| // Copyright 2016 The SwiftShader Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "Renderer.hpp" |
| |
| #include "Clipper.hpp" |
| #include "Polygon.hpp" |
| #include "Primitive.hpp" |
| #include "Vertex.hpp" |
| #include "Pipeline/Constants.hpp" |
| #include "Pipeline/SpirvShader.hpp" |
| #include "Reactor/Reactor.hpp" |
| #include "System/Debug.hpp" |
| #include "System/Half.hpp" |
| #include "System/Math.hpp" |
| #include "System/Memory.hpp" |
| #include "System/Timer.hpp" |
| #include "Vulkan/VkConfig.hpp" |
| #include "Vulkan/VkDescriptorSet.hpp" |
| #include "Vulkan/VkDevice.hpp" |
| #include "Vulkan/VkFence.hpp" |
| #include "Vulkan/VkImageView.hpp" |
| #include "Vulkan/VkPipelineLayout.hpp" |
| #include "Vulkan/VkQueryPool.hpp" |
| |
| #include "marl/containers.h" |
| #include "marl/defer.h" |
| #include "marl/trace.h" |
| |
| #undef max |
| |
| #ifndef NDEBUG |
| unsigned int minPrimitives = 1; |
| unsigned int maxPrimitives = 1 << 21; |
| #endif |
| |
| namespace sw { |
| |
| template<typename T> |
| inline bool setBatchIndices(unsigned int batch[128][3], VkPrimitiveTopology topology, VkProvokingVertexModeEXT provokingVertexMode, T indices, unsigned int start, unsigned int triangleCount) |
| { |
| bool provokeFirst = (provokingVertexMode == VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT); |
| |
| switch(topology) |
| { |
| case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: |
| { |
| auto index = start; |
| auto pointBatch = &(batch[0][0]); |
| for(unsigned int i = 0; i < triangleCount; i++) |
| { |
| *pointBatch++ = indices[index++]; |
| } |
| |
| // Repeat the last index to allow for SIMD width overrun. |
| index--; |
| for(unsigned int i = 0; i < 3; i++) |
| { |
| *pointBatch++ = indices[index]; |
| } |
| } |
| break; |
| case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: |
| { |
| auto index = 2 * start; |
| for(unsigned int i = 0; i < triangleCount; i++) |
| { |
| batch[i][0] = indices[index + (provokeFirst ? 0 : 1)]; |
| batch[i][1] = indices[index + (provokeFirst ? 1 : 0)]; |
| batch[i][2] = indices[index + 1]; |
| |
| index += 2; |
| } |
| } |
| break; |
| case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: |
| { |
| auto index = start; |
| for(unsigned int i = 0; i < triangleCount; i++) |
| { |
| batch[i][0] = indices[index + (provokeFirst ? 0 : 1)]; |
| batch[i][1] = indices[index + (provokeFirst ? 1 : 0)]; |
| batch[i][2] = indices[index + 1]; |
| |
| index += 1; |
| } |
| } |
| break; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: |
| { |
| auto index = 3 * start; |
| for(unsigned int i = 0; i < triangleCount; i++) |
| { |
| batch[i][0] = indices[index + (provokeFirst ? 0 : 2)]; |
| batch[i][1] = indices[index + (provokeFirst ? 1 : 0)]; |
| batch[i][2] = indices[index + (provokeFirst ? 2 : 1)]; |
| |
| index += 3; |
| } |
| } |
| break; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: |
| { |
| auto index = start; |
| for(unsigned int i = 0; i < triangleCount; i++) |
| { |
| batch[i][0] = indices[index + (provokeFirst ? 0 : 2)]; |
| batch[i][1] = indices[index + ((start + i) & 1) + (provokeFirst ? 1 : 0)]; |
| batch[i][2] = indices[index + (~(start + i) & 1) + (provokeFirst ? 1 : 0)]; |
| |
| index += 1; |
| } |
| } |
| break; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: |
| { |
| auto index = start + 1; |
| for(unsigned int i = 0; i < triangleCount; i++) |
| { |
| batch[i][provokeFirst ? 0 : 2] = indices[index + 0]; |
| batch[i][provokeFirst ? 1 : 0] = indices[index + 1]; |
| batch[i][provokeFirst ? 2 : 1] = indices[0]; |
| |
| index += 1; |
| } |
| } |
| break; |
| default: |
| ASSERT(false); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| DrawCall::DrawCall() |
| { |
| // TODO(b/140991626): Use allocateUninitialized() instead of allocateZeroOrPoison() to improve startup peformance. |
| data = (DrawData *)sw::allocateZeroOrPoison(sizeof(DrawData)); |
| } |
| |
| DrawCall::~DrawCall() |
| { |
| sw::freeMemory(data); |
| } |
| |
| Renderer::Renderer(vk::Device *device) |
| : device(device) |
| { |
| vertexProcessor.setRoutineCacheSize(1024); |
| pixelProcessor.setRoutineCacheSize(1024); |
| setupProcessor.setRoutineCacheSize(1024); |
| } |
| |
| Renderer::~Renderer() |
| { |
| drawTickets.take().wait(); |
| } |
| |
| // Renderer objects have to be mem aligned to the alignment provided in the class declaration |
| void *Renderer::operator new(size_t size) |
| { |
| ASSERT(size == sizeof(Renderer)); // This operator can't be called from a derived class |
| return vk::allocateHostMemory(sizeof(Renderer), alignof(Renderer), vk::NULL_ALLOCATION_CALLBACKS, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE); |
| } |
| |
| void Renderer::operator delete(void *mem) |
| { |
| vk::freeHostMemory(mem, vk::NULL_ALLOCATION_CALLBACKS); |
| } |
| |
| void Renderer::draw(const vk::GraphicsPipeline *pipeline, const vk::DynamicState &dynamicState, unsigned int count, int baseVertex, |
| CountedEvent *events, int instanceID, int layer, void *indexBuffer, const VkRect2D &renderArea, |
| const vk::Pipeline::PushConstantStorage &pushConstants, bool update) |
| { |
| if(count == 0) { return; } |
| |
| auto id = nextDrawID++; |
| MARL_SCOPED_EVENT("draw %d", id); |
| |
| marl::Pool<sw::DrawCall>::Loan draw; |
| { |
| MARL_SCOPED_EVENT("drawCallPool.borrow()"); |
| draw = drawCallPool.borrow(); |
| } |
| draw->id = id; |
| |
| const vk::GraphicsState &pipelineState = pipeline->getCombinedState(dynamicState); |
| |
| // A graphics pipeline must always be "complete" before it can be used for drawing. A |
| // complete graphics pipeline always includes the vertex input interface and |
| // pre-rasterization subsets, but only includes fragment and fragment output interface |
| // subsets if rasterizer discard is not enabled. |
| // |
| // Note that in the following, the setupPrimitives, setupRoutine and pixelRoutine functions |
| // are only called when rasterizer discard is not enabled. If rasterizer discard is |
| // enabled, these functions and state for the latter two states are not set. |
| const vk::VertexInputInterfaceState &vertexInputInterfaceState = pipelineState.getVertexInputInterfaceState(); |
| const vk::PreRasterizationState &preRasterizationState = pipelineState.getPreRasterizationState(); |
| const vk::FragmentState *fragmentState = nullptr; |
| const vk::FragmentOutputInterfaceState *fragmentOutputInterfaceState = nullptr; |
| |
| const bool hasRasterizerDiscard = preRasterizationState.hasRasterizerDiscard(); |
| if(!hasRasterizerDiscard) |
| { |
| fragmentState = &pipelineState.getFragmentState(); |
| fragmentOutputInterfaceState = &pipelineState.getFragmentOutputInterfaceState(); |
| |
| pixelProcessor.setBlendConstant(fragmentOutputInterfaceState->getBlendConstants()); |
| } |
| |
| const vk::Inputs &inputs = pipeline->getInputs(); |
| |
| if(update) |
| { |
| MARL_SCOPED_EVENT("update"); |
| |
| const sw::SpirvShader *fragmentShader = pipeline->getShader(VK_SHADER_STAGE_FRAGMENT_BIT).get(); |
| const sw::SpirvShader *vertexShader = pipeline->getShader(VK_SHADER_STAGE_VERTEX_BIT).get(); |
| |
| const vk::Attachments attachments = pipeline->getAttachments(); |
| |
| vertexState = vertexProcessor.update(pipelineState, vertexShader, inputs); |
| vertexRoutine = vertexProcessor.routine(vertexState, preRasterizationState.getPipelineLayout(), vertexShader, inputs.getDescriptorSets()); |
| |
| if(!hasRasterizerDiscard) |
| { |
| setupState = setupProcessor.update(pipelineState, fragmentShader, vertexShader, attachments); |
| setupRoutine = setupProcessor.routine(setupState); |
| |
| pixelState = pixelProcessor.update(pipelineState, fragmentShader, vertexShader, attachments, hasOcclusionQuery()); |
| pixelRoutine = pixelProcessor.routine(pixelState, fragmentState->getPipelineLayout(), fragmentShader, inputs.getDescriptorSets()); |
| } |
| } |
| |
| draw->preRasterizationContainsImageWrite = pipeline->preRasterizationContainsImageWrite(); |
| draw->fragmentContainsImageWrite = pipeline->fragmentContainsImageWrite(); |
| |
| // The sample count affects the batch size even if rasterization is disabled. |
| // TODO(b/147812380): Eliminate the dependency between multisampling and batch size. |
| int ms = hasRasterizerDiscard ? 1 : fragmentOutputInterfaceState->getSampleCount(); |
| ASSERT(ms > 0); |
| |
| unsigned int numPrimitivesPerBatch = MaxBatchSize / ms; |
| |
| DrawData *data = draw->data; |
| draw->occlusionQuery = occlusionQuery; |
| draw->batchDataPool = &batchDataPool; |
| draw->numPrimitives = count; |
| draw->numPrimitivesPerBatch = numPrimitivesPerBatch; |
| draw->numBatches = (count + draw->numPrimitivesPerBatch - 1) / draw->numPrimitivesPerBatch; |
| draw->topology = vertexInputInterfaceState.getTopology(); |
| draw->provokingVertexMode = preRasterizationState.getProvokingVertexMode(); |
| draw->indexType = pipeline->getIndexBuffer().getIndexType(); |
| draw->lineRasterizationMode = preRasterizationState.getLineRasterizationMode(); |
| draw->descriptorSetObjects = inputs.getDescriptorSetObjects(); |
| draw->preRasterizationPipelineLayout = preRasterizationState.getPipelineLayout(); |
| draw->depthClipEnable = preRasterizationState.getDepthClipEnable(); |
| draw->depthClipNegativeOneToOne = preRasterizationState.getDepthClipNegativeOneToOne(); |
| data->lineWidth = preRasterizationState.getLineWidth(); |
| data->rasterizerDiscard = hasRasterizerDiscard; |
| |
| data->descriptorSets = inputs.getDescriptorSets(); |
| data->descriptorDynamicOffsets = inputs.getDescriptorDynamicOffsets(); |
| |
| for(int i = 0; i < MAX_INTERFACE_COMPONENTS / 4; i++) |
| { |
| const sw::Stream &stream = inputs.getStream(i); |
| data->input[i] = stream.buffer; |
| data->robustnessSize[i] = stream.robustnessSize; |
| data->stride[i] = inputs.getVertexStride(i, vertexInputInterfaceState.hasDynamicVertexStride()); |
| } |
| |
| data->indices = indexBuffer; |
| data->layer = layer; |
| data->instanceID = instanceID; |
| data->baseVertex = baseVertex; |
| |
| draw->vertexRoutine = vertexRoutine; |
| |
| vk::DescriptorSet::PrepareForSampling(draw->descriptorSetObjects, draw->preRasterizationPipelineLayout, device); |
| |
| // Viewport |
| { |
| const VkViewport &viewport = preRasterizationState.getViewport(); |
| |
| float W = 0.5f * viewport.width; |
| float H = 0.5f * viewport.height; |
| float X0 = viewport.x + W; |
| float Y0 = viewport.y + H; |
| float N = viewport.minDepth; |
| float F = viewport.maxDepth; |
| float Z = F - N; |
| constexpr float subPixF = vk::SUBPIXEL_PRECISION_FACTOR; |
| |
| data->WxF = W * subPixF; |
| data->HxF = H * subPixF; |
| data->X0xF = X0 * subPixF - subPixF / 2; |
| data->Y0xF = Y0 * subPixF - subPixF / 2; |
| data->halfPixelX = 0.5f / W; |
| data->halfPixelY = 0.5f / H; |
| data->depthRange = Z; |
| data->depthNear = N; |
| data->constantDepthBias = preRasterizationState.getConstantDepthBias(); |
| data->slopeDepthBias = preRasterizationState.getSlopeDepthBias(); |
| data->depthBiasClamp = preRasterizationState.getDepthBiasClamp(); |
| |
| // Adjust viewport transform based on the negativeOneToOne state. |
| if(preRasterizationState.getDepthClipNegativeOneToOne()) |
| { |
| data->depthRange = Z * 0.5f; |
| data->depthNear = (F + N) * 0.5f; |
| } |
| } |
| |
| // Scissor |
| { |
| const VkRect2D &scissor = preRasterizationState.getScissor(); |
| |
| int x0 = renderArea.offset.x; |
| int y0 = renderArea.offset.y; |
| int x1 = x0 + renderArea.extent.width; |
| int y1 = y0 + renderArea.extent.height; |
| data->scissorX0 = clamp<int>(scissor.offset.x, x0, x1); |
| data->scissorX1 = clamp<int>(scissor.offset.x + scissor.extent.width, x0, x1); |
| data->scissorY0 = clamp<int>(scissor.offset.y, y0, y1); |
| data->scissorY1 = clamp<int>(scissor.offset.y + scissor.extent.height, y0, y1); |
| } |
| |
| if(!hasRasterizerDiscard) |
| { |
| const VkPolygonMode polygonMode = preRasterizationState.getPolygonMode(); |
| |
| DrawCall::SetupFunction setupPrimitives = nullptr; |
| if(vertexInputInterfaceState.isDrawTriangle(false, polygonMode)) |
| { |
| switch(preRasterizationState.getPolygonMode()) |
| { |
| case VK_POLYGON_MODE_FILL: |
| setupPrimitives = &DrawCall::setupSolidTriangles; |
| break; |
| case VK_POLYGON_MODE_LINE: |
| setupPrimitives = &DrawCall::setupWireframeTriangles; |
| numPrimitivesPerBatch /= 3; |
| break; |
| case VK_POLYGON_MODE_POINT: |
| setupPrimitives = &DrawCall::setupPointTriangles; |
| numPrimitivesPerBatch /= 3; |
| break; |
| default: |
| UNSUPPORTED("polygon mode: %d", int(preRasterizationState.getPolygonMode())); |
| return; |
| } |
| } |
| else if(vertexInputInterfaceState.isDrawLine(false, polygonMode)) |
| { |
| setupPrimitives = &DrawCall::setupLines; |
| } |
| else // Point primitive topology |
| { |
| setupPrimitives = &DrawCall::setupPoints; |
| } |
| |
| draw->setupState = setupState; |
| draw->setupRoutine = setupRoutine; |
| draw->pixelRoutine = pixelRoutine; |
| draw->setupPrimitives = setupPrimitives; |
| draw->fragmentPipelineLayout = fragmentState->getPipelineLayout(); |
| |
| if(pixelState.stencilActive) |
| { |
| data->stencil[0].set(fragmentState->getFrontStencil().reference, fragmentState->getFrontStencil().compareMask, fragmentState->getFrontStencil().writeMask); |
| data->stencil[1].set(fragmentState->getBackStencil().reference, fragmentState->getBackStencil().compareMask, fragmentState->getBackStencil().writeMask); |
| } |
| |
| data->factor = pixelProcessor.factor; |
| |
| if(pixelState.alphaToCoverage) |
| { |
| if(ms == 4) |
| { |
| data->a2c0 = 0.2f; |
| data->a2c1 = 0.4f; |
| data->a2c2 = 0.6f; |
| data->a2c3 = 0.8f; |
| } |
| else if(ms == 2) |
| { |
| data->a2c0 = 0.25f; |
| data->a2c1 = 0.75f; |
| } |
| else if(ms == 1) |
| { |
| data->a2c0 = 0.5f; |
| } |
| else |
| ASSERT(false); |
| } |
| |
| if(pixelState.occlusionEnabled) |
| { |
| for(int cluster = 0; cluster < MaxClusterCount; cluster++) |
| { |
| data->occlusion[cluster] = 0; |
| } |
| } |
| |
| // Viewport |
| { |
| const vk::Attachments attachments = pipeline->getAttachments(); |
| if(attachments.depthBuffer) |
| { |
| switch(attachments.depthBuffer->getFormat(VK_IMAGE_ASPECT_DEPTH_BIT)) |
| { |
| case VK_FORMAT_D16_UNORM: |
| // Minimum is 1 unit, but account for potential floating-point rounding errors |
| data->minimumResolvableDepthDifference = 1.01f / 0xFFFF; |
| break; |
| case VK_FORMAT_D32_SFLOAT: |
| // The minimum resolvable depth difference is determined per-polygon for floating-point depth |
| // buffers. DrawData::minimumResolvableDepthDifference is unused. |
| break; |
| default: |
| UNSUPPORTED("Depth format: %d", int(attachments.depthBuffer->getFormat(VK_IMAGE_ASPECT_DEPTH_BIT))); |
| } |
| } |
| } |
| |
| // Target |
| { |
| const vk::Attachments attachments = pipeline->getAttachments(); |
| |
| for(int index = 0; index < MAX_COLOR_BUFFERS; index++) |
| { |
| draw->colorBuffer[index] = attachments.colorBuffer[index]; |
| |
| if(draw->colorBuffer[index]) |
| { |
| data->colorBuffer[index] = (unsigned int *)attachments.colorBuffer[index]->getOffsetPointer({ 0, 0, 0 }, VK_IMAGE_ASPECT_COLOR_BIT, 0, data->layer); |
| data->colorPitchB[index] = attachments.colorBuffer[index]->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0); |
| data->colorSliceB[index] = attachments.colorBuffer[index]->slicePitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0); |
| } |
| } |
| |
| draw->depthBuffer = attachments.depthBuffer; |
| draw->stencilBuffer = attachments.stencilBuffer; |
| |
| if(draw->depthBuffer) |
| { |
| data->depthBuffer = (float *)attachments.depthBuffer->getOffsetPointer({ 0, 0, 0 }, VK_IMAGE_ASPECT_DEPTH_BIT, 0, data->layer); |
| data->depthPitchB = attachments.depthBuffer->rowPitchBytes(VK_IMAGE_ASPECT_DEPTH_BIT, 0); |
| data->depthSliceB = attachments.depthBuffer->slicePitchBytes(VK_IMAGE_ASPECT_DEPTH_BIT, 0); |
| } |
| |
| if(draw->stencilBuffer) |
| { |
| data->stencilBuffer = (unsigned char *)attachments.stencilBuffer->getOffsetPointer({ 0, 0, 0 }, VK_IMAGE_ASPECT_STENCIL_BIT, 0, data->layer); |
| data->stencilPitchB = attachments.stencilBuffer->rowPitchBytes(VK_IMAGE_ASPECT_STENCIL_BIT, 0); |
| data->stencilSliceB = attachments.stencilBuffer->slicePitchBytes(VK_IMAGE_ASPECT_STENCIL_BIT, 0); |
| } |
| } |
| |
| if(draw->fragmentPipelineLayout != draw->preRasterizationPipelineLayout) |
| { |
| vk::DescriptorSet::PrepareForSampling(draw->descriptorSetObjects, draw->fragmentPipelineLayout, device); |
| } |
| } |
| |
| // Push constants |
| { |
| data->pushConstants = pushConstants; |
| } |
| |
| draw->events = events; |
| |
| DrawCall::run(device, draw, &drawTickets, clusterQueues); |
| } |
| |
| void DrawCall::setup() |
| { |
| if(occlusionQuery != nullptr) |
| { |
| occlusionQuery->start(); |
| } |
| |
| if(events) |
| { |
| events->add(); |
| } |
| } |
| |
| void DrawCall::teardown(vk::Device *device) |
| { |
| if(events) |
| { |
| events->done(); |
| events = nullptr; |
| } |
| |
| vertexRoutine = {}; |
| setupRoutine = {}; |
| pixelRoutine = {}; |
| |
| if(preRasterizationContainsImageWrite) |
| { |
| vk::DescriptorSet::ContentsChanged(descriptorSetObjects, preRasterizationPipelineLayout, device); |
| } |
| |
| if(!data->rasterizerDiscard) |
| { |
| if(occlusionQuery != nullptr) |
| { |
| for(int cluster = 0; cluster < MaxClusterCount; cluster++) |
| { |
| occlusionQuery->add(data->occlusion[cluster]); |
| } |
| occlusionQuery->finish(); |
| } |
| |
| for(auto *target : colorBuffer) |
| { |
| if(target) |
| { |
| target->contentsChanged(vk::Image::DIRECT_MEMORY_ACCESS); |
| } |
| } |
| |
| // If pre-rasterization and fragment use the same pipeline, and pre-rasterization |
| // also contains image writes, don't double-notify the descriptor set. |
| const bool descSetAlreadyNotified = preRasterizationContainsImageWrite && fragmentPipelineLayout == preRasterizationPipelineLayout; |
| if(fragmentContainsImageWrite && !descSetAlreadyNotified) |
| { |
| vk::DescriptorSet::ContentsChanged(descriptorSetObjects, fragmentPipelineLayout, device); |
| } |
| } |
| } |
| |
| void DrawCall::run(vk::Device *device, const marl::Loan<DrawCall> &draw, marl::Ticket::Queue *tickets, marl::Ticket::Queue clusterQueues[MaxClusterCount]) |
| { |
| draw->setup(); |
| |
| const auto numPrimitives = draw->numPrimitives; |
| const auto numPrimitivesPerBatch = draw->numPrimitivesPerBatch; |
| const auto numBatches = draw->numBatches; |
| |
| auto ticket = tickets->take(); |
| auto finally = marl::make_shared_finally([device, draw, ticket] { |
| MARL_SCOPED_EVENT("FINISH draw %d", draw->id); |
| draw->teardown(device); |
| ticket.done(); |
| }); |
| |
| for(unsigned int batchId = 0; batchId < numBatches; batchId++) |
| { |
| auto batch = draw->batchDataPool->borrow(); |
| batch->id = batchId; |
| batch->firstPrimitive = batch->id * numPrimitivesPerBatch; |
| batch->numPrimitives = std::min(batch->firstPrimitive + numPrimitivesPerBatch, numPrimitives) - batch->firstPrimitive; |
| |
| for(int cluster = 0; cluster < MaxClusterCount; cluster++) |
| { |
| batch->clusterTickets[cluster] = std::move(clusterQueues[cluster].take()); |
| } |
| |
| marl::schedule([device, draw, batch, finally] { |
| processVertices(device, draw.get(), batch.get()); |
| |
| if(!draw->data->rasterizerDiscard) |
| { |
| processPrimitives(device, draw.get(), batch.get()); |
| |
| if(batch->numVisible > 0) |
| { |
| processPixels(device, draw, batch, finally); |
| return; |
| } |
| } |
| |
| for(int cluster = 0; cluster < MaxClusterCount; cluster++) |
| { |
| batch->clusterTickets[cluster].done(); |
| } |
| }); |
| } |
| } |
| |
| void DrawCall::processVertices(vk::Device *device, DrawCall *draw, BatchData *batch) |
| { |
| MARL_SCOPED_EVENT("VERTEX draw %d, batch %d", draw->id, batch->id); |
| |
| unsigned int triangleIndices[MaxBatchSize + 1][3]; // One extra for SIMD width overrun. TODO: Adjust to dynamic batch size. |
| { |
| MARL_SCOPED_EVENT("processPrimitiveVertices"); |
| processPrimitiveVertices( |
| triangleIndices, |
| draw->data->indices, |
| draw->indexType, |
| batch->firstPrimitive, |
| batch->numPrimitives, |
| draw->topology, |
| draw->provokingVertexMode); |
| } |
| |
| auto &vertexTask = batch->vertexTask; |
| vertexTask.primitiveStart = batch->firstPrimitive; |
| // We're only using batch compaction for points, not lines |
| vertexTask.vertexCount = batch->numPrimitives * ((draw->topology == VK_PRIMITIVE_TOPOLOGY_POINT_LIST) ? 1 : 3); |
| if(vertexTask.vertexCache.drawCall != draw->id) |
| { |
| vertexTask.vertexCache.clear(); |
| vertexTask.vertexCache.drawCall = draw->id; |
| } |
| |
| draw->vertexRoutine(device, &batch->triangles.front().v0, &triangleIndices[0][0], &vertexTask, draw->data); |
| } |
| |
| void DrawCall::processPrimitives(vk::Device *device, DrawCall *draw, BatchData *batch) |
| { |
| MARL_SCOPED_EVENT("PRIMITIVES draw %d batch %d", draw->id, batch->id); |
| auto triangles = &batch->triangles[0]; |
| auto primitives = &batch->primitives[0]; |
| batch->numVisible = draw->setupPrimitives(device, triangles, primitives, draw, batch->numPrimitives); |
| } |
| |
| void DrawCall::processPixels(vk::Device *device, const marl::Loan<DrawCall> &draw, const marl::Loan<BatchData> &batch, const std::shared_ptr<marl::Finally> &finally) |
| { |
| struct Data |
| { |
| Data(const marl::Loan<DrawCall> &draw, const marl::Loan<BatchData> &batch, const std::shared_ptr<marl::Finally> &finally) |
| : draw(draw) |
| , batch(batch) |
| , finally(finally) |
| {} |
| marl::Loan<DrawCall> draw; |
| marl::Loan<BatchData> batch; |
| std::shared_ptr<marl::Finally> finally; |
| }; |
| auto data = std::make_shared<Data>(draw, batch, finally); |
| for(int cluster = 0; cluster < MaxClusterCount; cluster++) |
| { |
| batch->clusterTickets[cluster].onCall([device, data, cluster] { |
| auto &draw = data->draw; |
| auto &batch = data->batch; |
| MARL_SCOPED_EVENT("PIXEL draw %d, batch %d, cluster %d", draw->id, batch->id, cluster); |
| draw->pixelRoutine(device, &batch->primitives.front(), batch->numVisible, cluster, MaxClusterCount, draw->data); |
| batch->clusterTickets[cluster].done(); |
| }); |
| } |
| } |
| |
| void Renderer::synchronize() |
| { |
| MARL_SCOPED_EVENT("synchronize"); |
| auto ticket = drawTickets.take(); |
| ticket.wait(); |
| device->updateSamplingRoutineSnapshotCache(); |
| ticket.done(); |
| } |
| |
| void DrawCall::processPrimitiveVertices( |
| unsigned int triangleIndicesOut[MaxBatchSize + 1][3], |
| const void *primitiveIndices, |
| VkIndexType indexType, |
| unsigned int start, |
| unsigned int triangleCount, |
| VkPrimitiveTopology topology, |
| VkProvokingVertexModeEXT provokingVertexMode) |
| { |
| if(!primitiveIndices) |
| { |
| struct LinearIndex |
| { |
| unsigned int operator[](unsigned int i) { return i; } |
| }; |
| |
| if(!setBatchIndices(triangleIndicesOut, topology, provokingVertexMode, LinearIndex(), start, triangleCount)) |
| { |
| return; |
| } |
| } |
| else |
| { |
| switch(indexType) |
| { |
| case VK_INDEX_TYPE_UINT16: |
| if(!setBatchIndices(triangleIndicesOut, topology, provokingVertexMode, static_cast<const uint16_t *>(primitiveIndices), start, triangleCount)) |
| { |
| return; |
| } |
| break; |
| case VK_INDEX_TYPE_UINT32: |
| if(!setBatchIndices(triangleIndicesOut, topology, provokingVertexMode, static_cast<const uint32_t *>(primitiveIndices), start, triangleCount)) |
| { |
| return; |
| } |
| break; |
| break; |
| default: |
| ASSERT(false); |
| return; |
| } |
| } |
| |
| // setBatchIndices() takes care of the point case, since it's different due to the compaction |
| if(topology != VK_PRIMITIVE_TOPOLOGY_POINT_LIST) |
| { |
| // Repeat the last index to allow for SIMD width overrun. |
| triangleIndicesOut[triangleCount][0] = triangleIndicesOut[triangleCount - 1][2]; |
| triangleIndicesOut[triangleCount][1] = triangleIndicesOut[triangleCount - 1][2]; |
| triangleIndicesOut[triangleCount][2] = triangleIndicesOut[triangleCount - 1][2]; |
| } |
| } |
| |
| int DrawCall::setupSolidTriangles(vk::Device *device, Triangle *triangles, Primitive *primitives, const DrawCall *drawCall, int count) |
| { |
| auto &state = drawCall->setupState; |
| |
| int ms = state.multiSampleCount; |
| const DrawData *data = drawCall->data; |
| int visible = 0; |
| |
| for(int i = 0; i < count; i++, triangles++) |
| { |
| Vertex &v0 = triangles->v0; |
| Vertex &v1 = triangles->v1; |
| Vertex &v2 = triangles->v2; |
| |
| Polygon polygon(&v0.position, &v1.position, &v2.position); |
| |
| if((v0.cullMask | v1.cullMask | v2.cullMask) == 0) |
| { |
| continue; |
| } |
| |
| if((v0.clipFlags & v1.clipFlags & v2.clipFlags) != Clipper::CLIP_FINITE) |
| { |
| continue; |
| } |
| |
| int clipFlagsOr = v0.clipFlags | v1.clipFlags | v2.clipFlags; |
| if(clipFlagsOr != Clipper::CLIP_FINITE) |
| { |
| if(!Clipper::Clip(polygon, clipFlagsOr, *drawCall)) |
| { |
| continue; |
| } |
| } |
| |
| if(drawCall->setupRoutine(device, primitives, triangles, &polygon, data)) |
| { |
| primitives += ms; |
| visible++; |
| } |
| } |
| |
| return visible; |
| } |
| |
| int DrawCall::setupWireframeTriangles(vk::Device *device, Triangle *triangles, Primitive *primitives, const DrawCall *drawCall, int count) |
| { |
| auto &state = drawCall->setupState; |
| |
| int ms = state.multiSampleCount; |
| int visible = 0; |
| |
| for(int i = 0; i < count; i++) |
| { |
| const Vertex &v0 = triangles[i].v0; |
| const Vertex &v1 = triangles[i].v1; |
| const Vertex &v2 = triangles[i].v2; |
| |
| float A = ((float)v0.projected.y - (float)v2.projected.y) * (float)v1.projected.x + |
| ((float)v2.projected.y - (float)v1.projected.y) * (float)v0.projected.x + |
| ((float)v1.projected.y - (float)v0.projected.y) * (float)v2.projected.x; // Area |
| |
| int w0w1w2 = bit_cast<int>(v0.w) ^ |
| bit_cast<int>(v1.w) ^ |
| bit_cast<int>(v2.w); |
| |
| A = w0w1w2 < 0 ? -A : A; |
| |
| bool frontFacing = (state.frontFace == VK_FRONT_FACE_COUNTER_CLOCKWISE) ? (A >= 0.0f) : (A <= 0.0f); |
| |
| if(state.cullMode & VK_CULL_MODE_FRONT_BIT) |
| { |
| if(frontFacing) continue; |
| } |
| if(state.cullMode & VK_CULL_MODE_BACK_BIT) |
| { |
| if(!frontFacing) continue; |
| } |
| |
| Triangle lines[3]; |
| lines[0].v0 = v0; |
| lines[0].v1 = v1; |
| lines[1].v0 = v1; |
| lines[1].v1 = v2; |
| lines[2].v0 = v2; |
| lines[2].v1 = v0; |
| |
| for(int i = 0; i < 3; i++) |
| { |
| if(setupLine(device, *primitives, lines[i], *drawCall)) |
| { |
| primitives += ms; |
| visible++; |
| } |
| } |
| } |
| |
| return visible; |
| } |
| |
| int DrawCall::setupPointTriangles(vk::Device *device, Triangle *triangles, Primitive *primitives, const DrawCall *drawCall, int count) |
| { |
| auto &state = drawCall->setupState; |
| |
| int ms = state.multiSampleCount; |
| int visible = 0; |
| |
| for(int i = 0; i < count; i++) |
| { |
| const Vertex &v0 = triangles[i].v0; |
| const Vertex &v1 = triangles[i].v1; |
| const Vertex &v2 = triangles[i].v2; |
| |
| float d = (v0.y * v1.x - v0.x * v1.y) * v2.w + |
| (v0.x * v2.y - v0.y * v2.x) * v1.w + |
| (v2.x * v1.y - v1.x * v2.y) * v0.w; |
| |
| bool frontFacing = (state.frontFace == VK_FRONT_FACE_COUNTER_CLOCKWISE) ? (d > 0) : (d < 0); |
| if(state.cullMode & VK_CULL_MODE_FRONT_BIT) |
| { |
| if(frontFacing) continue; |
| } |
| if(state.cullMode & VK_CULL_MODE_BACK_BIT) |
| { |
| if(!frontFacing) continue; |
| } |
| |
| Triangle points[3]; |
| points[0].v0 = v0; |
| points[1].v0 = v1; |
| points[2].v0 = v2; |
| |
| for(int i = 0; i < 3; i++) |
| { |
| if(setupPoint(device, *primitives, points[i], *drawCall)) |
| { |
| primitives += ms; |
| visible++; |
| } |
| } |
| } |
| |
| return visible; |
| } |
| |
| int DrawCall::setupLines(vk::Device *device, Triangle *triangles, Primitive *primitives, const DrawCall *drawCall, int count) |
| { |
| auto &state = drawCall->setupState; |
| |
| int visible = 0; |
| int ms = state.multiSampleCount; |
| |
| for(int i = 0; i < count; i++) |
| { |
| if(setupLine(device, *primitives, *triangles, *drawCall)) |
| { |
| primitives += ms; |
| visible++; |
| } |
| |
| triangles++; |
| } |
| |
| return visible; |
| } |
| |
| int DrawCall::setupPoints(vk::Device *device, Triangle *triangles, Primitive *primitives, const DrawCall *drawCall, int count) |
| { |
| auto &state = drawCall->setupState; |
| |
| int visible = 0; |
| int ms = state.multiSampleCount; |
| |
| for(int i = 0; i < count; i++) |
| { |
| if(setupPoint(device, *primitives, *triangles, *drawCall)) |
| { |
| primitives += ms; |
| visible++; |
| } |
| |
| triangles++; |
| } |
| |
| return visible; |
| } |
| |
| bool DrawCall::setupLine(vk::Device *device, Primitive &primitive, Triangle &triangle, const DrawCall &draw) |
| { |
| const Vertex &v0 = triangle.v0; |
| const Vertex &v1 = triangle.v1; |
| |
| if((v0.cullMask | v1.cullMask) == 0) |
| { |
| return false; |
| } |
| |
| const float4 &P0 = v0.position; |
| const float4 &P1 = v1.position; |
| |
| if(P0.w <= 0 && P1.w <= 0) |
| { |
| return false; |
| } |
| |
| const DrawData &data = *draw.data; |
| const float lineWidth = data.lineWidth; |
| const int clipFlags = draw.depthClipEnable ? Clipper::CLIP_FRUSTUM : Clipper::CLIP_SIDES; |
| constexpr float subPixF = vk::SUBPIXEL_PRECISION_FACTOR; |
| |
| const float W = data.WxF * (1.0f / subPixF); |
| const float H = data.HxF * (1.0f / subPixF); |
| |
| float dx = W * (P1.x / P1.w - P0.x / P0.w); |
| float dy = H * (P1.y / P1.w - P0.y / P0.w); |
| |
| if(dx == 0 && dy == 0) |
| { |
| return false; |
| } |
| |
| if(draw.lineRasterizationMode != VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT) |
| { |
| // Rectangle centered on the line segment |
| |
| float4 P[4]; |
| |
| P[0] = P0; |
| P[1] = P1; |
| P[2] = P1; |
| P[3] = P0; |
| |
| float scale = lineWidth * 0.5f / sqrt(dx * dx + dy * dy); |
| |
| dx *= scale; |
| dy *= scale; |
| |
| float dx0h = dx * P0.w / H; |
| float dy0w = dy * P0.w / W; |
| |
| float dx1h = dx * P1.w / H; |
| float dy1w = dy * P1.w / W; |
| |
| P[0].x += -dy0w; |
| P[0].y += +dx0h; |
| |
| P[1].x += -dy1w; |
| P[1].y += +dx1h; |
| |
| P[2].x += +dy1w; |
| P[2].y += -dx1h; |
| |
| P[3].x += +dy0w; |
| P[3].y += -dx0h; |
| |
| Polygon polygon(P, 4); |
| |
| if(!Clipper::Clip(polygon, clipFlags, draw)) |
| { |
| return false; |
| } |
| |
| return draw.setupRoutine(device, &primitive, &triangle, &polygon, &data); |
| } |
| else if(false) // TODO(b/80135519): Deprecate |
| { |
| // Connecting diamonds polygon |
| // This shape satisfies the diamond test convention, except for the exit rule part. |
| // Line segments with overlapping endpoints have duplicate fragments. |
| // The ideal algorithm requires half-open line rasterization (b/80135519). |
| |
| float4 P[8]; |
| |
| P[0] = P0; |
| P[1] = P0; |
| P[2] = P0; |
| P[3] = P0; |
| P[4] = P1; |
| P[5] = P1; |
| P[6] = P1; |
| P[7] = P1; |
| |
| float dx0 = lineWidth * 0.5f * P0.w / W; |
| float dy0 = lineWidth * 0.5f * P0.w / H; |
| |
| float dx1 = lineWidth * 0.5f * P1.w / W; |
| float dy1 = lineWidth * 0.5f * P1.w / H; |
| |
| P[0].x += -dx0; |
| P[1].y += +dy0; |
| P[2].x += +dx0; |
| P[3].y += -dy0; |
| P[4].x += -dx1; |
| P[5].y += +dy1; |
| P[6].x += +dx1; |
| P[7].y += -dy1; |
| |
| float4 L[6]; |
| |
| if(dx > -dy) |
| { |
| if(dx > dy) // Right |
| { |
| L[0] = P[0]; |
| L[1] = P[1]; |
| L[2] = P[5]; |
| L[3] = P[6]; |
| L[4] = P[7]; |
| L[5] = P[3]; |
| } |
| else // Down |
| { |
| L[0] = P[0]; |
| L[1] = P[4]; |
| L[2] = P[5]; |
| L[3] = P[6]; |
| L[4] = P[2]; |
| L[5] = P[3]; |
| } |
| } |
| else |
| { |
| if(dx > dy) // Up |
| { |
| L[0] = P[0]; |
| L[1] = P[1]; |
| L[2] = P[2]; |
| L[3] = P[6]; |
| L[4] = P[7]; |
| L[5] = P[4]; |
| } |
| else // Left |
| { |
| L[0] = P[1]; |
| L[1] = P[2]; |
| L[2] = P[3]; |
| L[3] = P[7]; |
| L[4] = P[4]; |
| L[5] = P[5]; |
| } |
| } |
| |
| Polygon polygon(L, 6); |
| |
| if(!Clipper::Clip(polygon, clipFlags, draw)) |
| { |
| return false; |
| } |
| |
| return draw.setupRoutine(device, &primitive, &triangle, &polygon, &data); |
| } |
| else |
| { |
| // Parallelogram approximating Bresenham line |
| // This algorithm does not satisfy the ideal diamond-exit rule, but does avoid the |
| // duplicate fragment rasterization problem and satisfies all of Vulkan's minimum |
| // requirements for Bresenham line segment rasterization. |
| |
| float4 P[8]; |
| P[0] = P0; |
| P[1] = P0; |
| P[2] = P0; |
| P[3] = P0; |
| P[4] = P1; |
| P[5] = P1; |
| P[6] = P1; |
| P[7] = P1; |
| |
| float dx0 = lineWidth * 0.5f * P0.w / W; |
| float dy0 = lineWidth * 0.5f * P0.w / H; |
| |
| float dx1 = lineWidth * 0.5f * P1.w / W; |
| float dy1 = lineWidth * 0.5f * P1.w / H; |
| |
| P[0].x += -dx0; |
| P[1].y += +dy0; |
| P[2].x += +dx0; |
| P[3].y += -dy0; |
| P[4].x += -dx1; |
| P[5].y += +dy1; |
| P[6].x += +dx1; |
| P[7].y += -dy1; |
| |
| float4 L[4]; |
| |
| if(dx > -dy) |
| { |
| if(dx > dy) // Right |
| { |
| L[0] = P[1]; |
| L[1] = P[5]; |
| L[2] = P[7]; |
| L[3] = P[3]; |
| } |
| else // Down |
| { |
| L[0] = P[0]; |
| L[1] = P[4]; |
| L[2] = P[6]; |
| L[3] = P[2]; |
| } |
| } |
| else |
| { |
| if(dx > dy) // Up |
| { |
| L[0] = P[0]; |
| L[1] = P[2]; |
| L[2] = P[6]; |
| L[3] = P[4]; |
| } |
| else // Left |
| { |
| L[0] = P[1]; |
| L[1] = P[3]; |
| L[2] = P[7]; |
| L[3] = P[5]; |
| } |
| } |
| |
| Polygon polygon(L, 4); |
| |
| if(!Clipper::Clip(polygon, clipFlags, draw)) |
| { |
| return false; |
| } |
| |
| return draw.setupRoutine(device, &primitive, &triangle, &polygon, &data); |
| } |
| |
| return false; |
| } |
| |
| bool DrawCall::setupPoint(vk::Device *device, Primitive &primitive, Triangle &triangle, const DrawCall &draw) |
| { |
| const Vertex &v = triangle.v0; |
| |
| if(v.cullMask == 0) |
| { |
| return false; |
| } |
| |
| const DrawData &data = *draw.data; |
| const int clipFlags = draw.depthClipEnable ? Clipper::CLIP_FRUSTUM : Clipper::CLIP_SIDES; |
| |
| const float pSize = clamp(v.pointSize, 1.0f, static_cast<float>(vk::MAX_POINT_SIZE)); |
| const float X = pSize * v.position.w * data.halfPixelX; |
| const float Y = pSize * v.position.w * data.halfPixelY; |
| |
| float4 P[4]; |
| |
| P[0] = v.position; |
| P[0].x -= X; |
| P[0].y += Y; |
| |
| P[1] = v.position; |
| P[1].x += X; |
| P[1].y += Y; |
| |
| P[2] = v.position; |
| P[2].x += X; |
| P[2].y -= Y; |
| |
| P[3] = v.position; |
| P[3].x -= X; |
| P[3].y -= Y; |
| |
| Polygon polygon(P, 4); |
| |
| if(!Clipper::Clip(polygon, clipFlags, draw)) |
| { |
| return false; |
| } |
| |
| primitive.pointSizeInv = 1.0f / pSize; |
| |
| return draw.setupRoutine(device, &primitive, &triangle, &polygon, &data); |
| } |
| |
| void Renderer::addQuery(vk::Query *query) |
| { |
| ASSERT(query->getType() == VK_QUERY_TYPE_OCCLUSION); |
| ASSERT(!occlusionQuery); |
| |
| occlusionQuery = query; |
| } |
| |
| void Renderer::removeQuery(vk::Query *query) |
| { |
| ASSERT(query->getType() == VK_QUERY_TYPE_OCCLUSION); |
| ASSERT(occlusionQuery == query); |
| |
| occlusionQuery = nullptr; |
| } |
| |
| } // namespace sw |