| //===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file declares the Value class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_IR_VALUE_H |
| #define LLVM_IR_VALUE_H |
| |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/Support/CBindingWrapping.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm-c/Types.h" |
| #include <cassert> |
| #include <iterator> |
| |
| namespace llvm { |
| |
| class APInt; |
| class Argument; |
| class BasicBlock; |
| class Constant; |
| class ConstantData; |
| class ConstantAggregate; |
| class DataLayout; |
| class Function; |
| class GlobalAlias; |
| class GlobalIFunc; |
| class GlobalIndirectSymbol; |
| class GlobalObject; |
| class GlobalValue; |
| class GlobalVariable; |
| class InlineAsm; |
| class Instruction; |
| class LLVMContext; |
| class Module; |
| class ModuleSlotTracker; |
| class raw_ostream; |
| class StringRef; |
| class Twine; |
| class Type; |
| |
| template<typename ValueTy> class StringMapEntry; |
| typedef StringMapEntry<Value*> ValueName; |
| |
| //===----------------------------------------------------------------------===// |
| // Value Class |
| //===----------------------------------------------------------------------===// |
| |
| /// \brief LLVM Value Representation |
| /// |
| /// This is a very important LLVM class. It is the base class of all values |
| /// computed by a program that may be used as operands to other values. Value is |
| /// the super class of other important classes such as Instruction and Function. |
| /// All Values have a Type. Type is not a subclass of Value. Some values can |
| /// have a name and they belong to some Module. Setting the name on the Value |
| /// automatically updates the module's symbol table. |
| /// |
| /// Every value has a "use list" that keeps track of which other Values are |
| /// using this Value. A Value can also have an arbitrary number of ValueHandle |
| /// objects that watch it and listen to RAUW and Destroy events. See |
| /// llvm/IR/ValueHandle.h for details. |
| class Value { |
| Type *VTy; |
| Use *UseList; |
| |
| friend class ValueAsMetadata; // Allow access to IsUsedByMD. |
| friend class ValueHandleBase; |
| |
| const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast) |
| unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this? |
| |
| protected: |
| /// \brief Hold subclass data that can be dropped. |
| /// |
| /// This member is similar to SubclassData, however it is for holding |
| /// information which may be used to aid optimization, but which may be |
| /// cleared to zero without affecting conservative interpretation. |
| unsigned char SubclassOptionalData : 7; |
| |
| private: |
| /// \brief Hold arbitrary subclass data. |
| /// |
| /// This member is defined by this class, but is not used for anything. |
| /// Subclasses can use it to hold whatever state they find useful. This |
| /// field is initialized to zero by the ctor. |
| unsigned short SubclassData; |
| |
| protected: |
| /// \brief The number of operands in the subclass. |
| /// |
| /// This member is defined by this class, but not used for anything. |
| /// Subclasses can use it to store their number of operands, if they have |
| /// any. |
| /// |
| /// This is stored here to save space in User on 64-bit hosts. Since most |
| /// instances of Value have operands, 32-bit hosts aren't significantly |
| /// affected. |
| /// |
| /// Note, this should *NOT* be used directly by any class other than User. |
| /// User uses this value to find the Use list. |
| enum : unsigned { NumUserOperandsBits = 28 }; |
| unsigned NumUserOperands : NumUserOperandsBits; |
| |
| // Use the same type as the bitfield above so that MSVC will pack them. |
| unsigned IsUsedByMD : 1; |
| unsigned HasName : 1; |
| unsigned HasHungOffUses : 1; |
| unsigned HasDescriptor : 1; |
| |
| private: |
| template <typename UseT> // UseT == 'Use' or 'const Use' |
| class use_iterator_impl |
| : public std::iterator<std::forward_iterator_tag, UseT *> { |
| UseT *U; |
| explicit use_iterator_impl(UseT *u) : U(u) {} |
| friend class Value; |
| |
| public: |
| use_iterator_impl() : U() {} |
| |
| bool operator==(const use_iterator_impl &x) const { return U == x.U; } |
| bool operator!=(const use_iterator_impl &x) const { return !operator==(x); } |
| |
| use_iterator_impl &operator++() { // Preincrement |
| assert(U && "Cannot increment end iterator!"); |
| U = U->getNext(); |
| return *this; |
| } |
| |
| use_iterator_impl operator++(int) { // Postincrement |
| auto tmp = *this; |
| ++*this; |
| return tmp; |
| } |
| |
| UseT &operator*() const { |
| assert(U && "Cannot dereference end iterator!"); |
| return *U; |
| } |
| |
| UseT *operator->() const { return &operator*(); } |
| |
| operator use_iterator_impl<const UseT>() const { |
| return use_iterator_impl<const UseT>(U); |
| } |
| }; |
| |
| template <typename UserTy> // UserTy == 'User' or 'const User' |
| class user_iterator_impl |
| : public std::iterator<std::forward_iterator_tag, UserTy *> { |
| use_iterator_impl<Use> UI; |
| explicit user_iterator_impl(Use *U) : UI(U) {} |
| friend class Value; |
| |
| public: |
| user_iterator_impl() = default; |
| |
| bool operator==(const user_iterator_impl &x) const { return UI == x.UI; } |
| bool operator!=(const user_iterator_impl &x) const { return !operator==(x); } |
| |
| /// \brief Returns true if this iterator is equal to user_end() on the value. |
| bool atEnd() const { return *this == user_iterator_impl(); } |
| |
| user_iterator_impl &operator++() { // Preincrement |
| ++UI; |
| return *this; |
| } |
| |
| user_iterator_impl operator++(int) { // Postincrement |
| auto tmp = *this; |
| ++*this; |
| return tmp; |
| } |
| |
| // Retrieve a pointer to the current User. |
| UserTy *operator*() const { |
| return UI->getUser(); |
| } |
| |
| UserTy *operator->() const { return operator*(); } |
| |
| operator user_iterator_impl<const UserTy>() const { |
| return user_iterator_impl<const UserTy>(*UI); |
| } |
| |
| Use &getUse() const { return *UI; } |
| }; |
| |
| protected: |
| Value(Type *Ty, unsigned scid); |
| |
| public: |
| Value(const Value &) = delete; |
| void operator=(const Value &) = delete; |
| virtual ~Value(); |
| |
| /// \brief Support for debugging, callable in GDB: V->dump() |
| void dump() const; |
| |
| /// \brief Implement operator<< on Value. |
| /// @{ |
| void print(raw_ostream &O, bool IsForDebug = false) const; |
| void print(raw_ostream &O, ModuleSlotTracker &MST, |
| bool IsForDebug = false) const; |
| /// @} |
| |
| /// \brief Print the name of this Value out to the specified raw_ostream. |
| /// |
| /// This is useful when you just want to print 'int %reg126', not the |
| /// instruction that generated it. If you specify a Module for context, then |
| /// even constanst get pretty-printed; for example, the type of a null |
| /// pointer is printed symbolically. |
| /// @{ |
| void printAsOperand(raw_ostream &O, bool PrintType = true, |
| const Module *M = nullptr) const; |
| void printAsOperand(raw_ostream &O, bool PrintType, |
| ModuleSlotTracker &MST) const; |
| /// @} |
| |
| /// \brief All values are typed, get the type of this value. |
| Type *getType() const { return VTy; } |
| |
| /// \brief All values hold a context through their type. |
| LLVMContext &getContext() const; |
| |
| // \brief All values can potentially be named. |
| bool hasName() const { return HasName; } |
| ValueName *getValueName() const; |
| void setValueName(ValueName *VN); |
| |
| private: |
| void destroyValueName(); |
| void doRAUW(Value *New, bool NoMetadata); |
| void setNameImpl(const Twine &Name); |
| |
| public: |
| /// \brief Return a constant reference to the value's name. |
| /// |
| /// This is cheap and guaranteed to return the same reference as long as the |
| /// value is not modified. |
| StringRef getName() const; |
| |
| /// \brief Change the name of the value. |
| /// |
| /// Choose a new unique name if the provided name is taken. |
| /// |
| /// \param Name The new name; or "" if the value's name should be removed. |
| void setName(const Twine &Name); |
| |
| /// \brief Transfer the name from V to this value. |
| /// |
| /// After taking V's name, sets V's name to empty. |
| /// |
| /// \note It is an error to call V->takeName(V). |
| void takeName(Value *V); |
| |
| /// \brief Change all uses of this to point to a new Value. |
| /// |
| /// Go through the uses list for this definition and make each use point to |
| /// "V" instead of "this". After this completes, 'this's use list is |
| /// guaranteed to be empty. |
| void replaceAllUsesWith(Value *V); |
| |
| /// \brief Change non-metadata uses of this to point to a new Value. |
| /// |
| /// Go through the uses list for this definition and make each use point to |
| /// "V" instead of "this". This function skips metadata entries in the list. |
| void replaceNonMetadataUsesWith(Value *V); |
| |
| /// replaceUsesOutsideBlock - Go through the uses list for this definition and |
| /// make each use point to "V" instead of "this" when the use is outside the |
| /// block. 'This's use list is expected to have at least one element. |
| /// Unlike replaceAllUsesWith this function does not support basic block |
| /// values or constant users. |
| void replaceUsesOutsideBlock(Value *V, BasicBlock *BB); |
| |
| //---------------------------------------------------------------------- |
| // Methods for handling the chain of uses of this Value. |
| // |
| // Materializing a function can introduce new uses, so these methods come in |
| // two variants: |
| // The methods that start with materialized_ check the uses that are |
| // currently known given which functions are materialized. Be very careful |
| // when using them since you might not get all uses. |
| // The methods that don't start with materialized_ assert that modules is |
| // fully materialized. |
| void assertModuleIsMaterialized() const; |
| |
| bool use_empty() const { |
| assertModuleIsMaterialized(); |
| return UseList == nullptr; |
| } |
| |
| typedef use_iterator_impl<Use> use_iterator; |
| typedef use_iterator_impl<const Use> const_use_iterator; |
| use_iterator materialized_use_begin() { return use_iterator(UseList); } |
| const_use_iterator materialized_use_begin() const { |
| return const_use_iterator(UseList); |
| } |
| use_iterator use_begin() { |
| assertModuleIsMaterialized(); |
| return materialized_use_begin(); |
| } |
| const_use_iterator use_begin() const { |
| assertModuleIsMaterialized(); |
| return materialized_use_begin(); |
| } |
| use_iterator use_end() { return use_iterator(); } |
| const_use_iterator use_end() const { return const_use_iterator(); } |
| iterator_range<use_iterator> materialized_uses() { |
| return make_range(materialized_use_begin(), use_end()); |
| } |
| iterator_range<const_use_iterator> materialized_uses() const { |
| return make_range(materialized_use_begin(), use_end()); |
| } |
| iterator_range<use_iterator> uses() { |
| assertModuleIsMaterialized(); |
| return materialized_uses(); |
| } |
| iterator_range<const_use_iterator> uses() const { |
| assertModuleIsMaterialized(); |
| return materialized_uses(); |
| } |
| |
| bool user_empty() const { |
| assertModuleIsMaterialized(); |
| return UseList == nullptr; |
| } |
| |
| typedef user_iterator_impl<User> user_iterator; |
| typedef user_iterator_impl<const User> const_user_iterator; |
| user_iterator materialized_user_begin() { return user_iterator(UseList); } |
| const_user_iterator materialized_user_begin() const { |
| return const_user_iterator(UseList); |
| } |
| user_iterator user_begin() { |
| assertModuleIsMaterialized(); |
| return materialized_user_begin(); |
| } |
| const_user_iterator user_begin() const { |
| assertModuleIsMaterialized(); |
| return materialized_user_begin(); |
| } |
| user_iterator user_end() { return user_iterator(); } |
| const_user_iterator user_end() const { return const_user_iterator(); } |
| User *user_back() { |
| assertModuleIsMaterialized(); |
| return *materialized_user_begin(); |
| } |
| const User *user_back() const { |
| assertModuleIsMaterialized(); |
| return *materialized_user_begin(); |
| } |
| iterator_range<user_iterator> materialized_users() { |
| return make_range(materialized_user_begin(), user_end()); |
| } |
| iterator_range<const_user_iterator> materialized_users() const { |
| return make_range(materialized_user_begin(), user_end()); |
| } |
| iterator_range<user_iterator> users() { |
| assertModuleIsMaterialized(); |
| return materialized_users(); |
| } |
| iterator_range<const_user_iterator> users() const { |
| assertModuleIsMaterialized(); |
| return materialized_users(); |
| } |
| |
| /// \brief Return true if there is exactly one user of this value. |
| /// |
| /// This is specialized because it is a common request and does not require |
| /// traversing the whole use list. |
| bool hasOneUse() const { |
| const_use_iterator I = use_begin(), E = use_end(); |
| if (I == E) return false; |
| return ++I == E; |
| } |
| |
| /// \brief Return true if this Value has exactly N users. |
| bool hasNUses(unsigned N) const; |
| |
| /// \brief Return true if this value has N users or more. |
| /// |
| /// This is logically equivalent to getNumUses() >= N. |
| bool hasNUsesOrMore(unsigned N) const; |
| |
| /// \brief Check if this value is used in the specified basic block. |
| bool isUsedInBasicBlock(const BasicBlock *BB) const; |
| |
| /// \brief This method computes the number of uses of this Value. |
| /// |
| /// This is a linear time operation. Use hasOneUse, hasNUses, or |
| /// hasNUsesOrMore to check for specific values. |
| unsigned getNumUses() const; |
| |
| /// \brief This method should only be used by the Use class. |
| void addUse(Use &U) { U.addToList(&UseList); } |
| |
| /// \brief Concrete subclass of this. |
| /// |
| /// An enumeration for keeping track of the concrete subclass of Value that |
| /// is actually instantiated. Values of this enumeration are kept in the |
| /// Value classes SubclassID field. They are used for concrete type |
| /// identification. |
| enum ValueTy { |
| #define HANDLE_VALUE(Name) Name##Val, |
| #include "llvm/IR/Value.def" |
| |
| // Markers: |
| #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val, |
| #include "llvm/IR/Value.def" |
| }; |
| |
| /// \brief Return an ID for the concrete type of this object. |
| /// |
| /// This is used to implement the classof checks. This should not be used |
| /// for any other purpose, as the values may change as LLVM evolves. Also, |
| /// note that for instructions, the Instruction's opcode is added to |
| /// InstructionVal. So this means three things: |
| /// # there is no value with code InstructionVal (no opcode==0). |
| /// # there are more possible values for the value type than in ValueTy enum. |
| /// # the InstructionVal enumerator must be the highest valued enumerator in |
| /// the ValueTy enum. |
| unsigned getValueID() const { |
| return SubclassID; |
| } |
| |
| /// \brief Return the raw optional flags value contained in this value. |
| /// |
| /// This should only be used when testing two Values for equivalence. |
| unsigned getRawSubclassOptionalData() const { |
| return SubclassOptionalData; |
| } |
| |
| /// \brief Clear the optional flags contained in this value. |
| void clearSubclassOptionalData() { |
| SubclassOptionalData = 0; |
| } |
| |
| /// \brief Check the optional flags for equality. |
| bool hasSameSubclassOptionalData(const Value *V) const { |
| return SubclassOptionalData == V->SubclassOptionalData; |
| } |
| |
| /// \brief Return true if there is a value handle associated with this value. |
| bool hasValueHandle() const { return HasValueHandle; } |
| |
| /// \brief Return true if there is metadata referencing this value. |
| bool isUsedByMetadata() const { return IsUsedByMD; } |
| |
| /// \brief Return true if this value is a swifterror value. |
| /// |
| /// swifterror values can be either a function argument or an alloca with a |
| /// swifterror attribute. |
| bool isSwiftError() const; |
| |
| /// \brief Strip off pointer casts, all-zero GEPs, and aliases. |
| /// |
| /// Returns the original uncasted value. If this is called on a non-pointer |
| /// value, it returns 'this'. |
| Value *stripPointerCasts(); |
| const Value *stripPointerCasts() const { |
| return const_cast<Value*>(this)->stripPointerCasts(); |
| } |
| |
| /// \brief Strip off pointer casts and all-zero GEPs. |
| /// |
| /// Returns the original uncasted value. If this is called on a non-pointer |
| /// value, it returns 'this'. |
| Value *stripPointerCastsNoFollowAliases(); |
| const Value *stripPointerCastsNoFollowAliases() const { |
| return const_cast<Value*>(this)->stripPointerCastsNoFollowAliases(); |
| } |
| |
| /// \brief Strip off pointer casts and all-constant inbounds GEPs. |
| /// |
| /// Returns the original pointer value. If this is called on a non-pointer |
| /// value, it returns 'this'. |
| Value *stripInBoundsConstantOffsets(); |
| const Value *stripInBoundsConstantOffsets() const { |
| return const_cast<Value*>(this)->stripInBoundsConstantOffsets(); |
| } |
| |
| /// \brief Accumulate offsets from \a stripInBoundsConstantOffsets(). |
| /// |
| /// Stores the resulting constant offset stripped into the APInt provided. |
| /// The provided APInt will be extended or truncated as needed to be the |
| /// correct bitwidth for an offset of this pointer type. |
| /// |
| /// If this is called on a non-pointer value, it returns 'this'. |
| Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, |
| APInt &Offset); |
| const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, |
| APInt &Offset) const { |
| return const_cast<Value *>(this) |
| ->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); |
| } |
| |
| /// \brief Strip off pointer casts and inbounds GEPs. |
| /// |
| /// Returns the original pointer value. If this is called on a non-pointer |
| /// value, it returns 'this'. |
| Value *stripInBoundsOffsets(); |
| const Value *stripInBoundsOffsets() const { |
| return const_cast<Value*>(this)->stripInBoundsOffsets(); |
| } |
| |
| /// \brief Returns the number of bytes known to be dereferenceable for the |
| /// pointer value. |
| /// |
| /// If CanBeNull is set by this function the pointer can either be null or be |
| /// dereferenceable up to the returned number of bytes. |
| unsigned getPointerDereferenceableBytes(const DataLayout &DL, |
| bool &CanBeNull) const; |
| |
| /// \brief Returns an alignment of the pointer value. |
| /// |
| /// Returns an alignment which is either specified explicitly, e.g. via |
| /// align attribute of a function argument, or guaranteed by DataLayout. |
| unsigned getPointerAlignment(const DataLayout &DL) const; |
| |
| /// \brief Translate PHI node to its predecessor from the given basic block. |
| /// |
| /// If this value is a PHI node with CurBB as its parent, return the value in |
| /// the PHI node corresponding to PredBB. If not, return ourself. This is |
| /// useful if you want to know the value something has in a predecessor |
| /// block. |
| Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB); |
| |
| const Value *DoPHITranslation(const BasicBlock *CurBB, |
| const BasicBlock *PredBB) const{ |
| return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB); |
| } |
| |
| /// \brief The maximum alignment for instructions. |
| /// |
| /// This is the greatest alignment value supported by load, store, and alloca |
| /// instructions, and global values. |
| static const unsigned MaxAlignmentExponent = 29; |
| static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent; |
| |
| /// \brief Mutate the type of this Value to be of the specified type. |
| /// |
| /// Note that this is an extremely dangerous operation which can create |
| /// completely invalid IR very easily. It is strongly recommended that you |
| /// recreate IR objects with the right types instead of mutating them in |
| /// place. |
| void mutateType(Type *Ty) { |
| VTy = Ty; |
| } |
| |
| /// \brief Sort the use-list. |
| /// |
| /// Sorts the Value's use-list by Cmp using a stable mergesort. Cmp is |
| /// expected to compare two \a Use references. |
| template <class Compare> void sortUseList(Compare Cmp); |
| |
| /// \brief Reverse the use-list. |
| void reverseUseList(); |
| |
| private: |
| /// \brief Merge two lists together. |
| /// |
| /// Merges \c L and \c R using \c Cmp. To enable stable sorts, always pushes |
| /// "equal" items from L before items from R. |
| /// |
| /// \return the first element in the list. |
| /// |
| /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update). |
| template <class Compare> |
| static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) { |
| Use *Merged; |
| Use **Next = &Merged; |
| |
| for (;;) { |
| if (!L) { |
| *Next = R; |
| break; |
| } |
| if (!R) { |
| *Next = L; |
| break; |
| } |
| if (Cmp(*R, *L)) { |
| *Next = R; |
| Next = &R->Next; |
| R = R->Next; |
| } else { |
| *Next = L; |
| Next = &L->Next; |
| L = L->Next; |
| } |
| } |
| |
| return Merged; |
| } |
| |
| /// \brief Tail-recursive helper for \a mergeUseLists(). |
| /// |
| /// \param[out] Next the first element in the list. |
| template <class Compare> |
| static void mergeUseListsImpl(Use *L, Use *R, Use **Next, Compare Cmp); |
| |
| protected: |
| unsigned short getSubclassDataFromValue() const { return SubclassData; } |
| void setValueSubclassData(unsigned short D) { SubclassData = D; } |
| }; |
| |
| inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) { |
| V.print(OS); |
| return OS; |
| } |
| |
| void Use::set(Value *V) { |
| if (Val) removeFromList(); |
| Val = V; |
| if (V) V->addUse(*this); |
| } |
| |
| Value *Use::operator=(Value *RHS) { |
| set(RHS); |
| return RHS; |
| } |
| |
| const Use &Use::operator=(const Use &RHS) { |
| set(RHS.Val); |
| return *this; |
| } |
| |
| template <class Compare> void Value::sortUseList(Compare Cmp) { |
| if (!UseList || !UseList->Next) |
| // No need to sort 0 or 1 uses. |
| return; |
| |
| // Note: this function completely ignores Prev pointers until the end when |
| // they're fixed en masse. |
| |
| // Create a binomial vector of sorted lists, visiting uses one at a time and |
| // merging lists as necessary. |
| const unsigned MaxSlots = 32; |
| Use *Slots[MaxSlots]; |
| |
| // Collect the first use, turning it into a single-item list. |
| Use *Next = UseList->Next; |
| UseList->Next = nullptr; |
| unsigned NumSlots = 1; |
| Slots[0] = UseList; |
| |
| // Collect all but the last use. |
| while (Next->Next) { |
| Use *Current = Next; |
| Next = Current->Next; |
| |
| // Turn Current into a single-item list. |
| Current->Next = nullptr; |
| |
| // Save Current in the first available slot, merging on collisions. |
| unsigned I; |
| for (I = 0; I < NumSlots; ++I) { |
| if (!Slots[I]) |
| break; |
| |
| // Merge two lists, doubling the size of Current and emptying slot I. |
| // |
| // Since the uses in Slots[I] originally preceded those in Current, send |
| // Slots[I] in as the left parameter to maintain a stable sort. |
| Current = mergeUseLists(Slots[I], Current, Cmp); |
| Slots[I] = nullptr; |
| } |
| // Check if this is a new slot. |
| if (I == NumSlots) { |
| ++NumSlots; |
| assert(NumSlots <= MaxSlots && "Use list bigger than 2^32"); |
| } |
| |
| // Found an open slot. |
| Slots[I] = Current; |
| } |
| |
| // Merge all the lists together. |
| assert(Next && "Expected one more Use"); |
| assert(!Next->Next && "Expected only one Use"); |
| UseList = Next; |
| for (unsigned I = 0; I < NumSlots; ++I) |
| if (Slots[I]) |
| // Since the uses in Slots[I] originally preceded those in UseList, send |
| // Slots[I] in as the left parameter to maintain a stable sort. |
| UseList = mergeUseLists(Slots[I], UseList, Cmp); |
| |
| // Fix the Prev pointers. |
| for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) { |
| I->setPrev(Prev); |
| Prev = &I->Next; |
| } |
| } |
| |
| // isa - Provide some specializations of isa so that we don't have to include |
| // the subtype header files to test to see if the value is a subclass... |
| // |
| template <> struct isa_impl<Constant, Value> { |
| static inline bool doit(const Value &Val) { |
| return Val.getValueID() >= Value::ConstantFirstVal && |
| Val.getValueID() <= Value::ConstantLastVal; |
| } |
| }; |
| |
| template <> struct isa_impl<ConstantData, Value> { |
| static inline bool doit(const Value &Val) { |
| return Val.getValueID() >= Value::ConstantDataFirstVal && |
| Val.getValueID() <= Value::ConstantDataLastVal; |
| } |
| }; |
| |
| template <> struct isa_impl<ConstantAggregate, Value> { |
| static inline bool doit(const Value &Val) { |
| return Val.getValueID() >= Value::ConstantAggregateFirstVal && |
| Val.getValueID() <= Value::ConstantAggregateLastVal; |
| } |
| }; |
| |
| template <> struct isa_impl<Argument, Value> { |
| static inline bool doit (const Value &Val) { |
| return Val.getValueID() == Value::ArgumentVal; |
| } |
| }; |
| |
| template <> struct isa_impl<InlineAsm, Value> { |
| static inline bool doit(const Value &Val) { |
| return Val.getValueID() == Value::InlineAsmVal; |
| } |
| }; |
| |
| template <> struct isa_impl<Instruction, Value> { |
| static inline bool doit(const Value &Val) { |
| return Val.getValueID() >= Value::InstructionVal; |
| } |
| }; |
| |
| template <> struct isa_impl<BasicBlock, Value> { |
| static inline bool doit(const Value &Val) { |
| return Val.getValueID() == Value::BasicBlockVal; |
| } |
| }; |
| |
| template <> struct isa_impl<Function, Value> { |
| static inline bool doit(const Value &Val) { |
| return Val.getValueID() == Value::FunctionVal; |
| } |
| }; |
| |
| template <> struct isa_impl<GlobalVariable, Value> { |
| static inline bool doit(const Value &Val) { |
| return Val.getValueID() == Value::GlobalVariableVal; |
| } |
| }; |
| |
| template <> struct isa_impl<GlobalAlias, Value> { |
| static inline bool doit(const Value &Val) { |
| return Val.getValueID() == Value::GlobalAliasVal; |
| } |
| }; |
| |
| template <> struct isa_impl<GlobalIFunc, Value> { |
| static inline bool doit(const Value &Val) { |
| return Val.getValueID() == Value::GlobalIFuncVal; |
| } |
| }; |
| |
| template <> struct isa_impl<GlobalIndirectSymbol, Value> { |
| static inline bool doit(const Value &Val) { |
| return isa<GlobalAlias>(Val) || isa<GlobalIFunc>(Val); |
| } |
| }; |
| |
| template <> struct isa_impl<GlobalValue, Value> { |
| static inline bool doit(const Value &Val) { |
| return isa<GlobalObject>(Val) || isa<GlobalIndirectSymbol>(Val); |
| } |
| }; |
| |
| template <> struct isa_impl<GlobalObject, Value> { |
| static inline bool doit(const Value &Val) { |
| return isa<GlobalVariable>(Val) || isa<Function>(Val); |
| } |
| }; |
| |
| // Create wrappers for C Binding types (see CBindingWrapping.h). |
| DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef) |
| |
| // Specialized opaque value conversions. |
| inline Value **unwrap(LLVMValueRef *Vals) { |
| return reinterpret_cast<Value**>(Vals); |
| } |
| |
| template<typename T> |
| inline T **unwrap(LLVMValueRef *Vals, unsigned Length) { |
| #ifndef NDEBUG |
| for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I) |
| unwrap<T>(*I); // For side effect of calling assert on invalid usage. |
| #endif |
| (void)Length; |
| return reinterpret_cast<T**>(Vals); |
| } |
| |
| inline LLVMValueRef *wrap(const Value **Vals) { |
| return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals)); |
| } |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_IR_VALUE_H |