| // SwiftShader Software Renderer | |
| // | |
| // Copyright(c) 2005-2013 TransGaming Inc. | |
| // | |
| // All rights reserved. No part of this software may be copied, distributed, transmitted, | |
| // transcribed, stored in a retrieval system, translated into any human or computer | |
| // language by any means, or disclosed to third parties without the explicit written | |
| // agreement of TransGaming Inc. Without such an agreement, no rights or licenses, express | |
| // or implied, including but not limited to any patent rights, are granted to you. | |
| // | |
| // Context.cpp: Implements the gl::Context class, managing all GL state and performing | |
| // rendering operations. | |
| #include "Context.h" | |
| #include "main.h" | |
| #include "mathutil.h" | |
| #include "utilities.h" | |
| #include "ResourceManager.h" | |
| #include "Buffer.h" | |
| #include "Fence.h" | |
| #include "Framebuffer.h" | |
| #include "Program.h" | |
| #include "Query.h" | |
| #include "Renderbuffer.h" | |
| #include "Shader.h" | |
| #include "Texture.h" | |
| #include "VertexDataManager.h" | |
| #include "IndexDataManager.h" | |
| #include "Display.h" | |
| #include "Surface.h" | |
| #include "Common/Half.hpp" | |
| #define _GDI32_ | |
| #include <windows.h> | |
| #include <GL/GL.h> | |
| #define GL_GLEXT_PROTOTYPES | |
| #include <GL/glext.h> | |
| #undef near | |
| #undef far | |
| namespace gl | |
| { | |
| Context::Context(const Context *shareContext) | |
| : modelView(32), | |
| projection(2) | |
| { | |
| sw::Context *context = new sw::Context(); | |
| device = new gl::Device(context); | |
| //mFenceNameSpace.setBaseHandle(0); | |
| setClearColor(0.0f, 0.0f, 0.0f, 0.0f); | |
| mState.depthClearValue = 1.0f; | |
| mState.stencilClearValue = 0; | |
| mState.cullFace = false; | |
| mState.cullMode = GL_BACK; | |
| mState.frontFace = GL_CCW; | |
| mState.depthTest = false; | |
| mState.depthFunc = GL_LESS; | |
| mState.blend = false; | |
| mState.sourceBlendRGB = GL_ONE; | |
| mState.sourceBlendAlpha = GL_ONE; | |
| mState.destBlendRGB = GL_ZERO; | |
| mState.destBlendAlpha = GL_ZERO; | |
| mState.blendEquationRGB = GL_FUNC_ADD; | |
| mState.blendEquationAlpha = GL_FUNC_ADD; | |
| mState.blendColor.red = 0; | |
| mState.blendColor.green = 0; | |
| mState.blendColor.blue = 0; | |
| mState.blendColor.alpha = 0; | |
| mState.stencilTest = false; | |
| mState.stencilFunc = GL_ALWAYS; | |
| mState.stencilRef = 0; | |
| mState.stencilMask = -1; | |
| mState.stencilWritemask = -1; | |
| mState.stencilBackFunc = GL_ALWAYS; | |
| mState.stencilBackRef = 0; | |
| mState.stencilBackMask = - 1; | |
| mState.stencilBackWritemask = -1; | |
| mState.stencilFail = GL_KEEP; | |
| mState.stencilPassDepthFail = GL_KEEP; | |
| mState.stencilPassDepthPass = GL_KEEP; | |
| mState.stencilBackFail = GL_KEEP; | |
| mState.stencilBackPassDepthFail = GL_KEEP; | |
| mState.stencilBackPassDepthPass = GL_KEEP; | |
| mState.polygonOffsetFill = false; | |
| mState.polygonOffsetFactor = 0.0f; | |
| mState.polygonOffsetUnits = 0.0f; | |
| mState.sampleAlphaToCoverage = false; | |
| mState.sampleCoverage = false; | |
| mState.sampleCoverageValue = 1.0f; | |
| mState.sampleCoverageInvert = false; | |
| mState.scissorTest = false; | |
| mState.dither = true; | |
| mState.generateMipmapHint = GL_DONT_CARE; | |
| mState.fragmentShaderDerivativeHint = GL_DONT_CARE; | |
| mState.lineWidth = 1.0f; | |
| mState.viewportX = 0; | |
| mState.viewportY = 0; | |
| mState.viewportWidth = 0; | |
| mState.viewportHeight = 0; | |
| mState.zNear = 0.0f; | |
| mState.zFar = 1.0f; | |
| mState.scissorX = 0; | |
| mState.scissorY = 0; | |
| mState.scissorWidth = 0; | |
| mState.scissorHeight = 0; | |
| mState.colorMaskRed = true; | |
| mState.colorMaskGreen = true; | |
| mState.colorMaskBlue = true; | |
| mState.colorMaskAlpha = true; | |
| mState.depthMask = true; | |
| if(shareContext != NULL) | |
| { | |
| mResourceManager = shareContext->mResourceManager; | |
| mResourceManager->addRef(); | |
| } | |
| else | |
| { | |
| mResourceManager = new ResourceManager(); | |
| } | |
| // In the initial state, TEXTURE_2D and TEXTURE_CUBE_MAP have twodimensional | |
| // and cube map texture state vectors respectively associated with them. | |
| // In order that access to these initial textures not be lost, they are treated as texture | |
| // objects all of whose names are 0. | |
| mTexture2DZero = new Texture2D(0); | |
| mProxyTexture2DZero = new Texture2D(0); | |
| mTextureCubeMapZero = new TextureCubeMap(0); | |
| mState.activeSampler = 0; | |
| bindArrayBuffer(0); | |
| bindElementArrayBuffer(0); | |
| bindTextureCubeMap(0); | |
| bindTexture2D(0); | |
| bindReadFramebuffer(0); | |
| bindDrawFramebuffer(0); | |
| bindRenderbuffer(0); | |
| mState.currentProgram = 0; | |
| mState.packAlignment = 4; | |
| mState.unpackAlignment = 4; | |
| mVertexDataManager = NULL; | |
| mIndexDataManager = NULL; | |
| mInvalidEnum = false; | |
| mInvalidValue = false; | |
| mInvalidOperation = false; | |
| mOutOfMemory = false; | |
| mInvalidFramebufferOperation = false; | |
| mHasBeenCurrent = false; | |
| markAllStateDirty(); | |
| matrixMode = GL_MODELVIEW; | |
| listMode = 0; | |
| //memset(displayList, 0, sizeof(displayList)); | |
| listIndex = 0; | |
| list = 0; | |
| firstFreeIndex = 1; | |
| clientTexture = GL_TEXTURE0; | |
| drawing = false; | |
| drawMode = 0; // FIXME | |
| mState.vertexAttribute[sw::Color0].mCurrentValue[0] = 1.0f; | |
| mState.vertexAttribute[sw::Color0].mCurrentValue[1] = 1.0f; | |
| mState.vertexAttribute[sw::Color0].mCurrentValue[2] = 1.0f; | |
| mState.vertexAttribute[sw::Color0].mCurrentValue[3] = 1.0f; | |
| mState.vertexAttribute[sw::Normal].mCurrentValue[0] = 0.0f; | |
| mState.vertexAttribute[sw::Normal].mCurrentValue[1] = 0.0f; | |
| mState.vertexAttribute[sw::Normal].mCurrentValue[2] = 1.0f; | |
| mState.vertexAttribute[sw::Normal].mCurrentValue[3] = 0.0f; | |
| mState.vertexAttribute[sw::TexCoord0].mCurrentValue[0] = 0.0f; | |
| mState.vertexAttribute[sw::TexCoord0].mCurrentValue[1] = 0.0f; | |
| mState.vertexAttribute[sw::TexCoord0].mCurrentValue[2] = 0.0f; | |
| mState.vertexAttribute[sw::TexCoord0].mCurrentValue[3] = 1.0f; | |
| mState.vertexAttribute[sw::TexCoord1].mCurrentValue[0] = 0.0f; | |
| mState.vertexAttribute[sw::TexCoord1].mCurrentValue[1] = 0.0f; | |
| mState.vertexAttribute[sw::TexCoord1].mCurrentValue[2] = 0.0f; | |
| mState.vertexAttribute[sw::TexCoord1].mCurrentValue[3] = 1.0f; | |
| for(int i = 0; i < 8; i++) | |
| { | |
| envEnable[i] = true; | |
| } | |
| } | |
| Context::~Context() | |
| { | |
| if(mState.currentProgram != 0) | |
| { | |
| Program *programObject = mResourceManager->getProgram(mState.currentProgram); | |
| if(programObject) | |
| { | |
| programObject->release(); | |
| } | |
| mState.currentProgram = 0; | |
| } | |
| while(!mFramebufferMap.empty()) | |
| { | |
| deleteFramebuffer(mFramebufferMap.begin()->first); | |
| } | |
| while(!mFenceMap.empty()) | |
| { | |
| deleteFence(mFenceMap.begin()->first); | |
| } | |
| while(!mQueryMap.empty()) | |
| { | |
| deleteQuery(mQueryMap.begin()->first); | |
| } | |
| for(int type = 0; type < TEXTURE_TYPE_COUNT; type++) | |
| { | |
| for(int sampler = 0; sampler < MAX_COMBINED_TEXTURE_IMAGE_UNITS; sampler++) | |
| { | |
| mState.samplerTexture[type][sampler] = NULL; | |
| } | |
| } | |
| for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++) | |
| { | |
| mState.vertexAttribute[i].mBoundBuffer = NULL; | |
| } | |
| for(int i = 0; i < QUERY_TYPE_COUNT; i++) | |
| { | |
| mState.activeQuery[i] = NULL; | |
| } | |
| mState.arrayBuffer = NULL; | |
| mState.elementArrayBuffer = NULL; | |
| mState.renderbuffer = NULL; | |
| mTexture2DZero = NULL; | |
| mProxyTexture2DZero = NULL; | |
| mTextureCubeMapZero = NULL; | |
| delete mVertexDataManager; | |
| delete mIndexDataManager; | |
| mResourceManager->release(); | |
| delete device; | |
| } | |
| void Context::makeCurrent(Surface *surface) | |
| { | |
| if(!mHasBeenCurrent) | |
| { | |
| mVertexDataManager = new VertexDataManager(this); | |
| mIndexDataManager = new IndexDataManager(); | |
| mState.viewportX = 0; | |
| mState.viewportY = 0; | |
| mState.viewportWidth = surface->getWidth(); | |
| mState.viewportHeight = surface->getHeight(); | |
| mState.scissorX = 0; | |
| mState.scissorY = 0; | |
| mState.scissorWidth = surface->getWidth(); | |
| mState.scissorHeight = surface->getHeight(); | |
| mHasBeenCurrent = true; | |
| } | |
| // Wrap the existing resources into GL objects and assign them to the '0' names | |
| Image *defaultRenderTarget = surface->getRenderTarget(); | |
| Image *depthStencil = surface->getDepthStencil(); | |
| Colorbuffer *colorbufferZero = new Colorbuffer(defaultRenderTarget); | |
| DepthStencilbuffer *depthStencilbufferZero = new DepthStencilbuffer(depthStencil); | |
| Framebuffer *framebufferZero = new DefaultFramebuffer(colorbufferZero, depthStencilbufferZero); | |
| setFramebufferZero(framebufferZero); | |
| if(defaultRenderTarget) | |
| { | |
| defaultRenderTarget->release(); | |
| } | |
| if(depthStencil) | |
| { | |
| depthStencil->release(); | |
| } | |
| markAllStateDirty(); | |
| } | |
| // This function will set all of the state-related dirty flags, so that all state is set during next pre-draw. | |
| void Context::markAllStateDirty() | |
| { | |
| mAppliedProgramSerial = 0; | |
| mDepthStateDirty = true; | |
| mMaskStateDirty = true; | |
| mBlendStateDirty = true; | |
| mStencilStateDirty = true; | |
| mPolygonOffsetStateDirty = true; | |
| mSampleStateDirty = true; | |
| mDitherStateDirty = true; | |
| mFrontFaceDirty = true; | |
| } | |
| void Context::setClearColor(float red, float green, float blue, float alpha) | |
| { | |
| mState.colorClearValue.red = red; | |
| mState.colorClearValue.green = green; | |
| mState.colorClearValue.blue = blue; | |
| mState.colorClearValue.alpha = alpha; | |
| } | |
| void Context::setClearDepth(float depth) | |
| { | |
| mState.depthClearValue = depth; | |
| } | |
| void Context::setClearStencil(int stencil) | |
| { | |
| mState.stencilClearValue = stencil; | |
| } | |
| void Context::setCullFace(bool enabled) | |
| { | |
| mState.cullFace = enabled; | |
| } | |
| bool Context::isCullFaceEnabled() const | |
| { | |
| return mState.cullFace; | |
| } | |
| void Context::setCullMode(GLenum mode) | |
| { | |
| mState.cullMode = mode; | |
| } | |
| void Context::setFrontFace(GLenum front) | |
| { | |
| if(mState.frontFace != front) | |
| { | |
| mState.frontFace = front; | |
| mFrontFaceDirty = true; | |
| } | |
| } | |
| void Context::setDepthTest(bool enabled) | |
| { | |
| if(mState.depthTest != enabled) | |
| { | |
| mState.depthTest = enabled; | |
| mDepthStateDirty = true; | |
| } | |
| } | |
| bool Context::isDepthTestEnabled() const | |
| { | |
| return mState.depthTest; | |
| } | |
| void Context::setDepthFunc(GLenum depthFunc) | |
| { | |
| if(mState.depthFunc != depthFunc) | |
| { | |
| mState.depthFunc = depthFunc; | |
| mDepthStateDirty = true; | |
| } | |
| } | |
| void Context::setDepthRange(float zNear, float zFar) | |
| { | |
| mState.zNear = zNear; | |
| mState.zFar = zFar; | |
| } | |
| void Context::setBlend(bool enabled) | |
| { | |
| if(mState.blend != enabled) | |
| { | |
| mState.blend = enabled; | |
| mBlendStateDirty = true; | |
| } | |
| } | |
| bool Context::isBlendEnabled() const | |
| { | |
| return mState.blend; | |
| } | |
| void Context::setBlendFactors(GLenum sourceRGB, GLenum destRGB, GLenum sourceAlpha, GLenum destAlpha) | |
| { | |
| if(mState.sourceBlendRGB != sourceRGB || | |
| mState.sourceBlendAlpha != sourceAlpha || | |
| mState.destBlendRGB != destRGB || | |
| mState.destBlendAlpha != destAlpha) | |
| { | |
| mState.sourceBlendRGB = sourceRGB; | |
| mState.destBlendRGB = destRGB; | |
| mState.sourceBlendAlpha = sourceAlpha; | |
| mState.destBlendAlpha = destAlpha; | |
| mBlendStateDirty = true; | |
| } | |
| } | |
| void Context::setBlendColor(float red, float green, float blue, float alpha) | |
| { | |
| if(mState.blendColor.red != red || | |
| mState.blendColor.green != green || | |
| mState.blendColor.blue != blue || | |
| mState.blendColor.alpha != alpha) | |
| { | |
| mState.blendColor.red = red; | |
| mState.blendColor.green = green; | |
| mState.blendColor.blue = blue; | |
| mState.blendColor.alpha = alpha; | |
| mBlendStateDirty = true; | |
| } | |
| } | |
| void Context::setBlendEquation(GLenum rgbEquation, GLenum alphaEquation) | |
| { | |
| if(mState.blendEquationRGB != rgbEquation || | |
| mState.blendEquationAlpha != alphaEquation) | |
| { | |
| mState.blendEquationRGB = rgbEquation; | |
| mState.blendEquationAlpha = alphaEquation; | |
| mBlendStateDirty = true; | |
| } | |
| } | |
| void Context::setStencilTest(bool enabled) | |
| { | |
| if(mState.stencilTest != enabled) | |
| { | |
| mState.stencilTest = enabled; | |
| mStencilStateDirty = true; | |
| } | |
| } | |
| bool Context::isStencilTestEnabled() const | |
| { | |
| return mState.stencilTest; | |
| } | |
| void Context::setStencilParams(GLenum stencilFunc, GLint stencilRef, GLuint stencilMask) | |
| { | |
| if(mState.stencilFunc != stencilFunc || | |
| mState.stencilRef != stencilRef || | |
| mState.stencilMask != stencilMask) | |
| { | |
| mState.stencilFunc = stencilFunc; | |
| mState.stencilRef = (stencilRef > 0) ? stencilRef : 0; | |
| mState.stencilMask = stencilMask; | |
| mStencilStateDirty = true; | |
| } | |
| } | |
| void Context::setStencilBackParams(GLenum stencilBackFunc, GLint stencilBackRef, GLuint stencilBackMask) | |
| { | |
| if(mState.stencilBackFunc != stencilBackFunc || | |
| mState.stencilBackRef != stencilBackRef || | |
| mState.stencilBackMask != stencilBackMask) | |
| { | |
| mState.stencilBackFunc = stencilBackFunc; | |
| mState.stencilBackRef = (stencilBackRef > 0) ? stencilBackRef : 0; | |
| mState.stencilBackMask = stencilBackMask; | |
| mStencilStateDirty = true; | |
| } | |
| } | |
| void Context::setStencilWritemask(GLuint stencilWritemask) | |
| { | |
| if(mState.stencilWritemask != stencilWritemask) | |
| { | |
| mState.stencilWritemask = stencilWritemask; | |
| mStencilStateDirty = true; | |
| } | |
| } | |
| void Context::setStencilBackWritemask(GLuint stencilBackWritemask) | |
| { | |
| if(mState.stencilBackWritemask != stencilBackWritemask) | |
| { | |
| mState.stencilBackWritemask = stencilBackWritemask; | |
| mStencilStateDirty = true; | |
| } | |
| } | |
| void Context::setStencilOperations(GLenum stencilFail, GLenum stencilPassDepthFail, GLenum stencilPassDepthPass) | |
| { | |
| if(mState.stencilFail != stencilFail || | |
| mState.stencilPassDepthFail != stencilPassDepthFail || | |
| mState.stencilPassDepthPass != stencilPassDepthPass) | |
| { | |
| mState.stencilFail = stencilFail; | |
| mState.stencilPassDepthFail = stencilPassDepthFail; | |
| mState.stencilPassDepthPass = stencilPassDepthPass; | |
| mStencilStateDirty = true; | |
| } | |
| } | |
| void Context::setStencilBackOperations(GLenum stencilBackFail, GLenum stencilBackPassDepthFail, GLenum stencilBackPassDepthPass) | |
| { | |
| if(mState.stencilBackFail != stencilBackFail || | |
| mState.stencilBackPassDepthFail != stencilBackPassDepthFail || | |
| mState.stencilBackPassDepthPass != stencilBackPassDepthPass) | |
| { | |
| mState.stencilBackFail = stencilBackFail; | |
| mState.stencilBackPassDepthFail = stencilBackPassDepthFail; | |
| mState.stencilBackPassDepthPass = stencilBackPassDepthPass; | |
| mStencilStateDirty = true; | |
| } | |
| } | |
| void Context::setPolygonOffsetFill(bool enabled) | |
| { | |
| if(mState.polygonOffsetFill != enabled) | |
| { | |
| mState.polygonOffsetFill = enabled; | |
| mPolygonOffsetStateDirty = true; | |
| } | |
| } | |
| bool Context::isPolygonOffsetFillEnabled() const | |
| { | |
| return mState.polygonOffsetFill; | |
| } | |
| void Context::setPolygonOffsetParams(GLfloat factor, GLfloat units) | |
| { | |
| if(mState.polygonOffsetFactor != factor || | |
| mState.polygonOffsetUnits != units) | |
| { | |
| mState.polygonOffsetFactor = factor; | |
| mState.polygonOffsetUnits = units; | |
| mPolygonOffsetStateDirty = true; | |
| } | |
| } | |
| void Context::setSampleAlphaToCoverage(bool enabled) | |
| { | |
| if(mState.sampleAlphaToCoverage != enabled) | |
| { | |
| mState.sampleAlphaToCoverage = enabled; | |
| mSampleStateDirty = true; | |
| } | |
| } | |
| bool Context::isSampleAlphaToCoverageEnabled() const | |
| { | |
| return mState.sampleAlphaToCoverage; | |
| } | |
| void Context::setSampleCoverage(bool enabled) | |
| { | |
| if(mState.sampleCoverage != enabled) | |
| { | |
| mState.sampleCoverage = enabled; | |
| mSampleStateDirty = true; | |
| } | |
| } | |
| bool Context::isSampleCoverageEnabled() const | |
| { | |
| return mState.sampleCoverage; | |
| } | |
| void Context::setSampleCoverageParams(GLclampf value, bool invert) | |
| { | |
| if(mState.sampleCoverageValue != value || | |
| mState.sampleCoverageInvert != invert) | |
| { | |
| mState.sampleCoverageValue = value; | |
| mState.sampleCoverageInvert = invert; | |
| mSampleStateDirty = true; | |
| } | |
| } | |
| void Context::setScissorTest(bool enabled) | |
| { | |
| mState.scissorTest = enabled; | |
| } | |
| bool Context::isScissorTestEnabled() const | |
| { | |
| return mState.scissorTest; | |
| } | |
| void Context::setDither(bool enabled) | |
| { | |
| if(mState.dither != enabled) | |
| { | |
| mState.dither = enabled; | |
| mDitherStateDirty = true; | |
| } | |
| } | |
| bool Context::isDitherEnabled() const | |
| { | |
| return mState.dither; | |
| } | |
| void Context::setLineWidth(GLfloat width) | |
| { | |
| mState.lineWidth = width; | |
| device->setLineWidth(clamp(width, ALIASED_LINE_WIDTH_RANGE_MIN, ALIASED_LINE_WIDTH_RANGE_MAX)); | |
| } | |
| void Context::setGenerateMipmapHint(GLenum hint) | |
| { | |
| mState.generateMipmapHint = hint; | |
| } | |
| void Context::setFragmentShaderDerivativeHint(GLenum hint) | |
| { | |
| mState.fragmentShaderDerivativeHint = hint; | |
| // TODO: Propagate the hint to shader translator so we can write | |
| // ddx, ddx_coarse, or ddx_fine depending on the hint. | |
| // Ignore for now. It is valid for implementations to ignore hint. | |
| } | |
| void Context::setViewportParams(GLint x, GLint y, GLsizei width, GLsizei height) | |
| { | |
| mState.viewportX = x; | |
| mState.viewportY = y; | |
| mState.viewportWidth = width; | |
| mState.viewportHeight = height; | |
| } | |
| void Context::setScissorParams(GLint x, GLint y, GLsizei width, GLsizei height) | |
| { | |
| mState.scissorX = x; | |
| mState.scissorY = y; | |
| mState.scissorWidth = width; | |
| mState.scissorHeight = height; | |
| } | |
| void Context::setColorMask(bool red, bool green, bool blue, bool alpha) | |
| { | |
| if(mState.colorMaskRed != red || mState.colorMaskGreen != green || | |
| mState.colorMaskBlue != blue || mState.colorMaskAlpha != alpha) | |
| { | |
| mState.colorMaskRed = red; | |
| mState.colorMaskGreen = green; | |
| mState.colorMaskBlue = blue; | |
| mState.colorMaskAlpha = alpha; | |
| mMaskStateDirty = true; | |
| } | |
| } | |
| void Context::setDepthMask(bool mask) | |
| { | |
| if(mState.depthMask != mask) | |
| { | |
| mState.depthMask = mask; | |
| mMaskStateDirty = true; | |
| } | |
| } | |
| void Context::setActiveSampler(unsigned int active) | |
| { | |
| mState.activeSampler = active; | |
| } | |
| GLuint Context::getReadFramebufferName() const | |
| { | |
| return mState.readFramebuffer; | |
| } | |
| GLuint Context::getDrawFramebufferName() const | |
| { | |
| return mState.drawFramebuffer; | |
| } | |
| GLuint Context::getRenderbufferName() const | |
| { | |
| return mState.renderbuffer.name(); | |
| } | |
| GLuint Context::getArrayBufferName() const | |
| { | |
| return mState.arrayBuffer.name(); | |
| } | |
| GLuint Context::getActiveQuery(GLenum target) const | |
| { | |
| Query *queryObject = NULL; | |
| switch(target) | |
| { | |
| case GL_ANY_SAMPLES_PASSED: | |
| queryObject = mState.activeQuery[QUERY_ANY_SAMPLES_PASSED]; | |
| break; | |
| case GL_ANY_SAMPLES_PASSED_CONSERVATIVE: | |
| queryObject = mState.activeQuery[QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE]; | |
| break; | |
| default: | |
| ASSERT(false); | |
| } | |
| if(queryObject) | |
| { | |
| return queryObject->name; | |
| } | |
| return 0; | |
| } | |
| void Context::setEnableVertexAttribArray(unsigned int attribNum, bool enabled) | |
| { | |
| mState.vertexAttribute[attribNum].mArrayEnabled = enabled; | |
| } | |
| const VertexAttribute &Context::getVertexAttribState(unsigned int attribNum) | |
| { | |
| return mState.vertexAttribute[attribNum]; | |
| } | |
| void Context::setVertexAttribState(unsigned int attribNum, Buffer *boundBuffer, GLint size, GLenum type, bool normalized, | |
| GLsizei stride, const void *pointer) | |
| { | |
| mState.vertexAttribute[attribNum].mBoundBuffer = boundBuffer; | |
| mState.vertexAttribute[attribNum].mSize = size; | |
| mState.vertexAttribute[attribNum].mType = type; | |
| mState.vertexAttribute[attribNum].mNormalized = normalized; | |
| mState.vertexAttribute[attribNum].mStride = stride; | |
| mState.vertexAttribute[attribNum].mPointer = pointer; | |
| } | |
| const void *Context::getVertexAttribPointer(unsigned int attribNum) const | |
| { | |
| return mState.vertexAttribute[attribNum].mPointer; | |
| } | |
| const VertexAttributeArray &Context::getVertexAttributes() | |
| { | |
| return mState.vertexAttribute; | |
| } | |
| void Context::setPackAlignment(GLint alignment) | |
| { | |
| mState.packAlignment = alignment; | |
| } | |
| GLint Context::getPackAlignment() const | |
| { | |
| return mState.packAlignment; | |
| } | |
| void Context::setUnpackAlignment(GLint alignment) | |
| { | |
| mState.unpackAlignment = alignment; | |
| } | |
| GLint Context::getUnpackAlignment() const | |
| { | |
| return mState.unpackAlignment; | |
| } | |
| GLuint Context::createBuffer() | |
| { | |
| return mResourceManager->createBuffer(); | |
| } | |
| GLuint Context::createProgram() | |
| { | |
| return mResourceManager->createProgram(); | |
| } | |
| GLuint Context::createShader(GLenum type) | |
| { | |
| return mResourceManager->createShader(type); | |
| } | |
| GLuint Context::createTexture() | |
| { | |
| return mResourceManager->createTexture(); | |
| } | |
| GLuint Context::createRenderbuffer() | |
| { | |
| return mResourceManager->createRenderbuffer(); | |
| } | |
| // Returns an unused framebuffer name | |
| GLuint Context::createFramebuffer() | |
| { | |
| //GLuint handle = mFramebufferNameSpace.allocate(); | |
| unsigned int handle = 1; | |
| while(mFramebufferMap.find(handle) != mFramebufferMap.end()) | |
| { | |
| handle++; | |
| } | |
| mFramebufferMap[handle] = NULL; | |
| return handle; | |
| } | |
| GLuint Context::createFence() | |
| { | |
| //GLuint handle = mFenceNameSpace.allocate(); | |
| unsigned int handle = 1; | |
| while (mFenceMap.find(handle) != mFenceMap.end()) | |
| { | |
| handle++; | |
| } | |
| mFenceMap[handle] = new Fence; | |
| return handle; | |
| } | |
| // Returns an unused query name | |
| GLuint Context::createQuery() | |
| { | |
| //GLuint handle = mQueryNameSpace.allocate(); | |
| unsigned int handle = 1; | |
| while (mQueryMap.find(handle) != mQueryMap.end()) | |
| { | |
| handle++; | |
| } | |
| mQueryMap[handle] = NULL; | |
| return handle; | |
| } | |
| void Context::deleteBuffer(GLuint buffer) | |
| { | |
| if(mResourceManager->getBuffer(buffer)) | |
| { | |
| detachBuffer(buffer); | |
| } | |
| mResourceManager->deleteBuffer(buffer); | |
| } | |
| void Context::deleteShader(GLuint shader) | |
| { | |
| mResourceManager->deleteShader(shader); | |
| } | |
| void Context::deleteProgram(GLuint program) | |
| { | |
| mResourceManager->deleteProgram(program); | |
| } | |
| void Context::deleteTexture(GLuint texture) | |
| { | |
| if(mResourceManager->getTexture(texture)) | |
| { | |
| detachTexture(texture); | |
| } | |
| mResourceManager->deleteTexture(texture); | |
| } | |
| void Context::deleteRenderbuffer(GLuint renderbuffer) | |
| { | |
| if(mResourceManager->getRenderbuffer(renderbuffer)) | |
| { | |
| detachRenderbuffer(renderbuffer); | |
| } | |
| mResourceManager->deleteRenderbuffer(renderbuffer); | |
| } | |
| void Context::deleteFramebuffer(GLuint framebuffer) | |
| { | |
| FramebufferMap::iterator framebufferObject = mFramebufferMap.find(framebuffer); | |
| if(framebufferObject != mFramebufferMap.end()) | |
| { | |
| detachFramebuffer(framebuffer); | |
| //mFramebufferNameSpace.release(framebufferObject->first); | |
| delete framebufferObject->second; | |
| mFramebufferMap.erase(framebufferObject); | |
| } | |
| } | |
| void Context::deleteFence(GLuint fence) | |
| { | |
| FenceMap::iterator fenceObject = mFenceMap.find(fence); | |
| if(fenceObject != mFenceMap.end()) | |
| { | |
| //mFenceNameSpace.release(fenceObject->first); | |
| delete fenceObject->second; | |
| mFenceMap.erase(fenceObject); | |
| } | |
| } | |
| void Context::deleteQuery(GLuint query) | |
| { | |
| QueryMap::iterator queryObject = mQueryMap.find(query); | |
| if(queryObject != mQueryMap.end()) | |
| { | |
| //mQueryNameSpace.release(queryObject->first); | |
| if(queryObject->second) | |
| { | |
| queryObject->second->release(); | |
| } | |
| mQueryMap.erase(queryObject); | |
| } | |
| } | |
| Buffer *Context::getBuffer(GLuint handle) | |
| { | |
| return mResourceManager->getBuffer(handle); | |
| } | |
| Shader *Context::getShader(GLuint handle) | |
| { | |
| return mResourceManager->getShader(handle); | |
| } | |
| Program *Context::getProgram(GLuint handle) | |
| { | |
| return mResourceManager->getProgram(handle); | |
| } | |
| Texture *Context::getTexture(GLuint handle) | |
| { | |
| return mResourceManager->getTexture(handle); | |
| } | |
| Renderbuffer *Context::getRenderbuffer(GLuint handle) | |
| { | |
| return mResourceManager->getRenderbuffer(handle); | |
| } | |
| Framebuffer *Context::getReadFramebuffer() | |
| { | |
| return getFramebuffer(mState.readFramebuffer); | |
| } | |
| Framebuffer *Context::getDrawFramebuffer() | |
| { | |
| return getFramebuffer(mState.drawFramebuffer); | |
| } | |
| void Context::bindArrayBuffer(unsigned int buffer) | |
| { | |
| mResourceManager->checkBufferAllocation(buffer); | |
| mState.arrayBuffer = getBuffer(buffer); | |
| } | |
| void Context::bindElementArrayBuffer(unsigned int buffer) | |
| { | |
| mResourceManager->checkBufferAllocation(buffer); | |
| mState.elementArrayBuffer = getBuffer(buffer); | |
| } | |
| void Context::bindTexture2D(GLuint texture) | |
| { | |
| mResourceManager->checkTextureAllocation(texture, TEXTURE_2D); | |
| mState.samplerTexture[TEXTURE_2D][mState.activeSampler] = getTexture(texture); | |
| } | |
| void Context::bindTextureCubeMap(GLuint texture) | |
| { | |
| mResourceManager->checkTextureAllocation(texture, TEXTURE_CUBE); | |
| mState.samplerTexture[TEXTURE_CUBE][mState.activeSampler] = getTexture(texture); | |
| } | |
| void Context::bindReadFramebuffer(GLuint framebuffer) | |
| { | |
| if(!getFramebuffer(framebuffer)) | |
| { | |
| mFramebufferMap[framebuffer] = new Framebuffer(); | |
| } | |
| mState.readFramebuffer = framebuffer; | |
| } | |
| void Context::bindDrawFramebuffer(GLuint framebuffer) | |
| { | |
| if(!getFramebuffer(framebuffer)) | |
| { | |
| mFramebufferMap[framebuffer] = new Framebuffer(); | |
| } | |
| mState.drawFramebuffer = framebuffer; | |
| } | |
| void Context::bindRenderbuffer(GLuint renderbuffer) | |
| { | |
| mResourceManager->checkRenderbufferAllocation(renderbuffer); | |
| mState.renderbuffer = getRenderbuffer(renderbuffer); | |
| } | |
| void Context::useProgram(GLuint program) | |
| { | |
| GLuint priorProgram = mState.currentProgram; | |
| mState.currentProgram = program; // Must switch before trying to delete, otherwise it only gets flagged. | |
| if(priorProgram != program) | |
| { | |
| Program *newProgram = mResourceManager->getProgram(program); | |
| Program *oldProgram = mResourceManager->getProgram(priorProgram); | |
| if(newProgram) | |
| { | |
| newProgram->addRef(); | |
| } | |
| if(oldProgram) | |
| { | |
| oldProgram->release(); | |
| } | |
| } | |
| } | |
| void Context::beginQuery(GLenum target, GLuint query) | |
| { | |
| // From EXT_occlusion_query_boolean: If BeginQueryEXT is called with an <id> | |
| // of zero, if the active query object name for <target> is non-zero (for the | |
| // targets ANY_SAMPLES_PASSED_EXT and ANY_SAMPLES_PASSED_CONSERVATIVE_EXT, if | |
| // the active query for either target is non-zero), if <id> is the name of an | |
| // existing query object whose type does not match <target>, or if <id> is the | |
| // active query object name for any query type, the error INVALID_OPERATION is | |
| // generated. | |
| // Ensure no other queries are active | |
| // NOTE: If other queries than occlusion are supported, we will need to check | |
| // separately that: | |
| // a) The query ID passed is not the current active query for any target/type | |
| // b) There are no active queries for the requested target (and in the case | |
| // of GL_ANY_SAMPLES_PASSED_EXT and GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT, | |
| // no query may be active for either if glBeginQuery targets either. | |
| for(int i = 0; i < QUERY_TYPE_COUNT; i++) | |
| { | |
| if(mState.activeQuery[i] != NULL) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| } | |
| QueryType qType; | |
| switch(target) | |
| { | |
| case GL_ANY_SAMPLES_PASSED: | |
| qType = QUERY_ANY_SAMPLES_PASSED; | |
| break; | |
| case GL_ANY_SAMPLES_PASSED_CONSERVATIVE: | |
| qType = QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE; | |
| break; | |
| default: | |
| ASSERT(false); | |
| } | |
| Query *queryObject = getQuery(query, true, target); | |
| // Check that name was obtained with glGenQueries | |
| if(!queryObject) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| // Check for type mismatch | |
| if(queryObject->getType() != target) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| // Set query as active for specified target | |
| mState.activeQuery[qType] = queryObject; | |
| // Begin query | |
| queryObject->begin(); | |
| } | |
| void Context::endQuery(GLenum target) | |
| { | |
| QueryType qType; | |
| switch(target) | |
| { | |
| case GL_ANY_SAMPLES_PASSED: | |
| qType = QUERY_ANY_SAMPLES_PASSED; | |
| break; | |
| case GL_ANY_SAMPLES_PASSED_CONSERVATIVE: | |
| qType = QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE; | |
| break; | |
| default: | |
| ASSERT(false); | |
| } | |
| Query *queryObject = mState.activeQuery[qType]; | |
| if(queryObject == NULL) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| queryObject->end(); | |
| mState.activeQuery[qType] = NULL; | |
| } | |
| void Context::setFramebufferZero(Framebuffer *buffer) | |
| { | |
| delete mFramebufferMap[0]; | |
| mFramebufferMap[0] = buffer; | |
| } | |
| void Context::setRenderbufferStorage(RenderbufferStorage *renderbuffer) | |
| { | |
| Renderbuffer *renderbufferObject = mState.renderbuffer; | |
| renderbufferObject->setStorage(renderbuffer); | |
| } | |
| Framebuffer *Context::getFramebuffer(unsigned int handle) | |
| { | |
| FramebufferMap::iterator framebuffer = mFramebufferMap.find(handle); | |
| if(framebuffer == mFramebufferMap.end()) | |
| { | |
| return NULL; | |
| } | |
| else | |
| { | |
| return framebuffer->second; | |
| } | |
| } | |
| Fence *Context::getFence(unsigned int handle) | |
| { | |
| FenceMap::iterator fence = mFenceMap.find(handle); | |
| if(fence == mFenceMap.end()) | |
| { | |
| return NULL; | |
| } | |
| else | |
| { | |
| return fence->second; | |
| } | |
| } | |
| Query *Context::getQuery(unsigned int handle, bool create, GLenum type) | |
| { | |
| QueryMap::iterator query = mQueryMap.find(handle); | |
| if(query == mQueryMap.end()) | |
| { | |
| return NULL; | |
| } | |
| else | |
| { | |
| if(!query->second && create) | |
| { | |
| query->second = new Query(handle, type); | |
| query->second->addRef(); | |
| } | |
| return query->second; | |
| } | |
| } | |
| Buffer *Context::getArrayBuffer() | |
| { | |
| return mState.arrayBuffer; | |
| } | |
| Buffer *Context::getElementArrayBuffer() | |
| { | |
| return mState.elementArrayBuffer; | |
| } | |
| Program *Context::getCurrentProgram() | |
| { | |
| return mResourceManager->getProgram(mState.currentProgram); | |
| } | |
| Texture2D *Context::getTexture2D(GLenum target) | |
| { | |
| if(target == GL_TEXTURE_2D) | |
| { | |
| return static_cast<Texture2D*>(getSamplerTexture(mState.activeSampler, TEXTURE_2D)); | |
| } | |
| else if(target == GL_PROXY_TEXTURE_2D) | |
| { | |
| return static_cast<Texture2D*>(getSamplerTexture(mState.activeSampler, PROXY_TEXTURE_2D)); | |
| } | |
| else UNREACHABLE(); | |
| return 0; | |
| } | |
| TextureCubeMap *Context::getTextureCubeMap() | |
| { | |
| return static_cast<TextureCubeMap*>(getSamplerTexture(mState.activeSampler, TEXTURE_CUBE)); | |
| } | |
| Texture *Context::getSamplerTexture(unsigned int sampler, TextureType type) | |
| { | |
| GLuint texid = mState.samplerTexture[type][sampler].name(); | |
| if(texid == 0) // Special case: 0 refers to different initial textures based on the target | |
| { | |
| switch (type) | |
| { | |
| case TEXTURE_2D: return mTexture2DZero; | |
| case PROXY_TEXTURE_2D: return mProxyTexture2DZero; | |
| case TEXTURE_CUBE: return mTextureCubeMapZero; | |
| default: UNREACHABLE(); | |
| } | |
| } | |
| return mState.samplerTexture[type][sampler]; | |
| } | |
| bool Context::getBooleanv(GLenum pname, GLboolean *params) | |
| { | |
| switch (pname) | |
| { | |
| case GL_SHADER_COMPILER: *params = GL_TRUE; break; | |
| case GL_SAMPLE_COVERAGE_INVERT: *params = mState.sampleCoverageInvert; break; | |
| case GL_DEPTH_WRITEMASK: *params = mState.depthMask; break; | |
| case GL_COLOR_WRITEMASK: | |
| params[0] = mState.colorMaskRed; | |
| params[1] = mState.colorMaskGreen; | |
| params[2] = mState.colorMaskBlue; | |
| params[3] = mState.colorMaskAlpha; | |
| break; | |
| case GL_CULL_FACE: *params = mState.cullFace; break; | |
| case GL_POLYGON_OFFSET_FILL: *params = mState.polygonOffsetFill; break; | |
| case GL_SAMPLE_ALPHA_TO_COVERAGE: *params = mState.sampleAlphaToCoverage; break; | |
| case GL_SAMPLE_COVERAGE: *params = mState.sampleCoverage; break; | |
| case GL_SCISSOR_TEST: *params = mState.scissorTest; break; | |
| case GL_STENCIL_TEST: *params = mState.stencilTest; break; | |
| case GL_DEPTH_TEST: *params = mState.depthTest; break; | |
| case GL_BLEND: *params = mState.blend; break; | |
| case GL_DITHER: *params = mState.dither; break; | |
| default: | |
| return false; | |
| } | |
| return true; | |
| } | |
| bool Context::getFloatv(GLenum pname, GLfloat *params) | |
| { | |
| // Please note: DEPTH_CLEAR_VALUE is included in our internal getFloatv implementation | |
| // because it is stored as a float, despite the fact that the GL ES 2.0 spec names | |
| // GetIntegerv as its native query function. As it would require conversion in any | |
| // case, this should make no difference to the calling application. | |
| switch (pname) | |
| { | |
| case GL_LINE_WIDTH: *params = mState.lineWidth; break; | |
| case GL_SAMPLE_COVERAGE_VALUE: *params = mState.sampleCoverageValue; break; | |
| case GL_DEPTH_CLEAR_VALUE: *params = mState.depthClearValue; break; | |
| case GL_POLYGON_OFFSET_FACTOR: *params = mState.polygonOffsetFactor; break; | |
| case GL_POLYGON_OFFSET_UNITS: *params = mState.polygonOffsetUnits; break; | |
| case GL_ALIASED_LINE_WIDTH_RANGE: | |
| params[0] = ALIASED_LINE_WIDTH_RANGE_MIN; | |
| params[1] = ALIASED_LINE_WIDTH_RANGE_MAX; | |
| break; | |
| case GL_ALIASED_POINT_SIZE_RANGE: | |
| params[0] = ALIASED_POINT_SIZE_RANGE_MIN; | |
| params[1] = ALIASED_POINT_SIZE_RANGE_MAX; | |
| break; | |
| case GL_DEPTH_RANGE: | |
| params[0] = mState.zNear; | |
| params[1] = mState.zFar; | |
| break; | |
| case GL_COLOR_CLEAR_VALUE: | |
| params[0] = mState.colorClearValue.red; | |
| params[1] = mState.colorClearValue.green; | |
| params[2] = mState.colorClearValue.blue; | |
| params[3] = mState.colorClearValue.alpha; | |
| break; | |
| case GL_BLEND_COLOR: | |
| params[0] = mState.blendColor.red; | |
| params[1] = mState.blendColor.green; | |
| params[2] = mState.blendColor.blue; | |
| params[3] = mState.blendColor.alpha; | |
| break; | |
| case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT: | |
| *params = MAX_TEXTURE_MAX_ANISOTROPY; | |
| break; | |
| case GL_MODELVIEW_MATRIX: | |
| for(int i = 0; i < 16; i++) | |
| { | |
| params[i] = modelView.current()[i % 4][i / 4]; | |
| } | |
| break; | |
| case GL_PROJECTION_MATRIX: | |
| for(int i = 0; i < 16; i++) | |
| { | |
| params[i] = projection.current()[i % 4][i / 4]; | |
| } | |
| break; | |
| default: | |
| return false; | |
| } | |
| return true; | |
| } | |
| bool Context::getIntegerv(GLenum pname, GLint *params) | |
| { | |
| // Please note: DEPTH_CLEAR_VALUE is not included in our internal getIntegerv implementation | |
| // because it is stored as a float, despite the fact that the GL ES 2.0 spec names | |
| // GetIntegerv as its native query function. As it would require conversion in any | |
| // case, this should make no difference to the calling application. You may find it in | |
| // Context::getFloatv. | |
| switch (pname) | |
| { | |
| case GL_MAX_VERTEX_ATTRIBS: *params = MAX_VERTEX_ATTRIBS; break; | |
| case GL_MAX_VERTEX_UNIFORM_VECTORS: *params = MAX_VERTEX_UNIFORM_VECTORS; break; | |
| case GL_MAX_VERTEX_UNIFORM_COMPONENTS: *params = MAX_VERTEX_UNIFORM_VECTORS * 4; break; // FIXME: Verify | |
| case GL_MAX_VARYING_VECTORS: *params = MAX_VARYING_VECTORS; break; | |
| case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: *params = MAX_COMBINED_TEXTURE_IMAGE_UNITS; break; | |
| case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS: *params = MAX_VERTEX_TEXTURE_IMAGE_UNITS; break; | |
| case GL_MAX_TEXTURE_IMAGE_UNITS: *params = MAX_TEXTURE_IMAGE_UNITS; break; | |
| case GL_MAX_FRAGMENT_UNIFORM_VECTORS: *params = MAX_FRAGMENT_UNIFORM_VECTORS; break; | |
| case GL_MAX_FRAGMENT_UNIFORM_COMPONENTS: *params = MAX_VERTEX_UNIFORM_VECTORS * 4; break; // FIXME: Verify | |
| case GL_MAX_RENDERBUFFER_SIZE: *params = IMPLEMENTATION_MAX_RENDERBUFFER_SIZE; break; | |
| case GL_NUM_SHADER_BINARY_FORMATS: *params = 0; break; | |
| case GL_SHADER_BINARY_FORMATS: /* no shader binary formats are supported */ break; | |
| case GL_ARRAY_BUFFER_BINDING: *params = mState.arrayBuffer.name(); break; | |
| case GL_ELEMENT_ARRAY_BUFFER_BINDING: *params = mState.elementArrayBuffer.name(); break; | |
| // case GL_FRAMEBUFFER_BINDING: // now equivalent to GL_DRAW_FRAMEBUFFER_BINDING_ANGLE | |
| case GL_DRAW_FRAMEBUFFER_BINDING: *params = mState.drawFramebuffer; break; | |
| case GL_READ_FRAMEBUFFER_BINDING: *params = mState.readFramebuffer; break; | |
| case GL_RENDERBUFFER_BINDING: *params = mState.renderbuffer.name(); break; | |
| case GL_CURRENT_PROGRAM: *params = mState.currentProgram; break; | |
| case GL_PACK_ALIGNMENT: *params = mState.packAlignment; break; | |
| case GL_UNPACK_ALIGNMENT: *params = mState.unpackAlignment; break; | |
| case GL_GENERATE_MIPMAP_HINT: *params = mState.generateMipmapHint; break; | |
| case GL_FRAGMENT_SHADER_DERIVATIVE_HINT: *params = mState.fragmentShaderDerivativeHint; break; | |
| case GL_ACTIVE_TEXTURE: *params = (mState.activeSampler + GL_TEXTURE0); break; | |
| case GL_STENCIL_FUNC: *params = mState.stencilFunc; break; | |
| case GL_STENCIL_REF: *params = mState.stencilRef; break; | |
| case GL_STENCIL_VALUE_MASK: *params = mState.stencilMask; break; | |
| case GL_STENCIL_BACK_FUNC: *params = mState.stencilBackFunc; break; | |
| case GL_STENCIL_BACK_REF: *params = mState.stencilBackRef; break; | |
| case GL_STENCIL_BACK_VALUE_MASK: *params = mState.stencilBackMask; break; | |
| case GL_STENCIL_FAIL: *params = mState.stencilFail; break; | |
| case GL_STENCIL_PASS_DEPTH_FAIL: *params = mState.stencilPassDepthFail; break; | |
| case GL_STENCIL_PASS_DEPTH_PASS: *params = mState.stencilPassDepthPass; break; | |
| case GL_STENCIL_BACK_FAIL: *params = mState.stencilBackFail; break; | |
| case GL_STENCIL_BACK_PASS_DEPTH_FAIL: *params = mState.stencilBackPassDepthFail; break; | |
| case GL_STENCIL_BACK_PASS_DEPTH_PASS: *params = mState.stencilBackPassDepthPass; break; | |
| case GL_DEPTH_FUNC: *params = mState.depthFunc; break; | |
| case GL_BLEND_SRC_RGB: *params = mState.sourceBlendRGB; break; | |
| case GL_BLEND_SRC_ALPHA: *params = mState.sourceBlendAlpha; break; | |
| case GL_BLEND_DST_RGB: *params = mState.destBlendRGB; break; | |
| case GL_BLEND_DST_ALPHA: *params = mState.destBlendAlpha; break; | |
| case GL_BLEND_EQUATION_RGB: *params = mState.blendEquationRGB; break; | |
| case GL_BLEND_EQUATION_ALPHA: *params = mState.blendEquationAlpha; break; | |
| case GL_STENCIL_WRITEMASK: *params = mState.stencilWritemask; break; | |
| case GL_STENCIL_BACK_WRITEMASK: *params = mState.stencilBackWritemask; break; | |
| case GL_STENCIL_CLEAR_VALUE: *params = mState.stencilClearValue; break; | |
| case GL_SUBPIXEL_BITS: *params = 4; break; | |
| case GL_MAX_TEXTURE_SIZE: *params = IMPLEMENTATION_MAX_TEXTURE_SIZE; break; | |
| case GL_MAX_CUBE_MAP_TEXTURE_SIZE: *params = IMPLEMENTATION_MAX_CUBE_MAP_TEXTURE_SIZE; break; | |
| case GL_MAX_ARRAY_TEXTURE_LAYERS: *params = 0; break; | |
| case GL_NUM_COMPRESSED_TEXTURE_FORMATS: *params = NUM_COMPRESSED_TEXTURE_FORMATS; break; | |
| case GL_MAX_SAMPLES: *params = IMPLEMENTATION_MAX_SAMPLES; break; | |
| case GL_SAMPLE_BUFFERS: | |
| case GL_SAMPLES: | |
| { | |
| Framebuffer *framebuffer = getDrawFramebuffer(); | |
| int width, height, samples; | |
| if(framebuffer->completeness(width, height, samples) == GL_FRAMEBUFFER_COMPLETE) | |
| { | |
| switch(pname) | |
| { | |
| case GL_SAMPLE_BUFFERS: | |
| if(samples > 1) | |
| { | |
| *params = 1; | |
| } | |
| else | |
| { | |
| *params = 0; | |
| } | |
| break; | |
| case GL_SAMPLES: | |
| *params = samples & ~1; | |
| break; | |
| } | |
| } | |
| else | |
| { | |
| *params = 0; | |
| } | |
| } | |
| break; | |
| case GL_IMPLEMENTATION_COLOR_READ_TYPE: *params = IMPLEMENTATION_COLOR_READ_TYPE; break; | |
| case GL_IMPLEMENTATION_COLOR_READ_FORMAT: *params = IMPLEMENTATION_COLOR_READ_FORMAT; break; | |
| case GL_MAX_VIEWPORT_DIMS: | |
| { | |
| int maxDimension = IMPLEMENTATION_MAX_RENDERBUFFER_SIZE; | |
| params[0] = maxDimension; | |
| params[1] = maxDimension; | |
| } | |
| break; | |
| case GL_COMPRESSED_TEXTURE_FORMATS: | |
| { | |
| for(int i = 0; i < NUM_COMPRESSED_TEXTURE_FORMATS; i++) | |
| { | |
| params[i] = compressedTextureFormats[i]; | |
| } | |
| } | |
| break; | |
| case GL_VIEWPORT: | |
| params[0] = mState.viewportX; | |
| params[1] = mState.viewportY; | |
| params[2] = mState.viewportWidth; | |
| params[3] = mState.viewportHeight; | |
| break; | |
| case GL_SCISSOR_BOX: | |
| params[0] = mState.scissorX; | |
| params[1] = mState.scissorY; | |
| params[2] = mState.scissorWidth; | |
| params[3] = mState.scissorHeight; | |
| break; | |
| case GL_CULL_FACE_MODE: *params = mState.cullMode; break; | |
| case GL_FRONT_FACE: *params = mState.frontFace; break; | |
| case GL_RED_BITS: | |
| case GL_GREEN_BITS: | |
| case GL_BLUE_BITS: | |
| case GL_ALPHA_BITS: | |
| { | |
| Framebuffer *framebuffer = getDrawFramebuffer(); | |
| Renderbuffer *colorbuffer = framebuffer->getColorbuffer(); | |
| if(colorbuffer) | |
| { | |
| switch (pname) | |
| { | |
| case GL_RED_BITS: *params = colorbuffer->getRedSize(); break; | |
| case GL_GREEN_BITS: *params = colorbuffer->getGreenSize(); break; | |
| case GL_BLUE_BITS: *params = colorbuffer->getBlueSize(); break; | |
| case GL_ALPHA_BITS: *params = colorbuffer->getAlphaSize(); break; | |
| } | |
| } | |
| else | |
| { | |
| *params = 0; | |
| } | |
| } | |
| break; | |
| case GL_DEPTH_BITS: | |
| { | |
| Framebuffer *framebuffer = getDrawFramebuffer(); | |
| Renderbuffer *depthbuffer = framebuffer->getDepthbuffer(); | |
| if(depthbuffer) | |
| { | |
| *params = depthbuffer->getDepthSize(); | |
| } | |
| else | |
| { | |
| *params = 0; | |
| } | |
| } | |
| break; | |
| case GL_STENCIL_BITS: | |
| { | |
| Framebuffer *framebuffer = getDrawFramebuffer(); | |
| Renderbuffer *stencilbuffer = framebuffer->getStencilbuffer(); | |
| if(stencilbuffer) | |
| { | |
| *params = stencilbuffer->getStencilSize(); | |
| } | |
| else | |
| { | |
| *params = 0; | |
| } | |
| } | |
| break; | |
| case GL_TEXTURE_BINDING_2D: | |
| { | |
| if(mState.activeSampler < 0 || mState.activeSampler > MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1) | |
| { | |
| error(GL_INVALID_OPERATION); | |
| return false; | |
| } | |
| *params = mState.samplerTexture[TEXTURE_2D][mState.activeSampler].name(); | |
| } | |
| break; | |
| case GL_TEXTURE_BINDING_CUBE_MAP: | |
| { | |
| if(mState.activeSampler < 0 || mState.activeSampler > MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1) | |
| { | |
| error(GL_INVALID_OPERATION); | |
| return false; | |
| } | |
| *params = mState.samplerTexture[TEXTURE_CUBE][mState.activeSampler].name(); | |
| } | |
| break; | |
| default: | |
| return false; | |
| } | |
| return true; | |
| } | |
| bool Context::getQueryParameterInfo(GLenum pname, GLenum *type, unsigned int *numParams) | |
| { | |
| // Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation | |
| // is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due | |
| // to the fact that it is stored internally as a float, and so would require conversion | |
| // if returned from Context::getIntegerv. Since this conversion is already implemented | |
| // in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we | |
| // place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling | |
| // application. | |
| switch (pname) | |
| { | |
| case GL_COMPRESSED_TEXTURE_FORMATS: | |
| { | |
| *type = GL_INT; | |
| *numParams = NUM_COMPRESSED_TEXTURE_FORMATS; | |
| } | |
| break; | |
| case GL_SHADER_BINARY_FORMATS: | |
| { | |
| *type = GL_INT; | |
| *numParams = 0; | |
| } | |
| break; | |
| case GL_MAX_VERTEX_ATTRIBS: | |
| case GL_MAX_VERTEX_UNIFORM_VECTORS: | |
| case GL_MAX_VARYING_VECTORS: | |
| case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: | |
| case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS: | |
| case GL_MAX_TEXTURE_IMAGE_UNITS: | |
| case GL_MAX_FRAGMENT_UNIFORM_VECTORS: | |
| case GL_MAX_RENDERBUFFER_SIZE: | |
| case GL_NUM_SHADER_BINARY_FORMATS: | |
| case GL_NUM_COMPRESSED_TEXTURE_FORMATS: | |
| case GL_ARRAY_BUFFER_BINDING: | |
| case GL_FRAMEBUFFER_BINDING: | |
| case GL_RENDERBUFFER_BINDING: | |
| case GL_CURRENT_PROGRAM: | |
| case GL_PACK_ALIGNMENT: | |
| case GL_UNPACK_ALIGNMENT: | |
| case GL_GENERATE_MIPMAP_HINT: | |
| case GL_FRAGMENT_SHADER_DERIVATIVE_HINT: | |
| case GL_RED_BITS: | |
| case GL_GREEN_BITS: | |
| case GL_BLUE_BITS: | |
| case GL_ALPHA_BITS: | |
| case GL_DEPTH_BITS: | |
| case GL_STENCIL_BITS: | |
| case GL_ELEMENT_ARRAY_BUFFER_BINDING: | |
| case GL_CULL_FACE_MODE: | |
| case GL_FRONT_FACE: | |
| case GL_ACTIVE_TEXTURE: | |
| case GL_STENCIL_FUNC: | |
| case GL_STENCIL_VALUE_MASK: | |
| case GL_STENCIL_REF: | |
| case GL_STENCIL_FAIL: | |
| case GL_STENCIL_PASS_DEPTH_FAIL: | |
| case GL_STENCIL_PASS_DEPTH_PASS: | |
| case GL_STENCIL_BACK_FUNC: | |
| case GL_STENCIL_BACK_VALUE_MASK: | |
| case GL_STENCIL_BACK_REF: | |
| case GL_STENCIL_BACK_FAIL: | |
| case GL_STENCIL_BACK_PASS_DEPTH_FAIL: | |
| case GL_STENCIL_BACK_PASS_DEPTH_PASS: | |
| case GL_DEPTH_FUNC: | |
| case GL_BLEND_SRC_RGB: | |
| case GL_BLEND_SRC_ALPHA: | |
| case GL_BLEND_DST_RGB: | |
| case GL_BLEND_DST_ALPHA: | |
| case GL_BLEND_EQUATION_RGB: | |
| case GL_BLEND_EQUATION_ALPHA: | |
| case GL_STENCIL_WRITEMASK: | |
| case GL_STENCIL_BACK_WRITEMASK: | |
| case GL_STENCIL_CLEAR_VALUE: | |
| case GL_SUBPIXEL_BITS: | |
| case GL_MAX_TEXTURE_SIZE: | |
| case GL_MAX_CUBE_MAP_TEXTURE_SIZE: | |
| case GL_SAMPLE_BUFFERS: | |
| case GL_SAMPLES: | |
| case GL_IMPLEMENTATION_COLOR_READ_TYPE: | |
| case GL_IMPLEMENTATION_COLOR_READ_FORMAT: | |
| case GL_TEXTURE_BINDING_2D: | |
| case GL_TEXTURE_BINDING_CUBE_MAP: | |
| case GL_MAX_VERTEX_UNIFORM_COMPONENTS: | |
| case GL_MAX_FRAGMENT_UNIFORM_COMPONENTS: | |
| case GL_MAX_ARRAY_TEXTURE_LAYERS: | |
| { | |
| *type = GL_INT; | |
| *numParams = 1; | |
| } | |
| break; | |
| case GL_MAX_SAMPLES: | |
| { | |
| *type = GL_INT; | |
| *numParams = 1; | |
| } | |
| break; | |
| case GL_MAX_VIEWPORT_DIMS: | |
| { | |
| *type = GL_INT; | |
| *numParams = 2; | |
| } | |
| break; | |
| case GL_VIEWPORT: | |
| case GL_SCISSOR_BOX: | |
| { | |
| *type = GL_INT; | |
| *numParams = 4; | |
| } | |
| break; | |
| case GL_SHADER_COMPILER: | |
| case GL_SAMPLE_COVERAGE_INVERT: | |
| case GL_DEPTH_WRITEMASK: | |
| case GL_CULL_FACE: // CULL_FACE through DITHER are natural to IsEnabled, | |
| case GL_POLYGON_OFFSET_FILL: // but can be retrieved through the Get{Type}v queries. | |
| case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural | |
| case GL_SAMPLE_COVERAGE: | |
| case GL_SCISSOR_TEST: | |
| case GL_STENCIL_TEST: | |
| case GL_DEPTH_TEST: | |
| case GL_BLEND: | |
| case GL_DITHER: | |
| { | |
| *type = GL_BOOL; | |
| *numParams = 1; | |
| } | |
| break; | |
| case GL_COLOR_WRITEMASK: | |
| { | |
| *type = GL_BOOL; | |
| *numParams = 4; | |
| } | |
| break; | |
| case GL_POLYGON_OFFSET_FACTOR: | |
| case GL_POLYGON_OFFSET_UNITS: | |
| case GL_SAMPLE_COVERAGE_VALUE: | |
| case GL_DEPTH_CLEAR_VALUE: | |
| case GL_LINE_WIDTH: | |
| { | |
| *type = GL_FLOAT; | |
| *numParams = 1; | |
| } | |
| break; | |
| case GL_ALIASED_LINE_WIDTH_RANGE: | |
| case GL_ALIASED_POINT_SIZE_RANGE: | |
| case GL_DEPTH_RANGE: | |
| { | |
| *type = GL_FLOAT; | |
| *numParams = 2; | |
| } | |
| break; | |
| case GL_COLOR_CLEAR_VALUE: | |
| case GL_BLEND_COLOR: | |
| { | |
| *type = GL_FLOAT; | |
| *numParams = 4; | |
| } | |
| break; | |
| case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT: | |
| *type = GL_FLOAT; | |
| *numParams = 1; | |
| break; | |
| default: | |
| return false; | |
| } | |
| return true; | |
| } | |
| // Applies the render target surface, depth stencil surface, viewport rectangle and scissor rectangle | |
| bool Context::applyRenderTarget() | |
| { | |
| Framebuffer *framebuffer = getDrawFramebuffer(); | |
| int width, height, samples; | |
| if(!framebuffer || framebuffer->completeness(width, height, samples) != GL_FRAMEBUFFER_COMPLETE) | |
| { | |
| return error(GL_INVALID_FRAMEBUFFER_OPERATION, false); | |
| } | |
| Image *renderTarget = framebuffer->getRenderTarget(); | |
| device->setRenderTarget(renderTarget); | |
| if(renderTarget) renderTarget->release(); | |
| Image *depthStencil = framebuffer->getDepthStencil(); | |
| device->setDepthStencilSurface(depthStencil); | |
| if(depthStencil) depthStencil->release(); | |
| Viewport viewport; | |
| float zNear = clamp01(mState.zNear); | |
| float zFar = clamp01(mState.zFar); | |
| viewport.x0 = mState.viewportX; | |
| viewport.y0 = mState.viewportY; | |
| viewport.width = mState.viewportWidth; | |
| viewport.height = mState.viewportHeight; | |
| viewport.minZ = zNear; | |
| viewport.maxZ = zFar; | |
| device->setViewport(viewport); | |
| if(mState.scissorTest) | |
| { | |
| sw::Rect scissor = {mState.scissorX, mState.scissorY, mState.scissorX + mState.scissorWidth, mState.scissorY + mState.scissorHeight}; | |
| scissor.clip(0, 0, width, height); | |
| device->setScissorRect(scissor); | |
| device->setScissorEnable(true); | |
| } | |
| else | |
| { | |
| device->setScissorEnable(false); | |
| } | |
| Program *program = getCurrentProgram(); | |
| if(program) | |
| { | |
| GLfloat nearFarDiff[3] = {zNear, zFar, zFar - zNear}; | |
| program->setUniform1fv(program->getUniformLocation("gl_DepthRange.near"), 1, &nearFarDiff[0]); | |
| program->setUniform1fv(program->getUniformLocation("gl_DepthRange.far"), 1, &nearFarDiff[1]); | |
| program->setUniform1fv(program->getUniformLocation("gl_DepthRange.diff"), 1, &nearFarDiff[2]); | |
| } | |
| return true; | |
| } | |
| // Applies the fixed-function state (culling, depth test, alpha blending, stenciling, etc) | |
| void Context::applyState(GLenum drawMode) | |
| { | |
| Framebuffer *framebuffer = getDrawFramebuffer(); | |
| if(mState.cullFace) | |
| { | |
| device->setCullMode(es2sw::ConvertCullMode(mState.cullMode, mState.frontFace)); | |
| } | |
| else | |
| { | |
| device->setCullMode(sw::CULL_NONE); | |
| } | |
| if(mDepthStateDirty) | |
| { | |
| if(mState.depthTest) | |
| { | |
| device->setDepthBufferEnable(true); | |
| device->setDepthCompare(es2sw::ConvertDepthComparison(mState.depthFunc)); | |
| } | |
| else | |
| { | |
| device->setDepthBufferEnable(false); | |
| } | |
| mDepthStateDirty = false; | |
| } | |
| if(mBlendStateDirty) | |
| { | |
| if(mState.blend) | |
| { | |
| device->setAlphaBlendEnable(true); | |
| device->setSeparateAlphaBlendEnable(true); | |
| device->setBlendConstant(es2sw::ConvertColor(mState.blendColor)); | |
| device->setSourceBlendFactor(es2sw::ConvertBlendFunc(mState.sourceBlendRGB)); | |
| device->setDestBlendFactor(es2sw::ConvertBlendFunc(mState.destBlendRGB)); | |
| device->setBlendOperation(es2sw::ConvertBlendOp(mState.blendEquationRGB)); | |
| device->setSourceBlendFactorAlpha(es2sw::ConvertBlendFunc(mState.sourceBlendAlpha)); | |
| device->setDestBlendFactorAlpha(es2sw::ConvertBlendFunc(mState.destBlendAlpha)); | |
| device->setBlendOperationAlpha(es2sw::ConvertBlendOp(mState.blendEquationAlpha)); | |
| } | |
| else | |
| { | |
| device->setAlphaBlendEnable(false); | |
| } | |
| mBlendStateDirty = false; | |
| } | |
| if(mStencilStateDirty || mFrontFaceDirty) | |
| { | |
| if(mState.stencilTest && framebuffer->hasStencil()) | |
| { | |
| device->setStencilEnable(true); | |
| device->setTwoSidedStencil(true); | |
| if(mState.stencilWritemask != mState.stencilBackWritemask || | |
| mState.stencilRef != mState.stencilBackRef || | |
| mState.stencilMask != mState.stencilBackMask) | |
| { | |
| ERR("Separate front/back stencil writemasks, reference values, or stencil mask values are invalid under WebGL."); | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| // get the maximum size of the stencil ref | |
| Renderbuffer *stencilbuffer = framebuffer->getStencilbuffer(); | |
| GLuint maxStencil = (1 << stencilbuffer->getStencilSize()) - 1; | |
| if(mState.frontFace == GL_CCW) | |
| { | |
| device->setStencilWriteMask(mState.stencilWritemask); | |
| device->setStencilCompare(es2sw::ConvertStencilComparison(mState.stencilFunc)); | |
| device->setStencilReference((mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil); | |
| device->setStencilMask(mState.stencilMask); | |
| device->setStencilFailOperation(es2sw::ConvertStencilOp(mState.stencilFail)); | |
| device->setStencilZFailOperation(es2sw::ConvertStencilOp(mState.stencilPassDepthFail)); | |
| device->setStencilPassOperation(es2sw::ConvertStencilOp(mState.stencilPassDepthPass)); | |
| device->setStencilWriteMaskCCW(mState.stencilBackWritemask); | |
| device->setStencilCompareCCW(es2sw::ConvertStencilComparison(mState.stencilBackFunc)); | |
| device->setStencilReferenceCCW((mState.stencilBackRef < (GLint)maxStencil) ? mState.stencilBackRef : maxStencil); | |
| device->setStencilMaskCCW(mState.stencilBackMask); | |
| device->setStencilFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilBackFail)); | |
| device->setStencilZFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilBackPassDepthFail)); | |
| device->setStencilPassOperationCCW(es2sw::ConvertStencilOp(mState.stencilBackPassDepthPass)); | |
| } | |
| else | |
| { | |
| device->setStencilWriteMaskCCW(mState.stencilWritemask); | |
| device->setStencilCompareCCW(es2sw::ConvertStencilComparison(mState.stencilFunc)); | |
| device->setStencilReferenceCCW((mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil); | |
| device->setStencilMaskCCW(mState.stencilMask); | |
| device->setStencilFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilFail)); | |
| device->setStencilZFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilPassDepthFail)); | |
| device->setStencilPassOperationCCW(es2sw::ConvertStencilOp(mState.stencilPassDepthPass)); | |
| device->setStencilWriteMask(mState.stencilBackWritemask); | |
| device->setStencilCompare(es2sw::ConvertStencilComparison(mState.stencilBackFunc)); | |
| device->setStencilReference((mState.stencilBackRef < (GLint)maxStencil) ? mState.stencilBackRef : maxStencil); | |
| device->setStencilMask(mState.stencilBackMask); | |
| device->setStencilFailOperation(es2sw::ConvertStencilOp(mState.stencilBackFail)); | |
| device->setStencilZFailOperation(es2sw::ConvertStencilOp(mState.stencilBackPassDepthFail)); | |
| device->setStencilPassOperation(es2sw::ConvertStencilOp(mState.stencilBackPassDepthPass)); | |
| } | |
| } | |
| else | |
| { | |
| device->setStencilEnable(false); | |
| } | |
| mStencilStateDirty = false; | |
| mFrontFaceDirty = false; | |
| } | |
| if(mMaskStateDirty) | |
| { | |
| device->setColorWriteMask(0, es2sw::ConvertColorMask(mState.colorMaskRed, mState.colorMaskGreen, mState.colorMaskBlue, mState.colorMaskAlpha)); | |
| device->setDepthWriteEnable(mState.depthMask); | |
| mMaskStateDirty = false; | |
| } | |
| if(mPolygonOffsetStateDirty) | |
| { | |
| if(mState.polygonOffsetFill) | |
| { | |
| Renderbuffer *depthbuffer = framebuffer->getDepthbuffer(); | |
| if(depthbuffer) | |
| { | |
| device->setSlopeDepthBias(mState.polygonOffsetFactor); | |
| float depthBias = ldexp(mState.polygonOffsetUnits, -(int)(depthbuffer->getDepthSize())); | |
| device->setDepthBias(depthBias); | |
| } | |
| } | |
| else | |
| { | |
| device->setSlopeDepthBias(0); | |
| device->setDepthBias(0); | |
| } | |
| mPolygonOffsetStateDirty = false; | |
| } | |
| if(mSampleStateDirty) | |
| { | |
| if(mState.sampleAlphaToCoverage) | |
| { | |
| device->setTransparencyAntialiasing(sw::TRANSPARENCY_ALPHA_TO_COVERAGE); | |
| } | |
| else | |
| { | |
| device->setTransparencyAntialiasing(sw::TRANSPARENCY_NONE); | |
| } | |
| if(mState.sampleCoverage) | |
| { | |
| unsigned int mask = 0; | |
| if(mState.sampleCoverageValue != 0) | |
| { | |
| int width, height, samples; | |
| framebuffer->completeness(width, height, samples); | |
| float threshold = 0.5f; | |
| for(int i = 0; i < samples; i++) | |
| { | |
| mask <<= 1; | |
| if((i + 1) * mState.sampleCoverageValue >= threshold) | |
| { | |
| threshold += 1.0f; | |
| mask |= 1; | |
| } | |
| } | |
| } | |
| if(mState.sampleCoverageInvert) | |
| { | |
| mask = ~mask; | |
| } | |
| device->setMultiSampleMask(mask); | |
| } | |
| else | |
| { | |
| device->setMultiSampleMask(0xFFFFFFFF); | |
| } | |
| mSampleStateDirty = false; | |
| } | |
| if(mDitherStateDirty) | |
| { | |
| // UNIMPLEMENTED(); // FIXME | |
| mDitherStateDirty = false; | |
| } | |
| } | |
| GLenum Context::applyVertexBuffer(GLint base, GLint first, GLsizei count) | |
| { | |
| TranslatedAttribute attributes[MAX_VERTEX_ATTRIBS]; | |
| GLenum err = mVertexDataManager->prepareVertexData(first, count, attributes); | |
| if(err != GL_NO_ERROR) | |
| { | |
| return err; | |
| } | |
| Program *program = getCurrentProgram(); | |
| device->resetInputStreams(false); | |
| for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++) | |
| { | |
| if(program && program->getAttributeStream(i) == -1) | |
| { | |
| continue; | |
| } | |
| sw::Resource *resource = attributes[i].vertexBuffer; | |
| const void *buffer = (char*)resource->data() + attributes[i].offset; | |
| int stride = attributes[i].stride; | |
| buffer = (char*)buffer + stride * base; | |
| sw::Stream attribute(resource, buffer, stride); | |
| attribute.type = attributes[i].type; | |
| attribute.count = attributes[i].count; | |
| attribute.normalized = attributes[i].normalized; | |
| int stream = program ? program->getAttributeStream(i) : i; | |
| device->setInputStream(stream, attribute); | |
| } | |
| return GL_NO_ERROR; | |
| } | |
| // Applies the indices and element array bindings | |
| GLenum Context::applyIndexBuffer(const void *indices, GLsizei count, GLenum mode, GLenum type, TranslatedIndexData *indexInfo) | |
| { | |
| GLenum err = mIndexDataManager->prepareIndexData(type, count, mState.elementArrayBuffer, indices, indexInfo); | |
| if(err == GL_NO_ERROR) | |
| { | |
| device->setIndexBuffer(indexInfo->indexBuffer); | |
| } | |
| return err; | |
| } | |
| // Applies the shaders and shader constants | |
| void Context::applyShaders() | |
| { | |
| Program *programObject = getCurrentProgram(); | |
| if(!programObject) | |
| { | |
| device->setVertexShader(0); | |
| device->setPixelShader(0); | |
| return; | |
| } | |
| sw::VertexShader *vertexShader = programObject->getVertexShader(); | |
| sw::PixelShader *pixelShader = programObject->getPixelShader(); | |
| device->setVertexShader(vertexShader); | |
| device->setPixelShader(pixelShader); | |
| if(programObject->getSerial() != mAppliedProgramSerial) | |
| { | |
| programObject->dirtyAllUniforms(); | |
| mAppliedProgramSerial = programObject->getSerial(); | |
| } | |
| programObject->applyUniforms(); | |
| } | |
| void Context::applyTextures() | |
| { | |
| applyTextures(sw::SAMPLER_PIXEL); | |
| //applyTextures(sw::SAMPLER_VERTEX); | |
| } | |
| void Context::applyTextures(sw::SamplerType samplerType) | |
| { | |
| Program *programObject = getCurrentProgram(); | |
| int samplerCount = (samplerType == sw::SAMPLER_PIXEL) ? MAX_TEXTURE_IMAGE_UNITS : MAX_VERTEX_TEXTURE_IMAGE_UNITS; // Range of samplers of given sampler type | |
| for(int samplerIndex = 0; samplerIndex < samplerCount; samplerIndex++) | |
| { | |
| int textureUnit = programObject ? programObject->getSamplerMapping(samplerType, samplerIndex) : samplerIndex; // OpenGL texture image unit index | |
| if(textureUnit != -1) | |
| { | |
| TextureType textureType = programObject ? programObject->getSamplerTextureType(samplerType, samplerIndex) : TEXTURE_2D; | |
| Texture *texture = getSamplerTexture(textureUnit, textureType); | |
| if(envEnable[samplerIndex] && texture->isSamplerComplete()) | |
| { | |
| GLenum wrapS = texture->getWrapS(); | |
| GLenum wrapT = texture->getWrapT(); | |
| GLenum texFilter = texture->getMinFilter(); | |
| GLenum magFilter = texture->getMagFilter(); | |
| GLfloat maxAnisotropy = texture->getMaxAnisotropy(); | |
| device->setAddressingModeU(samplerType, samplerIndex, es2sw::ConvertTextureWrap(wrapS)); | |
| device->setAddressingModeV(samplerType, samplerIndex, es2sw::ConvertTextureWrap(wrapT)); | |
| sw::FilterType minFilter; | |
| sw::MipmapType mipFilter; | |
| es2sw::ConvertMinFilter(texFilter, &minFilter, &mipFilter, maxAnisotropy); | |
| // ASSERT(minFilter == es2sw::ConvertMagFilter(magFilter)); | |
| device->setTextureFilter(samplerType, samplerIndex, minFilter); | |
| // device->setTextureFilter(samplerType, samplerIndex, es2sw::ConvertMagFilter(magFilter)); | |
| device->setMipmapFilter(samplerType, samplerIndex, mipFilter); | |
| device->setMaxAnisotropy(samplerType, samplerIndex, maxAnisotropy); | |
| applyTexture(samplerType, samplerIndex, texture); | |
| device->setStageOperation(samplerIndex, sw::TextureStage::STAGE_MODULATE); | |
| device->setFirstArgument(samplerIndex, sw::TextureStage::SOURCE_TEXTURE); | |
| device->setSecondArgument(samplerIndex, sw::TextureStage::SOURCE_CURRENT); | |
| //device->setThirdArgument(samplerIndex, sw::TextureStage::SOURCE_CONSTANT); | |
| device->setStageOperationAlpha(samplerIndex, sw::TextureStage::STAGE_MODULATE); | |
| device->setFirstArgumentAlpha(samplerIndex, sw::TextureStage::SOURCE_TEXTURE); | |
| device->setSecondArgumentAlpha(samplerIndex, sw::TextureStage::SOURCE_CURRENT); | |
| //device->setThirdArgumentAlpha(samplerIndex, sw::TextureStage::SOURCE_CONSTANT); | |
| //device->setConstantColor(0, sw::Color<float>(0.0f, 0.0f, 0.0f, 0.0f)); | |
| } | |
| else | |
| { | |
| applyTexture(samplerType, samplerIndex, 0); | |
| device->setStageOperation(samplerIndex, sw::TextureStage::STAGE_SELECTARG1); | |
| device->setFirstArgument(samplerIndex, sw::TextureStage::SOURCE_CURRENT); | |
| device->setSecondArgument(samplerIndex, sw::TextureStage::SOURCE_CURRENT); | |
| //device->setThirdArgument(samplerIndex, sw::TextureStage::SOURCE_CONSTANT); | |
| device->setStageOperationAlpha(samplerIndex, sw::TextureStage::STAGE_SELECTARG1); | |
| device->setFirstArgumentAlpha(samplerIndex, sw::TextureStage::SOURCE_CURRENT); | |
| device->setSecondArgumentAlpha(samplerIndex, sw::TextureStage::SOURCE_CURRENT); | |
| //device->setThirdArgumentAlpha(samplerIndex, sw::TextureStage::SOURCE_CONSTANT); | |
| } | |
| } | |
| else | |
| { | |
| applyTexture(samplerType, samplerIndex, NULL); | |
| } | |
| } | |
| } | |
| void Context::applyTexture(sw::SamplerType type, int index, Texture *baseTexture) | |
| { | |
| Program *program = getCurrentProgram(); | |
| int sampler = (type == sw::SAMPLER_PIXEL) ? index : 16 + index; | |
| bool textureUsed = false; | |
| if(type == sw::SAMPLER_PIXEL) | |
| { | |
| textureUsed = program ? program->getPixelShader()->usesSampler(index) : true; | |
| } | |
| else if(type == sw::SAMPLER_VERTEX) | |
| { | |
| textureUsed = program ? program->getVertexShader()->usesSampler(index) : false; | |
| } | |
| else UNREACHABLE(); | |
| sw::Resource *resource = 0; | |
| if(baseTexture && textureUsed) | |
| { | |
| resource = baseTexture->getResource(); | |
| } | |
| device->setTextureResource(sampler, resource); | |
| if(baseTexture && textureUsed) | |
| { | |
| int levelCount = baseTexture->getLevelCount(); | |
| if(baseTexture->getTarget() == GL_TEXTURE_2D) | |
| { | |
| Texture2D *texture = static_cast<Texture2D*>(baseTexture); | |
| for(int mipmapLevel = 0; mipmapLevel < MIPMAP_LEVELS; mipmapLevel++) | |
| { | |
| int surfaceLevel = mipmapLevel; | |
| if(surfaceLevel < 0) | |
| { | |
| surfaceLevel = 0; | |
| } | |
| else if(surfaceLevel >= levelCount) | |
| { | |
| surfaceLevel = levelCount - 1; | |
| } | |
| Image *surface = texture->getImage(surfaceLevel); | |
| device->setTextureLevel(sampler, 0, mipmapLevel, surface, sw::TEXTURE_2D); | |
| } | |
| } | |
| else if(baseTexture->getTarget() == GL_TEXTURE_CUBE_MAP) | |
| { | |
| for(int face = 0; face < 6; face++) | |
| { | |
| TextureCubeMap *cubeTexture = static_cast<TextureCubeMap*>(baseTexture); | |
| for(int mipmapLevel = 0; mipmapLevel < MIPMAP_LEVELS; mipmapLevel++) | |
| { | |
| int surfaceLevel = mipmapLevel; | |
| if(surfaceLevel < 0) | |
| { | |
| surfaceLevel = 0; | |
| } | |
| else if(surfaceLevel >= levelCount) | |
| { | |
| surfaceLevel = levelCount - 1; | |
| } | |
| Image *surface = cubeTexture->getImage(face, surfaceLevel); | |
| device->setTextureLevel(sampler, face, mipmapLevel, surface, sw::TEXTURE_CUBE); | |
| } | |
| } | |
| } | |
| else UNIMPLEMENTED(); | |
| } | |
| else | |
| { | |
| device->setTextureLevel(sampler, 0, 0, 0, sw::TEXTURE_NULL); | |
| } | |
| } | |
| void Context::readPixels(GLint x, GLint y, GLsizei width, GLsizei height, | |
| GLenum format, GLenum type, GLsizei *bufSize, void* pixels) | |
| { | |
| Framebuffer *framebuffer = getReadFramebuffer(); | |
| int framebufferWidth, framebufferHeight, framebufferSamples; | |
| if(framebuffer->completeness(framebufferWidth, framebufferHeight, framebufferSamples) != GL_FRAMEBUFFER_COMPLETE) | |
| { | |
| return error(GL_INVALID_FRAMEBUFFER_OPERATION); | |
| } | |
| if(getReadFramebufferName() != 0 && framebufferSamples != 0) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| GLsizei outputPitch = ComputePitch(width, format, type, mState.packAlignment); | |
| // Sized query sanity check | |
| if(bufSize) | |
| { | |
| int requiredSize = outputPitch * height; | |
| if(requiredSize > *bufSize) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| } | |
| Image *renderTarget = framebuffer->getRenderTarget(); | |
| if(!renderTarget) | |
| { | |
| return error(GL_OUT_OF_MEMORY); | |
| } | |
| sw::Rect rect = {x, y, x + width, y + height}; | |
| rect.clip(0, 0, renderTarget->getWidth(), renderTarget->getHeight()); | |
| unsigned char *source = (unsigned char*)renderTarget->lock(rect.x0, rect.y0, sw::LOCK_READONLY); | |
| unsigned char *dest = (unsigned char*)pixels; | |
| unsigned short *dest16 = (unsigned short*)pixels; | |
| int inputPitch = (int)renderTarget->getPitch(); | |
| for(int j = 0; j < rect.y1 - rect.y0; j++) | |
| { | |
| if(renderTarget->getInternalFormat() == sw::FORMAT_A8R8G8B8 && | |
| format == GL_BGRA_EXT && type == GL_UNSIGNED_BYTE) | |
| { | |
| // Fast path for EXT_read_format_bgra, given an RGBA source buffer | |
| // Note that buffers with no alpha go through the slow path below | |
| memcpy(dest + j * outputPitch, source + j * inputPitch, (rect.x1 - rect.x0) * 4); | |
| } | |
| else | |
| { | |
| for(int i = 0; i < rect.x1 - rect.x0; i++) | |
| { | |
| float r; | |
| float g; | |
| float b; | |
| float a; | |
| switch(renderTarget->getInternalFormat()) | |
| { | |
| case sw::FORMAT_R5G6B5: | |
| { | |
| unsigned short rgb = *(unsigned short*)(source + 2 * i + j * inputPitch); | |
| a = 1.0f; | |
| b = (rgb & 0x001F) * (1.0f / 0x001F); | |
| g = (rgb & 0x07E0) * (1.0f / 0x07E0); | |
| r = (rgb & 0xF800) * (1.0f / 0xF800); | |
| } | |
| break; | |
| case sw::FORMAT_A1R5G5B5: | |
| { | |
| unsigned short argb = *(unsigned short*)(source + 2 * i + j * inputPitch); | |
| a = (argb & 0x8000) ? 1.0f : 0.0f; | |
| b = (argb & 0x001F) * (1.0f / 0x001F); | |
| g = (argb & 0x03E0) * (1.0f / 0x03E0); | |
| r = (argb & 0x7C00) * (1.0f / 0x7C00); | |
| } | |
| break; | |
| case sw::FORMAT_A8R8G8B8: | |
| { | |
| unsigned int argb = *(unsigned int*)(source + 4 * i + j * inputPitch); | |
| a = (argb & 0xFF000000) * (1.0f / 0xFF000000); | |
| b = (argb & 0x000000FF) * (1.0f / 0x000000FF); | |
| g = (argb & 0x0000FF00) * (1.0f / 0x0000FF00); | |
| r = (argb & 0x00FF0000) * (1.0f / 0x00FF0000); | |
| } | |
| break; | |
| case sw::FORMAT_X8R8G8B8: | |
| { | |
| unsigned int xrgb = *(unsigned int*)(source + 4 * i + j * inputPitch); | |
| a = 1.0f; | |
| b = (xrgb & 0x000000FF) * (1.0f / 0x000000FF); | |
| g = (xrgb & 0x0000FF00) * (1.0f / 0x0000FF00); | |
| r = (xrgb & 0x00FF0000) * (1.0f / 0x00FF0000); | |
| } | |
| break; | |
| case sw::FORMAT_A2R10G10B10: | |
| { | |
| unsigned int argb = *(unsigned int*)(source + 4 * i + j * inputPitch); | |
| a = (argb & 0xC0000000) * (1.0f / 0xC0000000); | |
| b = (argb & 0x000003FF) * (1.0f / 0x000003FF); | |
| g = (argb & 0x000FFC00) * (1.0f / 0x000FFC00); | |
| r = (argb & 0x3FF00000) * (1.0f / 0x3FF00000); | |
| } | |
| break; | |
| case sw::FORMAT_A32B32G32R32F: | |
| { | |
| r = *((float*)(source + 16 * i + j * inputPitch) + 0); | |
| g = *((float*)(source + 16 * i + j * inputPitch) + 1); | |
| b = *((float*)(source + 16 * i + j * inputPitch) + 2); | |
| a = *((float*)(source + 16 * i + j * inputPitch) + 3); | |
| } | |
| break; | |
| case sw::FORMAT_A16B16G16R16F: | |
| { | |
| r = (float)*((sw::half*)(source + 8 * i + j * inputPitch) + 0); | |
| g = (float)*((sw::half*)(source + 8 * i + j * inputPitch) + 1); | |
| b = (float)*((sw::half*)(source + 8 * i + j * inputPitch) + 2); | |
| a = (float)*((sw::half*)(source + 8 * i + j * inputPitch) + 3); | |
| } | |
| break; | |
| default: | |
| UNIMPLEMENTED(); // FIXME | |
| UNREACHABLE(); | |
| } | |
| switch(format) | |
| { | |
| case GL_RGBA: | |
| switch(type) | |
| { | |
| case GL_UNSIGNED_BYTE: | |
| dest[4 * i + j * outputPitch + 0] = (unsigned char)(255 * r + 0.5f); | |
| dest[4 * i + j * outputPitch + 1] = (unsigned char)(255 * g + 0.5f); | |
| dest[4 * i + j * outputPitch + 2] = (unsigned char)(255 * b + 0.5f); | |
| dest[4 * i + j * outputPitch + 3] = (unsigned char)(255 * a + 0.5f); | |
| break; | |
| default: UNREACHABLE(); | |
| } | |
| break; | |
| case GL_BGRA_EXT: | |
| switch(type) | |
| { | |
| case GL_UNSIGNED_BYTE: | |
| dest[4 * i + j * outputPitch + 0] = (unsigned char)(255 * b + 0.5f); | |
| dest[4 * i + j * outputPitch + 1] = (unsigned char)(255 * g + 0.5f); | |
| dest[4 * i + j * outputPitch + 2] = (unsigned char)(255 * r + 0.5f); | |
| dest[4 * i + j * outputPitch + 3] = (unsigned char)(255 * a + 0.5f); | |
| break; | |
| case GL_UNSIGNED_SHORT_4_4_4_4_REV: | |
| // According to the desktop GL spec in the "Transfer of Pixel Rectangles" section | |
| // this type is packed as follows: | |
| // 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 | |
| // -------------------------------------------------------------------------------- | |
| // | 4th | 3rd | 2nd | 1st component | | |
| // -------------------------------------------------------------------------------- | |
| // in the case of BGRA_EXT, B is the first component, G the second, and so forth. | |
| dest16[i + j * outputPitch / sizeof(unsigned short)] = | |
| ((unsigned short)(15 * a + 0.5f) << 12)| | |
| ((unsigned short)(15 * r + 0.5f) << 8) | | |
| ((unsigned short)(15 * g + 0.5f) << 4) | | |
| ((unsigned short)(15 * b + 0.5f) << 0); | |
| break; | |
| case GL_UNSIGNED_SHORT_1_5_5_5_REV: | |
| // According to the desktop GL spec in the "Transfer of Pixel Rectangles" section | |
| // this type is packed as follows: | |
| // 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 | |
| // -------------------------------------------------------------------------------- | |
| // | 4th | 3rd | 2nd | 1st component | | |
| // -------------------------------------------------------------------------------- | |
| // in the case of BGRA_EXT, B is the first component, G the second, and so forth. | |
| dest16[i + j * outputPitch / sizeof(unsigned short)] = | |
| ((unsigned short)( a + 0.5f) << 15) | | |
| ((unsigned short)(31 * r + 0.5f) << 10) | | |
| ((unsigned short)(31 * g + 0.5f) << 5) | | |
| ((unsigned short)(31 * b + 0.5f) << 0); | |
| break; | |
| default: UNREACHABLE(); | |
| } | |
| break; | |
| case GL_RGB: // IMPLEMENTATION_COLOR_READ_FORMAT | |
| switch(type) | |
| { | |
| case GL_UNSIGNED_SHORT_5_6_5: // IMPLEMENTATION_COLOR_READ_TYPE | |
| dest16[i + j * outputPitch / sizeof(unsigned short)] = | |
| ((unsigned short)(31 * b + 0.5f) << 0) | | |
| ((unsigned short)(63 * g + 0.5f) << 5) | | |
| ((unsigned short)(31 * r + 0.5f) << 11); | |
| break; | |
| default: UNREACHABLE(); | |
| } | |
| break; | |
| default: UNREACHABLE(); | |
| } | |
| } | |
| } | |
| } | |
| renderTarget->unlock(); | |
| renderTarget->release(); | |
| } | |
| void Context::clear(GLbitfield mask) | |
| { | |
| Framebuffer *framebuffer = getDrawFramebuffer(); | |
| if(!framebuffer || framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE) | |
| { | |
| return error(GL_INVALID_FRAMEBUFFER_OPERATION); | |
| } | |
| if(!applyRenderTarget()) | |
| { | |
| return; | |
| } | |
| unsigned int color = (unorm<8>(mState.colorClearValue.alpha) << 24) | | |
| (unorm<8>(mState.colorClearValue.red) << 16) | | |
| (unorm<8>(mState.colorClearValue.green) << 8) | | |
| (unorm<8>(mState.colorClearValue.blue) << 0); | |
| float depth = clamp01(mState.depthClearValue); | |
| int stencil = mState.stencilClearValue & 0x000000FF; | |
| if(mask & GL_COLOR_BUFFER_BIT) | |
| { | |
| unsigned int rgbaMask = (mState.colorMaskRed ? 0x1 : 0) | | |
| (mState.colorMaskGreen ? 0x2 : 0) | | |
| (mState.colorMaskBlue ? 0x4 : 0) | | |
| (mState.colorMaskAlpha ? 0x8 : 0); | |
| if(rgbaMask != 0) | |
| { | |
| device->clearColor(color, rgbaMask); | |
| } | |
| } | |
| if(mask & GL_DEPTH_BUFFER_BIT) | |
| { | |
| if(mState.depthMask != 0) | |
| { | |
| device->clearDepth(depth); | |
| } | |
| } | |
| if(mask & GL_STENCIL_BUFFER_BIT) | |
| { | |
| if(mState.stencilWritemask != 0) | |
| { | |
| device->clearStencil(stencil, mState.stencilWritemask); | |
| } | |
| } | |
| } | |
| void Context::drawArrays(GLenum mode, GLint first, GLsizei count) | |
| { | |
| if(!mState.currentProgram) | |
| { | |
| //return;// error(GL_INVALID_OPERATION); | |
| device->setProjectionMatrix(projection.current()); | |
| device->setViewMatrix(modelView.current()); | |
| device->setTextureMatrix(0, texture[0].current()); | |
| device->setTextureMatrix(1, texture[1].current()); | |
| device->setTextureTransform(0, texture[0].isIdentity() ? 0 : 4, false); | |
| device->setTextureTransform(1, texture[1].isIdentity() ? 0 : 4, false); | |
| } | |
| PrimitiveType primitiveType; | |
| int primitiveCount; | |
| if(!es2sw::ConvertPrimitiveType(mode, count, primitiveType, primitiveCount)) | |
| return error(GL_INVALID_ENUM); | |
| if(primitiveCount <= 0) | |
| { | |
| return; | |
| } | |
| if(!applyRenderTarget()) | |
| { | |
| return; | |
| } | |
| applyState(mode); | |
| GLenum err = applyVertexBuffer(0, first, count); | |
| if(err != GL_NO_ERROR) | |
| { | |
| return error(err); | |
| } | |
| applyShaders(); | |
| applyTextures(); | |
| if(getCurrentProgram() && !getCurrentProgram()->validateSamplers(false)) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| if(!cullSkipsDraw(mode)) | |
| { | |
| device->drawPrimitive(primitiveType, primitiveCount); | |
| } | |
| } | |
| void Context::drawElements(GLenum mode, GLsizei count, GLenum type, const void *indices) | |
| { | |
| if(!mState.currentProgram) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| if(!indices && !mState.elementArrayBuffer) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| PrimitiveType primitiveType; | |
| int primitiveCount; | |
| if(!es2sw::ConvertPrimitiveType(mode, count, primitiveType, primitiveCount)) | |
| return error(GL_INVALID_ENUM); | |
| if(primitiveCount <= 0) | |
| { | |
| return; | |
| } | |
| if(!applyRenderTarget()) | |
| { | |
| return; | |
| } | |
| applyState(mode); | |
| TranslatedIndexData indexInfo; | |
| GLenum err = applyIndexBuffer(indices, count, mode, type, &indexInfo); | |
| if(err != GL_NO_ERROR) | |
| { | |
| return error(err); | |
| } | |
| GLsizei vertexCount = indexInfo.maxIndex - indexInfo.minIndex + 1; | |
| err = applyVertexBuffer(-(int)indexInfo.minIndex, indexInfo.minIndex, vertexCount); | |
| if(err != GL_NO_ERROR) | |
| { | |
| return error(err); | |
| } | |
| applyShaders(); | |
| applyTextures(); | |
| if(!getCurrentProgram()->validateSamplers(false)) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| if(!cullSkipsDraw(mode)) | |
| { | |
| device->drawIndexedPrimitive(primitiveType, indexInfo.indexOffset, primitiveCount, IndexDataManager::typeSize(type)); | |
| } | |
| } | |
| void Context::finish() | |
| { | |
| device->finish(); | |
| } | |
| void Context::flush() | |
| { | |
| // We don't queue anything without processing it as fast as possible | |
| } | |
| void Context::recordInvalidEnum() | |
| { | |
| mInvalidEnum = true; | |
| } | |
| void Context::recordInvalidValue() | |
| { | |
| mInvalidValue = true; | |
| } | |
| void Context::recordInvalidOperation() | |
| { | |
| mInvalidOperation = true; | |
| } | |
| void Context::recordOutOfMemory() | |
| { | |
| mOutOfMemory = true; | |
| } | |
| void Context::recordInvalidFramebufferOperation() | |
| { | |
| mInvalidFramebufferOperation = true; | |
| } | |
| // Get one of the recorded errors and clear its flag, if any. | |
| GLenum Context::getError() | |
| { | |
| if(mInvalidEnum) | |
| { | |
| mInvalidEnum = false; | |
| return GL_INVALID_ENUM; | |
| } | |
| if(mInvalidValue) | |
| { | |
| mInvalidValue = false; | |
| return GL_INVALID_VALUE; | |
| } | |
| if(mInvalidOperation) | |
| { | |
| mInvalidOperation = false; | |
| return GL_INVALID_OPERATION; | |
| } | |
| if(mOutOfMemory) | |
| { | |
| mOutOfMemory = false; | |
| return GL_OUT_OF_MEMORY; | |
| } | |
| if(mInvalidFramebufferOperation) | |
| { | |
| mInvalidFramebufferOperation = false; | |
| return GL_INVALID_FRAMEBUFFER_OPERATION; | |
| } | |
| return GL_NO_ERROR; | |
| } | |
| int Context::getSupportedMultiSampleDepth(sw::Format format, int requested) | |
| { | |
| if(requested <= 1) | |
| { | |
| return 1; | |
| } | |
| if(requested == 2) | |
| { | |
| return 2; | |
| } | |
| return 4; | |
| } | |
| void Context::detachBuffer(GLuint buffer) | |
| { | |
| // If a buffer object is deleted while it is bound, all bindings to that object in the current context | |
| // (i.e. in the thread that called Delete-Buffers) are reset to zero. | |
| if(mState.arrayBuffer.name() == buffer) | |
| { | |
| mState.arrayBuffer = NULL; | |
| } | |
| if(mState.elementArrayBuffer.name() == buffer) | |
| { | |
| mState.elementArrayBuffer = NULL; | |
| } | |
| for(int attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++) | |
| { | |
| if(mState.vertexAttribute[attribute].mBoundBuffer.name() == buffer) | |
| { | |
| mState.vertexAttribute[attribute].mBoundBuffer = NULL; | |
| } | |
| } | |
| } | |
| void Context::detachTexture(GLuint texture) | |
| { | |
| // If a texture object is deleted, it is as if all texture units which are bound to that texture object are | |
| // rebound to texture object zero | |
| for(int type = 0; type < TEXTURE_TYPE_COUNT; type++) | |
| { | |
| for(int sampler = 0; sampler < MAX_COMBINED_TEXTURE_IMAGE_UNITS; sampler++) | |
| { | |
| if(mState.samplerTexture[type][sampler].name() == texture) | |
| { | |
| mState.samplerTexture[type][sampler] = NULL; | |
| } | |
| } | |
| } | |
| // If a texture object is deleted while its image is attached to the currently bound framebuffer, then it is | |
| // as if FramebufferTexture2D had been called, with a texture of 0, for each attachment point to which this | |
| // image was attached in the currently bound framebuffer. | |
| Framebuffer *readFramebuffer = getReadFramebuffer(); | |
| Framebuffer *drawFramebuffer = getDrawFramebuffer(); | |
| if(readFramebuffer) | |
| { | |
| readFramebuffer->detachTexture(texture); | |
| } | |
| if(drawFramebuffer && drawFramebuffer != readFramebuffer) | |
| { | |
| drawFramebuffer->detachTexture(texture); | |
| } | |
| } | |
| void Context::detachFramebuffer(GLuint framebuffer) | |
| { | |
| // If a framebuffer that is currently bound to the target FRAMEBUFFER is deleted, it is as though | |
| // BindFramebuffer had been executed with the target of FRAMEBUFFER and framebuffer of zero. | |
| if(mState.readFramebuffer == framebuffer) | |
| { | |
| bindReadFramebuffer(0); | |
| } | |
| if(mState.drawFramebuffer == framebuffer) | |
| { | |
| bindDrawFramebuffer(0); | |
| } | |
| } | |
| void Context::detachRenderbuffer(GLuint renderbuffer) | |
| { | |
| // If a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though BindRenderbuffer | |
| // had been executed with the target RENDERBUFFER and name of zero. | |
| if(mState.renderbuffer.name() == renderbuffer) | |
| { | |
| bindRenderbuffer(0); | |
| } | |
| // If a renderbuffer object is deleted while its image is attached to the currently bound framebuffer, | |
| // then it is as if FramebufferRenderbuffer had been called, with a renderbuffer of 0, for each attachment | |
| // point to which this image was attached in the currently bound framebuffer. | |
| Framebuffer *readFramebuffer = getReadFramebuffer(); | |
| Framebuffer *drawFramebuffer = getDrawFramebuffer(); | |
| if(readFramebuffer) | |
| { | |
| readFramebuffer->detachRenderbuffer(renderbuffer); | |
| } | |
| if(drawFramebuffer && drawFramebuffer != readFramebuffer) | |
| { | |
| drawFramebuffer->detachRenderbuffer(renderbuffer); | |
| } | |
| } | |
| bool Context::cullSkipsDraw(GLenum drawMode) | |
| { | |
| return mState.cullFace && mState.cullMode == GL_FRONT_AND_BACK && isTriangleMode(drawMode); | |
| } | |
| bool Context::isTriangleMode(GLenum drawMode) | |
| { | |
| switch (drawMode) | |
| { | |
| case GL_TRIANGLES: | |
| case GL_TRIANGLE_FAN: | |
| case GL_TRIANGLE_STRIP: | |
| return true; | |
| case GL_POINTS: | |
| case GL_LINES: | |
| case GL_LINE_LOOP: | |
| case GL_LINE_STRIP: | |
| return false; | |
| default: UNREACHABLE(); | |
| } | |
| return false; | |
| } | |
| void Context::setVertexAttrib(GLuint index, float x, float y, float z, float w) | |
| { | |
| ASSERT(index < MAX_VERTEX_ATTRIBS); | |
| mState.vertexAttribute[index].mCurrentValue[0] = x; | |
| mState.vertexAttribute[index].mCurrentValue[1] = y; | |
| mState.vertexAttribute[index].mCurrentValue[2] = z; | |
| mState.vertexAttribute[index].mCurrentValue[3] = w; | |
| mVertexDataManager->dirtyCurrentValue(index); | |
| } | |
| void Context::blitFramebuffer(GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, | |
| GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, | |
| GLbitfield mask) | |
| { | |
| Framebuffer *readFramebuffer = getReadFramebuffer(); | |
| Framebuffer *drawFramebuffer = getDrawFramebuffer(); | |
| int readBufferWidth, readBufferHeight, readBufferSamples; | |
| int drawBufferWidth, drawBufferHeight, drawBufferSamples; | |
| if(!readFramebuffer || readFramebuffer->completeness(readBufferWidth, readBufferHeight, readBufferSamples) != GL_FRAMEBUFFER_COMPLETE || | |
| !drawFramebuffer || drawFramebuffer->completeness(drawBufferWidth, drawBufferHeight, drawBufferSamples) != GL_FRAMEBUFFER_COMPLETE) | |
| { | |
| return error(GL_INVALID_FRAMEBUFFER_OPERATION); | |
| } | |
| if(drawBufferSamples > 1) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| sw::SliceRect sourceRect; | |
| sw::SliceRect destRect; | |
| if(srcX0 < srcX1) | |
| { | |
| sourceRect.x0 = srcX0; | |
| sourceRect.x1 = srcX1; | |
| destRect.x0 = dstX0; | |
| destRect.x1 = dstX1; | |
| } | |
| else | |
| { | |
| sourceRect.x0 = srcX1; | |
| destRect.x0 = dstX1; | |
| sourceRect.x1 = srcX0; | |
| destRect.x1 = dstX0; | |
| } | |
| if(srcY0 < srcY1) | |
| { | |
| sourceRect.y0 = srcY0; | |
| destRect.y0 = dstY0; | |
| sourceRect.y1 = srcY1; | |
| destRect.y1 = dstY1; | |
| } | |
| else | |
| { | |
| sourceRect.y0 = srcY1; | |
| destRect.y0 = dstY1; | |
| sourceRect.y1 = srcY0; | |
| destRect.y1 = dstY0; | |
| } | |
| sw::Rect sourceScissoredRect = sourceRect; | |
| sw::Rect destScissoredRect = destRect; | |
| if(mState.scissorTest) // Only write to parts of the destination framebuffer which pass the scissor test | |
| { | |
| if(destRect.x0 < mState.scissorX) | |
| { | |
| int xDiff = mState.scissorX - destRect.x0; | |
| destScissoredRect.x0 = mState.scissorX; | |
| sourceScissoredRect.x0 += xDiff; | |
| } | |
| if(destRect.x1 > mState.scissorX + mState.scissorWidth) | |
| { | |
| int xDiff = destRect.x1 - (mState.scissorX + mState.scissorWidth); | |
| destScissoredRect.x1 = mState.scissorX + mState.scissorWidth; | |
| sourceScissoredRect.x1 -= xDiff; | |
| } | |
| if(destRect.y0 < mState.scissorY) | |
| { | |
| int yDiff = mState.scissorY - destRect.y0; | |
| destScissoredRect.y0 = mState.scissorY; | |
| sourceScissoredRect.y0 += yDiff; | |
| } | |
| if(destRect.y1 > mState.scissorY + mState.scissorHeight) | |
| { | |
| int yDiff = destRect.y1 - (mState.scissorY + mState.scissorHeight); | |
| destScissoredRect.y1 = mState.scissorY + mState.scissorHeight; | |
| sourceScissoredRect.y1 -= yDiff; | |
| } | |
| } | |
| sw::Rect sourceTrimmedRect = sourceScissoredRect; | |
| sw::Rect destTrimmedRect = destScissoredRect; | |
| // The source & destination rectangles also may need to be trimmed if they fall out of the bounds of | |
| // the actual draw and read surfaces. | |
| if(sourceTrimmedRect.x0 < 0) | |
| { | |
| int xDiff = 0 - sourceTrimmedRect.x0; | |
| sourceTrimmedRect.x0 = 0; | |
| destTrimmedRect.x0 += xDiff; | |
| } | |
| if(sourceTrimmedRect.x1 > readBufferWidth) | |
| { | |
| int xDiff = sourceTrimmedRect.x1 - readBufferWidth; | |
| sourceTrimmedRect.x1 = readBufferWidth; | |
| destTrimmedRect.x1 -= xDiff; | |
| } | |
| if(sourceTrimmedRect.y0 < 0) | |
| { | |
| int yDiff = 0 - sourceTrimmedRect.y0; | |
| sourceTrimmedRect.y0 = 0; | |
| destTrimmedRect.y0 += yDiff; | |
| } | |
| if(sourceTrimmedRect.y1 > readBufferHeight) | |
| { | |
| int yDiff = sourceTrimmedRect.y1 - readBufferHeight; | |
| sourceTrimmedRect.y1 = readBufferHeight; | |
| destTrimmedRect.y1 -= yDiff; | |
| } | |
| if(destTrimmedRect.x0 < 0) | |
| { | |
| int xDiff = 0 - destTrimmedRect.x0; | |
| destTrimmedRect.x0 = 0; | |
| sourceTrimmedRect.x0 += xDiff; | |
| } | |
| if(destTrimmedRect.x1 > drawBufferWidth) | |
| { | |
| int xDiff = destTrimmedRect.x1 - drawBufferWidth; | |
| destTrimmedRect.x1 = drawBufferWidth; | |
| sourceTrimmedRect.x1 -= xDiff; | |
| } | |
| if(destTrimmedRect.y0 < 0) | |
| { | |
| int yDiff = 0 - destTrimmedRect.y0; | |
| destTrimmedRect.y0 = 0; | |
| sourceTrimmedRect.y0 += yDiff; | |
| } | |
| if(destTrimmedRect.y1 > drawBufferHeight) | |
| { | |
| int yDiff = destTrimmedRect.y1 - drawBufferHeight; | |
| destTrimmedRect.y1 = drawBufferHeight; | |
| sourceTrimmedRect.y1 -= yDiff; | |
| } | |
| bool partialBufferCopy = false; | |
| if(sourceTrimmedRect.y1 - sourceTrimmedRect.y0 < readBufferHeight || | |
| sourceTrimmedRect.x1 - sourceTrimmedRect.x0 < readBufferWidth || | |
| destTrimmedRect.y1 - destTrimmedRect.y0 < drawBufferHeight || | |
| destTrimmedRect.x1 - destTrimmedRect.x0 < drawBufferWidth || | |
| sourceTrimmedRect.y0 != 0 || destTrimmedRect.y0 != 0 || sourceTrimmedRect.x0 != 0 || destTrimmedRect.x0 != 0) | |
| { | |
| partialBufferCopy = true; | |
| } | |
| bool blitRenderTarget = false; | |
| bool blitDepthStencil = false; | |
| if(mask & GL_COLOR_BUFFER_BIT) | |
| { | |
| const bool validReadType = readFramebuffer->getColorbufferType() == GL_TEXTURE_2D || | |
| readFramebuffer->getColorbufferType() == GL_RENDERBUFFER; | |
| const bool validDrawType = drawFramebuffer->getColorbufferType() == GL_TEXTURE_2D || | |
| drawFramebuffer->getColorbufferType() == GL_RENDERBUFFER; | |
| if(!validReadType || !validDrawType || | |
| readFramebuffer->getColorbuffer()->getInternalFormat() != drawFramebuffer->getColorbuffer()->getInternalFormat()) | |
| { | |
| ERR("Color buffer format conversion in BlitFramebufferANGLE not supported by this implementation"); | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| if(partialBufferCopy && readBufferSamples > 1) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| blitRenderTarget = true; | |
| } | |
| if(mask & (GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT)) | |
| { | |
| Renderbuffer *readDSBuffer = NULL; | |
| Renderbuffer *drawDSBuffer = NULL; | |
| // We support OES_packed_depth_stencil, and do not support a separately attached depth and stencil buffer, so if we have | |
| // both a depth and stencil buffer, it will be the same buffer. | |
| if(mask & GL_DEPTH_BUFFER_BIT) | |
| { | |
| if(readFramebuffer->getDepthbuffer() && drawFramebuffer->getDepthbuffer()) | |
| { | |
| if(readFramebuffer->getDepthbufferType() != drawFramebuffer->getDepthbufferType() || | |
| readFramebuffer->getDepthbuffer()->getInternalFormat() != drawFramebuffer->getDepthbuffer()->getInternalFormat()) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| blitDepthStencil = true; | |
| readDSBuffer = readFramebuffer->getDepthbuffer(); | |
| drawDSBuffer = drawFramebuffer->getDepthbuffer(); | |
| } | |
| } | |
| if(mask & GL_STENCIL_BUFFER_BIT) | |
| { | |
| if(readFramebuffer->getStencilbuffer() && drawFramebuffer->getStencilbuffer()) | |
| { | |
| if(readFramebuffer->getStencilbufferType() != drawFramebuffer->getStencilbufferType() || | |
| readFramebuffer->getStencilbuffer()->getInternalFormat() != drawFramebuffer->getStencilbuffer()->getInternalFormat()) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| blitDepthStencil = true; | |
| readDSBuffer = readFramebuffer->getStencilbuffer(); | |
| drawDSBuffer = drawFramebuffer->getStencilbuffer(); | |
| } | |
| } | |
| if(partialBufferCopy) | |
| { | |
| ERR("Only whole-buffer depth and stencil blits are supported by this implementation."); | |
| return error(GL_INVALID_OPERATION); // Only whole-buffer copies are permitted | |
| } | |
| if((drawDSBuffer && drawDSBuffer->getSamples() > 1) || | |
| (readDSBuffer && readDSBuffer->getSamples() > 1)) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| } | |
| if(blitRenderTarget || blitDepthStencil) | |
| { | |
| if(blitRenderTarget) | |
| { | |
| Image *readRenderTarget = readFramebuffer->getRenderTarget(); | |
| Image *drawRenderTarget = drawFramebuffer->getRenderTarget(); | |
| bool success = device->stretchRect(readRenderTarget, &sourceRect, drawRenderTarget, &destRect, false); | |
| readRenderTarget->release(); | |
| drawRenderTarget->release(); | |
| if(!success) | |
| { | |
| ERR("BlitFramebufferANGLE failed."); | |
| return; | |
| } | |
| } | |
| if(blitDepthStencil) | |
| { | |
| bool success = device->stretchRect(readFramebuffer->getDepthStencil(), NULL, drawFramebuffer->getDepthStencil(), NULL, false); | |
| if(!success) | |
| { | |
| ERR("BlitFramebufferANGLE failed."); | |
| return; | |
| } | |
| } | |
| } | |
| } | |
| void Context::setMatrixMode(GLenum mode) | |
| { | |
| matrixMode = mode; | |
| } | |
| sw::MatrixStack &Context::currentMatrixStack() | |
| { | |
| switch(matrixMode) | |
| { | |
| case GL_MODELVIEW: return modelView; break; | |
| case GL_PROJECTION: return projection; break; | |
| case GL_TEXTURE: return texture[mState.activeSampler]; break; | |
| default: UNREACHABLE(); | |
| } | |
| } | |
| void Context::loadIdentity() | |
| { | |
| if(drawing) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| currentMatrixStack().identity(); | |
| } | |
| void Context::pushMatrix() | |
| { | |
| //if(drawing) | |
| //{ | |
| // return error(GL_INVALID_OPERATION); | |
| //} | |
| if(!currentMatrixStack().push()) | |
| { | |
| return error(GL_STACK_OVERFLOW); | |
| } | |
| } | |
| void Context::popMatrix() | |
| { | |
| //if(drawing) | |
| //{ | |
| // return error(GL_INVALID_OPERATION); | |
| //} | |
| if(!currentMatrixStack().pop()) | |
| { | |
| return error(GL_STACK_OVERFLOW); | |
| } | |
| } | |
| void Context::rotate(GLfloat angle, GLfloat x, GLfloat y, GLfloat z) | |
| { | |
| if(drawing) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| currentMatrixStack().rotate(angle, x, y, z); | |
| } | |
| void Context::translate(GLfloat x, GLfloat y, GLfloat z) | |
| { | |
| if(drawing) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| currentMatrixStack().translate(x, y, z); | |
| } | |
| void Context::scale(GLfloat x, GLfloat y, GLfloat z) | |
| { | |
| if(drawing) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| currentMatrixStack().scale(x, y, z); | |
| } | |
| void Context::multiply(const GLdouble *m) | |
| { | |
| if(drawing) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| currentMatrixStack().multiply(m); | |
| } | |
| void Context::multiply(const GLfloat *m) | |
| { | |
| if(drawing) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| currentMatrixStack().multiply(m); | |
| } | |
| void Context::frustum(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble zNear, GLdouble zFar) | |
| { | |
| if(drawing) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| currentMatrixStack().frustum(left, right, bottom, top, zNear, zFar); | |
| } | |
| void Context::ortho(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble zNear, GLdouble zFar) | |
| { | |
| if(drawing) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| currentMatrixStack().ortho(left, right, bottom, top, zNear, zFar); | |
| } | |
| void Context::setLighting(bool enable) | |
| { | |
| if(drawing) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| device->setLightingEnable(enable); | |
| } | |
| void Context::setFog(bool enable) | |
| { | |
| if(drawing) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| device->setFogEnable(enable); | |
| } | |
| void Context::setAlphaTest(bool enable) | |
| { | |
| if(drawing) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| device->setAlphaTestEnable(enable); | |
| } | |
| void Context::alphaFunc(GLenum func, GLclampf ref) | |
| { | |
| if(drawing) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| switch(func) | |
| { | |
| case GL_NEVER: device->setAlphaCompare(sw::ALPHA_NEVER); break; | |
| case GL_LESS: device->setAlphaCompare(sw::ALPHA_LESS); break; | |
| case GL_EQUAL: device->setAlphaCompare(sw::ALPHA_EQUAL); break; | |
| case GL_LEQUAL: device->setAlphaCompare(sw::ALPHA_LESSEQUAL); break; | |
| case GL_GREATER: device->setAlphaCompare(sw::ALPHA_GREATER); break; | |
| case GL_NOTEQUAL: device->setAlphaCompare(sw::ALPHA_NOTEQUAL); break; | |
| case GL_GEQUAL: device->setAlphaCompare(sw::ALPHA_GREATEREQUAL); break; | |
| case GL_ALWAYS: device->setAlphaCompare(sw::ALPHA_ALWAYS); break; | |
| default: UNREACHABLE(); | |
| } | |
| device->setAlphaReference(gl::clamp01(ref)); | |
| } | |
| void Context::setTexture2D(bool enable) | |
| { | |
| if(drawing) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| envEnable[mState.activeSampler] = enable; | |
| } | |
| void Context::setShadeModel(GLenum mode) | |
| { | |
| //if(drawing) | |
| //{ | |
| // return error(GL_INVALID_OPERATION); | |
| //} | |
| switch(mode) | |
| { | |
| case GL_FLAT: device->setShadingMode(sw::SHADING_FLAT); break; | |
| case GL_SMOOTH: device->setShadingMode(sw::SHADING_GOURAUD); break; | |
| default: return error(GL_INVALID_ENUM); | |
| } | |
| } | |
| void Context::setLight(int index, bool enable) | |
| { | |
| device->setLightEnable(index, enable); | |
| } | |
| void Context::setNormalizeNormals(bool enable) | |
| { | |
| device->setNormalizeNormals(enable); | |
| } | |
| GLuint Context::genLists(GLsizei range) | |
| { | |
| if(drawing) | |
| { | |
| return error(GL_INVALID_OPERATION, 0); | |
| } | |
| int firstIndex = std::max(1u, firstFreeIndex); | |
| for(; true; firstIndex++) | |
| { | |
| int empty = 0; | |
| for(; empty < range; empty++) | |
| { | |
| if(displayList[firstIndex + empty] != 0) | |
| { | |
| break; | |
| } | |
| } | |
| if(empty == range) | |
| { | |
| for(int i = firstIndex; i < firstIndex + range; i++) | |
| { | |
| displayList[i] = new DisplayList(); | |
| } | |
| if(firstIndex == firstFreeIndex) | |
| { | |
| firstFreeIndex = firstIndex + range; | |
| } | |
| return firstIndex; | |
| } | |
| } | |
| return 0; | |
| } | |
| void Context::newList(GLuint list, GLenum mode) | |
| { | |
| if(drawing || listIndex != 0) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| ASSERT(!this->list); | |
| this->list = new DisplayList(); | |
| listIndex = list; | |
| listMode = mode; | |
| } | |
| void Context::endList() | |
| { | |
| if(drawing || listIndex == 0) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| ASSERT(list); | |
| delete displayList[listIndex]; | |
| displayList[listIndex] = list; | |
| list = 0; | |
| listIndex = 0; | |
| listMode = 0; | |
| } | |
| void Context::callList(GLuint list) | |
| { | |
| // As per GL specifications, if the list does not exist, it is ignored | |
| if(displayList[list]) | |
| { | |
| displayList[list]->call(); | |
| } | |
| } | |
| void Context::deleteList(GLuint list) | |
| { | |
| delete displayList[list]; | |
| displayList[list] = 0; | |
| displayList.erase(list); | |
| firstFreeIndex = std::min(firstFreeIndex , list); | |
| } | |
| void Context::listCommand(Command *command) | |
| { | |
| ASSERT(list); | |
| list->list.push_back(command); | |
| if(listMode == GL_COMPILE_AND_EXECUTE) | |
| { | |
| listMode = 0; | |
| command->call(); | |
| listMode = GL_COMPILE_AND_EXECUTE; | |
| } | |
| } | |
| void APIENTRY glVertexAttribArray(GLuint index, GLint size, GLenum type, GLboolean normalized, GLsizei stride, const GLvoid* ptr) | |
| { | |
| TRACE("(GLuint index = %d, GLint size = %d, GLenum type = 0x%X, " | |
| "GLboolean normalized = %d, GLsizei stride = %d, const GLvoid* ptr = 0x%0.8p)", | |
| index, size, type, normalized, stride, ptr); | |
| gl::Context *context = gl::getContext(); | |
| if(context) | |
| { | |
| context->setVertexAttribState(index, context->getArrayBuffer(), size, type, (normalized == GL_TRUE), stride, ptr); | |
| context->setEnableVertexAttribArray(index, ptr != 0); | |
| } | |
| } | |
| void Context::captureAttribs() | |
| { | |
| memcpy(clientAttribute, mState.vertexAttribute, sizeof(mState.vertexAttribute)); | |
| } | |
| void Context::captureDrawArrays(GLenum mode, GLint first, GLsizei count) | |
| { | |
| ASSERT(first == 0); // FIXME: UNIMPLEMENTED! | |
| for(GLuint i = 0; i < MAX_VERTEX_ATTRIBS; i++) | |
| { | |
| GLint size = mState.vertexAttribute[i].mSize; | |
| GLenum type = mState.vertexAttribute[i].mType; | |
| GLboolean normalized = mState.vertexAttribute[i].mNormalized; | |
| GLsizei stride = mState.vertexAttribute[i].mStride; | |
| const GLvoid *pointer = mState.vertexAttribute[i].mPointer; | |
| size_t length = count * mState.vertexAttribute[i].stride(); | |
| if(mState.vertexAttribute[i].mArrayEnabled) | |
| { | |
| ASSERT(pointer); // FIXME: Add to condition? | |
| const int padding = 1024; // For SIMD processing of vertices // FIXME: Still necessary? | |
| void *buffer = new unsigned char[length + padding]; | |
| memcpy(buffer, pointer, length); | |
| listCommand(gl::newCommand(glVertexAttribArray, i, size, type, normalized, stride, (const void*)buffer)); | |
| } | |
| else | |
| { | |
| listCommand(gl::newCommand(glVertexAttribArray, i, size, type, normalized, stride, (const void*)0)); | |
| } | |
| } | |
| } | |
| void Context::restoreAttribs() | |
| { | |
| memcpy(mState.vertexAttribute, clientAttribute, sizeof(mState.vertexAttribute)); | |
| } | |
| void Context::clientActiveTexture(GLenum texture) | |
| { | |
| clientTexture = texture; | |
| } | |
| GLenum Context::getClientActiveTexture() const | |
| { | |
| return clientTexture; | |
| } | |
| unsigned int Context::getActiveTexture() const | |
| { | |
| return mState.activeSampler; | |
| } | |
| void Context::begin(GLenum mode) | |
| { | |
| if(drawing) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| drawing = true; | |
| drawMode = mode; | |
| vertex.clear(); | |
| } | |
| void Context::position(GLfloat x, GLfloat y, GLfloat z, GLfloat w) | |
| { | |
| InVertex v; | |
| v.P.x = x; | |
| v.P.y = y; | |
| v.P.z = z; | |
| v.P.w = w; | |
| v.C.r = mState.vertexAttribute[sw::Color0].mCurrentValue[0]; | |
| v.C.g = mState.vertexAttribute[sw::Color0].mCurrentValue[1]; | |
| v.C.b = mState.vertexAttribute[sw::Color0].mCurrentValue[2]; | |
| v.C.a = mState.vertexAttribute[sw::Color0].mCurrentValue[3]; | |
| v.N.x = mState.vertexAttribute[sw::Normal].mCurrentValue[0]; | |
| v.N.y = mState.vertexAttribute[sw::Normal].mCurrentValue[1]; | |
| v.N.z = mState.vertexAttribute[sw::Normal].mCurrentValue[2]; | |
| v.N.w = mState.vertexAttribute[sw::Normal].mCurrentValue[3]; | |
| v.T0.x = mState.vertexAttribute[sw::TexCoord0].mCurrentValue[0]; | |
| v.T0.y = mState.vertexAttribute[sw::TexCoord0].mCurrentValue[1]; | |
| v.T0.z = mState.vertexAttribute[sw::TexCoord0].mCurrentValue[2]; | |
| v.T0.w = mState.vertexAttribute[sw::TexCoord0].mCurrentValue[3]; | |
| v.T1.x = mState.vertexAttribute[sw::TexCoord1].mCurrentValue[0]; | |
| v.T1.y = mState.vertexAttribute[sw::TexCoord1].mCurrentValue[1]; | |
| v.T1.z = mState.vertexAttribute[sw::TexCoord1].mCurrentValue[2]; | |
| v.T1.w = mState.vertexAttribute[sw::TexCoord1].mCurrentValue[3]; | |
| vertex.push_back(v); | |
| } | |
| void Context::end() | |
| { | |
| if(!drawing) | |
| { | |
| return error(GL_INVALID_OPERATION); | |
| } | |
| device->setProjectionMatrix(projection.current()); | |
| device->setViewMatrix(modelView.current()); | |
| device->setTextureMatrix(0, texture[0].current()); | |
| device->setTextureMatrix(1, texture[1].current()); | |
| device->setTextureTransform(0, texture[0].isIdentity() ? 0 : 4, false); | |
| device->setTextureTransform(1, texture[1].isIdentity() ? 0 : 4, false); | |
| captureAttribs(); | |
| for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++) | |
| { | |
| mState.vertexAttribute[i].mArrayEnabled = false; | |
| } | |
| setVertexAttribState(sw::Position, 0, 4, GL_FLOAT, false, sizeof(InVertex), &vertex[0].P); | |
| setVertexAttribState(sw::Normal, 0, 4, GL_FLOAT, false, sizeof(InVertex), &vertex[0].N); | |
| setVertexAttribState(sw::Color0, 0, 4, GL_FLOAT, false, sizeof(InVertex), &vertex[0].C); | |
| setVertexAttribState(sw::TexCoord0, 0, 2, GL_FLOAT, false, sizeof(InVertex), &vertex[0].T0); | |
| setVertexAttribState(sw::TexCoord1, 0, 2, GL_FLOAT, false, sizeof(InVertex), &vertex[0].T1); | |
| mState.vertexAttribute[sw::Position].mArrayEnabled = true; | |
| mState.vertexAttribute[sw::Normal].mArrayEnabled = true; | |
| mState.vertexAttribute[sw::Color0].mArrayEnabled = true; | |
| mState.vertexAttribute[sw::TexCoord0].mArrayEnabled = true; | |
| mState.vertexAttribute[sw::TexCoord1].mArrayEnabled = true; | |
| applyState(drawMode); | |
| GLenum err = applyVertexBuffer(0, 0, vertex.size()); | |
| if(err != GL_NO_ERROR) | |
| { | |
| return error(err); | |
| } | |
| applyTextures(); | |
| switch(drawMode) | |
| { | |
| case GL_POINTS: | |
| UNIMPLEMENTED(); | |
| break; | |
| case GL_LINES: | |
| UNIMPLEMENTED(); | |
| break; | |
| case GL_LINE_STRIP: | |
| UNIMPLEMENTED(); | |
| break; | |
| case GL_LINE_LOOP: | |
| UNIMPLEMENTED(); | |
| break; | |
| case GL_TRIANGLES: | |
| UNIMPLEMENTED(); | |
| break; | |
| case GL_TRIANGLE_STRIP: | |
| device->drawPrimitive(DRAW_TRIANGLESTRIP, vertex.size() - 2); | |
| break; | |
| case GL_TRIANGLE_FAN: | |
| UNIMPLEMENTED(); | |
| break; | |
| case GL_QUADS: | |
| UNIMPLEMENTED(); | |
| break; | |
| case GL_QUAD_STRIP: | |
| UNIMPLEMENTED(); | |
| break; | |
| case GL_POLYGON: | |
| UNIMPLEMENTED(); | |
| break; | |
| default: | |
| UNREACHABLE(); | |
| } | |
| restoreAttribs(); | |
| drawing = false; | |
| } | |
| void Context::setColorMaterial(bool enable) | |
| { | |
| device->setColorVertexEnable(enable); | |
| } | |
| void Context::setColorMaterialMode(GLenum mode) | |
| { | |
| switch(mode) | |
| { | |
| case GL_EMISSION: | |
| device->setDiffuseMaterialSource(sw::MATERIAL_MATERIAL); | |
| device->setSpecularMaterialSource(sw::MATERIAL_MATERIAL); | |
| device->setAmbientMaterialSource(sw::MATERIAL_MATERIAL); | |
| device->setEmissiveMaterialSource(sw::MATERIAL_COLOR1); | |
| break; | |
| case GL_AMBIENT: | |
| device->setDiffuseMaterialSource(sw::MATERIAL_MATERIAL); | |
| device->setSpecularMaterialSource(sw::MATERIAL_MATERIAL); | |
| device->setAmbientMaterialSource(sw::MATERIAL_COLOR1); | |
| device->setEmissiveMaterialSource(sw::MATERIAL_MATERIAL); | |
| break; | |
| case GL_DIFFUSE: | |
| device->setDiffuseMaterialSource(sw::MATERIAL_COLOR1); | |
| device->setSpecularMaterialSource(sw::MATERIAL_MATERIAL); | |
| device->setAmbientMaterialSource(sw::MATERIAL_MATERIAL); | |
| device->setEmissiveMaterialSource(sw::MATERIAL_MATERIAL); | |
| break; | |
| case GL_SPECULAR: | |
| device->setDiffuseMaterialSource(sw::MATERIAL_MATERIAL); | |
| device->setSpecularMaterialSource(sw::MATERIAL_COLOR1); | |
| device->setAmbientMaterialSource(sw::MATERIAL_MATERIAL); | |
| device->setEmissiveMaterialSource(sw::MATERIAL_MATERIAL); | |
| break; | |
| case GL_AMBIENT_AND_DIFFUSE: | |
| device->setDiffuseMaterialSource(sw::MATERIAL_COLOR1); | |
| device->setSpecularMaterialSource(sw::MATERIAL_MATERIAL); | |
| device->setAmbientMaterialSource(sw::MATERIAL_COLOR1); | |
| device->setEmissiveMaterialSource(sw::MATERIAL_MATERIAL); | |
| break; | |
| default: | |
| UNREACHABLE(); | |
| } | |
| } | |
| Device *Context::getDevice() | |
| { | |
| return device; | |
| } | |
| } |