| //===- X86CallingConv.td - Calling Conventions X86 32/64 ---*- tablegen -*-===// | |
| // | |
| // The LLVM Compiler Infrastructure | |
| // | |
| // This file is distributed under the University of Illinois Open Source | |
| // License. See LICENSE.TXT for details. | |
| // | |
| //===----------------------------------------------------------------------===// | |
| // | |
| // This describes the calling conventions for the X86-32 and X86-64 | |
| // architectures. | |
| // | |
| //===----------------------------------------------------------------------===// | |
| /// CCIfSubtarget - Match if the current subtarget has a feature F. | |
| class CCIfSubtarget<string F, CCAction A> | |
| : CCIf<!strconcat("State.getTarget().getSubtarget<X86Subtarget>().", F), A>; | |
| //===----------------------------------------------------------------------===// | |
| // Return Value Calling Conventions | |
| //===----------------------------------------------------------------------===// | |
| // Return-value conventions common to all X86 CC's. | |
| def RetCC_X86Common : CallingConv<[ | |
| // Scalar values are returned in AX first, then DX. For i8, the ABI | |
| // requires the values to be in AL and AH, however this code uses AL and DL | |
| // instead. This is because using AH for the second register conflicts with | |
| // the way LLVM does multiple return values -- a return of {i16,i8} would end | |
| // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI | |
| // for functions that return two i8 values are currently expected to pack the | |
| // values into an i16 (which uses AX, and thus AL:AH). | |
| CCIfType<[i8] , CCAssignToReg<[AL, DL]>>, | |
| CCIfType<[i16], CCAssignToReg<[AX, DX]>>, | |
| CCIfType<[i32], CCAssignToReg<[EAX, EDX]>>, | |
| CCIfType<[i64], CCAssignToReg<[RAX, RDX]>>, | |
| // Vector types are returned in XMM0 and XMM1, when they fit. XMM2 and XMM3 | |
| // can only be used by ABI non-compliant code. If the target doesn't have XMM | |
| // registers, it won't have vector types. | |
| CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], | |
| CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>, | |
| // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3 | |
| // can only be used by ABI non-compliant code. This vector type is only | |
| // supported while using the AVX target feature. | |
| CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], | |
| CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>, | |
| // MMX vector types are always returned in MM0. If the target doesn't have | |
| // MM0, it doesn't support these vector types. | |
| CCIfType<[x86mmx], CCAssignToReg<[MM0]>>, | |
| // Long double types are always returned in ST0 (even with SSE). | |
| CCIfType<[f80], CCAssignToReg<[ST0, ST1]>> | |
| ]>; | |
| // X86-32 C return-value convention. | |
| def RetCC_X86_32_C : CallingConv<[ | |
| // The X86-32 calling convention returns FP values in ST0, unless marked | |
| // with "inreg" (used here to distinguish one kind of reg from another, | |
| // weirdly; this is really the sse-regparm calling convention) in which | |
| // case they use XMM0, otherwise it is the same as the common X86 calling | |
| // conv. | |
| CCIfInReg<CCIfSubtarget<"hasXMMInt()", | |
| CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>, | |
| CCIfType<[f32,f64], CCAssignToReg<[ST0, ST1]>>, | |
| CCDelegateTo<RetCC_X86Common> | |
| ]>; | |
| // X86-32 FastCC return-value convention. | |
| def RetCC_X86_32_Fast : CallingConv<[ | |
| // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has | |
| // SSE2. | |
| // This can happen when a float, 2 x float, or 3 x float vector is split by | |
| // target lowering, and is returned in 1-3 sse regs. | |
| CCIfType<[f32], CCIfSubtarget<"hasXMMInt()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>, | |
| CCIfType<[f64], CCIfSubtarget<"hasXMMInt()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>, | |
| // For integers, ECX can be used as an extra return register | |
| CCIfType<[i8], CCAssignToReg<[AL, DL, CL]>>, | |
| CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>, | |
| CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>, | |
| // Otherwise, it is the same as the common X86 calling convention. | |
| CCDelegateTo<RetCC_X86Common> | |
| ]>; | |
| // X86-64 C return-value convention. | |
| def RetCC_X86_64_C : CallingConv<[ | |
| // The X86-64 calling convention always returns FP values in XMM0. | |
| CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>, | |
| CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>, | |
| // MMX vector types are always returned in XMM0. | |
| CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>, | |
| CCDelegateTo<RetCC_X86Common> | |
| ]>; | |
| // X86-Win64 C return-value convention. | |
| def RetCC_X86_Win64_C : CallingConv<[ | |
| // The X86-Win64 calling convention always returns __m64 values in RAX. | |
| CCIfType<[x86mmx], CCBitConvertToType<i64>>, | |
| // Otherwise, everything is the same as 'normal' X86-64 C CC. | |
| CCDelegateTo<RetCC_X86_64_C> | |
| ]>; | |
| // This is the root return-value convention for the X86-32 backend. | |
| def RetCC_X86_32 : CallingConv<[ | |
| // If FastCC, use RetCC_X86_32_Fast. | |
| CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>, | |
| // Otherwise, use RetCC_X86_32_C. | |
| CCDelegateTo<RetCC_X86_32_C> | |
| ]>; | |
| // This is the root return-value convention for the X86-64 backend. | |
| def RetCC_X86_64 : CallingConv<[ | |
| // Mingw64 and native Win64 use Win64 CC | |
| CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>, | |
| // Otherwise, drop to normal X86-64 CC | |
| CCDelegateTo<RetCC_X86_64_C> | |
| ]>; | |
| // This is the return-value convention used for the entire X86 backend. | |
| def RetCC_X86 : CallingConv<[ | |
| CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>, | |
| CCDelegateTo<RetCC_X86_32> | |
| ]>; | |
| //===----------------------------------------------------------------------===// | |
| // X86-64 Argument Calling Conventions | |
| //===----------------------------------------------------------------------===// | |
| def CC_X86_64_C : CallingConv<[ | |
| // Handles byval parameters. | |
| CCIfByVal<CCPassByVal<8, 8>>, | |
| // Promote i8/i16 arguments to i32. | |
| CCIfType<[i8, i16], CCPromoteToType<i32>>, | |
| // The 'nest' parameter, if any, is passed in R10. | |
| CCIfNest<CCAssignToReg<[R10]>>, | |
| // The first 6 integer arguments are passed in integer registers. | |
| CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>, | |
| CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>, | |
| // The first 8 MMX vector arguments are passed in XMM registers on Darwin. | |
| CCIfType<[x86mmx], | |
| CCIfSubtarget<"isTargetDarwin()", | |
| CCIfSubtarget<"hasXMMInt()", | |
| CCPromoteToType<v2i64>>>>, | |
| // The first 8 FP/Vector arguments are passed in XMM registers. | |
| CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], | |
| CCIfSubtarget<"hasXMM()", | |
| CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>, | |
| // The first 8 256-bit vector arguments are passed in YMM registers. | |
| CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], | |
| CCIfSubtarget<"hasAVX()", | |
| CCAssignToReg<[YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7]>>>, | |
| // Integer/FP values get stored in stack slots that are 8 bytes in size and | |
| // 8-byte aligned if there are no more registers to hold them. | |
| CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>, | |
| // Long doubles get stack slots whose size and alignment depends on the | |
| // subtarget. | |
| CCIfType<[f80], CCAssignToStack<0, 0>>, | |
| // Vectors get 16-byte stack slots that are 16-byte aligned. | |
| CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>, | |
| // 256-bit vectors get 32-byte stack slots that are 32-byte aligned. | |
| CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], | |
| CCAssignToStack<32, 32>> | |
| ]>; | |
| // Calling convention used on Win64 | |
| def CC_X86_Win64_C : CallingConv<[ | |
| // FIXME: Handle byval stuff. | |
| // FIXME: Handle varargs. | |
| // Promote i8/i16 arguments to i32. | |
| CCIfType<[i8, i16], CCPromoteToType<i32>>, | |
| // The 'nest' parameter, if any, is passed in R10. | |
| CCIfNest<CCAssignToReg<[R10]>>, | |
| // 128 bit vectors are passed by pointer | |
| CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>, | |
| // The first 4 MMX vector arguments are passed in GPRs. | |
| CCIfType<[x86mmx], CCBitConvertToType<i64>>, | |
| // The first 4 integer arguments are passed in integer registers. | |
| CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ], | |
| [XMM0, XMM1, XMM2, XMM3]>>, | |
| // Do not pass the sret argument in RCX, the Win64 thiscall calling | |
| // convention requires "this" to be passed in RCX. | |
| CCIfCC<"CallingConv::X86_ThisCall", | |
| CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8 , R9 ], | |
| [XMM1, XMM2, XMM3]>>>>, | |
| CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8 , R9 ], | |
| [XMM0, XMM1, XMM2, XMM3]>>, | |
| // The first 4 FP/Vector arguments are passed in XMM registers. | |
| CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], | |
| CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3], | |
| [RCX , RDX , R8 , R9 ]>>, | |
| // Integer/FP values get stored in stack slots that are 8 bytes in size and | |
| // 8-byte aligned if there are no more registers to hold them. | |
| CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>, | |
| // Long doubles get stack slots whose size and alignment depends on the | |
| // subtarget. | |
| CCIfType<[f80], CCAssignToStack<0, 0>> | |
| ]>; | |
| def CC_X86_64_GHC : CallingConv<[ | |
| // Promote i8/i16/i32 arguments to i64. | |
| CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, | |
| // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim | |
| CCIfType<[i64], | |
| CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>, | |
| // Pass in STG registers: F1, F2, F3, F4, D1, D2 | |
| CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], | |
| CCIfSubtarget<"hasXMM()", | |
| CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>> | |
| ]>; | |
| //===----------------------------------------------------------------------===// | |
| // X86 C Calling Convention | |
| //===----------------------------------------------------------------------===// | |
| /// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP | |
| /// values are spilled on the stack, and the first 4 vector values go in XMM | |
| /// regs. | |
| def CC_X86_32_Common : CallingConv<[ | |
| // Handles byval parameters. | |
| CCIfByVal<CCPassByVal<4, 4>>, | |
| // The first 3 float or double arguments, if marked 'inreg' and if the call | |
| // is not a vararg call and if SSE2 is available, are passed in SSE registers. | |
| CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64], | |
| CCIfSubtarget<"hasXMMInt()", | |
| CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>, | |
| // The first 3 __m64 vector arguments are passed in mmx registers if the | |
| // call is not a vararg call. | |
| CCIfNotVarArg<CCIfType<[x86mmx], | |
| CCAssignToReg<[MM0, MM1, MM2]>>>, | |
| // Integer/Float values get stored in stack slots that are 4 bytes in | |
| // size and 4-byte aligned. | |
| CCIfType<[i32, f32], CCAssignToStack<4, 4>>, | |
| // Doubles get 8-byte slots that are 4-byte aligned. | |
| CCIfType<[f64], CCAssignToStack<8, 4>>, | |
| // Long doubles get slots whose size depends on the subtarget. | |
| CCIfType<[f80], CCAssignToStack<0, 4>>, | |
| // The first 4 SSE vector arguments are passed in XMM registers. | |
| CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], | |
| CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>, | |
| // The first 4 AVX 256-bit vector arguments are passed in YMM registers. | |
| CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], | |
| CCIfSubtarget<"hasAVX()", | |
| CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>, | |
| // Other SSE vectors get 16-byte stack slots that are 16-byte aligned. | |
| CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>, | |
| // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned. | |
| CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], | |
| CCAssignToStack<32, 32>>, | |
| // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are | |
| // passed in the parameter area. | |
| CCIfType<[x86mmx], CCAssignToStack<8, 4>>]>; | |
| def CC_X86_32_C : CallingConv<[ | |
| // Promote i8/i16 arguments to i32. | |
| CCIfType<[i8, i16], CCPromoteToType<i32>>, | |
| // The 'nest' parameter, if any, is passed in ECX. | |
| CCIfNest<CCAssignToReg<[ECX]>>, | |
| // The first 3 integer arguments, if marked 'inreg' and if the call is not | |
| // a vararg call, are passed in integer registers. | |
| CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>, | |
| // Otherwise, same as everything else. | |
| CCDelegateTo<CC_X86_32_Common> | |
| ]>; | |
| def CC_X86_32_FastCall : CallingConv<[ | |
| // Promote i8/i16 arguments to i32. | |
| CCIfType<[i8, i16], CCPromoteToType<i32>>, | |
| // The 'nest' parameter, if any, is passed in EAX. | |
| CCIfNest<CCAssignToReg<[EAX]>>, | |
| // The first 2 integer arguments are passed in ECX/EDX | |
| CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>, | |
| // Otherwise, same as everything else. | |
| CCDelegateTo<CC_X86_32_Common> | |
| ]>; | |
| def CC_X86_32_ThisCall : CallingConv<[ | |
| // Promote i8/i16 arguments to i32. | |
| CCIfType<[i8, i16], CCPromoteToType<i32>>, | |
| // The 'nest' parameter, if any, is passed in EAX. | |
| CCIfNest<CCAssignToReg<[EAX]>>, | |
| // The first integer argument is passed in ECX | |
| CCIfType<[i32], CCAssignToReg<[ECX]>>, | |
| // Otherwise, same as everything else. | |
| CCDelegateTo<CC_X86_32_Common> | |
| ]>; | |
| def CC_X86_32_FastCC : CallingConv<[ | |
| // Handles byval parameters. Note that we can't rely on the delegation | |
| // to CC_X86_32_Common for this because that happens after code that | |
| // puts arguments in registers. | |
| CCIfByVal<CCPassByVal<4, 4>>, | |
| // Promote i8/i16 arguments to i32. | |
| CCIfType<[i8, i16], CCPromoteToType<i32>>, | |
| // The 'nest' parameter, if any, is passed in EAX. | |
| CCIfNest<CCAssignToReg<[EAX]>>, | |
| // The first 2 integer arguments are passed in ECX/EDX | |
| CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>, | |
| // The first 3 float or double arguments, if the call is not a vararg | |
| // call and if SSE2 is available, are passed in SSE registers. | |
| CCIfNotVarArg<CCIfType<[f32,f64], | |
| CCIfSubtarget<"hasXMMInt()", | |
| CCAssignToReg<[XMM0,XMM1,XMM2]>>>>, | |
| // Doubles get 8-byte slots that are 8-byte aligned. | |
| CCIfType<[f64], CCAssignToStack<8, 8>>, | |
| // Otherwise, same as everything else. | |
| CCDelegateTo<CC_X86_32_Common> | |
| ]>; | |
| def CC_X86_32_GHC : CallingConv<[ | |
| // Promote i8/i16 arguments to i32. | |
| CCIfType<[i8, i16], CCPromoteToType<i32>>, | |
| // Pass in STG registers: Base, Sp, Hp, R1 | |
| CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>> | |
| ]>; | |
| //===----------------------------------------------------------------------===// | |
| // X86 Root Argument Calling Conventions | |
| //===----------------------------------------------------------------------===// | |
| // This is the root argument convention for the X86-32 backend. | |
| def CC_X86_32 : CallingConv<[ | |
| CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>, | |
| CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>, | |
| CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>, | |
| CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>, | |
| // Otherwise, drop to normal X86-32 CC | |
| CCDelegateTo<CC_X86_32_C> | |
| ]>; | |
| // This is the root argument convention for the X86-64 backend. | |
| def CC_X86_64 : CallingConv<[ | |
| CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>, | |
| // Mingw64 and native Win64 use Win64 CC | |
| CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>, | |
| // Otherwise, drop to normal X86-64 CC | |
| CCDelegateTo<CC_X86_64_C> | |
| ]>; | |
| // This is the argument convention used for the entire X86 backend. | |
| def CC_X86 : CallingConv<[ | |
| CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>, | |
| CCDelegateTo<CC_X86_32> | |
| ]>; |