| //===-- KnownBits.cpp - Stores known zeros/ones ---------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains a class for representing known zeros and ones used by |
| // computeKnownBits. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| |
| using namespace llvm; |
| |
| static KnownBits computeForAddCarry( |
| const KnownBits &LHS, const KnownBits &RHS, |
| bool CarryZero, bool CarryOne) { |
| assert(!(CarryZero && CarryOne) && |
| "Carry can't be zero and one at the same time"); |
| |
| APInt PossibleSumZero = LHS.getMaxValue() + RHS.getMaxValue() + !CarryZero; |
| APInt PossibleSumOne = LHS.getMinValue() + RHS.getMinValue() + CarryOne; |
| |
| // Compute known bits of the carry. |
| APInt CarryKnownZero = ~(PossibleSumZero ^ LHS.Zero ^ RHS.Zero); |
| APInt CarryKnownOne = PossibleSumOne ^ LHS.One ^ RHS.One; |
| |
| // Compute set of known bits (where all three relevant bits are known). |
| APInt LHSKnownUnion = LHS.Zero | LHS.One; |
| APInt RHSKnownUnion = RHS.Zero | RHS.One; |
| APInt CarryKnownUnion = std::move(CarryKnownZero) | CarryKnownOne; |
| APInt Known = std::move(LHSKnownUnion) & RHSKnownUnion & CarryKnownUnion; |
| |
| assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && |
| "known bits of sum differ"); |
| |
| // Compute known bits of the result. |
| KnownBits KnownOut; |
| KnownOut.Zero = ~std::move(PossibleSumZero) & Known; |
| KnownOut.One = std::move(PossibleSumOne) & Known; |
| return KnownOut; |
| } |
| |
| KnownBits KnownBits::computeForAddCarry( |
| const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry) { |
| assert(Carry.getBitWidth() == 1 && "Carry must be 1-bit"); |
| return ::computeForAddCarry( |
| LHS, RHS, Carry.Zero.getBoolValue(), Carry.One.getBoolValue()); |
| } |
| |
| KnownBits KnownBits::computeForAddSub(bool Add, bool NSW, |
| const KnownBits &LHS, KnownBits RHS) { |
| KnownBits KnownOut; |
| if (Add) { |
| // Sum = LHS + RHS + 0 |
| KnownOut = ::computeForAddCarry( |
| LHS, RHS, /*CarryZero*/true, /*CarryOne*/false); |
| } else { |
| // Sum = LHS + ~RHS + 1 |
| std::swap(RHS.Zero, RHS.One); |
| KnownOut = ::computeForAddCarry( |
| LHS, RHS, /*CarryZero*/false, /*CarryOne*/true); |
| } |
| |
| // Are we still trying to solve for the sign bit? |
| if (!KnownOut.isNegative() && !KnownOut.isNonNegative()) { |
| if (NSW) { |
| // Adding two non-negative numbers, or subtracting a negative number from |
| // a non-negative one, can't wrap into negative. |
| if (LHS.isNonNegative() && RHS.isNonNegative()) |
| KnownOut.makeNonNegative(); |
| // Adding two negative numbers, or subtracting a non-negative number from |
| // a negative one, can't wrap into non-negative. |
| else if (LHS.isNegative() && RHS.isNegative()) |
| KnownOut.makeNegative(); |
| } |
| } |
| |
| return KnownOut; |
| } |
| |
| KnownBits KnownBits::sextInReg(unsigned SrcBitWidth) const { |
| unsigned BitWidth = getBitWidth(); |
| assert(0 < SrcBitWidth && SrcBitWidth <= BitWidth && |
| "Illegal sext-in-register"); |
| |
| if (SrcBitWidth == BitWidth) |
| return *this; |
| |
| unsigned ExtBits = BitWidth - SrcBitWidth; |
| KnownBits Result; |
| Result.One = One << ExtBits; |
| Result.Zero = Zero << ExtBits; |
| Result.One.ashrInPlace(ExtBits); |
| Result.Zero.ashrInPlace(ExtBits); |
| return Result; |
| } |
| |
| KnownBits KnownBits::makeGE(const APInt &Val) const { |
| // Count the number of leading bit positions where our underlying value is |
| // known to be less than or equal to Val. |
| unsigned N = (Zero | Val).countLeadingOnes(); |
| |
| // For each of those bit positions, if Val has a 1 in that bit then our |
| // underlying value must also have a 1. |
| APInt MaskedVal(Val); |
| MaskedVal.clearLowBits(getBitWidth() - N); |
| return KnownBits(Zero, One | MaskedVal); |
| } |
| |
| KnownBits KnownBits::umax(const KnownBits &LHS, const KnownBits &RHS) { |
| // If we can prove that LHS >= RHS then use LHS as the result. Likewise for |
| // RHS. Ideally our caller would already have spotted these cases and |
| // optimized away the umax operation, but we handle them here for |
| // completeness. |
| if (LHS.getMinValue().uge(RHS.getMaxValue())) |
| return LHS; |
| if (RHS.getMinValue().uge(LHS.getMaxValue())) |
| return RHS; |
| |
| // If the result of the umax is LHS then it must be greater than or equal to |
| // the minimum possible value of RHS. Likewise for RHS. Any known bits that |
| // are common to these two values are also known in the result. |
| KnownBits L = LHS.makeGE(RHS.getMinValue()); |
| KnownBits R = RHS.makeGE(LHS.getMinValue()); |
| return KnownBits::commonBits(L, R); |
| } |
| |
| KnownBits KnownBits::umin(const KnownBits &LHS, const KnownBits &RHS) { |
| // Flip the range of values: [0, 0xFFFFFFFF] <-> [0xFFFFFFFF, 0] |
| auto Flip = [](const KnownBits &Val) { return KnownBits(Val.One, Val.Zero); }; |
| return Flip(umax(Flip(LHS), Flip(RHS))); |
| } |
| |
| KnownBits KnownBits::smax(const KnownBits &LHS, const KnownBits &RHS) { |
| // Flip the range of values: [-0x80000000, 0x7FFFFFFF] <-> [0, 0xFFFFFFFF] |
| auto Flip = [](const KnownBits &Val) { |
| unsigned SignBitPosition = Val.getBitWidth() - 1; |
| APInt Zero = Val.Zero; |
| APInt One = Val.One; |
| Zero.setBitVal(SignBitPosition, Val.One[SignBitPosition]); |
| One.setBitVal(SignBitPosition, Val.Zero[SignBitPosition]); |
| return KnownBits(Zero, One); |
| }; |
| return Flip(umax(Flip(LHS), Flip(RHS))); |
| } |
| |
| KnownBits KnownBits::smin(const KnownBits &LHS, const KnownBits &RHS) { |
| // Flip the range of values: [-0x80000000, 0x7FFFFFFF] <-> [0xFFFFFFFF, 0] |
| auto Flip = [](const KnownBits &Val) { |
| unsigned SignBitPosition = Val.getBitWidth() - 1; |
| APInt Zero = Val.One; |
| APInt One = Val.Zero; |
| Zero.setBitVal(SignBitPosition, Val.Zero[SignBitPosition]); |
| One.setBitVal(SignBitPosition, Val.One[SignBitPosition]); |
| return KnownBits(Zero, One); |
| }; |
| return Flip(umax(Flip(LHS), Flip(RHS))); |
| } |
| |
| KnownBits KnownBits::shl(const KnownBits &LHS, const KnownBits &RHS) { |
| unsigned BitWidth = LHS.getBitWidth(); |
| KnownBits Known(BitWidth); |
| |
| // If the shift amount is a valid constant then transform LHS directly. |
| if (RHS.isConstant() && RHS.getConstant().ult(BitWidth)) { |
| unsigned Shift = RHS.getConstant().getZExtValue(); |
| Known = LHS; |
| Known.Zero <<= Shift; |
| Known.One <<= Shift; |
| // Low bits are known zero. |
| Known.Zero.setLowBits(Shift); |
| return Known; |
| } |
| |
| // No matter the shift amount, the trailing zeros will stay zero. |
| unsigned MinTrailingZeros = LHS.countMinTrailingZeros(); |
| |
| // Minimum shift amount low bits are known zero. |
| APInt MinShiftAmount = RHS.getMinValue(); |
| if (MinShiftAmount.ult(BitWidth)) { |
| MinTrailingZeros += MinShiftAmount.getZExtValue(); |
| MinTrailingZeros = std::min(MinTrailingZeros, BitWidth); |
| } |
| |
| // If the maximum shift is in range, then find the common bits from all |
| // possible shifts. |
| APInt MaxShiftAmount = RHS.getMaxValue(); |
| if (MaxShiftAmount.ult(BitWidth) && !LHS.isUnknown()) { |
| uint64_t ShiftAmtZeroMask = (~RHS.Zero).getZExtValue(); |
| uint64_t ShiftAmtOneMask = RHS.One.getZExtValue(); |
| assert(MinShiftAmount.ult(MaxShiftAmount) && "Illegal shift range"); |
| Known.Zero.setAllBits(); |
| Known.One.setAllBits(); |
| for (uint64_t ShiftAmt = MinShiftAmount.getZExtValue(), |
| MaxShiftAmt = MaxShiftAmount.getZExtValue(); |
| ShiftAmt <= MaxShiftAmt; ++ShiftAmt) { |
| // Skip if the shift amount is impossible. |
| if ((ShiftAmtZeroMask & ShiftAmt) != ShiftAmt || |
| (ShiftAmtOneMask | ShiftAmt) != ShiftAmt) |
| continue; |
| KnownBits SpecificShift; |
| SpecificShift.Zero = LHS.Zero << ShiftAmt; |
| SpecificShift.One = LHS.One << ShiftAmt; |
| Known = KnownBits::commonBits(Known, SpecificShift); |
| if (Known.isUnknown()) |
| break; |
| } |
| } |
| |
| Known.Zero.setLowBits(MinTrailingZeros); |
| return Known; |
| } |
| |
| KnownBits KnownBits::lshr(const KnownBits &LHS, const KnownBits &RHS) { |
| unsigned BitWidth = LHS.getBitWidth(); |
| KnownBits Known(BitWidth); |
| |
| if (RHS.isConstant() && RHS.getConstant().ult(BitWidth)) { |
| unsigned Shift = RHS.getConstant().getZExtValue(); |
| Known = LHS; |
| Known.Zero.lshrInPlace(Shift); |
| Known.One.lshrInPlace(Shift); |
| // High bits are known zero. |
| Known.Zero.setHighBits(Shift); |
| return Known; |
| } |
| |
| // No matter the shift amount, the leading zeros will stay zero. |
| unsigned MinLeadingZeros = LHS.countMinLeadingZeros(); |
| |
| // Minimum shift amount high bits are known zero. |
| APInt MinShiftAmount = RHS.getMinValue(); |
| if (MinShiftAmount.ult(BitWidth)) { |
| MinLeadingZeros += MinShiftAmount.getZExtValue(); |
| MinLeadingZeros = std::min(MinLeadingZeros, BitWidth); |
| } |
| |
| // If the maximum shift is in range, then find the common bits from all |
| // possible shifts. |
| APInt MaxShiftAmount = RHS.getMaxValue(); |
| if (MaxShiftAmount.ult(BitWidth) && !LHS.isUnknown()) { |
| uint64_t ShiftAmtZeroMask = (~RHS.Zero).getZExtValue(); |
| uint64_t ShiftAmtOneMask = RHS.One.getZExtValue(); |
| assert(MinShiftAmount.ult(MaxShiftAmount) && "Illegal shift range"); |
| Known.Zero.setAllBits(); |
| Known.One.setAllBits(); |
| for (uint64_t ShiftAmt = MinShiftAmount.getZExtValue(), |
| MaxShiftAmt = MaxShiftAmount.getZExtValue(); |
| ShiftAmt <= MaxShiftAmt; ++ShiftAmt) { |
| // Skip if the shift amount is impossible. |
| if ((ShiftAmtZeroMask & ShiftAmt) != ShiftAmt || |
| (ShiftAmtOneMask | ShiftAmt) != ShiftAmt) |
| continue; |
| KnownBits SpecificShift = LHS; |
| SpecificShift.Zero.lshrInPlace(ShiftAmt); |
| SpecificShift.One.lshrInPlace(ShiftAmt); |
| Known = KnownBits::commonBits(Known, SpecificShift); |
| if (Known.isUnknown()) |
| break; |
| } |
| } |
| |
| Known.Zero.setHighBits(MinLeadingZeros); |
| return Known; |
| } |
| |
| KnownBits KnownBits::ashr(const KnownBits &LHS, const KnownBits &RHS) { |
| unsigned BitWidth = LHS.getBitWidth(); |
| KnownBits Known(BitWidth); |
| |
| if (RHS.isConstant() && RHS.getConstant().ult(BitWidth)) { |
| unsigned Shift = RHS.getConstant().getZExtValue(); |
| Known = LHS; |
| Known.Zero.ashrInPlace(Shift); |
| Known.One.ashrInPlace(Shift); |
| return Known; |
| } |
| |
| // No matter the shift amount, the leading sign bits will stay. |
| unsigned MinLeadingZeros = LHS.countMinLeadingZeros(); |
| unsigned MinLeadingOnes = LHS.countMinLeadingOnes(); |
| |
| // Minimum shift amount high bits are known sign bits. |
| APInt MinShiftAmount = RHS.getMinValue(); |
| if (MinShiftAmount.ult(BitWidth)) { |
| if (MinLeadingZeros) { |
| MinLeadingZeros += MinShiftAmount.getZExtValue(); |
| MinLeadingZeros = std::min(MinLeadingZeros, BitWidth); |
| } |
| if (MinLeadingOnes) { |
| MinLeadingOnes += MinShiftAmount.getZExtValue(); |
| MinLeadingOnes = std::min(MinLeadingOnes, BitWidth); |
| } |
| } |
| |
| // If the maximum shift is in range, then find the common bits from all |
| // possible shifts. |
| APInt MaxShiftAmount = RHS.getMaxValue(); |
| if (MaxShiftAmount.ult(BitWidth) && !LHS.isUnknown()) { |
| uint64_t ShiftAmtZeroMask = (~RHS.Zero).getZExtValue(); |
| uint64_t ShiftAmtOneMask = RHS.One.getZExtValue(); |
| assert(MinShiftAmount.ult(MaxShiftAmount) && "Illegal shift range"); |
| Known.Zero.setAllBits(); |
| Known.One.setAllBits(); |
| for (uint64_t ShiftAmt = MinShiftAmount.getZExtValue(), |
| MaxShiftAmt = MaxShiftAmount.getZExtValue(); |
| ShiftAmt <= MaxShiftAmt; ++ShiftAmt) { |
| // Skip if the shift amount is impossible. |
| if ((ShiftAmtZeroMask & ShiftAmt) != ShiftAmt || |
| (ShiftAmtOneMask | ShiftAmt) != ShiftAmt) |
| continue; |
| KnownBits SpecificShift = LHS; |
| SpecificShift.Zero.ashrInPlace(ShiftAmt); |
| SpecificShift.One.ashrInPlace(ShiftAmt); |
| Known = KnownBits::commonBits(Known, SpecificShift); |
| if (Known.isUnknown()) |
| break; |
| } |
| } |
| |
| Known.Zero.setHighBits(MinLeadingZeros); |
| Known.One.setHighBits(MinLeadingOnes); |
| return Known; |
| } |
| |
| std::optional<bool> KnownBits::eq(const KnownBits &LHS, const KnownBits &RHS) { |
| if (LHS.isConstant() && RHS.isConstant()) |
| return std::optional<bool>(LHS.getConstant() == RHS.getConstant()); |
| if (LHS.One.intersects(RHS.Zero) || RHS.One.intersects(LHS.Zero)) |
| return std::optional<bool>(false); |
| return std::nullopt; |
| } |
| |
| std::optional<bool> KnownBits::ne(const KnownBits &LHS, const KnownBits &RHS) { |
| if (std::optional<bool> KnownEQ = eq(LHS, RHS)) |
| return std::optional<bool>(!*KnownEQ); |
| return std::nullopt; |
| } |
| |
| std::optional<bool> KnownBits::ugt(const KnownBits &LHS, const KnownBits &RHS) { |
| // LHS >u RHS -> false if umax(LHS) <= umax(RHS) |
| if (LHS.getMaxValue().ule(RHS.getMinValue())) |
| return std::optional<bool>(false); |
| // LHS >u RHS -> true if umin(LHS) > umax(RHS) |
| if (LHS.getMinValue().ugt(RHS.getMaxValue())) |
| return std::optional<bool>(true); |
| return std::nullopt; |
| } |
| |
| std::optional<bool> KnownBits::uge(const KnownBits &LHS, const KnownBits &RHS) { |
| if (std::optional<bool> IsUGT = ugt(RHS, LHS)) |
| return std::optional<bool>(!*IsUGT); |
| return std::nullopt; |
| } |
| |
| std::optional<bool> KnownBits::ult(const KnownBits &LHS, const KnownBits &RHS) { |
| return ugt(RHS, LHS); |
| } |
| |
| std::optional<bool> KnownBits::ule(const KnownBits &LHS, const KnownBits &RHS) { |
| return uge(RHS, LHS); |
| } |
| |
| std::optional<bool> KnownBits::sgt(const KnownBits &LHS, const KnownBits &RHS) { |
| // LHS >s RHS -> false if smax(LHS) <= smax(RHS) |
| if (LHS.getSignedMaxValue().sle(RHS.getSignedMinValue())) |
| return std::optional<bool>(false); |
| // LHS >s RHS -> true if smin(LHS) > smax(RHS) |
| if (LHS.getSignedMinValue().sgt(RHS.getSignedMaxValue())) |
| return std::optional<bool>(true); |
| return std::nullopt; |
| } |
| |
| std::optional<bool> KnownBits::sge(const KnownBits &LHS, const KnownBits &RHS) { |
| if (std::optional<bool> KnownSGT = sgt(RHS, LHS)) |
| return std::optional<bool>(!*KnownSGT); |
| return std::nullopt; |
| } |
| |
| std::optional<bool> KnownBits::slt(const KnownBits &LHS, const KnownBits &RHS) { |
| return sgt(RHS, LHS); |
| } |
| |
| std::optional<bool> KnownBits::sle(const KnownBits &LHS, const KnownBits &RHS) { |
| return sge(RHS, LHS); |
| } |
| |
| KnownBits KnownBits::abs(bool IntMinIsPoison) const { |
| // If the source's MSB is zero then we know the rest of the bits already. |
| if (isNonNegative()) |
| return *this; |
| |
| // Absolute value preserves trailing zero count. |
| KnownBits KnownAbs(getBitWidth()); |
| KnownAbs.Zero.setLowBits(countMinTrailingZeros()); |
| |
| // We only know that the absolute values's MSB will be zero if INT_MIN is |
| // poison, or there is a set bit that isn't the sign bit (otherwise it could |
| // be INT_MIN). |
| if (IntMinIsPoison || (!One.isZero() && !One.isMinSignedValue())) |
| KnownAbs.Zero.setSignBit(); |
| |
| // FIXME: Handle known negative input? |
| // FIXME: Calculate the negated Known bits and combine them? |
| return KnownAbs; |
| } |
| |
| KnownBits KnownBits::mul(const KnownBits &LHS, const KnownBits &RHS, |
| bool NoUndefSelfMultiply) { |
| unsigned BitWidth = LHS.getBitWidth(); |
| assert(BitWidth == RHS.getBitWidth() && !LHS.hasConflict() && |
| !RHS.hasConflict() && "Operand mismatch"); |
| assert((!NoUndefSelfMultiply || LHS == RHS) && |
| "Self multiplication knownbits mismatch"); |
| |
| // Compute the high known-0 bits by multiplying the unsigned max of each side. |
| // Conservatively, M active bits * N active bits results in M + N bits in the |
| // result. But if we know a value is a power-of-2 for example, then this |
| // computes one more leading zero. |
| // TODO: This could be generalized to number of sign bits (negative numbers). |
| APInt UMaxLHS = LHS.getMaxValue(); |
| APInt UMaxRHS = RHS.getMaxValue(); |
| |
| // For leading zeros in the result to be valid, the unsigned max product must |
| // fit in the bitwidth (it must not overflow). |
| bool HasOverflow; |
| APInt UMaxResult = UMaxLHS.umul_ov(UMaxRHS, HasOverflow); |
| unsigned LeadZ = HasOverflow ? 0 : UMaxResult.countLeadingZeros(); |
| |
| // The result of the bottom bits of an integer multiply can be |
| // inferred by looking at the bottom bits of both operands and |
| // multiplying them together. |
| // We can infer at least the minimum number of known trailing bits |
| // of both operands. Depending on number of trailing zeros, we can |
| // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming |
| // a and b are divisible by m and n respectively. |
| // We then calculate how many of those bits are inferrable and set |
| // the output. For example, the i8 mul: |
| // a = XXXX1100 (12) |
| // b = XXXX1110 (14) |
| // We know the bottom 3 bits are zero since the first can be divided by |
| // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). |
| // Applying the multiplication to the trimmed arguments gets: |
| // XX11 (3) |
| // X111 (7) |
| // ------- |
| // XX11 |
| // XX11 |
| // XX11 |
| // XX11 |
| // ------- |
| // XXXXX01 |
| // Which allows us to infer the 2 LSBs. Since we're multiplying the result |
| // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. |
| // The proof for this can be described as: |
| // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && |
| // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + |
| // umin(countTrailingZeros(C2), C6) + |
| // umin(C5 - umin(countTrailingZeros(C1), C5), |
| // C6 - umin(countTrailingZeros(C2), C6)))) - 1) |
| // %aa = shl i8 %a, C5 |
| // %bb = shl i8 %b, C6 |
| // %aaa = or i8 %aa, C1 |
| // %bbb = or i8 %bb, C2 |
| // %mul = mul i8 %aaa, %bbb |
| // %mask = and i8 %mul, C7 |
| // => |
| // %mask = i8 ((C1*C2)&C7) |
| // Where C5, C6 describe the known bits of %a, %b |
| // C1, C2 describe the known bottom bits of %a, %b. |
| // C7 describes the mask of the known bits of the result. |
| const APInt &Bottom0 = LHS.One; |
| const APInt &Bottom1 = RHS.One; |
| |
| // How many times we'd be able to divide each argument by 2 (shr by 1). |
| // This gives us the number of trailing zeros on the multiplication result. |
| unsigned TrailBitsKnown0 = (LHS.Zero | LHS.One).countTrailingOnes(); |
| unsigned TrailBitsKnown1 = (RHS.Zero | RHS.One).countTrailingOnes(); |
| unsigned TrailZero0 = LHS.countMinTrailingZeros(); |
| unsigned TrailZero1 = RHS.countMinTrailingZeros(); |
| unsigned TrailZ = TrailZero0 + TrailZero1; |
| |
| // Figure out the fewest known-bits operand. |
| unsigned SmallestOperand = |
| std::min(TrailBitsKnown0 - TrailZero0, TrailBitsKnown1 - TrailZero1); |
| unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); |
| |
| APInt BottomKnown = |
| Bottom0.getLoBits(TrailBitsKnown0) * Bottom1.getLoBits(TrailBitsKnown1); |
| |
| KnownBits Res(BitWidth); |
| Res.Zero.setHighBits(LeadZ); |
| Res.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); |
| Res.One = BottomKnown.getLoBits(ResultBitsKnown); |
| |
| // If we're self-multiplying then bit[1] is guaranteed to be zero. |
| if (NoUndefSelfMultiply && BitWidth > 1) { |
| assert(Res.One[1] == 0 && |
| "Self-multiplication failed Quadratic Reciprocity!"); |
| Res.Zero.setBit(1); |
| } |
| |
| return Res; |
| } |
| |
| KnownBits KnownBits::mulhs(const KnownBits &LHS, const KnownBits &RHS) { |
| unsigned BitWidth = LHS.getBitWidth(); |
| assert(BitWidth == RHS.getBitWidth() && !LHS.hasConflict() && |
| !RHS.hasConflict() && "Operand mismatch"); |
| KnownBits WideLHS = LHS.sext(2 * BitWidth); |
| KnownBits WideRHS = RHS.sext(2 * BitWidth); |
| return mul(WideLHS, WideRHS).extractBits(BitWidth, BitWidth); |
| } |
| |
| KnownBits KnownBits::mulhu(const KnownBits &LHS, const KnownBits &RHS) { |
| unsigned BitWidth = LHS.getBitWidth(); |
| assert(BitWidth == RHS.getBitWidth() && !LHS.hasConflict() && |
| !RHS.hasConflict() && "Operand mismatch"); |
| KnownBits WideLHS = LHS.zext(2 * BitWidth); |
| KnownBits WideRHS = RHS.zext(2 * BitWidth); |
| return mul(WideLHS, WideRHS).extractBits(BitWidth, BitWidth); |
| } |
| |
| KnownBits KnownBits::udiv(const KnownBits &LHS, const KnownBits &RHS) { |
| unsigned BitWidth = LHS.getBitWidth(); |
| assert(!LHS.hasConflict() && !RHS.hasConflict()); |
| KnownBits Known(BitWidth); |
| |
| // For the purposes of computing leading zeros we can conservatively |
| // treat a udiv as a logical right shift by the power of 2 known to |
| // be less than the denominator. |
| unsigned LeadZ = LHS.countMinLeadingZeros(); |
| unsigned RHSMaxLeadingZeros = RHS.countMaxLeadingZeros(); |
| |
| if (RHSMaxLeadingZeros != BitWidth) |
| LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); |
| |
| Known.Zero.setHighBits(LeadZ); |
| return Known; |
| } |
| |
| KnownBits KnownBits::urem(const KnownBits &LHS, const KnownBits &RHS) { |
| unsigned BitWidth = LHS.getBitWidth(); |
| assert(!LHS.hasConflict() && !RHS.hasConflict()); |
| KnownBits Known(BitWidth); |
| |
| if (RHS.isConstant() && RHS.getConstant().isPowerOf2()) { |
| // The upper bits are all zero, the lower ones are unchanged. |
| APInt LowBits = RHS.getConstant() - 1; |
| Known.Zero = LHS.Zero | ~LowBits; |
| Known.One = LHS.One & LowBits; |
| return Known; |
| } |
| |
| // Since the result is less than or equal to either operand, any leading |
| // zero bits in either operand must also exist in the result. |
| uint32_t Leaders = |
| std::max(LHS.countMinLeadingZeros(), RHS.countMinLeadingZeros()); |
| Known.Zero.setHighBits(Leaders); |
| return Known; |
| } |
| |
| KnownBits KnownBits::srem(const KnownBits &LHS, const KnownBits &RHS) { |
| unsigned BitWidth = LHS.getBitWidth(); |
| assert(!LHS.hasConflict() && !RHS.hasConflict()); |
| KnownBits Known(BitWidth); |
| |
| if (RHS.isConstant() && RHS.getConstant().isPowerOf2()) { |
| // The low bits of the first operand are unchanged by the srem. |
| APInt LowBits = RHS.getConstant() - 1; |
| Known.Zero = LHS.Zero & LowBits; |
| Known.One = LHS.One & LowBits; |
| |
| // If the first operand is non-negative or has all low bits zero, then |
| // the upper bits are all zero. |
| if (LHS.isNonNegative() || LowBits.isSubsetOf(LHS.Zero)) |
| Known.Zero |= ~LowBits; |
| |
| // If the first operand is negative and not all low bits are zero, then |
| // the upper bits are all one. |
| if (LHS.isNegative() && LowBits.intersects(LHS.One)) |
| Known.One |= ~LowBits; |
| return Known; |
| } |
| |
| // The sign bit is the LHS's sign bit, except when the result of the |
| // remainder is zero. The magnitude of the result should be less than or |
| // equal to the magnitude of the LHS. Therefore any leading zeros that exist |
| // in the left hand side must also exist in the result. |
| Known.Zero.setHighBits(LHS.countMinLeadingZeros()); |
| return Known; |
| } |
| |
| KnownBits &KnownBits::operator&=(const KnownBits &RHS) { |
| // Result bit is 0 if either operand bit is 0. |
| Zero |= RHS.Zero; |
| // Result bit is 1 if both operand bits are 1. |
| One &= RHS.One; |
| return *this; |
| } |
| |
| KnownBits &KnownBits::operator|=(const KnownBits &RHS) { |
| // Result bit is 0 if both operand bits are 0. |
| Zero &= RHS.Zero; |
| // Result bit is 1 if either operand bit is 1. |
| One |= RHS.One; |
| return *this; |
| } |
| |
| KnownBits &KnownBits::operator^=(const KnownBits &RHS) { |
| // Result bit is 0 if both operand bits are 0 or both are 1. |
| APInt Z = (Zero & RHS.Zero) | (One & RHS.One); |
| // Result bit is 1 if one operand bit is 0 and the other is 1. |
| One = (Zero & RHS.One) | (One & RHS.Zero); |
| Zero = std::move(Z); |
| return *this; |
| } |
| |
| void KnownBits::print(raw_ostream &OS) const { |
| OS << "{Zero=" << Zero << ", One=" << One << "}"; |
| } |
| void KnownBits::dump() const { |
| print(dbgs()); |
| dbgs() << "\n"; |
| } |