| //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines structures to encapsulate information gleaned from the |
| // target register and register class definitions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenRegisters.h" |
| #include "CodeGenTarget.h" |
| #include "llvm/TableGen/Error.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/StringExtras.h" |
| |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // CodeGenRegister |
| //===----------------------------------------------------------------------===// |
| |
| CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) |
| : TheDef(R), |
| EnumValue(Enum), |
| CostPerUse(R->getValueAsInt("CostPerUse")), |
| SubRegsComplete(false) |
| {} |
| |
| const std::string &CodeGenRegister::getName() const { |
| return TheDef->getName(); |
| } |
| |
| namespace { |
| struct Orphan { |
| CodeGenRegister *SubReg; |
| Record *First, *Second; |
| Orphan(CodeGenRegister *r, Record *a, Record *b) |
| : SubReg(r), First(a), Second(b) {} |
| }; |
| } |
| |
| const CodeGenRegister::SubRegMap & |
| CodeGenRegister::getSubRegs(CodeGenRegBank &RegBank) { |
| // Only compute this map once. |
| if (SubRegsComplete) |
| return SubRegs; |
| SubRegsComplete = true; |
| |
| std::vector<Record*> SubList = TheDef->getValueAsListOfDefs("SubRegs"); |
| std::vector<Record*> Indices = TheDef->getValueAsListOfDefs("SubRegIndices"); |
| if (SubList.size() != Indices.size()) |
| throw TGError(TheDef->getLoc(), "Register " + getName() + |
| " SubRegIndices doesn't match SubRegs"); |
| |
| // First insert the direct subregs and make sure they are fully indexed. |
| for (unsigned i = 0, e = SubList.size(); i != e; ++i) { |
| CodeGenRegister *SR = RegBank.getReg(SubList[i]); |
| if (!SubRegs.insert(std::make_pair(Indices[i], SR)).second) |
| throw TGError(TheDef->getLoc(), "SubRegIndex " + Indices[i]->getName() + |
| " appears twice in Register " + getName()); |
| } |
| |
| // Keep track of inherited subregs and how they can be reached. |
| SmallVector<Orphan, 8> Orphans; |
| |
| // Clone inherited subregs and place duplicate entries on Orphans. |
| // Here the order is important - earlier subregs take precedence. |
| for (unsigned i = 0, e = SubList.size(); i != e; ++i) { |
| CodeGenRegister *SR = RegBank.getReg(SubList[i]); |
| const SubRegMap &Map = SR->getSubRegs(RegBank); |
| |
| // Add this as a super-register of SR now all sub-registers are in the list. |
| // This creates a topological ordering, the exact order depends on the |
| // order getSubRegs is called on all registers. |
| SR->SuperRegs.push_back(this); |
| |
| for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; |
| ++SI) { |
| if (!SubRegs.insert(*SI).second) |
| Orphans.push_back(Orphan(SI->second, Indices[i], SI->first)); |
| |
| // Noop sub-register indexes are possible, so avoid duplicates. |
| if (SI->second != SR) |
| SI->second->SuperRegs.push_back(this); |
| } |
| } |
| |
| // Process the composites. |
| ListInit *Comps = TheDef->getValueAsListInit("CompositeIndices"); |
| for (unsigned i = 0, e = Comps->size(); i != e; ++i) { |
| DagInit *Pat = dynamic_cast<DagInit*>(Comps->getElement(i)); |
| if (!Pat) |
| throw TGError(TheDef->getLoc(), "Invalid dag '" + |
| Comps->getElement(i)->getAsString() + |
| "' in CompositeIndices"); |
| DefInit *BaseIdxInit = dynamic_cast<DefInit*>(Pat->getOperator()); |
| if (!BaseIdxInit || !BaseIdxInit->getDef()->isSubClassOf("SubRegIndex")) |
| throw TGError(TheDef->getLoc(), "Invalid SubClassIndex in " + |
| Pat->getAsString()); |
| |
| // Resolve list of subreg indices into R2. |
| CodeGenRegister *R2 = this; |
| for (DagInit::const_arg_iterator di = Pat->arg_begin(), |
| de = Pat->arg_end(); di != de; ++di) { |
| DefInit *IdxInit = dynamic_cast<DefInit*>(*di); |
| if (!IdxInit || !IdxInit->getDef()->isSubClassOf("SubRegIndex")) |
| throw TGError(TheDef->getLoc(), "Invalid SubClassIndex in " + |
| Pat->getAsString()); |
| const SubRegMap &R2Subs = R2->getSubRegs(RegBank); |
| SubRegMap::const_iterator ni = R2Subs.find(IdxInit->getDef()); |
| if (ni == R2Subs.end()) |
| throw TGError(TheDef->getLoc(), "Composite " + Pat->getAsString() + |
| " refers to bad index in " + R2->getName()); |
| R2 = ni->second; |
| } |
| |
| // Insert composite index. Allow overriding inherited indices etc. |
| SubRegs[BaseIdxInit->getDef()] = R2; |
| |
| // R2 is no longer an orphan. |
| for (unsigned j = 0, je = Orphans.size(); j != je; ++j) |
| if (Orphans[j].SubReg == R2) |
| Orphans[j].SubReg = 0; |
| } |
| |
| // Now Orphans contains the inherited subregisters without a direct index. |
| // Create inferred indexes for all missing entries. |
| for (unsigned i = 0, e = Orphans.size(); i != e; ++i) { |
| Orphan &O = Orphans[i]; |
| if (!O.SubReg) |
| continue; |
| SubRegs[RegBank.getCompositeSubRegIndex(O.First, O.Second, true)] = |
| O.SubReg; |
| } |
| return SubRegs; |
| } |
| |
| void |
| CodeGenRegister::addSubRegsPreOrder(SetVector<CodeGenRegister*> &OSet) const { |
| assert(SubRegsComplete && "Must precompute sub-registers"); |
| std::vector<Record*> Indices = TheDef->getValueAsListOfDefs("SubRegIndices"); |
| for (unsigned i = 0, e = Indices.size(); i != e; ++i) { |
| CodeGenRegister *SR = SubRegs.find(Indices[i])->second; |
| if (OSet.insert(SR)) |
| SR->addSubRegsPreOrder(OSet); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // RegisterTuples |
| //===----------------------------------------------------------------------===// |
| |
| // A RegisterTuples def is used to generate pseudo-registers from lists of |
| // sub-registers. We provide a SetTheory expander class that returns the new |
| // registers. |
| namespace { |
| struct TupleExpander : SetTheory::Expander { |
| void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) { |
| std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); |
| unsigned Dim = Indices.size(); |
| ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); |
| if (Dim != SubRegs->getSize()) |
| throw TGError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); |
| if (Dim < 2) |
| throw TGError(Def->getLoc(), "Tuples must have at least 2 sub-registers"); |
| |
| // Evaluate the sub-register lists to be zipped. |
| unsigned Length = ~0u; |
| SmallVector<SetTheory::RecSet, 4> Lists(Dim); |
| for (unsigned i = 0; i != Dim; ++i) { |
| ST.evaluate(SubRegs->getElement(i), Lists[i]); |
| Length = std::min(Length, unsigned(Lists[i].size())); |
| } |
| |
| if (Length == 0) |
| return; |
| |
| // Precompute some types. |
| Record *RegisterCl = Def->getRecords().getClass("Register"); |
| RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); |
| StringInit *BlankName = StringInit::get(""); |
| |
| // Zip them up. |
| for (unsigned n = 0; n != Length; ++n) { |
| std::string Name; |
| Record *Proto = Lists[0][n]; |
| std::vector<Init*> Tuple; |
| unsigned CostPerUse = 0; |
| for (unsigned i = 0; i != Dim; ++i) { |
| Record *Reg = Lists[i][n]; |
| if (i) Name += '_'; |
| Name += Reg->getName(); |
| Tuple.push_back(DefInit::get(Reg)); |
| CostPerUse = std::max(CostPerUse, |
| unsigned(Reg->getValueAsInt("CostPerUse"))); |
| } |
| |
| // Create a new Record representing the synthesized register. This record |
| // is only for consumption by CodeGenRegister, it is not added to the |
| // RecordKeeper. |
| Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords()); |
| Elts.insert(NewReg); |
| |
| // Copy Proto super-classes. |
| for (unsigned i = 0, e = Proto->getSuperClasses().size(); i != e; ++i) |
| NewReg->addSuperClass(Proto->getSuperClasses()[i]); |
| |
| // Copy Proto fields. |
| for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { |
| RecordVal RV = Proto->getValues()[i]; |
| |
| // Replace the sub-register list with Tuple. |
| if (RV.getName() == "SubRegs") |
| RV.setValue(ListInit::get(Tuple, RegisterRecTy)); |
| |
| // Provide a blank AsmName. MC hacks are required anyway. |
| if (RV.getName() == "AsmName") |
| RV.setValue(BlankName); |
| |
| // CostPerUse is aggregated from all Tuple members. |
| if (RV.getName() == "CostPerUse") |
| RV.setValue(IntInit::get(CostPerUse)); |
| |
| // Copy fields from the RegisterTuples def. |
| if (RV.getName() == "SubRegIndices" || |
| RV.getName() == "CompositeIndices") { |
| NewReg->addValue(*Def->getValue(RV.getName())); |
| continue; |
| } |
| |
| // Some fields get their default uninitialized value. |
| if (RV.getName() == "DwarfNumbers" || |
| RV.getName() == "DwarfAlias" || |
| RV.getName() == "Aliases") { |
| if (const RecordVal *DefRV = RegisterCl->getValue(RV.getName())) |
| NewReg->addValue(*DefRV); |
| continue; |
| } |
| |
| // Everything else is copied from Proto. |
| NewReg->addValue(RV); |
| } |
| } |
| } |
| }; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CodeGenRegisterClass |
| //===----------------------------------------------------------------------===// |
| |
| CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) |
| : TheDef(R), Name(R->getName()), EnumValue(-1) { |
| // Rename anonymous register classes. |
| if (R->getName().size() > 9 && R->getName()[9] == '.') { |
| static unsigned AnonCounter = 0; |
| R->setName("AnonRegClass_"+utostr(AnonCounter++)); |
| } |
| |
| std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); |
| for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { |
| Record *Type = TypeList[i]; |
| if (!Type->isSubClassOf("ValueType")) |
| throw "RegTypes list member '" + Type->getName() + |
| "' does not derive from the ValueType class!"; |
| VTs.push_back(getValueType(Type)); |
| } |
| assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); |
| |
| // Allocation order 0 is the full set. AltOrders provides others. |
| const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); |
| ListInit *AltOrders = R->getValueAsListInit("AltOrders"); |
| Orders.resize(1 + AltOrders->size()); |
| |
| // Default allocation order always contains all registers. |
| for (unsigned i = 0, e = Elements->size(); i != e; ++i) { |
| Orders[0].push_back((*Elements)[i]); |
| Members.insert(RegBank.getReg((*Elements)[i])); |
| } |
| |
| // Alternative allocation orders may be subsets. |
| SetTheory::RecSet Order; |
| for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { |
| RegBank.getSets().evaluate(AltOrders->getElement(i), Order); |
| Orders[1 + i].append(Order.begin(), Order.end()); |
| // Verify that all altorder members are regclass members. |
| while (!Order.empty()) { |
| CodeGenRegister *Reg = RegBank.getReg(Order.back()); |
| Order.pop_back(); |
| if (!contains(Reg)) |
| throw TGError(R->getLoc(), " AltOrder register " + Reg->getName() + |
| " is not a class member"); |
| } |
| } |
| |
| // SubRegClasses is a list<dag> containing (RC, subregindex, ...) dags. |
| ListInit *SRC = R->getValueAsListInit("SubRegClasses"); |
| for (ListInit::const_iterator i = SRC->begin(), e = SRC->end(); i != e; ++i) { |
| DagInit *DAG = dynamic_cast<DagInit*>(*i); |
| if (!DAG) throw "SubRegClasses must contain DAGs"; |
| DefInit *DAGOp = dynamic_cast<DefInit*>(DAG->getOperator()); |
| Record *RCRec; |
| if (!DAGOp || !(RCRec = DAGOp->getDef())->isSubClassOf("RegisterClass")) |
| throw "Operator '" + DAG->getOperator()->getAsString() + |
| "' in SubRegClasses is not a RegisterClass"; |
| // Iterate over args, all SubRegIndex instances. |
| for (DagInit::const_arg_iterator ai = DAG->arg_begin(), ae = DAG->arg_end(); |
| ai != ae; ++ai) { |
| DefInit *Idx = dynamic_cast<DefInit*>(*ai); |
| Record *IdxRec; |
| if (!Idx || !(IdxRec = Idx->getDef())->isSubClassOf("SubRegIndex")) |
| throw "Argument '" + (*ai)->getAsString() + |
| "' in SubRegClasses is not a SubRegIndex"; |
| if (!SubRegClasses.insert(std::make_pair(IdxRec, RCRec)).second) |
| throw "SubRegIndex '" + IdxRec->getName() + "' mentioned twice"; |
| } |
| } |
| |
| // Allow targets to override the size in bits of the RegisterClass. |
| unsigned Size = R->getValueAsInt("Size"); |
| |
| Namespace = R->getValueAsString("Namespace"); |
| SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits(); |
| SpillAlignment = R->getValueAsInt("Alignment"); |
| CopyCost = R->getValueAsInt("CopyCost"); |
| Allocatable = R->getValueAsBit("isAllocatable"); |
| AltOrderSelect = R->getValueAsCode("AltOrderSelect"); |
| } |
| |
| // Create an inferred register class that was missing from the .td files. |
| // Most properties will be inherited from the closest super-class after the |
| // class structure has been computed. |
| CodeGenRegisterClass::CodeGenRegisterClass(StringRef Name, Key Props) |
| : Members(*Props.Members), |
| TheDef(0), |
| Name(Name), |
| EnumValue(-1), |
| SpillSize(Props.SpillSize), |
| SpillAlignment(Props.SpillAlignment), |
| CopyCost(0), |
| Allocatable(true) { |
| } |
| |
| // Compute inherited propertied for a synthesized register class. |
| void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { |
| assert(!getDef() && "Only synthesized classes can inherit properties"); |
| assert(!SuperClasses.empty() && "Synthesized class without super class"); |
| |
| // The last super-class is the smallest one. |
| CodeGenRegisterClass &Super = *SuperClasses.back(); |
| |
| // Most properties are copied directly. |
| // Exceptions are members, size, and alignment |
| Namespace = Super.Namespace; |
| VTs = Super.VTs; |
| CopyCost = Super.CopyCost; |
| Allocatable = Super.Allocatable; |
| AltOrderSelect = Super.AltOrderSelect; |
| |
| // Copy all allocation orders, filter out foreign registers from the larger |
| // super-class. |
| Orders.resize(Super.Orders.size()); |
| for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) |
| for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) |
| if (contains(RegBank.getReg(Super.Orders[i][j]))) |
| Orders[i].push_back(Super.Orders[i][j]); |
| } |
| |
| bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { |
| return Members.count(Reg); |
| } |
| |
| namespace llvm { |
| raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { |
| OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment; |
| for (CodeGenRegister::Set::const_iterator I = K.Members->begin(), |
| E = K.Members->end(); I != E; ++I) |
| OS << ", " << (*I)->getName(); |
| return OS << " }"; |
| } |
| } |
| |
| // This is a simple lexicographical order that can be used to search for sets. |
| // It is not the same as the topological order provided by TopoOrderRC. |
| bool CodeGenRegisterClass::Key:: |
| operator<(const CodeGenRegisterClass::Key &B) const { |
| assert(Members && B.Members); |
| if (*Members != *B.Members) |
| return *Members < *B.Members; |
| if (SpillSize != B.SpillSize) |
| return SpillSize < B.SpillSize; |
| return SpillAlignment < B.SpillAlignment; |
| } |
| |
| // Returns true if RC is a strict subclass. |
| // RC is a sub-class of this class if it is a valid replacement for any |
| // instruction operand where a register of this classis required. It must |
| // satisfy these conditions: |
| // |
| // 1. All RC registers are also in this. |
| // 2. The RC spill size must not be smaller than our spill size. |
| // 3. RC spill alignment must be compatible with ours. |
| // |
| static bool testSubClass(const CodeGenRegisterClass *A, |
| const CodeGenRegisterClass *B) { |
| return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 && |
| A->SpillSize <= B->SpillSize && |
| std::includes(A->getMembers().begin(), A->getMembers().end(), |
| B->getMembers().begin(), B->getMembers().end(), |
| CodeGenRegister::Less()); |
| } |
| |
| /// Sorting predicate for register classes. This provides a topological |
| /// ordering that arranges all register classes before their sub-classes. |
| /// |
| /// Register classes with the same registers, spill size, and alignment form a |
| /// clique. They will be ordered alphabetically. |
| /// |
| static int TopoOrderRC(const void *PA, const void *PB) { |
| const CodeGenRegisterClass *A = *(const CodeGenRegisterClass* const*)PA; |
| const CodeGenRegisterClass *B = *(const CodeGenRegisterClass* const*)PB; |
| if (A == B) |
| return 0; |
| |
| // Order by descending set size. Note that the classes' allocation order may |
| // not have been computed yet. The Members set is always vaild. |
| if (A->getMembers().size() > B->getMembers().size()) |
| return -1; |
| if (A->getMembers().size() < B->getMembers().size()) |
| return 1; |
| |
| // Order by ascending spill size. |
| if (A->SpillSize < B->SpillSize) |
| return -1; |
| if (A->SpillSize > B->SpillSize) |
| return 1; |
| |
| // Order by ascending spill alignment. |
| if (A->SpillAlignment < B->SpillAlignment) |
| return -1; |
| if (A->SpillAlignment > B->SpillAlignment) |
| return 1; |
| |
| // Finally order by name as a tie breaker. |
| return A->getName() < B->getName(); |
| } |
| |
| std::string CodeGenRegisterClass::getQualifiedName() const { |
| if (Namespace.empty()) |
| return getName(); |
| else |
| return Namespace + "::" + getName(); |
| } |
| |
| // Compute sub-classes of all register classes. |
| // Assume the classes are ordered topologically. |
| void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { |
| ArrayRef<CodeGenRegisterClass*> RegClasses = RegBank.getRegClasses(); |
| |
| // Visit backwards so sub-classes are seen first. |
| for (unsigned rci = RegClasses.size(); rci; --rci) { |
| CodeGenRegisterClass &RC = *RegClasses[rci - 1]; |
| RC.SubClasses.resize(RegClasses.size()); |
| RC.SubClasses.set(RC.EnumValue); |
| |
| // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. |
| for (unsigned s = rci; s != RegClasses.size(); ++s) { |
| if (RC.SubClasses.test(s)) |
| continue; |
| CodeGenRegisterClass *SubRC = RegClasses[s]; |
| if (!testSubClass(&RC, SubRC)) |
| continue; |
| // SubRC is a sub-class. Grap all its sub-classes so we won't have to |
| // check them again. |
| RC.SubClasses |= SubRC->SubClasses; |
| } |
| |
| // Sweep up missed clique members. They will be immediately preceeding RC. |
| for (unsigned s = rci - 1; s && testSubClass(&RC, RegClasses[s - 1]); --s) |
| RC.SubClasses.set(s - 1); |
| } |
| |
| // Compute the SuperClasses lists from the SubClasses vectors. |
| for (unsigned rci = 0; rci != RegClasses.size(); ++rci) { |
| const BitVector &SC = RegClasses[rci]->getSubClasses(); |
| for (int s = SC.find_first(); s >= 0; s = SC.find_next(s)) { |
| if (unsigned(s) == rci) |
| continue; |
| RegClasses[s]->SuperClasses.push_back(RegClasses[rci]); |
| } |
| } |
| |
| // With the class hierarchy in place, let synthesized register classes inherit |
| // properties from their closest super-class. The iteration order here can |
| // propagate properties down multiple levels. |
| for (unsigned rci = 0; rci != RegClasses.size(); ++rci) |
| if (!RegClasses[rci]->getDef()) |
| RegClasses[rci]->inheritProperties(RegBank); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CodeGenRegBank |
| //===----------------------------------------------------------------------===// |
| |
| CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) : Records(Records) { |
| // Configure register Sets to understand register classes and tuples. |
| Sets.addFieldExpander("RegisterClass", "MemberList"); |
| Sets.addExpander("RegisterTuples", new TupleExpander()); |
| |
| // Read in the user-defined (named) sub-register indices. |
| // More indices will be synthesized later. |
| SubRegIndices = Records.getAllDerivedDefinitions("SubRegIndex"); |
| std::sort(SubRegIndices.begin(), SubRegIndices.end(), LessRecord()); |
| NumNamedIndices = SubRegIndices.size(); |
| |
| // Read in the register definitions. |
| std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); |
| std::sort(Regs.begin(), Regs.end(), LessRecord()); |
| Registers.reserve(Regs.size()); |
| // Assign the enumeration values. |
| for (unsigned i = 0, e = Regs.size(); i != e; ++i) |
| getReg(Regs[i]); |
| |
| // Expand tuples and number the new registers. |
| std::vector<Record*> Tups = |
| Records.getAllDerivedDefinitions("RegisterTuples"); |
| for (unsigned i = 0, e = Tups.size(); i != e; ++i) { |
| const std::vector<Record*> *TupRegs = Sets.expand(Tups[i]); |
| for (unsigned j = 0, je = TupRegs->size(); j != je; ++j) |
| getReg((*TupRegs)[j]); |
| } |
| |
| // Precompute all sub-register maps now all the registers are known. |
| // This will create Composite entries for all inferred sub-register indices. |
| for (unsigned i = 0, e = Registers.size(); i != e; ++i) |
| Registers[i]->getSubRegs(*this); |
| |
| // Read in register class definitions. |
| std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); |
| if (RCs.empty()) |
| throw std::string("No 'RegisterClass' subclasses defined!"); |
| |
| // Allocate user-defined register classes. |
| RegClasses.reserve(RCs.size()); |
| for (unsigned i = 0, e = RCs.size(); i != e; ++i) |
| addToMaps(new CodeGenRegisterClass(*this, RCs[i])); |
| |
| // Infer missing classes to create a full algebra. |
| computeInferredRegisterClasses(); |
| |
| // Order register classes topologically and assign enum values. |
| array_pod_sort(RegClasses.begin(), RegClasses.end(), TopoOrderRC); |
| for (unsigned i = 0, e = RegClasses.size(); i != e; ++i) |
| RegClasses[i]->EnumValue = i; |
| CodeGenRegisterClass::computeSubClasses(*this); |
| } |
| |
| CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { |
| CodeGenRegister *&Reg = Def2Reg[Def]; |
| if (Reg) |
| return Reg; |
| Reg = new CodeGenRegister(Def, Registers.size() + 1); |
| Registers.push_back(Reg); |
| return Reg; |
| } |
| |
| void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { |
| RegClasses.push_back(RC); |
| |
| if (Record *Def = RC->getDef()) |
| Def2RC.insert(std::make_pair(Def, RC)); |
| |
| // Duplicate classes are rejected by insert(). |
| // That's OK, we only care about the properties handled by CGRC::Key. |
| CodeGenRegisterClass::Key K(*RC); |
| Key2RC.insert(std::make_pair(K, RC)); |
| } |
| |
| CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) { |
| if (CodeGenRegisterClass *RC = Def2RC[Def]) |
| return RC; |
| |
| throw TGError(Def->getLoc(), "Not a known RegisterClass!"); |
| } |
| |
| Record *CodeGenRegBank::getCompositeSubRegIndex(Record *A, Record *B, |
| bool create) { |
| // Look for an existing entry. |
| Record *&Comp = Composite[std::make_pair(A, B)]; |
| if (Comp || !create) |
| return Comp; |
| |
| // None exists, synthesize one. |
| std::string Name = A->getName() + "_then_" + B->getName(); |
| Comp = new Record(Name, SMLoc(), Records); |
| SubRegIndices.push_back(Comp); |
| return Comp; |
| } |
| |
| unsigned CodeGenRegBank::getSubRegIndexNo(Record *idx) { |
| std::vector<Record*>::const_iterator i = |
| std::find(SubRegIndices.begin(), SubRegIndices.end(), idx); |
| assert(i != SubRegIndices.end() && "Not a SubRegIndex"); |
| return (i - SubRegIndices.begin()) + 1; |
| } |
| |
| void CodeGenRegBank::computeComposites() { |
| for (unsigned i = 0, e = Registers.size(); i != e; ++i) { |
| CodeGenRegister *Reg1 = Registers[i]; |
| const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs(); |
| for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(), |
| e1 = SRM1.end(); i1 != e1; ++i1) { |
| Record *Idx1 = i1->first; |
| CodeGenRegister *Reg2 = i1->second; |
| // Ignore identity compositions. |
| if (Reg1 == Reg2) |
| continue; |
| const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); |
| // Try composing Idx1 with another SubRegIndex. |
| for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(), |
| e2 = SRM2.end(); i2 != e2; ++i2) { |
| std::pair<Record*, Record*> IdxPair(Idx1, i2->first); |
| CodeGenRegister *Reg3 = i2->second; |
| // Ignore identity compositions. |
| if (Reg2 == Reg3) |
| continue; |
| // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. |
| for (CodeGenRegister::SubRegMap::const_iterator i1d = SRM1.begin(), |
| e1d = SRM1.end(); i1d != e1d; ++i1d) { |
| if (i1d->second == Reg3) { |
| std::pair<CompositeMap::iterator, bool> Ins = |
| Composite.insert(std::make_pair(IdxPair, i1d->first)); |
| // Conflicting composition? Emit a warning but allow it. |
| if (!Ins.second && Ins.first->second != i1d->first) { |
| errs() << "Warning: SubRegIndex " << getQualifiedName(Idx1) |
| << " and " << getQualifiedName(IdxPair.second) |
| << " compose ambiguously as " |
| << getQualifiedName(Ins.first->second) << " or " |
| << getQualifiedName(i1d->first) << "\n"; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // We don't care about the difference between (Idx1, Idx2) -> Idx2 and invalid |
| // compositions, so remove any mappings of that form. |
| for (CompositeMap::iterator i = Composite.begin(), e = Composite.end(); |
| i != e;) { |
| CompositeMap::iterator j = i; |
| ++i; |
| if (j->first.second == j->second) |
| Composite.erase(j); |
| } |
| } |
| |
| // Compute sets of overlapping registers. |
| // |
| // The standard set is all super-registers and all sub-registers, but the |
| // target description can add arbitrary overlapping registers via the 'Aliases' |
| // field. This complicates things, but we can compute overlapping sets using |
| // the following rules: |
| // |
| // 1. The relation overlap(A, B) is reflexive and symmetric but not transitive. |
| // |
| // 2. overlap(A, B) implies overlap(A, S) for all S in supers(B). |
| // |
| // Alternatively: |
| // |
| // overlap(A, B) iff there exists: |
| // A' in { A, subregs(A) } and B' in { B, subregs(B) } such that: |
| // A' = B' or A' in aliases(B') or B' in aliases(A'). |
| // |
| // Here subregs(A) is the full flattened sub-register set returned by |
| // A.getSubRegs() while aliases(A) is simply the special 'Aliases' field in the |
| // description of register A. |
| // |
| // This also implies that registers with a common sub-register are considered |
| // overlapping. This can happen when forming register pairs: |
| // |
| // P0 = (R0, R1) |
| // P1 = (R1, R2) |
| // P2 = (R2, R3) |
| // |
| // In this case, we will infer an overlap between P0 and P1 because of the |
| // shared sub-register R1. There is no overlap between P0 and P2. |
| // |
| void CodeGenRegBank:: |
| computeOverlaps(std::map<const CodeGenRegister*, CodeGenRegister::Set> &Map) { |
| assert(Map.empty()); |
| |
| // Collect overlaps that don't follow from rule 2. |
| for (unsigned i = 0, e = Registers.size(); i != e; ++i) { |
| CodeGenRegister *Reg = Registers[i]; |
| CodeGenRegister::Set &Overlaps = Map[Reg]; |
| |
| // Reg overlaps itself. |
| Overlaps.insert(Reg); |
| |
| // All super-registers overlap. |
| const CodeGenRegister::SuperRegList &Supers = Reg->getSuperRegs(); |
| Overlaps.insert(Supers.begin(), Supers.end()); |
| |
| // Form symmetrical relations from the special Aliases[] lists. |
| std::vector<Record*> RegList = Reg->TheDef->getValueAsListOfDefs("Aliases"); |
| for (unsigned i2 = 0, e2 = RegList.size(); i2 != e2; ++i2) { |
| CodeGenRegister *Reg2 = getReg(RegList[i2]); |
| CodeGenRegister::Set &Overlaps2 = Map[Reg2]; |
| const CodeGenRegister::SuperRegList &Supers2 = Reg2->getSuperRegs(); |
| // Reg overlaps Reg2 which implies it overlaps supers(Reg2). |
| Overlaps.insert(Reg2); |
| Overlaps.insert(Supers2.begin(), Supers2.end()); |
| Overlaps2.insert(Reg); |
| Overlaps2.insert(Supers.begin(), Supers.end()); |
| } |
| } |
| |
| // Apply rule 2. and inherit all sub-register overlaps. |
| for (unsigned i = 0, e = Registers.size(); i != e; ++i) { |
| CodeGenRegister *Reg = Registers[i]; |
| CodeGenRegister::Set &Overlaps = Map[Reg]; |
| const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); |
| for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM.begin(), |
| e2 = SRM.end(); i2 != e2; ++i2) { |
| CodeGenRegister::Set &Overlaps2 = Map[i2->second]; |
| Overlaps.insert(Overlaps2.begin(), Overlaps2.end()); |
| } |
| } |
| } |
| |
| void CodeGenRegBank::computeDerivedInfo() { |
| computeComposites(); |
| } |
| |
| // Infer missing register classes. |
| // |
| // For every register class RC, make sure that the set of registers in RC with |
| // a given SubIxx sub-register form a register class. |
| void CodeGenRegBank::computeInferredRegisterClasses() { |
| // When this function is called, the register classes have not been sorted |
| // and assigned EnumValues yet. That means getSubClasses(), |
| // getSuperClasses(), and hasSubClass() functions are defunct. |
| |
| // Map SubRegIndex to register set. |
| typedef std::map<Record*, CodeGenRegister::Set, LessRecord> SubReg2SetMap; |
| |
| // Visit all register classes, including the ones being added by the loop. |
| for (unsigned rci = 0; rci != RegClasses.size(); ++rci) { |
| CodeGenRegisterClass &RC = *RegClasses[rci]; |
| |
| // Compute the set of registers supporting each SubRegIndex. |
| SubReg2SetMap SRSets; |
| for (CodeGenRegister::Set::const_iterator RI = RC.getMembers().begin(), |
| RE = RC.getMembers().end(); RI != RE; ++RI) { |
| const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs(); |
| for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), |
| E = SRM.end(); I != E; ++I) |
| SRSets[I->first].insert(*RI); |
| } |
| |
| // Find matching classes for all SRSets entries. Iterate in SubRegIndex |
| // numerical order to visit synthetic indices last. |
| for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) { |
| Record *SubIdx = SubRegIndices[sri]; |
| SubReg2SetMap::const_iterator I = SRSets.find(SubIdx); |
| // Unsupported SubRegIndex. Skip it. |
| if (I == SRSets.end()) |
| continue; |
| // In most cases, all RC registers support the SubRegIndex. |
| if (I->second.size() == RC.getMembers().size()) { |
| RC.setSubClassWithSubReg(SubIdx, &RC); |
| continue; |
| } |
| |
| // This is a real subset. See if we have a matching class. |
| CodeGenRegisterClass::Key K(&I->second, RC.SpillSize, RC.SpillAlignment); |
| RCKeyMap::const_iterator FoundI = Key2RC.find(K); |
| if (FoundI != Key2RC.end()) { |
| RC.setSubClassWithSubReg(SubIdx, FoundI->second); |
| continue; |
| } |
| |
| // Class doesn't exist. |
| CodeGenRegisterClass *NewRC = |
| new CodeGenRegisterClass(RC.getName() + "_with_" + |
| I->first->getName(), K); |
| addToMaps(NewRC); |
| RC.setSubClassWithSubReg(SubIdx, NewRC); |
| } |
| } |
| } |
| |
| /// getRegisterClassForRegister - Find the register class that contains the |
| /// specified physical register. If the register is not in a register class, |
| /// return null. If the register is in multiple classes, and the classes have a |
| /// superset-subset relationship and the same set of types, return the |
| /// superclass. Otherwise return null. |
| const CodeGenRegisterClass* |
| CodeGenRegBank::getRegClassForRegister(Record *R) { |
| const CodeGenRegister *Reg = getReg(R); |
| ArrayRef<CodeGenRegisterClass*> RCs = getRegClasses(); |
| const CodeGenRegisterClass *FoundRC = 0; |
| for (unsigned i = 0, e = RCs.size(); i != e; ++i) { |
| const CodeGenRegisterClass &RC = *RCs[i]; |
| if (!RC.contains(Reg)) |
| continue; |
| |
| // If this is the first class that contains the register, |
| // make a note of it and go on to the next class. |
| if (!FoundRC) { |
| FoundRC = &RC; |
| continue; |
| } |
| |
| // If a register's classes have different types, return null. |
| if (RC.getValueTypes() != FoundRC->getValueTypes()) |
| return 0; |
| |
| // Check to see if the previously found class that contains |
| // the register is a subclass of the current class. If so, |
| // prefer the superclass. |
| if (RC.hasSubClass(FoundRC)) { |
| FoundRC = &RC; |
| continue; |
| } |
| |
| // Check to see if the previously found class that contains |
| // the register is a superclass of the current class. If so, |
| // prefer the superclass. |
| if (FoundRC->hasSubClass(&RC)) |
| continue; |
| |
| // Multiple classes, and neither is a superclass of the other. |
| // Return null. |
| return 0; |
| } |
| return FoundRC; |
| } |