcherPtr->setNext(Cases[0].second); |
| } |
| return; |
| } |
| |
| |
| // Reassemble the Scope node with the adjusted children. |
| Scope->setNumChildren(NewOptionsToMatch.size()); |
| for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) |
| Scope->resetChild(i, NewOptionsToMatch[i]); |
| } |
| |
| Matcher *llvm::OptimizeMatcher(Matcher *TheMatcher, |
| const CodeGenDAGPatterns &CGP) { |
| OwningPtr<Matcher> MatcherPtr(TheMatcher); |
| ContractNodes(MatcherPtr, CGP); |
| SinkPatternPredicates(MatcherPtr); |
| FactorNodes(MatcherPtr); |
| return MatcherPtr.take(); |
| } |