| //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// \brief This file implements a class to represent arbitrary precision |
| /// integral constant values and operations on them. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ADT_APINT_H |
| #define LLVM_ADT_APINT_H |
| |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <cassert> |
| #include <climits> |
| #include <cstring> |
| #include <string> |
| |
| namespace llvm { |
| class FoldingSetNodeID; |
| class StringRef; |
| class hash_code; |
| class raw_ostream; |
| |
| template <typename T> class SmallVectorImpl; |
| template <typename T> class ArrayRef; |
| |
| // An unsigned host type used as a single part of a multi-part |
| // bignum. |
| typedef uint64_t integerPart; |
| |
| const unsigned int host_char_bit = 8; |
| const unsigned int integerPartWidth = |
| host_char_bit * static_cast<unsigned int>(sizeof(integerPart)); |
| |
| class APInt; |
| |
| inline APInt operator-(APInt); |
| |
| //===----------------------------------------------------------------------===// |
| // APInt Class |
| //===----------------------------------------------------------------------===// |
| |
| /// \brief Class for arbitrary precision integers. |
| /// |
| /// APInt is a functional replacement for common case unsigned integer type like |
| /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width |
| /// integer sizes and large integer value types such as 3-bits, 15-bits, or more |
| /// than 64-bits of precision. APInt provides a variety of arithmetic operators |
| /// and methods to manipulate integer values of any bit-width. It supports both |
| /// the typical integer arithmetic and comparison operations as well as bitwise |
| /// manipulation. |
| /// |
| /// The class has several invariants worth noting: |
| /// * All bit, byte, and word positions are zero-based. |
| /// * Once the bit width is set, it doesn't change except by the Truncate, |
| /// SignExtend, or ZeroExtend operations. |
| /// * All binary operators must be on APInt instances of the same bit width. |
| /// Attempting to use these operators on instances with different bit |
| /// widths will yield an assertion. |
| /// * The value is stored canonically as an unsigned value. For operations |
| /// where it makes a difference, there are both signed and unsigned variants |
| /// of the operation. For example, sdiv and udiv. However, because the bit |
| /// widths must be the same, operations such as Mul and Add produce the same |
| /// results regardless of whether the values are interpreted as signed or |
| /// not. |
| /// * In general, the class tries to follow the style of computation that LLVM |
| /// uses in its IR. This simplifies its use for LLVM. |
| /// |
| class LLVM_NODISCARD APInt { |
| unsigned BitWidth; ///< The number of bits in this APInt. |
| |
| /// This union is used to store the integer value. When the |
| /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. |
| union { |
| uint64_t VAL; ///< Used to store the <= 64 bits integer value. |
| uint64_t *pVal; ///< Used to store the >64 bits integer value. |
| }; |
| |
| /// This enum is used to hold the constants we needed for APInt. |
| enum { |
| /// Bits in a word |
| APINT_BITS_PER_WORD = |
| static_cast<unsigned int>(sizeof(uint64_t)) * CHAR_BIT, |
| /// Byte size of a word |
| APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t)) |
| }; |
| |
| friend struct DenseMapAPIntKeyInfo; |
| |
| /// \brief Fast internal constructor |
| /// |
| /// This constructor is used only internally for speed of construction of |
| /// temporaries. It is unsafe for general use so it is not public. |
| APInt(uint64_t *val, unsigned bits) : BitWidth(bits), pVal(val) {} |
| |
| /// \brief Determine if this APInt just has one word to store value. |
| /// |
| /// \returns true if the number of bits <= 64, false otherwise. |
| bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } |
| |
| /// \brief Determine which word a bit is in. |
| /// |
| /// \returns the word position for the specified bit position. |
| static unsigned whichWord(unsigned bitPosition) { |
| return bitPosition / APINT_BITS_PER_WORD; |
| } |
| |
| /// \brief Determine which bit in a word a bit is in. |
| /// |
| /// \returns the bit position in a word for the specified bit position |
| /// in the APInt. |
| static unsigned whichBit(unsigned bitPosition) { |
| return bitPosition % APINT_BITS_PER_WORD; |
| } |
| |
| /// \brief Get a single bit mask. |
| /// |
| /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set |
| /// This method generates and returns a uint64_t (word) mask for a single |
| /// bit at a specific bit position. This is used to mask the bit in the |
| /// corresponding word. |
| static uint64_t maskBit(unsigned bitPosition) { |
| return 1ULL << whichBit(bitPosition); |
| } |
| |
| /// \brief Clear unused high order bits |
| /// |
| /// This method is used internally to clear the top "N" bits in the high order |
| /// word that are not used by the APInt. This is needed after the most |
| /// significant word is assigned a value to ensure that those bits are |
| /// zero'd out. |
| APInt &clearUnusedBits() { |
| // Compute how many bits are used in the final word |
| unsigned wordBits = BitWidth % APINT_BITS_PER_WORD; |
| if (wordBits == 0) |
| // If all bits are used, we want to leave the value alone. This also |
| // avoids the undefined behavior of >> when the shift is the same size as |
| // the word size (64). |
| return *this; |
| |
| // Mask out the high bits. |
| uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits); |
| if (isSingleWord()) |
| VAL &= mask; |
| else |
| pVal[getNumWords() - 1] &= mask; |
| return *this; |
| } |
| |
| /// \brief Get the word corresponding to a bit position |
| /// \returns the corresponding word for the specified bit position. |
| uint64_t getWord(unsigned bitPosition) const { |
| return isSingleWord() ? VAL : pVal[whichWord(bitPosition)]; |
| } |
| |
| /// \brief Convert a char array into an APInt |
| /// |
| /// \param radix 2, 8, 10, 16, or 36 |
| /// Converts a string into a number. The string must be non-empty |
| /// and well-formed as a number of the given base. The bit-width |
| /// must be sufficient to hold the result. |
| /// |
| /// This is used by the constructors that take string arguments. |
| /// |
| /// StringRef::getAsInteger is superficially similar but (1) does |
| /// not assume that the string is well-formed and (2) grows the |
| /// result to hold the input. |
| void fromString(unsigned numBits, StringRef str, uint8_t radix); |
| |
| /// \brief An internal division function for dividing APInts. |
| /// |
| /// This is used by the toString method to divide by the radix. It simply |
| /// provides a more convenient form of divide for internal use since KnuthDiv |
| /// has specific constraints on its inputs. If those constraints are not met |
| /// then it provides a simpler form of divide. |
| static void divide(const APInt &LHS, unsigned lhsWords, const APInt &RHS, |
| unsigned rhsWords, APInt *Quotient, APInt *Remainder); |
| |
| /// out-of-line slow case for inline constructor |
| void initSlowCase(uint64_t val, bool isSigned); |
| |
| /// shared code between two array constructors |
| void initFromArray(ArrayRef<uint64_t> array); |
| |
| /// out-of-line slow case for inline copy constructor |
| void initSlowCase(const APInt &that); |
| |
| /// out-of-line slow case for shl |
| APInt shlSlowCase(unsigned shiftAmt) const; |
| |
| /// out-of-line slow case for operator& |
| APInt AndSlowCase(const APInt &RHS) const; |
| |
| /// out-of-line slow case for operator| |
| APInt OrSlowCase(const APInt &RHS) const; |
| |
| /// out-of-line slow case for operator^ |
| APInt XorSlowCase(const APInt &RHS) const; |
| |
| /// out-of-line slow case for operator= |
| APInt &AssignSlowCase(const APInt &RHS); |
| |
| /// out-of-line slow case for operator== |
| bool EqualSlowCase(const APInt &RHS) const; |
| |
| /// out-of-line slow case for operator== |
| bool EqualSlowCase(uint64_t Val) const; |
| |
| /// out-of-line slow case for countLeadingZeros |
| unsigned countLeadingZerosSlowCase() const; |
| |
| /// out-of-line slow case for countTrailingOnes |
| unsigned countTrailingOnesSlowCase() const; |
| |
| /// out-of-line slow case for countPopulation |
| unsigned countPopulationSlowCase() const; |
| |
| public: |
| /// \name Constructors |
| /// @{ |
| |
| /// \brief Create a new APInt of numBits width, initialized as val. |
| /// |
| /// If isSigned is true then val is treated as if it were a signed value |
| /// (i.e. as an int64_t) and the appropriate sign extension to the bit width |
| /// will be done. Otherwise, no sign extension occurs (high order bits beyond |
| /// the range of val are zero filled). |
| /// |
| /// \param numBits the bit width of the constructed APInt |
| /// \param val the initial value of the APInt |
| /// \param isSigned how to treat signedness of val |
| APInt(unsigned numBits, uint64_t val, bool isSigned = false) |
| : BitWidth(numBits), VAL(0) { |
| assert(BitWidth && "bitwidth too small"); |
| if (isSingleWord()) |
| VAL = val; |
| else |
| initSlowCase(val, isSigned); |
| clearUnusedBits(); |
| } |
| |
| /// \brief Construct an APInt of numBits width, initialized as bigVal[]. |
| /// |
| /// Note that bigVal.size() can be smaller or larger than the corresponding |
| /// bit width but any extraneous bits will be dropped. |
| /// |
| /// \param numBits the bit width of the constructed APInt |
| /// \param bigVal a sequence of words to form the initial value of the APInt |
| APInt(unsigned numBits, ArrayRef<uint64_t> bigVal); |
| |
| /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but |
| /// deprecated because this constructor is prone to ambiguity with the |
| /// APInt(unsigned, uint64_t, bool) constructor. |
| /// |
| /// If this overload is ever deleted, care should be taken to prevent calls |
| /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool) |
| /// constructor. |
| APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]); |
| |
| /// \brief Construct an APInt from a string representation. |
| /// |
| /// This constructor interprets the string \p str in the given radix. The |
| /// interpretation stops when the first character that is not suitable for the |
| /// radix is encountered, or the end of the string. Acceptable radix values |
| /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the |
| /// string to require more bits than numBits. |
| /// |
| /// \param numBits the bit width of the constructed APInt |
| /// \param str the string to be interpreted |
| /// \param radix the radix to use for the conversion |
| APInt(unsigned numBits, StringRef str, uint8_t radix); |
| |
| /// Simply makes *this a copy of that. |
| /// @brief Copy Constructor. |
| APInt(const APInt &that) : BitWidth(that.BitWidth), VAL(0) { |
| if (isSingleWord()) |
| VAL = that.VAL; |
| else |
| initSlowCase(that); |
| } |
| |
| /// \brief Move Constructor. |
| APInt(APInt &&that) : BitWidth(that.BitWidth), VAL(that.VAL) { |
| that.BitWidth = 0; |
| } |
| |
| /// \brief Destructor. |
| ~APInt() { |
| if (needsCleanup()) |
| delete[] pVal; |
| } |
| |
| /// \brief Default constructor that creates an uninteresting APInt |
| /// representing a 1-bit zero value. |
| /// |
| /// This is useful for object deserialization (pair this with the static |
| /// method Read). |
| explicit APInt() : BitWidth(1), VAL(0) {} |
| |
| /// \brief Returns whether this instance allocated memory. |
| bool needsCleanup() const { return !isSingleWord(); } |
| |
| /// Used to insert APInt objects, or objects that contain APInt objects, into |
| /// FoldingSets. |
| void Profile(FoldingSetNodeID &id) const; |
| |
| /// @} |
| /// \name Value Tests |
| /// @{ |
| |
| /// \brief Determine sign of this APInt. |
| /// |
| /// This tests the high bit of this APInt to determine if it is set. |
| /// |
| /// \returns true if this APInt is negative, false otherwise |
| bool isNegative() const { return (*this)[BitWidth - 1]; } |
| |
| /// \brief Determine if this APInt Value is non-negative (>= 0) |
| /// |
| /// This tests the high bit of the APInt to determine if it is unset. |
| bool isNonNegative() const { return !isNegative(); } |
| |
| /// \brief Determine if this APInt Value is positive. |
| /// |
| /// This tests if the value of this APInt is positive (> 0). Note |
| /// that 0 is not a positive value. |
| /// |
| /// \returns true if this APInt is positive. |
| bool isStrictlyPositive() const { return isNonNegative() && !!*this; } |
| |
| /// \brief Determine if all bits are set |
| /// |
| /// This checks to see if the value has all bits of the APInt are set or not. |
| bool isAllOnesValue() const { |
| if (isSingleWord()) |
| return VAL == ~integerPart(0) >> (APINT_BITS_PER_WORD - BitWidth); |
| return countPopulationSlowCase() == BitWidth; |
| } |
| |
| /// \brief Determine if this is the largest unsigned value. |
| /// |
| /// This checks to see if the value of this APInt is the maximum unsigned |
| /// value for the APInt's bit width. |
| bool isMaxValue() const { return isAllOnesValue(); } |
| |
| /// \brief Determine if this is the largest signed value. |
| /// |
| /// This checks to see if the value of this APInt is the maximum signed |
| /// value for the APInt's bit width. |
| bool isMaxSignedValue() const { |
| return !isNegative() && countPopulation() == BitWidth - 1; |
| } |
| |
| /// \brief Determine if this is the smallest unsigned value. |
| /// |
| /// This checks to see if the value of this APInt is the minimum unsigned |
| /// value for the APInt's bit width. |
| bool isMinValue() const { return !*this; } |
| |
| /// \brief Determine if this is the smallest signed value. |
| /// |
| /// This checks to see if the value of this APInt is the minimum signed |
| /// value for the APInt's bit width. |
| bool isMinSignedValue() const { |
| return isNegative() && isPowerOf2(); |
| } |
| |
| /// \brief Check if this APInt has an N-bits unsigned integer value. |
| bool isIntN(unsigned N) const { |
| assert(N && "N == 0 ???"); |
| return getActiveBits() <= N; |
| } |
| |
| /// \brief Check if this APInt has an N-bits signed integer value. |
| bool isSignedIntN(unsigned N) const { |
| assert(N && "N == 0 ???"); |
| return getMinSignedBits() <= N; |
| } |
| |
| /// \brief Check if this APInt's value is a power of two greater than zero. |
| /// |
| /// \returns true if the argument APInt value is a power of two > 0. |
| bool isPowerOf2() const { |
| if (isSingleWord()) |
| return isPowerOf2_64(VAL); |
| return countPopulationSlowCase() == 1; |
| } |
| |
| /// \brief Check if the APInt's value is returned by getSignBit. |
| /// |
| /// \returns true if this is the value returned by getSignBit. |
| bool isSignBit() const { return isMinSignedValue(); } |
| |
| /// \brief Convert APInt to a boolean value. |
| /// |
| /// This converts the APInt to a boolean value as a test against zero. |
| bool getBoolValue() const { return !!*this; } |
| |
| /// If this value is smaller than the specified limit, return it, otherwise |
| /// return the limit value. This causes the value to saturate to the limit. |
| uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const { |
| return (getActiveBits() > 64 || getZExtValue() > Limit) ? Limit |
| : getZExtValue(); |
| } |
| |
| /// \brief Check if the APInt consists of a repeated bit pattern. |
| /// |
| /// e.g. 0x01010101 satisfies isSplat(8). |
| /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit |
| /// width without remainder. |
| bool isSplat(unsigned SplatSizeInBits) const; |
| |
| /// @} |
| /// \name Value Generators |
| /// @{ |
| |
| /// \brief Gets maximum unsigned value of APInt for specific bit width. |
| static APInt getMaxValue(unsigned numBits) { |
| return getAllOnesValue(numBits); |
| } |
| |
| /// \brief Gets maximum signed value of APInt for a specific bit width. |
| static APInt getSignedMaxValue(unsigned numBits) { |
| APInt API = getAllOnesValue(numBits); |
| API.clearBit(numBits - 1); |
| return API; |
| } |
| |
| /// \brief Gets minimum unsigned value of APInt for a specific bit width. |
| static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); } |
| |
| /// \brief Gets minimum signed value of APInt for a specific bit width. |
| static APInt getSignedMinValue(unsigned numBits) { |
| APInt API(numBits, 0); |
| API.setBit(numBits - 1); |
| return API; |
| } |
| |
| /// \brief Get the SignBit for a specific bit width. |
| /// |
| /// This is just a wrapper function of getSignedMinValue(), and it helps code |
| /// readability when we want to get a SignBit. |
| static APInt getSignBit(unsigned BitWidth) { |
| return getSignedMinValue(BitWidth); |
| } |
| |
| /// \brief Get the all-ones value. |
| /// |
| /// \returns the all-ones value for an APInt of the specified bit-width. |
| static APInt getAllOnesValue(unsigned numBits) { |
| return APInt(numBits, UINT64_MAX, true); |
| } |
| |
| /// \brief Get the '0' value. |
| /// |
| /// \returns the '0' value for an APInt of the specified bit-width. |
| static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); } |
| |
| /// \brief Compute an APInt containing numBits highbits from this APInt. |
| /// |
| /// Get an APInt with the same BitWidth as this APInt, just zero mask |
| /// the low bits and right shift to the least significant bit. |
| /// |
| /// \returns the high "numBits" bits of this APInt. |
| APInt getHiBits(unsigned numBits) const; |
| |
| /// \brief Compute an APInt containing numBits lowbits from this APInt. |
| /// |
| /// Get an APInt with the same BitWidth as this APInt, just zero mask |
| /// the high bits. |
| /// |
| /// \returns the low "numBits" bits of this APInt. |
| APInt getLoBits(unsigned numBits) const; |
| |
| /// \brief Return an APInt with exactly one bit set in the result. |
| static APInt getOneBitSet(unsigned numBits, unsigned BitNo) { |
| APInt Res(numBits, 0); |
| Res.setBit(BitNo); |
| return Res; |
| } |
| |
| /// \brief Get a value with a block of bits set. |
| /// |
| /// Constructs an APInt value that has a contiguous range of bits set. The |
| /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other |
| /// bits will be zero. For example, with parameters(32, 0, 16) you would get |
| /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For |
| /// example, with parameters (32, 28, 4), you would get 0xF000000F. |
| /// |
| /// \param numBits the intended bit width of the result |
| /// \param loBit the index of the lowest bit set. |
| /// \param hiBit the index of the highest bit set. |
| /// |
| /// \returns An APInt value with the requested bits set. |
| static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) { |
| assert(hiBit <= numBits && "hiBit out of range"); |
| assert(loBit < numBits && "loBit out of range"); |
| if (hiBit < loBit) |
| return getLowBitsSet(numBits, hiBit) | |
| getHighBitsSet(numBits, numBits - loBit); |
| return getLowBitsSet(numBits, hiBit - loBit).shl(loBit); |
| } |
| |
| /// \brief Get a value with high bits set |
| /// |
| /// Constructs an APInt value that has the top hiBitsSet bits set. |
| /// |
| /// \param numBits the bitwidth of the result |
| /// \param hiBitsSet the number of high-order bits set in the result. |
| static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) { |
| assert(hiBitsSet <= numBits && "Too many bits to set!"); |
| // Handle a degenerate case, to avoid shifting by word size |
| if (hiBitsSet == 0) |
| return APInt(numBits, 0); |
| unsigned shiftAmt = numBits - hiBitsSet; |
| // For small values, return quickly |
| if (numBits <= APINT_BITS_PER_WORD) |
| return APInt(numBits, ~0ULL << shiftAmt); |
| return getAllOnesValue(numBits).shl(shiftAmt); |
| } |
| |
| /// \brief Get a value with low bits set |
| /// |
| /// Constructs an APInt value that has the bottom loBitsSet bits set. |
| /// |
| /// \param numBits the bitwidth of the result |
| /// \param loBitsSet the number of low-order bits set in the result. |
| static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) { |
| assert(loBitsSet <= numBits && "Too many bits to set!"); |
| // Handle a degenerate case, to avoid shifting by word size |
| if (loBitsSet == 0) |
| return APInt(numBits, 0); |
| if (loBitsSet == APINT_BITS_PER_WORD) |
| return APInt(numBits, UINT64_MAX); |
| // For small values, return quickly. |
| if (loBitsSet <= APINT_BITS_PER_WORD) |
| return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet)); |
| return getAllOnesValue(numBits).lshr(numBits - loBitsSet); |
| } |
| |
| /// \brief Return a value containing V broadcasted over NewLen bits. |
| static APInt getSplat(unsigned NewLen, const APInt &V) { |
| assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!"); |
| |
| APInt Val = V.zextOrSelf(NewLen); |
| for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1) |
| Val |= Val << I; |
| |
| return Val; |
| } |
| |
| /// \brief Determine if two APInts have the same value, after zero-extending |
| /// one of them (if needed!) to ensure that the bit-widths match. |
| static bool isSameValue(const APInt &I1, const APInt &I2) { |
| if (I1.getBitWidth() == I2.getBitWidth()) |
| return I1 == I2; |
| |
| if (I1.getBitWidth() > I2.getBitWidth()) |
| return I1 == I2.zext(I1.getBitWidth()); |
| |
| return I1.zext(I2.getBitWidth()) == I2; |
| } |
| |
| /// \brief Overload to compute a hash_code for an APInt value. |
| friend hash_code hash_value(const APInt &Arg); |
| |
| /// This function returns a pointer to the internal storage of the APInt. |
| /// This is useful for writing out the APInt in binary form without any |
| /// conversions. |
| const uint64_t *getRawData() const { |
| if (isSingleWord()) |
| return &VAL; |
| return &pVal[0]; |
| } |
| |
| /// @} |
| /// \name Unary Operators |
| /// @{ |
| |
| /// \brief Postfix increment operator. |
| /// |
| /// \returns a new APInt value representing *this incremented by one |
| const APInt operator++(int) { |
| APInt API(*this); |
| ++(*this); |
| return API; |
| } |
| |
| /// \brief Prefix increment operator. |
| /// |
| /// \returns *this incremented by one |
| APInt &operator++(); |
| |
| /// \brief Postfix decrement operator. |
| /// |
| /// \returns a new APInt representing *this decremented by one. |
| const APInt operator--(int) { |
| APInt API(*this); |
| --(*this); |
| return API; |
| } |
| |
| /// \brief Prefix decrement operator. |
| /// |
| /// \returns *this decremented by one. |
| APInt &operator--(); |
| |
| /// \brief Unary bitwise complement operator. |
| /// |
| /// Performs a bitwise complement operation on this APInt. |
| /// |
| /// \returns an APInt that is the bitwise complement of *this |
| APInt operator~() const { |
| APInt Result(*this); |
| Result.flipAllBits(); |
| return Result; |
| } |
| |
| /// \brief Logical negation operator. |
| /// |
| /// Performs logical negation operation on this APInt. |
| /// |
| /// \returns true if *this is zero, false otherwise. |
| bool operator!() const { |
| if (isSingleWord()) |
| return !VAL; |
| |
| for (unsigned i = 0; i != getNumWords(); ++i) |
| if (pVal[i]) |
| return false; |
| return true; |
| } |
| |
| /// @} |
| /// \name Assignment Operators |
| /// @{ |
| |
| /// \brief Copy assignment operator. |
| /// |
| /// \returns *this after assignment of RHS. |
| APInt &operator=(const APInt &RHS) { |
| // If the bitwidths are the same, we can avoid mucking with memory |
| if (isSingleWord() && RHS.isSingleWord()) { |
| VAL = RHS.VAL; |
| BitWidth = RHS.BitWidth; |
| return clearUnusedBits(); |
| } |
| |
| return AssignSlowCase(RHS); |
| } |
| |
| /// @brief Move assignment operator. |
| APInt &operator=(APInt &&that) { |
| if (!isSingleWord()) { |
| // The MSVC STL shipped in 2013 requires that self move assignment be a |
| // no-op. Otherwise algorithms like stable_sort will produce answers |
| // where half of the output is left in a moved-from state. |
| if (this == &that) |
| return *this; |
| delete[] pVal; |
| } |
| |
| // Use memcpy so that type based alias analysis sees both VAL and pVal |
| // as modified. |
| memcpy(&VAL, &that.VAL, sizeof(uint64_t)); |
| |
| // If 'this == &that', avoid zeroing our own bitwidth by storing to 'that' |
| // first. |
| unsigned ThatBitWidth = that.BitWidth; |
| that.BitWidth = 0; |
| BitWidth = ThatBitWidth; |
| |
| return *this; |
| } |
| |
| /// \brief Assignment operator. |
| /// |
| /// The RHS value is assigned to *this. If the significant bits in RHS exceed |
| /// the bit width, the excess bits are truncated. If the bit width is larger |
| /// than 64, the value is zero filled in the unspecified high order bits. |
| /// |
| /// \returns *this after assignment of RHS value. |
| APInt &operator=(uint64_t RHS); |
| |
| /// \brief Bitwise AND assignment operator. |
| /// |
| /// Performs a bitwise AND operation on this APInt and RHS. The result is |
| /// assigned to *this. |
| /// |
| /// \returns *this after ANDing with RHS. |
| APInt &operator&=(const APInt &RHS); |
| |
| /// \brief Bitwise OR assignment operator. |
| /// |
| /// Performs a bitwise OR operation on this APInt and RHS. The result is |
| /// assigned *this; |
| /// |
| /// \returns *this after ORing with RHS. |
| APInt &operator|=(const APInt &RHS); |
| |
| /// \brief Bitwise OR assignment operator. |
| /// |
| /// Performs a bitwise OR operation on this APInt and RHS. RHS is |
| /// logically zero-extended or truncated to match the bit-width of |
| /// the LHS. |
| APInt &operator|=(uint64_t RHS) { |
| if (isSingleWord()) { |
| VAL |= RHS; |
| clearUnusedBits(); |
| } else { |
| pVal[0] |= RHS; |
| } |
| return *this; |
| } |
| |
| /// \brief Bitwise XOR assignment operator. |
| /// |
| /// Performs a bitwise XOR operation on this APInt and RHS. The result is |
| /// assigned to *this. |
| /// |
| /// \returns *this after XORing with RHS. |
| APInt &operator^=(const APInt &RHS); |
| |
| /// \brief Multiplication assignment operator. |
| /// |
| /// Multiplies this APInt by RHS and assigns the result to *this. |
| /// |
| /// \returns *this |
| APInt &operator*=(const APInt &RHS); |
| |
| /// \brief Addition assignment operator. |
| /// |
| /// Adds RHS to *this and assigns the result to *this. |
| /// |
| /// \returns *this |
| APInt &operator+=(const APInt &RHS); |
| APInt &operator+=(uint64_t RHS); |
| |
| /// \brief Subtraction assignment operator. |
| /// |
| /// Subtracts RHS from *this and assigns the result to *this. |
| /// |
| /// \returns *this |
| APInt &operator-=(const APInt &RHS); |
| APInt &operator-=(uint64_t RHS); |
| |
| /// \brief Left-shift assignment function. |
| /// |
| /// Shifts *this left by shiftAmt and assigns the result to *this. |
| /// |
| /// \returns *this after shifting left by shiftAmt |
| APInt &operator<<=(unsigned shiftAmt) { |
| *this = shl(shiftAmt); |
| return *this; |
| } |
| |
| /// @} |
| /// \name Binary Operators |
| /// @{ |
| |
| /// \brief Bitwise AND operator. |
| /// |
| /// Performs a bitwise AND operation on *this and RHS. |
| /// |
| /// \returns An APInt value representing the bitwise AND of *this and RHS. |
| APInt operator&(const APInt &RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) |
| return APInt(getBitWidth(), VAL & RHS.VAL); |
| return AndSlowCase(RHS); |
| } |
| APInt And(const APInt &RHS) const { return this->operator&(RHS); } |
| |
| /// \brief Bitwise OR operator. |
| /// |
| /// Performs a bitwise OR operation on *this and RHS. |
| /// |
| /// \returns An APInt value representing the bitwise OR of *this and RHS. |
| APInt operator|(const APInt &RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) |
| return APInt(getBitWidth(), VAL | RHS.VAL); |
| return OrSlowCase(RHS); |
| } |
| |
| /// \brief Bitwise OR function. |
| /// |
| /// Performs a bitwise or on *this and RHS. This is implemented by simply |
| /// calling operator|. |
| /// |
| /// \returns An APInt value representing the bitwise OR of *this and RHS. |
| APInt Or(const APInt &RHS) const { return this->operator|(RHS); } |
| |
| /// \brief Bitwise XOR operator. |
| /// |
| /// Performs a bitwise XOR operation on *this and RHS. |
| /// |
| /// \returns An APInt value representing the bitwise XOR of *this and RHS. |
| APInt operator^(const APInt &RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) |
| return APInt(BitWidth, VAL ^ RHS.VAL); |
| return XorSlowCase(RHS); |
| } |
| |
| /// \brief Bitwise XOR function. |
| /// |
| /// Performs a bitwise XOR operation on *this and RHS. This is implemented |
| /// through the usage of operator^. |
| /// |
| /// \returns An APInt value representing the bitwise XOR of *this and RHS. |
| APInt Xor(const APInt &RHS) const { return this->operator^(RHS); } |
| |
| /// \brief Multiplication operator. |
| /// |
| /// Multiplies this APInt by RHS and returns the result. |
| APInt operator*(const APInt &RHS) const; |
| |
| /// \brief Left logical shift operator. |
| /// |
| /// Shifts this APInt left by \p Bits and returns the result. |
| APInt operator<<(unsigned Bits) const { return shl(Bits); } |
| |
| /// \brief Left logical shift operator. |
| /// |
| /// Shifts this APInt left by \p Bits and returns the result. |
| APInt operator<<(const APInt &Bits) const { return shl(Bits); } |
| |
| /// \brief Arithmetic right-shift function. |
| /// |
| /// Arithmetic right-shift this APInt by shiftAmt. |
| APInt ashr(unsigned shiftAmt) const; |
| |
| /// \brief Logical right-shift function. |
| /// |
| /// Logical right-shift this APInt by shiftAmt. |
| APInt lshr(unsigned shiftAmt) const; |
| |
| /// \brief Left-shift function. |
| /// |
| /// Left-shift this APInt by shiftAmt. |
| APInt shl(unsigned shiftAmt) const { |
| assert(shiftAmt <= BitWidth && "Invalid shift amount"); |
| if (isSingleWord()) { |
| if (shiftAmt >= BitWidth) |
| return APInt(BitWidth, 0); // avoid undefined shift results |
| return APInt(BitWidth, VAL << shiftAmt); |
| } |
| return shlSlowCase(shiftAmt); |
| } |
| |
| /// \brief Rotate left by rotateAmt. |
| APInt rotl(unsigned rotateAmt) const; |
| |
| /// \brief Rotate right by rotateAmt. |
| APInt rotr(unsigned rotateAmt) const; |
| |
| /// \brief Arithmetic right-shift function. |
| /// |
| /// Arithmetic right-shift this APInt by shiftAmt. |
| APInt ashr(const APInt &shiftAmt) const; |
| |
| /// \brief Logical right-shift function. |
| /// |
| /// Logical right-shift this APInt by shiftAmt. |
| APInt lshr(const APInt &shiftAmt) const; |
| |
| /// \brief Left-shift function. |
| /// |
| /// Left-shift this APInt by shiftAmt. |
| APInt shl(const APInt &shiftAmt) const; |
| |
| /// \brief Rotate left by rotateAmt. |
| APInt rotl(const APInt &rotateAmt) const; |
| |
| /// \brief Rotate right by rotateAmt. |
| APInt rotr(const APInt &rotateAmt) const; |
| |
| /// \brief Unsigned division operation. |
| /// |
| /// Perform an unsigned divide operation on this APInt by RHS. Both this and |
| /// RHS are treated as unsigned quantities for purposes of this division. |
| /// |
| /// \returns a new APInt value containing the division result |
| APInt udiv(const APInt &RHS) const; |
| |
| /// \brief Signed division function for APInt. |
| /// |
| /// Signed divide this APInt by APInt RHS. |
| APInt sdiv(const APInt &RHS) const; |
| |
| /// \brief Unsigned remainder operation. |
| /// |
| /// Perform an unsigned remainder operation on this APInt with RHS being the |
| /// divisor. Both this and RHS are treated as unsigned quantities for purposes |
| /// of this operation. Note that this is a true remainder operation and not a |
| /// modulo operation because the sign follows the sign of the dividend which |
| /// is *this. |
| /// |
| /// \returns a new APInt value containing the remainder result |
| APInt urem(const APInt &RHS) const; |
| |
| /// \brief Function for signed remainder operation. |
| /// |
| /// Signed remainder operation on APInt. |
| APInt srem(const APInt &RHS) const; |
| |
| /// \brief Dual division/remainder interface. |
| /// |
| /// Sometimes it is convenient to divide two APInt values and obtain both the |
| /// quotient and remainder. This function does both operations in the same |
| /// computation making it a little more efficient. The pair of input arguments |
| /// may overlap with the pair of output arguments. It is safe to call |
| /// udivrem(X, Y, X, Y), for example. |
| static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, |
| APInt &Remainder); |
| |
| static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, |
| APInt &Remainder); |
| |
| // Operations that return overflow indicators. |
| APInt sadd_ov(const APInt &RHS, bool &Overflow) const; |
| APInt uadd_ov(const APInt &RHS, bool &Overflow) const; |
| APInt ssub_ov(const APInt &RHS, bool &Overflow) const; |
| APInt usub_ov(const APInt &RHS, bool &Overflow) const; |
| APInt sdiv_ov(const APInt &RHS, bool &Overflow) const; |
| APInt smul_ov(const APInt &RHS, bool &Overflow) const; |
| APInt umul_ov(const APInt &RHS, bool &Overflow) const; |
| APInt sshl_ov(const APInt &Amt, bool &Overflow) const; |
| APInt ushl_ov(const APInt &Amt, bool &Overflow) const; |
| |
| /// \brief Array-indexing support. |
| /// |
| /// \returns the bit value at bitPosition |
| bool operator[](unsigned bitPosition) const { |
| assert(bitPosition < getBitWidth() && "Bit position out of bounds!"); |
| return (maskBit(bitPosition) & |
| (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != |
| 0; |
| } |
| |
| /// @} |
| /// \name Comparison Operators |
| /// @{ |
| |
| /// \brief Equality operator. |
| /// |
| /// Compares this APInt with RHS for the validity of the equality |
| /// relationship. |
| bool operator==(const APInt &RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"); |
| if (isSingleWord()) |
| return VAL == RHS.VAL; |
| return EqualSlowCase(RHS); |
| } |
| |
| /// \brief Equality operator. |
| /// |
| /// Compares this APInt with a uint64_t for the validity of the equality |
| /// relationship. |
| /// |
| /// \returns true if *this == Val |
| bool operator==(uint64_t Val) const { |
| if (isSingleWord()) |
| return VAL == Val; |
| return EqualSlowCase(Val); |
| } |
| |
| /// \brief Equality comparison. |
| /// |
| /// Compares this APInt with RHS for the validity of the equality |
| /// relationship. |
| /// |
| /// \returns true if *this == Val |
| bool eq(const APInt &RHS) const { return (*this) == RHS; } |
| |
| /// \brief Inequality operator. |
| /// |
| /// Compares this APInt with RHS for the validity of the inequality |
| /// relationship. |
| /// |
| /// \returns true if *this != Val |
| bool operator!=(const APInt &RHS) const { return !((*this) == RHS); } |
| |
| /// \brief Inequality operator. |
| /// |
| /// Compares this APInt with a uint64_t for the validity of the inequality |
| /// relationship. |
| /// |
| /// \returns true if *this != Val |
| bool operator!=(uint64_t Val) const { return !((*this) == Val); } |
| |
| /// \brief Inequality comparison |
| /// |
| /// Compares this APInt with RHS for the validity of the inequality |
| /// relationship. |
| /// |
| /// \returns true if *this != Val |
| bool ne(const APInt &RHS) const { return !((*this) == RHS); } |
| |
| /// \brief Unsigned less than comparison |
| /// |
| /// Regards both *this and RHS as unsigned quantities and compares them for |
| /// the validity of the less-than relationship. |
| /// |
| /// \returns true if *this < RHS when both are considered unsigned. |
| bool ult(const APInt &RHS) const; |
| |
| /// \brief Unsigned less than comparison |
| /// |
| /// Regards both *this as an unsigned quantity and compares it with RHS for |
| /// the validity of the less-than relationship. |
| /// |
| /// \returns true if *this < RHS when considered unsigned. |
| bool ult(uint64_t RHS) const { |
| return getActiveBits() > 64 ? false : getZExtValue() < RHS; |
| } |
| |
| /// \brief Signed less than comparison |
| /// |
| /// Regards both *this and RHS as signed quantities and compares them for |
| /// validity of the less-than relationship. |
| /// |
| /// \returns true if *this < RHS when both are considered signed. |
| bool slt(const APInt &RHS) const; |
| |
| /// \brief Signed less than comparison |
| /// |
| /// Regards both *this as a signed quantity and compares it with RHS for |
| /// the validity of the less-than relationship. |
| /// |
| /// \returns true if *this < RHS when considered signed. |
| bool slt(int64_t RHS) const { |
| return getMinSignedBits() > 64 ? isNegative() : getSExtValue() < RHS; |
| } |
| |
| /// \brief Unsigned less or equal comparison |
| /// |
| /// Regards both *this and RHS as unsigned quantities and compares them for |
| /// validity of the less-or-equal relationship. |
| /// |
| /// \returns true if *this <= RHS when both are considered unsigned. |
| bool ule(const APInt &RHS) const { return ult(RHS) || eq(RHS); } |
| |
| /// \brief Unsigned less or equal comparison |
| /// |
| /// Regards both *this as an unsigned quantity and compares it with RHS for |
| /// the validity of the less-or-equal relationship. |
| /// |
| /// \returns true if *this <= RHS when considered unsigned. |
| bool ule(uint64_t RHS) const { return !ugt(RHS); } |
| |
| /// \brief Signed less or equal comparison |
| /// |
| /// Regards both *this and RHS as signed quantities and compares them for |
| /// validity of the less-or-equal relationship. |
| /// |
| /// \returns true if *this <= RHS when both are considered signed. |
| bool sle(const APInt &RHS) const { return slt(RHS) || eq(RHS); } |
| |
| /// \brief Signed less or equal comparison |
| /// |
| /// Regards both *this as a signed quantity and compares it with RHS for the |
| /// validity of the less-or-equal relationship. |
| /// |
| /// \returns true if *this <= RHS when considered signed. |
| bool sle(uint64_t RHS) const { return !sgt(RHS); } |
| |
| /// \brief Unsigned greather than comparison |
| /// |
| /// Regards both *this and RHS as unsigned quantities and compares them for |
| /// the validity of the greater-than relationship. |
| /// |
| /// \returns true if *this > RHS when both are considered unsigned. |
| bool ugt(const APInt &RHS) const { return !ult(RHS) && !eq(RHS); } |
| |
| /// \brief Unsigned greater than comparison |
| /// |
| /// Regards both *this as an unsigned quantity and compares it with RHS for |
| /// the validity of the greater-than relationship. |
| /// |
| /// \returns true if *this > RHS when considered unsigned. |
| bool ugt(uint64_t RHS) const { |
| return getActiveBits() > 64 ? true : getZExtValue() > RHS; |
| } |
| |
| /// \brief Signed greather than comparison |
| /// |
| /// Regards both *this and RHS as signed quantities and compares them for the |
| /// validity of the greater-than relationship. |
| /// |
| /// \returns true if *this > RHS when both are considered signed. |
| bool sgt(const APInt &RHS) const { return !slt(RHS) && !eq(RHS); } |
| |
| /// \brief Signed greater than comparison |
| /// |
| /// Regards both *this as a signed quantity and compares it with RHS for |
| /// the validity of the greater-than relationship. |
| /// |
| /// \returns true if *this > RHS when considered signed. |
| bool sgt(int64_t RHS) const { |
| return getMinSignedBits() > 64 ? !isNegative() : getSExtValue() > RHS; |
| } |
| |
| /// \brief Unsigned greater or equal comparison |
| /// |
| /// Regards both *this and RHS as unsigned quantities and compares them for |
| /// validity of the greater-or-equal relationship. |
| /// |
| /// \returns true if *this >= RHS when both are considered unsigned. |
| bool uge(const APInt &RHS) const { return !ult(RHS); } |
| |
| /// \brief Unsigned greater or equal comparison |
| /// |
| /// Regards both *this as an unsigned quantity and compares it with RHS for |
| /// the validity of the greater-or-equal relationship. |
| /// |
| /// \returns true if *this >= RHS when considered unsigned. |
| bool uge(uint64_t RHS) const { return !ult(RHS); } |
| |
| /// \brief Signed greather or equal comparison |
| /// |
| /// Regards both *this and RHS as signed quantities and compares them for |
| /// validity of the greater-or-equal relationship. |
| /// |
| /// \returns true if *this >= RHS when both are considered signed. |
| bool sge(const APInt &RHS) const { return !slt(RHS); } |
| |
| /// \brief Signed greater or equal comparison |
| /// |
| /// Regards both *this as a signed quantity and compares it with RHS for |
| /// the validity of the greater-or-equal relationship. |
| /// |
| /// \returns true if *this >= RHS when considered signed. |
| bool sge(int64_t RHS) const { return !slt(RHS); } |
| |
| /// This operation tests if there are any pairs of corresponding bits |
| /// between this APInt and RHS that are both set. |
| bool intersects(const APInt &RHS) const { return (*this & RHS) != 0; } |
| |
| /// @} |
| /// \name Resizing Operators |
| /// @{ |
| |
| /// \brief Truncate to new width. |
| /// |
| /// Truncate the APInt to a specified width. It is an error to specify a width |
| /// that is greater than or equal to the current width. |
| APInt trunc(unsigned width) const; |
| |
| /// \brief Sign extend to a new width. |
| /// |
| /// This operation sign extends the APInt to a new width. If the high order |
| /// bit is set, the fill on the left will be done with 1 bits, otherwise zero. |
| /// It is an error to specify a width that is less than or equal to the |
| /// current width. |
| APInt sext(unsigned width) const; |
| |
| /// \brief Zero extend to a new width. |
| /// |
| /// This operation zero extends the APInt to a new width. The high order bits |
| /// are filled with 0 bits. It is an error to specify a width that is less |
| /// than or equal to the current width. |
| APInt zext(unsigned width) const; |
| |
| /// \brief Sign extend or truncate to width |
| /// |
| /// Make this APInt have the bit width given by \p width. The value is sign |
| /// extended, truncated, or left alone to make it that width. |
| APInt sextOrTrunc(unsigned width) const; |
| |
| /// \brief Zero extend or truncate to width |
| /// |
| /// Make this APInt have the bit width given by \p width. The value is zero |
| /// extended, truncated, or left alone to make it that width. |
| APInt zextOrTrunc(unsigned width) const; |
| |
| /// \brief Sign extend or truncate to width |
| /// |
| /// Make this APInt have the bit width given by \p width. The value is sign |
| /// extended, or left alone to make it that width. |
| APInt sextOrSelf(unsigned width) const; |
| |
| /// \brief Zero extend or truncate to width |
| /// |
| /// Make this APInt have the bit width given by \p width. The value is zero |
| /// extended, or left alone to make it that width. |
| APInt zextOrSelf(unsigned width) const; |
| |
| /// @} |
| /// \name Bit Manipulation Operators |
| /// @{ |
| |
| /// \brief Set every bit to 1. |
| void setAllBits() { |
| if (isSingleWord()) |
| VAL = UINT64_MAX; |
| else { |
| // Set all the bits in all the words. |
| for (unsigned i = 0; i < getNumWords(); ++i) |
| pVal[i] = UINT64_MAX; |
| } |
| // Clear the unused ones |
| clearUnusedBits(); |
| } |
| |
| /// \brief Set a given bit to 1. |
| /// |
| /// Set the given bit to 1 whose position is given as "bitPosition". |
| void setBit(unsigned bitPosition); |
| |
| /// \brief Set every bit to 0. |
| void clearAllBits() { |
| if (isSingleWord()) |
| VAL = 0; |
| else |
| memset(pVal, 0, getNumWords() * APINT_WORD_SIZE); |
| } |
| |
| /// \brief Set a given bit to 0. |
| /// |
| /// Set the given bit to 0 whose position is given as "bitPosition". |
| void clearBit(unsigned bitPosition); |
| |
| /// \brief Toggle every bit to its opposite value. |
| void flipAllBits() { |
| if (isSingleWord()) |
| VAL ^= UINT64_MAX; |
| else { |
| for (unsigned i = 0; i < getNumWords(); ++i) |
| pVal[i] ^= UINT64_MAX; |
| } |
| clearUnusedBits(); |
| } |
| |
| /// \brief Toggles a given bit to its opposite value. |
| /// |
| /// Toggle a given bit to its opposite value whose position is given |
| /// as "bitPosition". |
| void flipBit(unsigned bitPosition); |
| |
| /// @} |
| /// \name Value Characterization Functions |
| /// @{ |
| |
| /// \brief Return the number of bits in the APInt. |
| unsigned getBitWidth() const { return BitWidth; } |
| |
| /// \brief Get the number of words. |
| /// |
| /// Here one word's bitwidth equals to that of uint64_t. |
| /// |
| /// \returns the number of words to hold the integer value of this APInt. |
| unsigned getNumWords() const { return getNumWords(BitWidth); } |
| |
| /// \brief Get the number of words. |
| /// |
| /// *NOTE* Here one word's bitwidth equals to that of uint64_t. |
| /// |
| /// \returns the number of words to hold the integer value with a given bit |
| /// width. |
| static unsigned getNumWords(unsigned BitWidth) { |
| return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; |
| } |
| |
| /// \brief Compute the number of active bits in the value |
| /// |
| /// This function returns the number of active bits which is defined as the |
| /// bit width minus the number of leading zeros. This is used in several |
| /// computations to see how "wide" the value is. |
| unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); } |
| |
| /// \brief Compute the number of active words in the value of this APInt. |
| /// |
| /// This is used in conjunction with getActiveData to extract the raw value of |
| /// the APInt. |
| unsigned getActiveWords() const { |
| unsigned numActiveBits = getActiveBits(); |
| return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1; |
| } |
| |
| /// \brief Get the minimum bit size for this signed APInt |
| /// |
| /// Computes the minimum bit width for this APInt while considering it to be a |
| /// signed (and probably negative) value. If the value is not negative, this |
| /// function returns the same value as getActiveBits()+1. Otherwise, it |
| /// returns the smallest bit width that will retain the negative value. For |
| /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so |
| /// for -1, this function will always return 1. |
| unsigned getMinSignedBits() const { |
| if (isNegative()) |
| return BitWidth - countLeadingOnes() + 1; |
| return getActiveBits() + 1; |
| } |
| |
| /// \brief Get zero extended value |
| /// |
| /// This method attempts to return the value of this APInt as a zero extended |
| /// uint64_t. The bitwidth must be <= 64 or the value must fit within a |
| /// uint64_t. Otherwise an assertion will result. |
| uint64_t getZExtValue() const { |
| if (isSingleWord()) |
| return VAL; |
| assert(getActiveBits() <= 64 && "Too many bits for uint64_t"); |
| return pVal[0]; |
| } |
| |
| /// \brief Get sign extended value |
| /// |
| /// This method attempts to return the value of this APInt as a sign extended |
| /// int64_t. The bit width must be <= 64 or the value must fit within an |
| /// int64_t. Otherwise an assertion will result. |
| int64_t getSExtValue() const { |
| if (isSingleWord()) |
| return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >> |
| (APINT_BITS_PER_WORD - BitWidth); |
| assert(getMinSignedBits() <= 64 && "Too many bits for int64_t"); |
| return int64_t(pVal[0]); |
| } |
| |
| /// \brief Get bits required for string value. |
| /// |
| /// This method determines how many bits are required to hold the APInt |
| /// equivalent of the string given by \p str. |
| static unsigned getBitsNeeded(StringRef str, uint8_t radix); |
| |
| /// \brief The APInt version of the countLeadingZeros functions in |
| /// MathExtras.h. |
| /// |
| /// It counts the number of zeros from the most significant bit to the first |
| /// one bit. |
| /// |
| /// \returns BitWidth if the value is zero, otherwise returns the number of |
| /// zeros from the most significant bit to the first one bits. |
| unsigned countLeadingZeros() const { |
| if (isSingleWord()) { |
| unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth; |
| return llvm::countLeadingZeros(VAL) - unusedBits; |
| } |
| return countLeadingZerosSlowCase(); |
| } |
| |
| /// \brief Count the number of leading one bits. |
| /// |
| /// This function is an APInt version of the countLeadingOnes |
| /// functions in MathExtras.h. It counts the number of ones from the most |
| /// significant bit to the first zero bit. |
| /// |
| /// \returns 0 if the high order bit is not set, otherwise returns the number |
| /// of 1 bits from the most significant to the least |
| unsigned countLeadingOnes() const; |
| |
| /// Computes the number of leading bits of this APInt that are equal to its |
| /// sign bit. |
| unsigned getNumSignBits() const { |
| return isNegative() ? countLeadingOnes() : countLeadingZeros(); |
| } |
| |
| /// \brief Count the number of trailing zero bits. |
| /// |
| /// This function is an APInt version of the countTrailingZeros |
| /// functions in MathExtras.h. It counts the number of zeros from the least |
| /// significant bit to the first set bit. |
| /// |
| /// \returns BitWidth if the value is zero, otherwise returns the number of |
| /// zeros from the least significant bit to the first one bit. |
| unsigned countTrailingZeros() const; |
| |
| /// \brief Count the number of trailing one bits. |
| /// |
| /// This function is an APInt version of the countTrailingOnes |
| /// functions in MathExtras.h. It counts the number of ones from the least |
| /// significant bit to the first zero bit. |
| /// |
| /// \returns BitWidth if the value is all ones, otherwise returns the number |
| /// of ones from the least significant bit to the first zero bit. |
| unsigned countTrailingOnes() const { |
| if (isSingleWord()) |
| return llvm::countTrailingOnes(VAL); |
| return countTrailingOnesSlowCase(); |
| } |
| |
| /// \brief Count the number of bits set. |
| /// |
| /// This function is an APInt version of the countPopulation functions |
| /// in MathExtras.h. It counts the number of 1 bits in the APInt value. |
| /// |
| /// \returns 0 if the value is zero, otherwise returns the number of set bits. |
| unsigned countPopulation() const { |
| if (isSingleWord()) |
| return llvm::countPopulation(VAL); |
| return countPopulationSlowCase(); |
| } |
| |
| /// @} |
| /// \name Conversion Functions |
| /// @{ |
| void print(raw_ostream &OS, bool isSigned) const; |
| |
| /// Converts an APInt to a string and append it to Str. Str is commonly a |
| /// SmallString. |
| void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed, |
| bool formatAsCLiteral = false) const; |
| |
| /// Considers the APInt to be unsigned and converts it into a string in the |
| /// radix given. The radix can be 2, 8, 10 16, or 36. |
| void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { |
| toString(Str, Radix, false, false); |
| } |
| |
| /// Considers the APInt to be signed and converts it into a string in the |
| /// radix given. The radix can be 2, 8, 10, 16, or 36. |
| void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { |
| toString(Str, Radix, true, false); |
| } |
| |
| /// \brief Return the APInt as a std::string. |
| /// |
| /// Note that this is an inefficient method. It is better to pass in a |
| /// SmallVector/SmallString to the methods above to avoid thrashing the heap |
| /// for the string. |
| std::string toString(unsigned Radix, bool Signed) const; |
| |
| /// \returns a byte-swapped representation of this APInt Value. |
| APInt byteSwap() const; |
| |
| /// \returns the value with the bit representation reversed of this APInt |
| /// Value. |
| APInt reverseBits() const; |
| |
| /// \brief Converts this APInt to a double value. |
| double roundToDouble(bool isSigned) const; |
| |
| /// \brief Converts this unsigned APInt to a double value. |
| double roundToDouble() const { return roundToDouble(false); } |
| |
| /// \brief Converts this signed APInt to a double value. |
| double signedRoundToDouble() const { return roundToDouble(true); } |
| |
| /// \brief Converts APInt bits to a double |
| /// |
| /// The conversion does not do a translation from integer to double, it just |
| /// re-interprets the bits as a double. Note that it is valid to do this on |
| /// any bit width. Exactly 64 bits will be translated. |
| double bitsToDouble() const { |
| union { |
| uint64_t I; |
| double D; |
| } T; |
| T.I = (isSingleWord() ? VAL : pVal[0]); |
| return T.D; |
| } |
| |
| /// \brief Converts APInt bits to a double |
| /// |
| /// The conversion does not do a translation from integer to float, it just |
| /// re-interprets the bits as a float. Note that it is valid to do this on |
| /// any bit width. Exactly 32 bits will be translated. |
| float bitsToFloat() const { |
| union { |
| unsigned I; |
| float F; |
| } T; |
| T.I = unsigned((isSingleWord() ? VAL : pVal[0])); |
| return T.F; |
| } |
| |
| /// \brief Converts a double to APInt bits. |
| /// |
| /// The conversion does not do a translation from double to integer, it just |
| /// re-interprets the bits of the double. |
| static APInt doubleToBits(double V) { |
| union { |
| uint64_t I; |
| double D; |
| } T; |
| T.D = V; |
| return APInt(sizeof T * CHAR_BIT, T.I); |
| } |
| |
| /// \brief Converts a float to APInt bits. |
| /// |
| /// The conversion does not do a translation from float to integer, it just |
| /// re-interprets the bits of the float. |
| static APInt floatToBits(float V) { |
| union { |
| unsigned I; |
| float F; |
| } T; |
| T.F = V; |
| return APInt(sizeof T * CHAR_BIT, T.I); |
| } |
| |
| /// @} |
| /// \name Mathematics Operations |
| /// @{ |
| |
| /// \returns the floor log base 2 of this APInt. |
| unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); } |
| |
| /// \returns the ceil log base 2 of this APInt. |
| unsigned ceilLogBase2() const { |
| APInt temp(*this); |
| --temp; |
| return BitWidth - temp.countLeadingZeros(); |
| } |
| |
| /// \returns the nearest log base 2 of this APInt. Ties round up. |
| /// |
| /// NOTE: When we have a BitWidth of 1, we define: |
| /// |
| /// log2(0) = UINT32_MAX |
| /// log2(1) = 0 |
| /// |
| /// to get around any mathematical concerns resulting from |
| /// referencing 2 in a space where 2 does no exist. |
| unsigned nearestLogBase2() const { |
| // Special case when we have a bitwidth of 1. If VAL is 1, then we |
| // get 0. If VAL is 0, we get UINT64_MAX which gets truncated to |
| // UINT32_MAX. |
| if (BitWidth == 1) |
| return VAL - 1; |
| |
| // Handle the zero case. |
| if (!getBoolValue()) |
| return UINT32_MAX; |
| |
| // The non-zero case is handled by computing: |
| // |
| // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. |
| // |
| // where x[i] is referring to the value of the ith bit of x. |
| unsigned lg = logBase2(); |
| return lg + unsigned((*this)[lg - 1]); |
| } |
| |
| /// \returns the log base 2 of this APInt if its an exact power of two, -1 |
| /// otherwise |
| int32_t exactLogBase2() const { |
| if (!isPowerOf2()) |
| return -1; |
| return logBase2(); |
| } |
| |
| /// \brief Compute the square root |
| APInt sqrt() const; |
| |
| /// \brief Get the absolute value; |
| /// |
| /// If *this is < 0 then return -(*this), otherwise *this; |
| APInt abs() const { |
| if (isNegative()) |
| return -(*this); |
| return *this; |
| } |
| |
| /// \returns the multiplicative inverse for a given modulo. |
| APInt multiplicativeInverse(const APInt &modulo) const; |
| |
| /// @} |
| /// \name Support for division by constant |
| /// @{ |
| |
| /// Calculate the magic number for signed division by a constant. |
| struct ms; |
| ms magic() const; |
| |
| /// Calculate the magic number for unsigned division by a constant. |
| struct mu; |
| mu magicu(unsigned LeadingZeros = 0) const; |
| |
| /// @} |
| /// \name Building-block Operations for APInt and APFloat |
| /// @{ |
| |
| // These building block operations operate on a representation of arbitrary |
| // precision, two's-complement, bignum integer values. They should be |
| // sufficient to implement APInt and APFloat bignum requirements. Inputs are |
| // generally a pointer to the base of an array of integer parts, representing |
| // an unsigned bignum, and a count of how many parts there are. |
| |
| /// Sets the least significant part of a bignum to the input value, and zeroes |
| /// out higher parts. |
| static void tcSet(integerPart *, integerPart, unsigned int); |
| |
| /// Assign one bignum to another. |
| static void tcAssign(integerPart *, const integerPart *, unsigned int); |
| |
| /// Returns true if a bignum is zero, false otherwise. |
| static bool tcIsZero(const integerPart *, unsigned int); |
| |
| /// Extract the given bit of a bignum; returns 0 or 1. Zero-based. |
| static int tcExtractBit(const integerPart *, unsigned int bit); |
| |
| /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to |
| /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least |
| /// significant bit of DST. All high bits above srcBITS in DST are |
| /// zero-filled. |
| static void tcExtract(integerPart *, unsigned int dstCount, |
| const integerPart *, unsigned int srcBits, |
| unsigned int srcLSB); |
| |
| /// Set the given bit of a bignum. Zero-based. |
| static void tcSetBit(integerPart *, unsigned int bit); |
| |
| /// Clear the given bit of a bignum. Zero-based. |
| static void tcClearBit(integerPart *, unsigned int bit); |
| |
| /// Returns the bit number of the least or most significant set bit of a |
| /// number. If the input number has no bits set -1U is returned. |
| static unsigned int tcLSB(const integerPart *, unsigned int); |
| static unsigned int tcMSB(const integerPart *parts, unsigned int n); |
| |
| /// Negate a bignum in-place. |
| static void tcNegate(integerPart *, unsigned int); |
| |
| /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag. |
| static integerPart tcAdd(integerPart *, const integerPart *, |
| integerPart carry, unsigned); |
| |
| /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag. |
| static integerPart tcSubtract(integerPart *, const integerPart *, |
| integerPart carry, unsigned); |
| |
| /// DST += SRC * MULTIPLIER + PART if add is true |
| /// DST = SRC * MULTIPLIER + PART if add is false |
| /// |
| /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must |
| /// start at the same point, i.e. DST == SRC. |
| /// |
| /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned. |
| /// Otherwise DST is filled with the least significant DSTPARTS parts of the |
| /// result, and if all of the omitted higher parts were zero return zero, |
| /// otherwise overflow occurred and return one. |
| static int tcMultiplyPart(integerPart *dst, const integerPart *src, |
| integerPart multiplier, integerPart carry, |
| unsigned int srcParts, unsigned int dstParts, |
| bool add); |
| |
| /// DST = LHS * RHS, where DST has the same width as the operands and is |
| /// filled with the least significant parts of the result. Returns one if |
| /// overflow occurred, otherwise zero. DST must be disjoint from both |
| /// operands. |
| static int tcMultiply(integerPart *, const integerPart *, const integerPart *, |
| unsigned); |
| |
| /// DST = LHS * RHS, where DST has width the sum of the widths of the |
| /// operands. No overflow occurs. DST must be disjoint from both |
| /// operands. Returns the number of parts required to hold the result. |
| static unsigned int tcFullMultiply(integerPart *, const integerPart *, |
| const integerPart *, unsigned, unsigned); |
| |
| /// If RHS is zero LHS and REMAINDER are left unchanged, return one. |
| /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set |
| /// REMAINDER to the remainder, return zero. i.e. |
| /// |
| /// OLD_LHS = RHS * LHS + REMAINDER |
| /// |
| /// SCRATCH is a bignum of the same size as the operands and result for use by |
| /// the routine; its contents need not be initialized and are destroyed. LHS, |
| /// REMAINDER and SCRATCH must be distinct. |
| static int tcDivide(integerPart *lhs, const integerPart *rhs, |
| integerPart *remainder, integerPart *scratch, |
| unsigned int parts); |
| |
| /// Shift a bignum left COUNT bits. Shifted in bits are zero. There are no |
| /// restrictions on COUNT. |
| static void tcShiftLeft(integerPart *, unsigned int parts, |
| unsigned int count); |
| |
| /// Shift a bignum right COUNT bits. Shifted in bits are zero. There are no |
| /// restrictions on COUNT. |
| static void tcShiftRight(integerPart *, unsigned int parts, |
| unsigned int count); |
| |
| /// The obvious AND, OR and XOR and complement operations. |
| static void tcAnd(integerPart *, const integerPart *, unsigned int); |
| static void tcOr(integerPart *, const integerPart *, unsigned int); |
| static void tcXor(integerPart *, const integerPart *, unsigned int); |
| static void tcComplement(integerPart *, unsigned int); |
| |
| /// Comparison (unsigned) of two bignums. |
| static int tcCompare(const integerPart *, const integerPart *, unsigned int); |
| |
| /// Increment a bignum in-place. Return the carry flag. |
| static integerPart tcIncrement(integerPart *, unsigned int); |
| |
| /// Decrement a bignum in-place. Return the borrow flag. |
| static integerPart tcDecrement(integerPart *, unsigned int); |
| |
| /// Set the least significant BITS and clear the rest. |
| static void tcSetLeastSignificantBits(integerPart *, unsigned int, |
| unsigned int bits); |
| |
| /// \brief debug method |
| void dump() const; |
| |
| /// @} |
| }; |
| |
| /// Magic data for optimising signed division by a constant. |
| struct APInt::ms { |
| APInt m; ///< magic number |
| unsigned s; ///< shift amount |
| }; |
| |
| /// Magic data for optimising unsigned division by a constant. |
| struct APInt::mu { |
| APInt m; ///< magic number |
| bool a; ///< add indicator |
| unsigned s; ///< shift amount |
| }; |
| |
| inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; } |
| |
| inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; } |
| |
| inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) { |
| I.print(OS, true); |
| return OS; |
| } |
| |
| inline APInt operator-(APInt v) { |
| v.flipAllBits(); |
| ++v; |
| return v; |
| } |
| |
| inline APInt operator+(APInt a, const APInt &b) { |
| a += b; |
| return a; |
| } |
| |
| inline APInt operator+(const APInt &a, APInt &&b) { |
| b += a; |
| return std::move(b); |
| } |
| |
| inline APInt operator+(APInt a, uint64_t RHS) { |
| a += RHS; |
| return a; |
| } |
| |
| inline APInt operator+(uint64_t LHS, APInt b) { |
| b += LHS; |
| return b; |
| } |
| |
| inline APInt operator-(APInt a, const APInt &b) { |
| a -= b; |
| return a; |
| } |
| |
| inline APInt operator-(const APInt &a, APInt &&b) { |
| b = -std::move(b); |
| b += a; |
| return std::move(b); |
| } |
| |
| inline APInt operator-(APInt a, uint64_t RHS) { |
| a -= RHS; |
| return a; |
| } |
| |
| inline APInt operator-(uint64_t LHS, APInt b) { |
| b = -std::move(b); |
| b += LHS; |
| return b; |
| } |
| |
| |
| namespace APIntOps { |
| |
| /// \brief Determine the smaller of two APInts considered to be signed. |
| inline const APInt &smin(const APInt &A, const APInt &B) { |
| return A.slt(B) ? A : B; |
| } |
| |
| /// \brief Determine the larger of two APInts considered to be signed. |
| inline const APInt &smax(const APInt &A, const APInt &B) { |
| return A.sgt(B) ? A : B; |
| } |
| |
| /// \brief Determine the smaller of two APInts considered to be signed. |
| inline const APInt &umin(const APInt &A, const APInt &B) { |
| return A.ult(B) ? A : B; |
| } |
| |
| /// \brief Determine the larger of two APInts considered to be unsigned. |
| inline const APInt &umax(const APInt &A, const APInt &B) { |
| return A.ugt(B) ? A : B; |
| } |
| |
| /// \brief Check if the specified APInt has a N-bits unsigned integer value. |
| inline bool isIntN(unsigned N, const APInt &APIVal) { return APIVal.isIntN(N); } |
| |
| /// \brief Check if the specified APInt has a N-bits signed integer value. |
| inline bool isSignedIntN(unsigned N, const APInt &APIVal) { |
| return APIVal.isSignedIntN(N); |
| } |
| |
| /// \returns true if the argument APInt value is a sequence of ones starting at |
| /// the least significant bit with the remainder zero. |
| inline bool isMask(unsigned numBits, const APInt &APIVal) { |
| return numBits <= APIVal.getBitWidth() && |
| APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits); |
| } |
| |
| /// \returns true if the argument is a non-empty sequence of ones starting at |
| /// the least significant bit with the remainder zero (32 bit version). |
| /// Ex. isMask(0x0000FFFFU) == true. |
| inline bool isMask(const APInt &Value) { |
| return (Value != 0) && ((Value + 1) & Value) == 0; |
| } |
| |
| /// \brief Return true if the argument APInt value contains a sequence of ones |
| /// with the remainder zero. |
| inline bool isShiftedMask(unsigned numBits, const APInt &APIVal) { |
| return isMask(numBits, (APIVal - APInt(numBits, 1)) | APIVal); |
| } |
| |
| /// \brief Returns a byte-swapped representation of the specified APInt Value. |
| inline APInt byteSwap(const APInt &APIVal) { return APIVal.byteSwap(); } |
| |
| /// \brief Returns the floor log base 2 of the specified APInt value. |
| inline unsigned logBase2(const APInt &APIVal) { return APIVal.logBase2(); } |
| |
| /// \brief Compute GCD of two APInt values. |
| /// |
| /// This function returns the greatest common divisor of the two APInt values |
| /// using Euclid's algorithm. |
| /// |
| /// \returns the greatest common divisor of Val1 and Val2 |
| APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2); |
| |
| /// \brief Converts the given APInt to a double value. |
| /// |
| /// Treats the APInt as an unsigned value for conversion purposes. |
| inline double RoundAPIntToDouble(const APInt &APIVal) { |
| return APIVal.roundToDouble(); |
| } |
| |
| /// \brief Converts the given APInt to a double value. |
| /// |
| /// Treats the APInt as a signed value for conversion purposes. |
| inline double RoundSignedAPIntToDouble(const APInt &APIVal) { |
| return APIVal.signedRoundToDouble(); |
| } |
| |
| /// \brief Converts the given APInt to a float vlalue. |
| inline float RoundAPIntToFloat(const APInt &APIVal) { |
| return float(RoundAPIntToDouble(APIVal)); |
| } |
| |
| /// \brief Converts the given APInt to a float value. |
| /// |
| /// Treast the APInt as a signed value for conversion purposes. |
| inline float RoundSignedAPIntToFloat(const APInt &APIVal) { |
| return float(APIVal.signedRoundToDouble()); |
| } |
| |
| /// \brief Converts the given double value into a APInt. |
| /// |
| /// This function convert a double value to an APInt value. |
| APInt RoundDoubleToAPInt(double Double, unsigned width); |
| |
| /// \brief Converts a float value into a APInt. |
| /// |
| /// Converts a float value into an APInt value. |
| inline APInt RoundFloatToAPInt(float Float, unsigned width) { |
| return RoundDoubleToAPInt(double(Float), width); |
| } |
| |
| /// \brief Arithmetic right-shift function. |
| /// |
| /// Arithmetic right-shift the APInt by shiftAmt. |
| inline APInt ashr(const APInt &LHS, unsigned shiftAmt) { |
| return LHS.ashr(shiftAmt); |
| } |
| |
| /// \brief Logical right-shift function. |
| /// |
| /// Logical right-shift the APInt by shiftAmt. |
| inline APInt lshr(const APInt &LHS, unsigned shiftAmt) { |
| return LHS.lshr(shiftAmt); |
| } |
| |
| /// \brief Left-shift function. |
| /// |
| /// Left-shift the APInt by shiftAmt. |
| inline APInt shl(const APInt &LHS, unsigned shiftAmt) { |
| return LHS.shl(shiftAmt); |
| } |
| |
| /// \brief Signed division function for APInt. |
| /// |
| /// Signed divide APInt LHS by APInt RHS. |
| inline APInt sdiv(const APInt &LHS, const APInt &RHS) { return LHS.sdiv(RHS); } |
| |
| /// \brief Unsigned division function for APInt. |
| /// |
| /// Unsigned divide APInt LHS by APInt RHS. |
| inline APInt udiv(const APInt &LHS, const APInt &RHS) { return LHS.udiv(RHS); } |
| |
| /// \brief Function for signed remainder operation. |
| /// |
| /// Signed remainder operation on APInt. |
| inline APInt srem(const APInt &LHS, const APInt &RHS) { return LHS.srem(RHS); } |
| |
| /// \brief Function for unsigned remainder operation. |
| /// |
| /// Unsigned remainder operation on APInt. |
| inline APInt urem(const APInt &LHS, const APInt &RHS) { return LHS.urem(RHS); } |
| |
| /// \brief Function for multiplication operation. |
| /// |
| /// Performs multiplication on APInt values. |
| inline APInt mul(const APInt &LHS, const APInt &RHS) { return LHS * RHS; } |
| |
| /// \brief Function for addition operation. |
| /// |
| /// Performs addition on APInt values. |
| inline APInt add(const APInt &LHS, const APInt &RHS) { return LHS + RHS; } |
| |
| /// \brief Function for subtraction operation. |
| /// |
| /// Performs subtraction on APInt values. |
| inline APInt sub(const APInt &LHS, const APInt &RHS) { return LHS - RHS; } |
| |
| /// \brief Bitwise AND function for APInt. |
| /// |
| /// Performs bitwise AND operation on APInt LHS and |
| /// APInt RHS. |
| inline APInt And(const APInt &LHS, const APInt &RHS) { return LHS & RHS; } |
| |
| /// \brief Bitwise OR function for APInt. |
| /// |
| /// Performs bitwise OR operation on APInt LHS and APInt RHS. |
| inline APInt Or(const APInt &LHS, const APInt &RHS) { return LHS | RHS; } |
| |
| /// \brief Bitwise XOR function for APInt. |
| /// |
| /// Performs bitwise XOR operation on APInt. |
| inline APInt Xor(const APInt &LHS, const APInt &RHS) { return LHS ^ RHS; } |
| |
| /// \brief Bitwise complement function. |
| /// |
| /// Performs a bitwise complement operation on APInt. |
| inline APInt Not(const APInt &APIVal) { return ~APIVal; } |
| |
| } // End of APIntOps namespace |
| |
| // See friend declaration above. This additional declaration is required in |
| // order to compile LLVM with IBM xlC compiler. |
| hash_code hash_value(const APInt &Arg); |
| } // End of llvm namespace |
| |
| #endif |